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Preface

The present work was written at the Institute of Lightweight Structures and Ropeways (ILS) of the
Swiss Federal Institute of Technology in Zurich (ETHZ) and was presented at the “Abteilung IITA fiir
Maschinenbau und Verfahrenstechnik™ in relation to the lecture “Holographische Messmethoden”. The
main scope was to review the basic concepts of nonlinear kinematics of deformation and to present new
topics in the fields of holographic interferometry and of projection moiré together with a powerful tool,
the intrinsic tensor calculus for engineers, which connect the aspects of optics and mechanics and also
allows more flexibility by computing general geometries of optical setups. The author wishes to thank
Prof. Dr. H.-R. Meyer-Piening, head of the ILS, for giving him a holographic laboratory and for the full
support in this research.
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Summary

The main scope of the present work is to introduce new topics in holographic interferometry and projection
moiré while reviewing the basic concepts of nonlinear kinematics of deformation.

In chapter 1, we recall some basic concepts of intrinsic tensor calculus and explicitly write some essential
relations, which will be needed in all the following chapters. The scope of this chapter is to present
the elements of vector and tensor analysis, which enable to understand the equations and computations
performed in chapters 2, 3 and 4, and to introduce the reader to the intrinsic notation, which is used all
over this work.

In chapter 2, we present some aspects related to the kinematics of deformation of 3-dimensional objects
and of 2-dimensional curved surfaces in space. Because only the surface of an opaque object (not the
interior of the body) can be recorded by means of holographic interferometry, emphasis is put on the
nonlinear theory of the deformation of a curved surface in space. In the case of large deformation
measurement of opaque bodies, or in the classical cases of deformation analysis of plates and shells, the
dilatation, rotation and displacement terms often have different orders of magnitude. Practically, one
may encounter small strains together with moderate rotations and large displacements. Thus, in order
to properly analyze such deformations, we have developed the deformation up to higher order terms, by
paying special attention on separating displacement, rotation and strain components. These relations are
written in prevision of the applications in both chapters on holographic interferometry and projection
moiré.

In chapter 3, we explain how to apply holographic interferometry to large deformation measurements and
how to deal with the related problem of vanishing fringe patterns. In common industrial environment,
large deformation measurements of opaque bodies by means of holographic interferometry are often
related to the problem of decreasing fringe spacing and contrast, causing the loss of the interference
fringe pattern, which contains the whole information on the corresponding deformation. Therefore, the
only way to determine the surface strain, rotation and displacement components of a structure element
under load relatively to the unloaded state is first to recover the interference fringes — at least locally — and
then to use the correct adequate relations to process the recovered fringe pattern properly. We explicitly
and quantitatively present the general equation system for a systematic fringe recovery procedure in the
general case of a large unknown object deformation. The relations for the quantitative evaluation of the
recovered fringes, i.e. the optical path difference and the exact fringe vector of the modified interference
pattern, are also explicitly presented. All needed relations are given in form of general vector and
tensor equations. Then, equations for fringe recovery are written in cartesian components and used
within a quantitative practical experiment to demonstrate the reliability of the theory. These relations
are general and may also be used in other application fields (with their related problems) of holographic
interferometry, when the loss of fringe spacing and contrast should be compensated.

In chapter 4, we explain how to determine the shape of an object surface in the 3-dimensional space
by applying the projection moiré technique. For plane surfaces, this process is obviously very trivial.
For curved surfaces however, we need an optical method which allows accurate quantitative acquisition
of the whole surface shape. The measurement result may then be used in holographic interferometry,
where the unit normal to the surface plays an important role in the decomposition of the deformation.
The main scope is to show that an optical shape measurement can be achieved by only applying the
projection moiré technique, which means performing the calibration of the optical setup and the object
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shape measurement without using other external techniques. Emphasis is put on relative moiré, which is
used in most experiments, and on difference moiré, which is generally used to calibrate optical systems.
The general tensor equations of projection moiré for all geometrical cases are explicitly written for
the first time. The concept of sensitivity vector, which comes from holographic interferometry, is also
introduced. Using a computer-based image processing system, a quantitative experimental verification
of the theoretical equations is performed and shows the calibration process of an optical setup.
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1. Basic concepts of tensor calculus for engineers

1.1 Vectors and tensors in space

We shall present here the basic concepts of vector and tensor calculus for engineers in the 3-dimensional
Euclidean space. The intrinsic notation used here to represent tensor operations comes from the modern
differential geometry and is free from any indices [1.1-1.11]. The rules used to combine vectors and
tensors and to build derivatives come from the linear algebra and the analysis [1.12,1.13]. In most cases,
scalars are represented by normal small or capital letter, vectors by bold small letter and tensors by bold
capital letter.

Let us first consider a cartesian system (O, z,y, z) with the three coordinates x,y, z and the three
orthogonal linear independent constant unit base vectors i, j and k:

x-axis /1 ; y-axis J/j ; z-axis/k ; i,j,k=4¢ (constant)
ilj, jLlk, kli ; [fij=1, [j[=1, [k[=1 (L.1)
i-j=j-k=k-i=0 ; i-i=j-j=k-k=1

A vector (or tensor of rank 1) is defined as follows

3 Uy
u:Zuizuxi—i-uyj—i—uzkﬁ uy p=(uy uy u) = u=u’ (1.2)
i=1 U,

where all u; are linear independent and where u,,, u,, u. are called the cartesian components of the vector
u. The sign ~ over the equal sign = draws attention to the fact that the base vectors are omitted in the
matrix representation. The physical meaning of a vector written as a column or a line obviously remains
the same, i.e. u = u’. Therefore, it is not necessary to use the transposition sign 7 for vectors in the
intrinsic notation.

Fig.1.1: Representation of a vector in the 3-dimensional space
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A point P in the 3-dimensional space can be represented by its three cartesian coordinates x, y, z, which
—
are the components of the position vector r = OP defined as follows

x
P: r=zit+yj+zk=<y (1.3)
z

The components x, y, z of the position vector can be written as function of the new three independent
curvilinear coordinates 0!, 6%, 63

r=xz(0',0% 6%
0'.0%,0° — y=y(6',6%6° (1.4)
z = 2(0",6% 6°)

The position of point P can now be defined with the new variables 0!, 62, 63, which means that the
position vector r is now a function of the curvilinear coordinates §*, 62, 63. We have:

0',6%,0° — r=r(6',6% 0% (1.5)

By varying only one of the three variables 6° (i=1,2,3) while keeping the two others constant, the position
vector r describes a curved line in space, i.e. a line of curvilinear coordinate. By varying two of the three
variables #* while keeping the other one constant, r describes a curved surface in space.

The total differential dr of the position vector r can now be written as follows

3
dr= ag+ g2y O qgr =N OF ggi = OF

= a0t ol o0 = 2 gt = gt =rad =mddt - (1L0)

where the repeated latin index ¢ means a sum on i from 1 to 3. The vectors g; = dr/06" are called
covariant base vectors and lie tangent to their corresponding lines of curvilinear coordinates. These base
vectors are generally not constant and not perpendicular to each other. Note that in the physical space,
the cartesian coordinates x, 3/, z and the curvilinear coordinates 61, §2, #3 often have the dimension of a
length (e.g. in m), whereas the base vectors are dimensionless.

03

Fig.1.2: Curvilinear coordinates
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As example, the special case where = = 01,y = 62 and z = 6° leads to

1 0 0
?:iﬁ 0 : ?:jﬁ 1 : ?:kﬁ 0 (1.7)
v 0 Y 0 z 1

In a general case, a vector (tensor of rank 1) may be expressed relatively to the covariant base vectors as
follows )
u=u'g; =u'g +u’gy +u’gs (1.8)

where the scalars u’ are the contravariant components of the vector u. In a cartesian system, the scalar
product of two vectors reads (line x column):

Vg
u-v= (ux Uy Uy ) . Vy = UypVy + Uy Uy + uyv, (19)
Vz

where the sign - represents a scalar product. The contravariant base vectors g7 are defined as follows

. , 1 ifj=:
_ 5 . L
with the so-called Kronecker symbol 5]% . Thus a vector can also be expressed relatively to the contravariant
base vectors as follows ‘

u = ug’ = ug' + upg? + uzg® (1.11)
where the scalars u; are the covariant components of the vector u. All these different kinds of representa-
tion, i.e. with covariant, or contravariant, or cartesian base vectors, does not change the physical meaning.
Consequently, we can choose an intrinsic notation without indices, containing both the components and
the base vectors in a symbolic representation. The rules on how to use this notation are explained in the

next lines. Practically, one needs to introduce a coordinate system only at the very end of an algebraic
computation, that means just before numerical values are requested (e.g. in an experiment).

The scalar product of the two vectors u = u'g; and v = v g’ reads
u-v=u'g;-glv; =u'y (1.12)

In a cartesian system, the tensor product of two vectors reads (line X column):

Uy UpVp  Ugly Uyl
UV =23 U, »®@(vy Uy V)= |Uyly Uyly Uy, (1.13)
U UUp  UUy UV,

where the sign ® represents a tensor product (also often called a dyadic product). A tensor of rank 2 is
defined as follows

9 3 3
T=> Ti=) > pi®q,
=1

i=1 j=1
—Toi @i+ Toyi @+ Tod Ok + Ty @i+ Tyj @+ Tyaj @ k

+T.k@i+T,k®j+T..kok (1.14)
Tﬂﬁl‘ Tﬂﬁy Tacz

= | Tye Tyy Ty
sz TZy Tzz
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where all T'; are linear independent and where T, T',.y, . .. , T are called the cartesian components of
the tensor T'. The vectors p; and q; are general linear independent vectors in space. A combination of
tensor products of base vectors gives a tensor base. In a cartesian system, we have

1 1 0 0 1 010
ii=<0,®(1 0 0)=|0 0 O ; i®j=<03®(0 1 0)=1]0 0 0
0 10 0 0] 0 [0 0 0]
1 [0 0 1] 0 [0 0 0]
iok=<¢0,®(0 0 1)=[0 0 O ; jei=<13®(1 0 0)=|1 0 O
0 10 0 0] 0 [0 0 0]
0 [0 0 0] 0 [0 0 0]
j®oj=<1,,®(0 1 0)=]0 1 0 ;o jok=<1,®(0 0 1)=1]0 0 1
0 10 0 0] 0 |0 0 0]
0 [0 0 0] 0 [0 0 0]
kei=<0®(1 0 0)=|0 0 O ;i k®@j=<0,®(0 1 0)=1]0 0 0
1 |1 0 0] 1 |0 1 0]
0 [0 0 0]
kak=<¢03®(0 0 1)=[{0 0 0 (1.15)
1 |0 0 1)
In a general case, a tensor of rank 2 may be expressed as follows
T=TVg og =T'goeg =T'g 0g =T,8 ®g (1.16)

where T/ are the contravariant, 7% and Tij the mixed and 7;; the covariant components of T. The
repeated indices ¢ and j mean a sum on ¢ and j from 1 to 3. Its transpose reads

T" =TVg g =Tig ©g =T/g;0g =Tyg' 0 g

g o A . A A (1.17)
=T'giwg =Tig'0g =T/'g0g =Tig ®g’
We say that T is symmetric if T = T7 and antimetric if T = —T7. In a general case, a tensor of rank
3 may be expressed as a combination of triadic products:
27 3 3
T=> T,=) > > pi®qas=T"gog og=...=Tg g vg" (118

i=1 i=1 j=1 k=1

where all T'; are linear independent and where p;, q; and s, are general linear independent vectors in
space. There are six possibilities to transpose a tensor of rank 3. For tensors of rank 4 and higher, we may
apply analog definitions. A matrix representation for tensors of rank 3 and higher is not recommended.

Scalars (or tensors of rank 0), vectors and tensors may interact on each other in several ways. The most
often encountered are the so-called linear transformations or mapping. For example, a tensor T may act
as an operator and maps a vector u into a new vector w = Tu. With the two arbitrary vectors p and q,
we may show this mechanism in the following example

Pz Pzqz  Pxdy Pzqz
T=p®a=qpy ¢ ®(@ q@ ¢:)= |Pydx Pyly Py (1.19a)
Y22 P2qz  P2qy Pz4:
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w=Tu=(p®q)u=p(q-u)

Pale Paly Pzl Uy Pa(Qatis + qyuy + q2u)
= Pydx Pyqy DPyq-z Uy = py(QzUz + qyuy + QZUZ)

P2Gx  P2Qy DPzQ- U, P2 (qaz + qyuy + q2uz)

Do Ug D (1.19b)
= Dy (Qx Qy 4=z ) ©y Uy =93 Py (qux + qyuy + Qzuz)

pZ U’Z pZ

In our example, we often say that the vector u contracts with the vector q giving a vector parallel to
p- We also speak of applying the tensor T on the vector u, keeping in mind that the vector u is on the
right of the operator T'. With the arbitrary vector v and the scalars A and p, this transformation is linear
because T(Au+ pv) = ATu+ pTv and is not commutative because generally Tu # uT. On the other
hand, we may write

- qz 4zPx qzPy 4dzP2z
T  =q®p=1 q ¢ @(Pe Py P:)=|@QPs Py qyP- (1.20a)
q- Q:Dx  Q:Dy Q=D
w=uT” =u(q®p)=(u-q)p
Q2Pz  QxDy QuD- (UzQe + UyQy + U2G2)Da
= (Uz Uy Uz ) qyPx  qyDPy QqyPz | = (uacQz + UyQy + U-q, )py
@:Px =Py Q=D (UzQe + UyQy + U2G2)D2
Ga Pa Pa (1.20b)
= (Ux Uy Uy ) N Gy Dy = (Uqu + Uy qy + UZQZ) Py
q= D= Pz

which shows that Tu = uT?. The transposition rules of vectors, rank 2 and rank 3 tensors are the
following:

B=a®b®c
B =a®cab
T=p® B=boawc
U.EuT 5 T P 4 ; T( T (121)
T =q®p (B =b®c®a
3" =ceb®a
B =coa®b
With R = a ® b, tensors of rank 2 may contract as follows
TR=(p®qg)(a®b)=(q-a)peb (1.22a)
T R=(p®q) - (a®b)=(q-a)(p-b) (1.22b)

As we can see, the first above equation (1.22a) represents the product of two tensors of rank 2 which
gives a rank 2 tensor again (analog to a matrix product in the sense of linear algebra). The second above
equation (1.22b) represents the double contraction of two tensors of rank 2 which gives a scalar. In these
cases, one speaks about simple and double contraction of two tensors. The double contraction, which
contracts the last with the first factor of corresponding tensors, should not be mistaken with the scalar
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product, where the same corresponding factors contract together. Thus, the scalar product of the tensors
T and R reads

T"-R=(q@p) - (a®b)=(p-a)(q-b) (1.23)

Let us also introduce the triple contraction, whichreads with T = p  q ® s
B:T=(a®b®c): (pq®s)=(c-p)(b-q)(a-s) (1.24)
As summary, the following rules may be deduced in a similar way

Tu=uT" = (p®qu=p(q-u) =u(q®p)=(u-q)p
v-Tu=vIl-u=v:(p®qu=(v-p)(q-u)
TR=(p®q)(a®b)=(q-a)p®@b #RT

T -R=(p®q)-(a®b)=(q-a)(p-b)=R-T=T"-R" (1.25)
Bu=(a@b®cjlu=a®b(c-u)

BT =(a®brc)(p®q)=a®b®q(c-p)
B-T=(a®b®c) - (p®q)=a(b-q)(c-p)

An important tensor is the identity I

I-gog -g' 8 =g"g 08 =98 0 =i0itjoj+kak=

S O =

0 0
1 0| (1.26)
0 1

where g;; = g; - g; and g/ = g’ - g7 are the covariant and contravariant components respectively. Note
that the double contraction I - I = 3. Applying I on a vector u = u,i + u,j + u.k, we get

u=Iu=(i®i+jej+kokju=>GH-u)i+ (- uj+ (k- uk=ui+u,j+u.k (1.27)
Proof: , ) )
gi=1g = (g ®e)g =gg’ &) =g =g O qed (1.28)

The identity tensor allows the bridge between covariant and contravariant expressions. As example, we
have for u ‘ 4 .
u=ul=u(g'®g)=(u-g')g=u'g

: : : (1.29)
=u(g;®g')=(u-g)g =ug
and for the base vectors
g =g'l=g'(g’®g;) = (g g')g; =9g"g, (1.30)
gi=gl=gi(g ®g’) = (g g)g = gig’
A tensor Q is orthogonal in space if
Q'=Q" ; QQ"'=Q"'Q=1I (1.31)
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where Q! is called the inverse of the tensor Q. Applied on a vector u, the orthogonal tensor Q acts as
a rotation. With v = Qu, we have
v=v-v=uQ?' Qu=u-Q'Qu=u-Tu=u-u=1u? (1.32)

which shows that the norm (length) of the vector remains unchanged. Each tensor T in space may be
decomposed in a symmetric part T'g and an antimetric part T 4 as follows

1

Tg =T, = §(T+TT)
T=Tg+ Ty ; 1 (1.33)
T,=-T% = §(T -T7)
By introducing the 3-dimensional tensors S = S” (symmetric) and A = —A” (antimetric), we can
write
S-A=0 ; Tg-Ta=0 ; T -S=Tg-S ; T-A=T4-A (1.34)

We shall often encounter the unit vector n defined as the unit normal of some plane or some curved
surface in space. The normal projection onto that plane or onto the tangential plane of that curved surface
is described by the normal projector N:

N=I-n®n=NT ; n-n=1 (1.35)

Applied on a vector u, the normal projector N acts as a normal projection of the vector u onto a plane
normal to the direction n, which means

Nu=I-n®n)ju=u-(n-u)n (1.36)

Fig.1.3: Normal and oblique projections
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An oblique projector M is defined as follows

n®k

M=1I-
n-k

<MT k- k=1 (1.37)

where k is some unit vector generally not parallel to n. Applied on a vector u, the oblique projector M
acts as an oblique projection of the vector u along the direction n onto a plane normal to the direction k.
On the other hand, its transpose M” acts as an oblique projection of the vector u along the direction k
onto a plane normal to the direction n. In both cases we have

B n®k B k-u _ T
Mu-(I— n-k)u_u <n-k>n_UM (1.38a)
k®n n-u
T _ (1_ —u— =
MTu = (I k‘n>u u (n'k)k uM (1.38b)

Consequently, the arbitrary vector u may be decomposed in an interior part Nu and in an exterior part
(n - u)n as follows
u=Iu=(N+n®n)u=Nu+ (n-u)n (1.39)

In a similar way, the 3-dimensional tensor T may decomposed in an interior part N TN, in two semi-
exterior parts n ® nTIN and NTn ® n and in an exterior part (n - Tn)n ® n as follows

T=ITI=(N+n®n)TIN+n®n) =NTN+n@nTN+NTn®n+ (n-Tn)n®n (1.40)

In a cartesian system, the vector product of two vectors is defined as follows

Uy Uy 1 Uy, — UL Vy
UXV=|u, vy J| = UsUp — ugv, (1.41)
u, v, Kk UgVy — UyVy

In a general case, the vector product of two vectors u and v reads

w=uxv=—-uEv=vEu=-vxu (1.42)

where E is the so-called 3-dimensional third-rank permutation tensor. This tensor is constant in the
3-dimensional space and is defined as follows

E=FEg'®eg @g"
=iQjek—-ik®j+jik®RRi—jRI®k+kRi®j—k®j®i
+4/g for an even permutation of ijk = 123
Eijx = { —/g foran odd permutation of ¢jk = 123 ; (i,5,k=1,2,3)
0 if two indices are identical

g = det g;; = 911922933 — 911953 — 922055 — 933912 + 2012923013 (1.43)

Note that the triple contraction € : £ = —6. By applying E on some unit vector in space, e.g. the unit
normal n, we get a 2-dimensional antimetric tensor, the so-called second-rank permutation tensor E,
which reads

E=-E'=%n ; E = NEN (1.44)

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



-9 —

The third-rank permutation tensor € may be decomposed with the second-rank permutation tensor E
and the unit normal n in semi-exterior parts as follows

E=E®n-E®n)’ +n®E (1.45)
where the sign )7 represents a semi-transposition of the second and third factor in the corresponding
triadic product. Applied on a vector u, the tensor E acts first as a normal projection onto a plane normal

to n and second as a rotation of —7 /2 around the direction n. Consequently we have EE = —N and
E-E=-2

Fig.1.4: Second-rank permutation tensor E applied on the vector u

Example:

With the cartesian base vectors i, j, k, the second-rank permutation tensor E, relatively to the direction
k (i.e. z-axis) reads

o

Tk=iRj-joi=E,= | -1

o
o O =
S O O
=
N
o
Il
|
(-
=
™
[
Il
-
—~
-
B~
(@)
N—

The three invariants of a general 3-dimensional tensor T are:

ILH=trT=T-1 . Traceof T
1
I = ET (EE)T-T . Sum of the minor-determinants of T (1.47)
1
Is =detT = ET (ETE)" T : Determinant of T

The three invariants 7, I and I3 of the tensor T are the coefficients of the caracteristic equation
1
det (T — oI) = E(T —ol)- [E(T —oDE]Y (T —0l)= 0>+ Lo*> —Lo+13=0 (1.48)
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because
() - 1=1-(EE)' = (£ - E)' =-E-E=21
I-(EE)" ' 1=21-1=6 ; I-1=3
(1.49)
(ETE)T - 1=1-(ETE)" = (£ZE)T - T =T (EE)"

I (ETE) - 1=T ()" - 1=1-(ZE)" - T=2T"1

If R = NRN is a general 2-dimensional tensor, its decomposition in a symmetric part Rg and an
antimetric part R 4 reads

1
Rs =R} = NRsN = 5(R+RT)

R=NRN=Rs+Ry4 ; 1 (1.50)
R, =-R% =NR,N = 5 (R - RT) = \E
where ) is a scalar. With the 3-dimensional tensors S = S” (symmetric) and A = —A” (antimetric),
we have
S-A=0 ; Rs- R4 =0 ; R-S=Rgs-S ; R-A=Rs,-A (151)
With the 2-dimensional tensors N and E, we get
Rs-E=0 ; R4s-N=0 (1.52)
The three invariants of the general 2-dimensional tensor R = NRN are:
L=trR=2Hr =R -N . Trace of R
I,=det(R+n®n)=Kgr= —%R .ERTE . (Minor-)determinant of R (1.53)
I3;=detR =0 . Determinant of R

Note: The third invariant I3 = det R is zero because the 2-dimensional tensor R is considered in the
3-dimensional space. If R represents the curvature tensor of some curved surface in space, then Hg
represents the mean curvature and K i the Gaussian curvature of the surface.

1.2 Derivatives in the 3-dimensional space

We have seen before that the position vector r of a point P in space is a function of the curvilinear
coordinates 0* (i=1,2,3), which means

0',0%,0° — r=r(0",6% 0% (1.54)
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Scalars, vectors and tensors may also be functions of the position vector r, e.g. a scalar ¢, a vector u, a
tensor T and higher-rank tensors B, etc . .. can be written as function of the vector variable r(6*, 62, 63)

I') = ¢[r<917 027 93)]

r) = ulr(6',6%,6%)]

P : 0',0%,0° — r=r(,0%60% — T = T(r) = T[r(6', 6% 6°)] (1.55)
B = B(r) = B[r(6',6%,6°)

¢=9¢

In the neighborhood of point P, we consider another point P of position vector ¥ = r + Ar. We have

H(F) = p(r) 4+ dop + %d% + %d%ﬁ +...

1 1
u(r) = u(r) + du+ Ed2u + §d3u +...
1 1
T(F) = T(r) + dT + 5<12T+ §d3T+... (1.56)
B 1 5 1 4
Of course this applies also to vector r
B 1 5 1 4
r:r+Ar:r+dr+§dr+§dr+... (1.57)

The 3-dimensional derivative operator V is defined as follows

.0
— ol 1.
V=g (1.58)

The derivative operator V, as is usual in analysis, always acts from the left to the right. The derivative
of a scalar can be considered as trivial compared with the derivative of a vector or a tensor. To take the
derivative of a vector or a tensor, it is necessary to derive not only the components, but also the associated
base vectors and tensors. For example, one may consider the derivative of a contravariant base vector g*,
which reads A

og'

007

=g’ =-T}g" : (i,7,k, £ =1,2,3) (1.59)

The result is a new vector, which can be written as a linear combination of the contravariant base vectors
g’ and which covariant components —I, are called Christoffel symbols of second kind. By contracting
that vector with gy, that means building the vector product, we get

9 . i i i

w(g ‘gr) =8 8r+8g gk =0
gy 0%r 0g;

8k = Pgi ~ 9eiogk ~ ek &I

=8, 8 =8 8 =8 gr="Th (1.60)
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The first and second-order total differentials of r read

or 9%r

_ 7 7 . 2 ]_ 1107 .
dr = Z-d6’ = gidd’ ; d’r= aglawdade g ;d0ideT ;. (1.61)

Because we want to bypass the notation with indices, we introduce the following derivative rules

507 ——d#' = db'g; - g 207 =dr-Vo¢

ou ) . Ou . 0

_ i (. . ol — Ao [ oi —

du = 2 dé* = do'(g; g)(%j db'g; (g 80j®u> dr(V @ u)

do =

(1.62)

) aT (9 B
AT = —-do' = do' (g - )wd9g< aw@T)dr(V@T)

For example, the tensor V & u can be explicitly written with components and base vectors. With
g, = -I'g"andu =g’ (i, 5,k = 1,2,3), we have

9 _ S -
v — gl 7 g =y gl i il i
®u g80]®(ug) u; 8’ g +ug’ ®g’; (1.63)

= (u]',i - Ffjuk)gi & gj = uj;igi & gj

where u;.; = u;j; I‘ ) are the covariant derivatives of the components of the vector u in space (not
to be confused with the partial derivative u; ; = Ou;/ 00%). With the “basic rules” (1.62), we write

d*¢ = d(d¢) = d(dr - V¢) = d*r- Vo +dr-d(Ve) =dr- (V@ Ve)dr + d*r- Vo
=d(du) =d[dr(V®u)] = (dr®dr) - (Ve Veu)+d*r(V e u)

dT = d(dT) = d[dr(Ve T)] = (dredr) (Vo Ve T) +dr(V e T) (1.64)

Derivatives of higher-order are deduced in a similar way. Here, we only prove the d2¢ derivative. Because
the 0 are independent variables, we have d20° = d3¢* = ... = 0 and

¢ - 9¢ 9%¢
2 — — 12 z_ i 107
d?¢ = d(d¢) d<86i>d9 557 0 89189Jd0d0
\W—J =
=0
= dr - (V@ Vo) dr + d*r - Vo
~~ —— ~—~ ~~ ~—~
ggdﬁe gi a.@ gja—qﬁ. gkdek g; kdﬁidﬁk g’ (%)
o0 067 ’ 007
(1.65)
. 3¢ - 0% . - 0 )
= (g’ I— ). g df'd6" + g 1 - gl — dO'do*
( o0 T8 awaw) 8 T8k 8 5p;
~~ 7 ~—
zk¢ﬂ+5kaezaej sz ¢1j
62¢ ’L ]
= 561907 de*deo [J ged
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The role of the position vector r, also called vector coordinate, is very important. As we can see, we have
replaced the three independent scalar variables % with the vector variable r. This implies that scalar,
vector and tensor functions in space can now be written as function of r. Thus, the vector coordinate
r makes the bridge between the original variables 6% and the different tensor functions in space. These
rules also apply to the position vector r. We can write:

dr=dr(V®r) = Veor=1I (1.66)

Proof:

0 A
or=g'e =g og=1 0 qed (1.67)

V®r= 500

/L- —_—
& B0
Because I and E are constant in space, their derivatives read:

VeoI=0 ; V®E=0 (1.68)

Example

In a cartesian system with constant base vectors i, j, k, we may choose z = ',y = 62 and z = 63.
Writing in components, we get

i
r=r(z,y,z)=rityj+zk=qy o ; ?Zi; ?ZJ ; ?Zk
2 * Y z (1.69)
(2,9, 2)
(2,9, 2)
dz
dr:dxi—i-dyj—i-dzk—a—d —i—ﬁd —i—ﬁd dy (1.71)
ox oy 0z d
z
8 )
ox
L0 .0 o . ] o
V—l%—l-‘]a—y—f-k%— 3 (1.72)
9
\ 0z
9
ox
_ - 0 o¢ 09 99 4
dp=dr-V¢ = (dz dy dz) 3 6= du -y dy + -dz (1.73)
9
\ 0z J
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4 [ a T
dux %
du=dr(V®u)= { du, ¢ =(dz dy dz) (92 @ (up uy uy)
Yy
0
du, —
b L\ 0z _
[ Ou,  Ouy  Ouy ] Ouy, Oty Ouy, 1.74
or O Oz or de + oy dy + 0z dz ( )
. ou, Ou, Ou ou ou ou
= (der dy d L 2l = Y Y Y
(dz dy dz) oy Oy 8mdx+ dy dy + 9% dz
Ou, Ouy Ou, ou, ou, ou,
L 92 9z 0z J 8xdw+ 8ydy+ 8zdz
(2] i 1 0 0 ]
ox
I=V®r= 9 Kz y z)=10 1 0 (1.75)
dy
0
— 1
0z L 0 0 i

Derivative rules for standard tensor expressions

Scalar, vector and other general tensor expressions in space are often build on other scalar, vector and
tensor functions. For example, a scalar can be build on a scalar product of two vectors. To derive such
expressions one may use the following rules

V (scalar) — vector

Vu-v)=(Vouv+(Vevu (1.76)
V(T'R)=(V®T)-R+(VaR) T
V - (vector) — scalar
V- (¢pu)=Vp-u+¢V-u (1.77)
V- (Tu) = VT -u+T" (V®u)
V ® (vector) — tensor
V& (pu)=Voou+¢Veu (1.78)
V& (Tu) = (Ve T)u+ (VeuT”
V (tensor) — vector
V(¢T) = (Vo)T +¢VT
(1.79)

TR) = (VT)R+T? . (V®R)

(

(

(u@v)=(V-u)v+u(Vav)

(

(Bu) = (VBu+ (Veou!. 87

v
v
v
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V ® (second-rank tensor) — third-rank tensor

V& (@T)=VoT+¢VeT
Vouev)=Veouev+Veoveou)l (1.80)
V®(TR)= (Ve T)R+VeR)ITT

V®(Bu) = (Ve Bu+ (Veous)?

V ® (third-rank tensor) — fourth-rank tensor

V ® (8T) = (Ve BT+ Ve T) 87" (1.81)
Ve (T8)=(VeT)B+Ves) T

where the signs ))? and ]]7" represent a semi-transposition between the second and fourth factor in
the above quadriadic products, as shown by the transpositionrule a@b®c®d))’ =a®d®c®b
for fourth-rank tensors. With the shortcut 9; = 9/90°, we only prove here the following derivative rule:

V ® (Tu) = g'd; ® (Tu) = g' ® 9;(Tu) = g' ® 9;(uTT)
=g'®0;Tu+g ®duT! = (g ®;T)u+ (g' ® d;u)TT (1.82)

Derivatives of lengths, directions and projectors

Derivatives of lengths, directions (always represented by a unit vector) and projectors relatively to some
collineation center (i.e a fixed point in space) may also be calculated. With the fixed point Py and the
variable point P in space, we define

——
ro =0Py=¢ ~ p=ph=r-r, H=I-h®h (1.83)
r=0P " p=p-h " h-h=1 '

Fig.1.5: Derivatives of a length and a direction in space
With
V(h-h)=2(V@hh=0
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Veoap=Ver-Very=Ver=I (1.84)

the derivatives of the length p, the direction h and the normal projector H read

Vp=V(p-h)=(Veph+(Voh)p=Ih+p(Veohh=h (1.85)
1 1 1
V®Vp:V®h:V®(—p> =V-@p+-V®p
p p p
) . . (1.86)
=-5Vpop+-I=-(I-h®h)=-H
p p p
1 1 1
V®V®Vp:V®V®h:V®<5H> :V;®H+5V®H
1 1 1
=—SVpoH+-V@I--V®haeh)
p1 1p p . (1.87)
=——h®H--V@h®h—--Vohoh)"
p p p
1 1
=——heH+Hoh)"+Hohl = -—H
p p
1
V®V®V®Vp:V®V®V®h:V®V®(—H)
P (1.88)

1 1
=V () =

where f = h®@ H+ H® h)T + H ® h is a so-called superprojector (third-rank tensor) and H =
h@H+Hoh+TheH+Hoh)T -HeoH- (HeH)T —H®H))? is a so-called hyperprojector
(fourth-rank tensor). Both tensors # and H are symmetric relatively to all factors. For example, by
applying the unit vector h on the superprojector # , one get the normal projector H. Thus, the derivative
of a length gives a direction parallel to the length, the derivative of a direction gives a normal projector,
the derivative of a normal projector a superprojector and so on.

1.3 Derivatives on a 2-dimensional curved surface in space

By keeping the third independent variable 62 constant, the position vector r = r(8!,6?) of a variable
point P describes a curved surface A? in the space R3:
PecA?: 6', 6% 6°

— r = r(0',6% 6% =r(6',6%) (1.89)

03=¢ 03=4¢
Thus, a curved surface in space can be described by two independent curvilinear coordinates 6! and 62.
Scalar, vector and tensor functions in the space R may be written either as function of r(0!, 62, 6) or
as function of r(6', 6?) on the corresponding curved surface A?. Because surfaces are located in space,
tensor functions described on 2-dimensional surfaces may also be considered from “outside”, which
means from the 3-dimensional space and only thereafter, by a suitable “projection”, be again described
on the surface. This allows a great flexibility and enables to clarify complicated calculations on curved
surfaces. Let us now explain how to deal with derivatives on curved surface.
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We consider a curved surface A in space, which is given by the position vector r = r(6*, §?). We know
that the position vector was originally dependent of the three variables §° (i = 1,2, 3), but is now only
dependent of both variables < (a = 1,2), because 63 = ¢ is constant on the surface.

A% . 6!, 6> — r=r(0',6%) (1.90)
The total differential reads
or or 2 or or
dr = —d6' + —d#? = —d0% = —db* =r ,d0® = a,dbo" 1.91
"o Tart T Lgee T o T a (1.91)

where the repeated greek index cv means a sum on « from 1 to 2. The variable vectors a, = dr/00¢ are
covariant base vectors (only dependent of #! and §2) and lie on the plane tangential to the curved surface
in point P (the so-called tangential plane).

Fig.1.6: Curved surface in space

If we again consider the position vector r with the additional variable #3, we can write the following
covariant base vectors g; (all dependent of 6%, 2 and 03)

or or

= = : - 1.92

8= 9o 85~ 93 (1.92)

Obviously, we have g, = a,, on the surface A2. The associated contravariant base vectors g* (dependent
of 61,62 and 63 with i = 1, 2, 3) are still defined in the usual way

1 if3=« Blgs=g’ g,=0

gﬁ-gazéiz{ . ’ ; g3 BaT 88 ;o (o,=1,2) (1.93)

0 iff#a g g =1

On the surface A?, the third contravariant base vector g? is defined perpendicular to the tangential plane

because

g’ gn=g"a,=0 (1.94)
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Important note: Because of the choice of the curvilinear coordinates 0%, which means the choice of the
functions z = z(6',62%,0%),y = y(0',62,6%) and z = 2(6*, 6%, 6%), the direction of the third covariant
base vector g3 is generally not perpendicular to the base vectors a,. Therefore, the contravariant base
vectors g” are not situated in the tangential plane of the curved surface A2. Consequently, a suitable
definition must be now introduced for the contravariant base vectors a® (only dependent of #! and #2) in
order that they always remain in the tangential plane of the curved surface A2, together with the covariant
base vectors a,,.

Thus, we first define the unit normal n to the surface as follows
n-a, =0 ; n-n=1 ; n =n(0',6?) (1.95)

Obviously, the unit normal n is perpendicular to the tangential plane of the surface. On the surface A2,
we have n//g3, but the directions may be different. The unit normal n is often defined in the literature
asn = a; X az/|a; X as|. For our purposes, we choose the following definitions and conditions

n = n(@l, 02, 03) = n3g3 ) . 1 ) ns = TL3(91, 02, 93)
g’ =g’(0",0%,6°)

(1.96)

w
w

n-n=nig’ g’ =njg® =1 £/

In this general case, the unit normal n is defined everywhere in the 3-dimensional space, because it
is a function of the three variables #°. On the curved surface A?, where 2 = ¢ (constant), one get
n = n(6',0?). This allows a continuous transition between A% and R3. The contravariant base vectors
a® may now be defined as follows

{1 if 8= a

a’ - a, =0}, = : ;
0 if8+#«

a’ n=n-a,=0 (, 3=1,2)  (1.97)

Note that we have a, = g, but a” # g on A%. The normal projector N, also called metric tensor of
the surface, reads

N=a,®a*=a%®a, :aaﬂaa@)ag :aagao‘(@aﬁ =I-n®n (1.98)
where a®? = a® - a” and a5 = a, - ag. The first fundamental form of the surface is written
(ds)*> = dr - dr = a,3df8*d6? (1.99)
On the surface A? where 63 = ¢, we have

dr=Ndr ; Nn=0 ; Ngf=a’ ; Ng’=0 ; Ngz#0 (1.100)

Projecting the 3-dimensional total differential dr in space onto the surface while setting d9% = 0 gives
the 2-dimensional total differential dr = Ndr on the surface. We write

R3 dr = g;d#* = g,dh™ + gadh?

A2 :  dr= Ndr Ng, df* + Ngz d¢° =a,do” (1.101)
—_— O~ =~ =~

=a, #0 #0 =0

de>=0
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The proof of Ng? = a® reads
Ng’ = (a®* ® a,)g” = (a® ® g,)g’ = a” 0O qed (1.102)
The 2-dimensional antimetric second-rank permutation tensor E reads

E = En = E,3a% @ a’
++/a  for an even permutation of a3 = 12
E.3 =< —v/a foran odd permutation of o3 = 12 (1.103)
0 ifa=p

a =detang = aj1a22 — a12a21

To build derivatives on a 2-dimensional curved surface, we need the so-called 2-dimensional derivative
operator V,,, which is defined as follows

5 0

V,=NV =a BTE

(1.104)

The index n reminds us that V,, is always perpendicular to the unit normal n. We thenhave V,, = NV ,.
On A?, the 2-dimensional derivative operator V,, is the normal projection of the 3-dimensional derivative
operator V onto the tangential plane. Proof:

0 0
Vo =NV = @ 00 (8 555 €' )

0 0 0
= a° LBy @ Led) . —aBf_ 1.105
=a“ (a, g)805+a (aq g)803_a895 O ged ( )
= ga'gﬁ = 5028 =0
With «, 3,~v = 1, 2, the derivative of the unit normal n reads
on 0
5g7 = M8 = W(ngg?)) = n3,48" — nsl'},8" —[jn = —ngl'} a’ (1.106)
because
g =Ig"=(N+n®n)g”=a”’+ (n-g")n=a" +n3zg*'n
n-g’ =nzg’ g’ =nzg”
0 On
Jpgp M) =N opp = n3,n3g°° — nalh, (n-g") =Ty =0 (1.107)
3y I‘3
_ .9 3 B3
= n373 = nggﬁrﬂw + n3933
With

[e%

a :Ngo‘:(I—n®n)ga:ga—(n'ga)n:ga—ngggan
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oa” og® 0

o87 =0 = g7~ ggr | 8
aga a i o a
o907 = A8 = -T5,8" —Thie’
0 o on 8ga o on
ppr (8701 = (g aaﬁ> ! <n'aW>n+<n'g )56 (1.108)
On
<g aeﬁ> = —n3a®'Thm

Jg
<n- W) n= —(ngg‘g"yfg7 + TL3933F%3)1’1

3n 3
. (07 I (67 Y
the derivative of the contravariant base vector a® reads
oa®
O = atty = (I, — g T, Ja7 + o™ T
e (1.109)
_ a 9 v, % 3
=-T5, - 4% Fﬁv)a + 4% ﬁ'yg
where
Gy — ngg?’oTﬁ7 -a%-a,=a% a,p=a" =195 — n3g3o‘F (1.110a)
0 , . o o da, 0?r Oag
gpp & @) = @gray At s =0 s = 55 = Gangg < g 2
nga‘”F%7 =a% -n=-a"ng ; aCWI‘%7 =a%- gd=—a". g?’ﬁ (1.110b)
8 @ « «@ 8 @ 3 @ 3 «@ 3
W(a ,n):a’ﬁ.n+a n’B:O ; W(a g):awgg + a g,,@:O

Thus, the derivative of an interior base vector has an interior and an exterior part. We may encounter two
kinds of functions in space, namely scalar, vector and tensor functions of 8, 62, 63 or functions of only
01, 62 on a surface. Both kinds can be derivated on a surface A2 as follows

9¢ 9¢
dp = ——-d9* = dh*a, -a’ — - =dr- V,
= P9 A ggp = Vo
ou ou 0
du= ——df* = df*(a, —— =df%a, (a’— =dr(V,
u= - (aq - & )895 a (a 505 ®u> r(V, ®u) a111)
oT oT 0
T=_—d¢" *(ag - = do> i @T)= T
d (%O‘de =df%(a, - a )895 dé aa< 895® > dr(V,,®T)
We briefly show here, that these rules are also valid for functions ¢, u, T, ... of the three variables 6°.
In case of a scalar ¢, we become the projection of the 3-dimensional gradient V¢ on dr. Proof:
9¢ 9¢ 9¢
=dr-V,¢p=dr-N =d0%,, - [ g° @ O 1.112
dp =dr-V,¢ =dr- NV¢ = df“a < 895+g 205 (%ade ged ( )
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The total differential of r reads

dr = Ndr = dr(V,, ®r) = N=N'=V,®r (1.113)
Proof:
a% = aaﬁag : a% =4l =a%. a’
0 Jr
Vn®r:aa%®r:aa®wzaa®aa (1.114)
:aaﬁaﬁ@)aa:aaﬁaa@ag:N:NT [ ged

The total differential of n reads

dn =dr(V, ® n) = —drB = —Bdr (1.115)

where

B=B"=NBN=-V,®n=B.ga*®a’ ; Bayg=nslig=n-a,s (1.116)

is the so-called 2-dimensional curvature tensor of the surface A2. This second-rank tensor is symmetric
and interior, which means that it is situated in the tangential plane of the surface and do not contain any
exterior part. Proof:

Na®=a* ; T.;=T},
VvV, =NV,
V,(n-n)=2(V,@nn=0 (1.117)

V,@n=(V,®n)lI=(V,®n)N+ (V,@n)n®n=(V, ®n)N=N(V,, ®n)N
=N(a’ @n )N = —ngF?ﬂ’aN(aﬁ ®a®*)N = —ngl sa” ® a’
(V,@n)l = —ngFiﬁaﬁ ®a* = —n3lS a* @a’ = —ngFiﬁaa ® a’ U qged

With d(dr - n) = d?r - n + dr - dn = 0, the second fundamental form of the surface reads
Bds?* =d*r-n= —dr-dn = —dr- (V, ®n)dr = dr - Bdr (1.118)

The total differential of IN reads

Vn®N:Vn®I—Vn®n®n—Vn®n®n)T

AN =dr(V,®N) ; —B@n+Ban)’

(1.119)

The total differential of E reads with € = ¢in R?

V., E=V,®(En)=(V,QEn+ (V,@n)E
dE =dr(V,®E) ; =-BE=-BE®n-E®n)’ +n®E]  (1.120)
=BE®n) ~-BE®n
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With the “basic rules” above, we write on a curved surface A2

d’¢ = d(d¢) = d(dr - V,,¢) = d(Ndr - V,,¢) = d(Ndr) - V,,¢ + Ndr - d(V,,¢)
= (dNdr 4+ Nd?r) - V,,¢ +dr - [dr(V,, ® V,,0)]
= [dr(V, @ N)dr + Nd?r] - V,¢ + (dr ® dr) - (V,, ® V,,0)
— [(dr - Bdr)n + Nd’r] - NV, + (dr @ dr) - (V,, @ Vo) (1.121)
=d’r-V,¢+dr-d(V,¢)=dr-(V, ® V,¢)dr +d°r - V¢
d*u = d(du) = d[dr(V,, ®u)] = (dr®dr) - (V, ® V,, @ u) + d’r(V, @ u)
d*T = d(dT) =d[dr(V, @ T)] = (dr®dr) - (V,® V, @ T) +d*(V, @ T)

where
d*r = Nd?r + (dr - Bdr)n (1.122)

Let us now look at the decomposition of the derivative of a 3-dimensional vector u. We have
u=Iu=(N+n®nju=Nu+ (n-un=v-+wn (1.123)
where v = Nu and w = n - u. Thus, the derivative of u read

V,@u=V, & (v+wn)
=V,®v+V,u@n—wV, ®n (1.124)
=V,®v+V,uw®n-—Bw

Because B is interior, we have

(V,®u)N=(V, ®v)N - Buw (1.125)
with
V,@v=V,®(Nv)=(V,@Vv)N+ (V,®N)v (1.126)
= (V,@v)N+Be®n+B®n)]v=(V,2v)N+Bv®n '
which gives
V,2u=(V,®@Vv)N-Bw+ (Bv+V,w)®n (1.127)
For example, the tensor V,, ® v can be explicitly written with components and base vectors. With
a%; = —(Fg‘,y - n%g?’aF%W)a” + nga‘”l"%vn and v = v,a% (o, 3,7 = 1,2), we have
V,®v= aﬁw ® (vea®) = vaﬁaﬁ ®a® +v,a’ @ a‘fﬁ

= (Vg0 —Tl50y + nzg> TS sv,)a% @ a’ + ngawfiﬂvwaa ®n (1.128)

=vg.4a% @ a® + nga'y’gfiﬁvﬂ,aa ®n

where vg.o = Vg0 — ') g0y +139°7T% gv,, are the covariant derivatives of the components of the vector
v = Nu on the curved surface, which represent the components of the interior part of the tensor V,, @ v.
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Special case where the curvilinear coordinate 3 is perpendicular to the curved surface

In the special case where gz = g = n with n3 = 1, the contravariant base vectors g” are normal
to n, which means that Ng” = g” = af and ¢ = g3-g” = n-a? = 0. Therefore, we have
Vg = VB,q — Flﬁ“w and -I'); =g, -gzs=a’, -n= aWI‘iﬁ. The tensor V,, ® v then reads

V. @v=(vpa—T50)a"@a" —T3v,a" @n (1.129)

Analytical example

Let us consider the position vector r of a point P in the 3-dimensional space R3

- 912 022
P r::ci+yj+zk:91i+92j+cl<1—%—%>k+0293k (1.130)

with the constants ¢;, ¢ and the curvilinear coordinates ', #2, #3 such that

1) (6%)
= 0 : y = 6> : z:cl<1— T + 003 (1.131)
and where the cartesian base vectors i, j, k, corresponding to the x, y, and z-axes respectively, are
constant. By setting #° = 0, we get the position vector

2 2

P . r(0Y,62,69) :r(01,92):r(x,y):xi—i—yj—i—cl<1—x—2—y—2>k (1.132)
0>=0 a b

which describes the position of point P on a 2-dimensional parabolic surface A2 in space. On this surface,
r is only function of the two curvilinear coordinates §! = z and 6% = y.

r(6'0%3=0)

Fig.1.7: Definition of a curved surface in space
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The covariant base vectors in space and on the curved surface (with their derivatives) are

or or . 201xk
—aA] = = — =1 —
&1 Y7001 T oz a? a 2¢1 kK . a 0
o o 2 1,1 = ——5 ) 1,2 =
g2 = a2 o —r e —r :j Clyk 7 CL (1133)
002 Oy b2 2¢q
or a1 =0 ; ags= _b_Qk
83 = 5p3 = ek
where g3 is generally not perpendicular to the surface. The corresponding contravariant base vectors are
1 (2c2 2c
1 . . 2 . . 3 1T, 1Y.
g =i : g =] : g —a<a2 i+ b2J+k> (1.134)

where g? is perpendicular to the surface and with

gh-ogi=1; g-g=0; glgg=0
g2 g=0; g’ g=1; g’ g=0 (1.135)
g gi=0 ; g°g=0; gtg=1

The unit normal n to the surface reads withn -n =1

1
2c1x 2 2c1y 2 2c1x,  2c1y.
1 — k 1.136
+< 3 >+< 2 it it ( )

and allows to compute the contravariant base vectors a' and a? on the surface, which read

n:ngg

_ ) 01—
2c1x 2c1x 2c 2c x 2c
1 . 1 1 1 1 1Y.
=i 1 -7 LA BT e
i 2 2: -3
. 201 2c1x 2¢1 (1.137a)
T 1+<a2>+<b—2> n
2c1y [ 2c1x 2 2c1 217! 2c1x 2c1y .
2 _ . .
=i 1+<a2>+<b—2> <a2l+b—2‘]+k>
1
r 2 2773
. 2cy 2c1x 2c1 (1.137b)
IR 1+(a2)+(b—z> "
with ) . )
a-aj=1 ; a-aa=0 ; a -n=0
, , , (1.138)
a“-a;=0 ; a“~as=1 ; a“"-n=0

Note thata'-a? # 0in our case. The 3-dimensional derivative operator V in space and the 2-dimensional
derivative operator V,, on the surface respectively read

_ 19 29 30 _ 10 9 30
V=8 0 T8 50 T8 g5 T8 5, T8 5, T8 g

.0 0 1 (22, 2cy. 0
= 1— k
e +‘]8y T 2 < a? TN b2 ) I+ 063

(1.139)
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2c1x 2 2c1y 22 2cix\ O 2c1y\ O
1+< a2 > +< b2 ) 2 | oz T2 dy (1.140)
-1
.0 .0 2c1x, 2c1y. 2c1x 2 2c1y 2 2cix\ 0O 2c1y\ O
_1—$+J__< a l+—J+k> 1—|—<a2>+ b—2 7 %‘F b2 (9_y

where the normal projector N = I —n ® n = a! ® a; + a® ® a,, which projects any vector onto the
tangential plane of the surface, is also called the metric tensor of the surface. With

on  2c¢; [ 2c1x 2 2c1y 2] 1
2y )
dr  a? +< a? ) T\ &

on  2c¢ [ 2c1x 2 2c1y 2] 9
—=—|1 — 1.141
ay b2 +< a2 ) N\ & (1.141)

[SIE

N|=

the corresponding curvature tensor B of the surface reads

B= V,on=(ae a0
Ox oy

2c1x 2 2c1y 2
[y

which is in agreement with the definition B = ngl“i ﬁao‘ ® a” where ngfz g = MN-a,3. In point
Py (0,0, ¢1), which means for x = y = 0, we get

(1.142)

1
2
2 2
<%a1 ®al + %aQ ® a2>

261 T
e 0
2c1, . 2c1, .\ . 2¢q
0 0 0

14 Developments of lengths, directions and normal projectors in space

If the relations = = x(6%,60%,0%),y = y(0',02,03) and 2 = 2(0', 62, 63) are linear functions of the three
independent variables 67, then the base vectors g; and g’ are constant in space. In that case, we have

dr = Ar

1.144
Pr=d’r=...=0 ( )

r=r+Ar=r+dr where {
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Thus, we write

_ 1
¢:¢(f):gb(r—i-Ar):¢(r)+Ar-V¢+§Ar(V®V¢)Ar+...

1
ﬁ:u(f‘):u(r—i—Ar):u(r)+Ar(V®u)+§(Ar®Ar)-(V®V®u)+... (1.145)
_ 1
T:T(f):T(r—i-Ar):T(r)—i—Ar(V@T)—i—5(Ar®Ar)-(V®V®T)+...

Let us now consider the points Py, P and P with
. _
ro = OPg p=ph=r—rg p=ph=p+Ar=r—rg
. o
r=0P h-h=1 h-h=1
- ; ; ) (1.146)
r=OP p=p-h p=p-h
Ar=r-—r H=I-h®h H=I-h®h

Fig.1.8: Developments in space

For |Ar| < |p|, the developments (Taylor series) of the functions p, h and H = I — h ® h in the
neighborhood of point P are written as follows

1 1
ﬁ=p+Ar-Vp+§Ar~(V®Vp)Ar—|—...:p—l—Ar.h+%Ar-HAr+...

h:h+Ar(V®h)+%(Ar®Ar)-(V®V®h)+...:h+%HAr—%ArII{Ar+...

1. 1 1 1 1
-H=-H+ Ar [V@ <—H>} +—'(Ar®Ar)- [V@V@ <—H>] +...
p 11? 1 Pl 2! p (1.147)
=-H- -HAr + —ArHAr + ...
p P 2p?
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1.5 Affine connections

Affine connections make the bridge between different curved surfaces in space under the condition that
the surfaces are described by the same set of curvilinear coordinates (convected coordinates). With the
two vector coordinates r and T of both curved surfaces A? and A2 respectively, we write

r(6',6%)
(0", 6%)

', 6° — (1.148)

M)

The position vectors r and T respectively give the position of the points P and P on the corresponding
curved surfaces. Consequently, the whole set of points {P} can be mapped on the set of points {P},
which means that the position vector T can be written as a function of the position vector r. Thus, we
have

o', 6 — r =r(0",6%) — T =7(r) = [r(0*,0%)] = 7(6',0%) (1.149)
The first and second total differentials dr and dT are generally written as follows

dr =dr(V, ®7) ; T = (dredr) - (V,®V,®T)+d’r(V, ®T) (1.150)

For the first total differential, the tensor (V,, ® T) is applied on the vector dr and acts as a linear
transformation. This means that the vector dr is mapped onto the vector dr. For the second total
differential, the tensor (V,, ® T) is applied onto the vector d?r and also acts as a linear transformation.
The third-rank tensor (V,, ® V,, ®T) is applied onto the second-rank tensor (dr ® dr) in the sense of a
double contraction.

There are a lot of different kinds of affine connections between surfaces in the 3-dimensional space. In
holographic interferometry, we often encounter affine connections between several curved surfaces (up
to twelve and more). An important case is when considering a bundle of rays coming from a single point
and going through different surfaces. Such single fixed points in space are called collineation center and
are often physically represented by light sources or projection centers. Another case is when considering
adeformed object surface relatively to its undeformed configuration; in that case, both surfaces are related
by an affine connection called object surface deformation. Other affine connections may describe e. g. the
connection between the corresponding wavefronts at recording and at reconstruction (holography) or the
connection between the parallel surfaces of a shell (thin-shell theory).

Here, we only treat some essential cases of interest, which will be encountered in the next sections without
giving an exhaustive listing of other possibilities of affine connections in space.

Affine connections in case of a collineation center

The purpose of this section is to explain, how two curved surfaces A? and A? may be connected by a
single fixed collineation center C. We write

F=r,+pk (1.151)

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



— 28 —

where r. = ¢ is the constant position vector of the fixed collineation center C, p is the length from C to
~ — ~
P and k is the direction parallel to the vector CP (Fig.1.9). All three points C, P and P are located on

the same straight line. We have with V,, ® r. = 0

V., ©F =V, ® (1o 4 PK) = Voo © (5k) = Voj 0 k + 5V, @ k = Vnﬁ®k+§NK
(1.152)

V,9k—NVok—NK : NeI-non : K-I-kok
p

=>
[l

O

Fig.1.9: Affine connection between two surfaces with collineation center C

With the unit normal 1i of the surface A2, the gradient V,,p of the length p can be explicitly calculated
by using the condition of normality dr - n = 0, which reads V dr

it Do . P ~
dr- |V,pk-n)+ =NKn = V,p=—"—NKn (1.153
[ (e 1) p p(k - 1) ( )

B Aok P — Aok
V,o7=PNK(1-29%) - Pnkdi=PNME ;. Mi—1- 29
P n-k P P n-k
R (1.154)
= dF=dr(V,®F) = 2drNM = ZM7dr
p
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Equation (1.154) describes a linear mapping of dr onto dr. The tensor M is an oblique projector (not
symmetric) which acts as an oblique projection along the direction n onto a plane normal to the direction
k. Thus both vectors dr and dr are related by an oblique projection and a proportionality factor.

By switching the role of r and T, we get similarly

~ R K
r:r(r):rc—f—pk ; dr:dr(Vﬁ®r) ; M:I—n®k
n-
~ N (1.155)
Vip=—= P __RKn ; Vﬁ®r:£NM : drzz—iMTd?
p(k-n) D p

where V; = NVﬁ =NV =39 / 06" is the 2-dimensional derivative operator on the surface A2 and

where N = I — n ® n is the corresponding normal projector. Because both surfaces are described by
the same curvilinear coordinates, we have

19} 0 0
X _ o . ﬁ— _ a Y o~ '/\B— _ /\' R
dr-V, =df%,, -a 508 =d6f 500 =d#%a, -a 508 =dr- -V, (1.156)

which gives with dr = Ndr and df = NdF

dr -V, = df- %ﬁMVn —df -V, =dr- %Nﬁvﬁ . Vdr,dF (1.157)

Consequently, both 2-dimensional derivative operators V,, and V are also related by a linear mapping,
namely an oblique projection and a proportionality factor. We have

v, — gNﬁvﬁ S A %ﬁmvn (1.158)

For the second total differential d?T, we must first perform some calculations

~

. — . 1. —~ 1. —~
V,0V,0F=V, <1—9NM> — V,p®-NM +pV, © <—NM>
p p p

1~ 1 o~ 1 1 _
V,® <—NM> = V,-@NM+ =(V, @ N)M + -V, © M)"N)”
p p p p

1 1 1
V.- =--V,p=—-—Nk
p p p
(V, @ N)M =B®nM +BM ®n)” (1.159)
o~ nok nok
V,oM=V,(1- 295 - vy, o (2%
n-k n-k

1 ~ 1 I 1 ~
=V () oRek - G TaeRek SV oke)!

1 1 1 _ _
Vi (5) = g V00 = eV @ ik (9, 9 108
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P . Pusa
V,®n=-NMV,; ®n=--NMB
p p

where B = —V;; ® 1 is the 2-dimensional curvature tensor of the surface A2. Introducing these above
equations in the expression for d?r, we get after some calculations

2 fk

s P <pﬁ]§ﬁT®k)T—2ﬁ®ﬁ>
p

dr + EMTd?r = %drﬁTdr + M a2 (1.160)
p p p

where M = [ﬁl\//\IﬁMT k) -2n® ﬁT] /(1 - k) is a third-rank tensor (not symmetric).

1.6 Derivatives of functions, which depend on several vector variables in space

Here, we shall present the derivative rules of tensor functions, which are dependent of several vector
variables in space. As we will see, these rules will be very usefull when applied to the fields of holographic
interferometry and projection moiré in the next sections.

1.6.1 Derivatives in space

Without restriction of the generality, we present here the case of tensor functions, which are dependent
of two independent vector variables r and T in space. With the independent curvilinear coordinates 6"
and 0* (+ = 1,2, 3), we have

¢ = ¢(r,T)
0',6%,6° r=r(0",6 6% u = ulr, )
. = SR T = T(r,7) (1.161)
1 42 43 = __pl j2 )3
0,60 r=r(0",60,0") B — B(r,7)
where
r=x(0",0%,0%)i4y(0",0%,0%)j + 2(0",6%,0°)k
o Al Ao A PP JUPURUE (1.162)
— B(0",6%,6%)i + (6", 6%,6%)] + 2(0", 6, 6%k
We have 5 o5
r , r .
i — - y dr = szZ ; AZ‘ == ~ y dA == AidGZ 1.163
g 907 r—=g g 261 r=g ( )
The 3-dimensional partial derivative operators 8 and 9 are defined as follows
3:gji. . =gl — . (j=1,2,3) (1.164)
aej ’ 89] Y 9 Y

whereg/ - g, =g/ - g; = 5ji. The total differentials of the tensor functions
¢ = o(r,T) = ¢(6,6%,6°,0',6°,0°)
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u=u(r,7) =u(f,0% 6% 6" 6 6°
T = T(r,7) = T(6,62,6°,60%,6%, 0% (1.165)
B = B(r,T) = B(0",6%,6°,6', 6%, 6°)

are then written as follows

_ 06 i 0P ai .9
dqﬁ—aaid@ +3éid9 =dr-9¢+dr-0¢
ou ., Ou R
du = 80id9 +8éid9 =dr(0 ® u) +dr(0 ® u)
dT = g;dew g;déi —dr(d®T)+dr(@®T) (1.166)
dB = agide +8éid9 =dr(0 ® B) + dr(0 ® B)

1.6.2 Derivatives of lengths, directions and normal projectors in space

Lengths, directions and normal projectors may also be dependent of more than one vector variable in
space. Here we present the case of tensor functions of two vector variables in space.

Fig.1.10: Derivatives of tensor functions of two vector variables
In this case, we write
Op=h

8®8p:8®h:%H

8®8®3p:8®8®h:3®<%H>:—pi2}[ (1.167)
1 1 1
8@3@8@3}):8@8@8@}1:8@8@<EH> :—8®<?}[> :]?H
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1.6.3 Derivatives on curved surfaces

By keeping the third independent variables 2 and 63 constant, the position vectors r and T describe two
curved surfaces in space. Thus, we have (with a = 1, 2):

) o e
aazﬁ , dr=Ndr=a,d§® ; BA.=— , df=Ndf=3a,dd" (1.169)

The 2-dimensional partial derivative operators 8,, and 8; on the surfaces A% and A2 are defined as
follows

9,=a"— =N8 aﬁ:aﬂ%:ﬁé . (3=1,2) (1.170)

where a” - a, = a” - a, = 6°,. The total differentials of the corresponding tensor functions read

dp =dr-0,¢ +dr- 8,9

du = dr(8,, ® u) + dr(d; ® u)

dT =dr(9,, ® T) + dr(9;, ® T) (1.171)
dB = dr(0, ® B) + dr(9; ® B)
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2. Kinematics of deformation

The purpose of the first part of this chapter is to present, in a simplified way, the kinematics of deformation
of a 3-dimensional object and of a 2-dimensional curved surface in space. Emphasis is put on the linear
theory and on the bridge between the 3-dimensional and 2-dimensional deformation. The second part deal
with the some more complicated case of nonlinear kinematics of deformation [2.1-2.9]. The relations
presented here will be very usefull in the following section on holographic interferometry.

2.1 Deformation of a 3-dimensional object in space

In case of a 3-dimensional object deformation in space, we have

016203 -

{r:r(91,92,93) (2.1)

v =1'(0',6%,6%)

where r represents the vector coordinate of a point P of the undeformed object and r’ the vector coordinate
of a point P’ of the deformed object.

O

Fig.2.1: Deformation of a 3-dimensional object in space
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2.1.1 Lagrangean representation

The description of the object deformation in a Lagrangean representation may be written as follows

i - ;:u(r) (2.2)

where u describes the displacement of point P in the new position P’. If no dislocations are present, the
total differential dr’ reads

dr' =dr(Ver)=dr+du=dr+dr(V ®@u) = Fdr (2.3)

where F = I+ (V ® u)7 is the so-called deformation gradient. The above equation describes a linear
transformation of dr onto dr’ by means of the tensor F. A polar decomposition (multiplicative) gives

F=I+(Veou’=QU (2.4)

where U = U7 is a symmetric tensor and Q an orthogonal tensor. The tensor U describes a dilatation
and the tensor Q a rotation in space.

Consequently, a general deformation of a 3-dimensional object in space may be decomposed in a La-
grangean representation as follows

1°) The neighborhood of a point P of the undeformed object, also called infinitesimal volume element,
undergoes a dilatation by means of the tensor U. We call this step the dilatation.

2°) Afterwards, the strained volume element undergoes a rotation by means of the tensor Q. This
rotation occur around an axis A going through point P. We call this step the rotation.

3°) Finally, the strained and rotated volume element undergoes a translation from its position P to the
new position P’ by means of the displacement vector u. We call this step the displacement.

As summary, we have

Deformation | = | Dilatation |+ | Rotation | + | Displacement (2.5)

This description is only valid for a single point and vary from point to point.

The general symmetric strain tensor £ only contains the dilatation and is defined with the Cauchy-Green
tensor FTF = U? as follows

E=J(F"F-T)= (UQ"QU-T)= (U?-T) ; QQ=1 , U*=UU (26)

In order to get the components of the dilatation, we write

dr=eds ; dr; =e;ds;, ; e-e=e; -e; =1 ; e-e =0 27)
dr’ =e'ds’ ; drf, =€/ |ds’, ; e&-e=¢€ ¢/, =1 ; —-1<e- € <1 '

From the usual theory of deformation, we have

_ds’' —ds ds’, —dsy

g gl =
ds ’

O ; cos(g —7)=siny=¢€ €
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_ 1,
aze-SeZQe-(F F-1Te —
o 5 ] = e=V1+2-1=y\/1+2eEe—-1 (2.8)

~ = 1
EJ_:eJ_'geJ_:§eJ_'(FTF—I)eJ_

ds’? — ds2 1 = EL:\/l—i-QENL—l:\/1+2€L-geL—1
— L 1 2

T Taad et
Ly e fel =t . (FTF -1 ~
gl =erfer=ge (FF-Te, | % Ee,
ds’'ds’, 1 = smy= = =
= /' / — = . 1 2 ] 1 2 '
2dsds | (e eL) 2(1+€)(1+6L)Sll’l’y \/( + 2e 5e)( +2e geL)

where ¢ is the linear dilatation and -~y the angular dilatation or shearing strain. The scalars £, £, and /2
are the components of the strain tensor £ corresponding to the tensorse ® e,e | ®e; and e ® e, , which
are built on the unit vectors e and e . Note that other components may be built on the third unit vector
e, —exe; =e| Ee.

The deformation gradient may also be decomposed in an additive manner

F=1+Vouw/ =I1+£-Q (2.9)
with .
E=ET=_[Vou+(Veu)]
2 (2.10)
Q=-0f = FlVeu- (Veou)l)
where £ is a symmetric tensor and {2 an antimetric tensor.
Special case of a small deformation
For F ~ I, we have
~ 1
E=-(F'F-I)=-[I+E+QA+E-Q)-1T]
2 (2.11)

NN =

I+E-Q+E+Q+... —T~E

In a first approximation, the tensor £ describes the dilatation and the tensor €2 the rotation of the volume
element. Proof:

U~I+X U=U"~I+X=1I+X" = X =XT

Q~I+Y I=QTQ~I+Y+Y" = Y =-Y7T (2.12)
F=QU=1I4+€&-Q~I+X+Y = X~E& ; Y~ -Q

= U~I+€& ; Q=1I-Q 0 ged
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2.1.2 Eulerian representation

The description of the object deformation in an Eulerian representation may be written as follows

r — u=u(r)

r - r=r{)=r" —ul)

dr=dr’'(V'®@r)=dr' —du=dr’ —dr' (V' ®u) = F'dr' = F'Fdr (2.13)
dr’ = Fdr = FF'dr’

with
F=I-(Vouw =F"' ; FFF=FF=1 (2.14)

where V'’ represents the 3-dimensional derivative operator for the deformed configuration and F’ the
inverse of the deformation gradient. According to Lagrange, we have

F=F'=U"'qQ" (2.15)
The polar decomposition according to Euler reads
F=UQ ; F=F'=Q'Uu"! (2.16)

The symmetric tensor U’ describes the dilatation of the volume element. In this case, we have

Deformation | = | Displacement | + | Rotation |+ | Dilatation (2.17)

Because both the undeformed and deformed object configurations are described by the same curvilinear
coordinates, we have with (F7)~! = (F~1)T

dr-V=dr -V =dr - FIV' =dr' - (F")"'v |,  Vdr,dr

2.18
= V=FV ; V=F)'V (218)

2.2 Deformation of a curved surface in space

In the field of deformation analysis of opaque bodies by means of holographic interferometry, only the
object surface can be recorded and not the interior of the body. This implies, that only an information on
the object surface deformation may be collected with this optical technique. Without a constitutive law,
no information can be obtained on the interior of a 3-dimensional opaque body by means of holographic
interferometry. Therefore, we present here the relations needed to deal with the deformation of a 2-
dimensional curved surface A? in space.

In the case of a 2-dimensional curved surface deformation in space, we have

{r = 1(6",62)

o', 02
- r' =r'(6',6%)

(2.19)
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Fig.2.2: Deformation of a curved surface in space

where r is the vector coordinate of a point P on the undeformed surface and r’ the vector coordinate of
a point P’ on the deformed surface.

2.2.1 Lagrangean representation

The description of the surface deformation in a Lagrangean representation may be written as follows

=
I

u(r)

=r'(r) =r+u(r) (2.20)

~

r —
—

r

=

where u describes the displacement of a point P in the new position P’. If no dislocations are present,
the total differential dr’ reads

dr' = N'dr' =dr(V,, ®r’) = dr + du = Ndr + dr(V,, ® u) = FNdr = Fgdr (2.21)

where Fg = N'Fg = FN = QUN = N + (V,, ® u)7 is the so-called deformation gradient of the
surface. The above equation describes a linear transformation of dr = Ndr onto dr’ = N’dr’ by means
of the tensor Fg. A polar decomposition gives

Fs=FN=N+(V,ouw’'=QsV ; V=V =NVN (2.22)
where V is a 2-dimensional symmetric tensor and Qg a 3-dimensional orthogonal tensor. The tensor V
describes the bidimensional dilatation of an infinitesimal surface element and the tensor Qg a rotation
of this surface element in the 3-dimensional space. The unit normal n’ of the deformed surface reads
n’ = Qgn (2.23)
Proof:

Fs = QSV = N/FS = (I -n’ & n/)QSV = QSV —n’ (%9 n’QSV
= n'QsV=VQin'=0 ; Qin' #0
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= Nan’ =0 : ’an/’ =1 (2.24)
= Q:‘gn/ =n — n = an | qed

Consequently, a general deformation of a 2-dimensional curved surface in space may be decomposed in
a Lagrangean representation as follows

1°) The neighborhood of a point P on the undeformed curved surface, also called infinitesimal surface
element, undergoes a bidimensional dilatation by means of the 2-dimensional tensor V. We call this
step the bidimensional dilatation because the surface element remains in the same tangential plane.

2°) Afterwards, the strained surface element undergoes a rotation by means of the tensor Qg. This
rotation occur around an axis Ag going through point P. We call this step the rotation.

3°) Finally, the strained and rotated surface element undergoes a translation from its position P to the
new position P/ by means of the displacement vector u. We call this step the displacement.

As summary, we have

Deformation | = | Bidimensional dilatation | 4 | Rotation | 4 | Displacement (2.25)

This description is only valid for a single point and vary from point to point on the surface.

Important note: The 3-dimensional rotation tensors Qg and Q are in general not identical. This comes
from the 3-dimensional symmetric tensor U, which would not only acts as a bidimensional dilatation of
the surface element but also as a rotation out of the tangential plane of the undeformed curved surface.

The general symmetric strain tensor of the surface 4 only contains the bidimensional dilatation and is
defined with the Cauchy-Green tensor FLFg = V2 of the surface as follows

5 =NAN = 1 (FLFs —N) = %(VQ?QSV —N) = %(VQ —N) QLQs =1

, 2 X ; (2.26)
= §(NFTFN ~N) = §N(FTF —I)N = NEN Vi=VV
In order to get the components of the bidimensional dilatation, we write
dr=eds ; dr; =e;ds;, ; e-e=e; -e; =1 ; e-e =0
dr' =e'ds’ ; drf, =€/ |ds’| ; €&-e=¢€ ¢, =1 ; -1<€e-€ <1
e=Ne ; e, =Ne;, ; &=N¢e& ; €& =N¢é€| (2.27)

From the usual theory of deformation, we have
ds’ —d ds’, —d
_ e S : cos(z—’y)zsin’yze/-eﬁ_

g1 5

ds

= e=V1+2-1=+/1+2e~ve—1 (2.28)

~ - 1
eJ_:eJ_~'yel:§eJ_-(F§F5—N)eJ_

dsf—dsi 1, = e =142, —1=+1+2e;,-ve, —1
T Tads tTa
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1. - 1
57:e-7eL:§e-(F§Fs—N)eL 2e"7eJ_
ds’ds’ 1 = siny = AT IR
= Le-e)==(1+¢e)(1+e,)siny V(1 +2e-7e)(1+ 2e, -ve, )
2dsds | 2

where ¢ is the linear dilatation and + the angular dilatation or the shearing strain. The scalars £, €, and
/2 are the components of the strain tensor 7 corresponding to the tensorse ® e,e; ® e, ande® e,
which are built on the unit vectors e and e (often choosed in the tangential plane of the surface). Note
that other components may be built on the third unit vector e, = e x e = e Ee (often choosed equal

to n).

The deformation gradient of the surface may also be decomposed in an additive manner
Fs=N+(V,ou)! =N+ (£ - Q)N

with

EN=-[(VeuN+(V, ®u)’]

1
2
1

ON = (V@ u)N — (V, ®u)7]

2

We also may decompose the tensor V,, ® u as follows

Veoou=(V,ouI=(V,u)(N+n®n)=(V,®uN+ (V,un®n

interior part  semi-exterior part

where (V,, @ u)N = N(€ + Q)N and (V,, @ u)n = N(€ + Q)n.

Special case of a small deformation
For Fg ~ N, we have

1 1
¥ = 5 (F§Fs — N) = J[(N + NE + NQ2)(N + €N - ON) - N|

1
= 3[N+ NEN —NON + NEN + NON + ... - N] ~ NEN = v

1 _
NEN =~ = 5[(Vn uUN+N(V,2u)!]~5

NON = _[(V,®u)N - N(V, ®u)’] ~ QE

L
2
(V,@un=NE+Q2n=n(€ - Q)N ~w

V,@u=NEN+NON+NE+Qnodn~y+NPE+w®n

(2.29)

(2.30)

(2.31)

(2.32)

Fs=N+(V,o2u)! =N+NEN-NON+n®@n( -QN~N+7-QPE+n@w

where, in a first approximation, the 2-dimensional symmetric tensor v = NEN describes the bidimen-
sional dilatation, the 2-dimensional antimetric tensor NN the in-plane rotation and the interior vector

N(& + Q)n the out-of-plane rotation of the surface element. Proof:

VoN+X X =XT = NXN
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Qs~I+Y Y=-YT
Fs=QsV=N+NEN-NON+non(€ - Q)N
~N+X+YN=N+NXN+NYN+n®nYN
X =NXN=NEN =~ ; NYN = -NON
{nYN: —NYn=N(€+Q)n
Y=NYN+n®nYN+NYn®n+ (n-Ynn®n
=-NON+n@n€-QN-NE+2)n®n
n-Yn=(Y'n)-n=—(Yn) n=-n-Yn=0
V>~N+NEN =N+~
= Qs I-NON-N(E+Q)n®n+n®n(€ -2)N
~-PE-w®n+n®uw U ged

=

(2.33)

Consequently, the unit normal n’ of the deformed curved surface can be approximated as follows
n=Qsn>~n-NE+Qn~n-w (2.34)

Note that both {2E and w will be exactly defined in the section dealing with nonlinear kinematics of
deformation of curved surfaces.

2.2.2 Eulerian representation

The description of the surface deformation in an Eulerian representation may be written as follows

r — u=ur)
r — r=r{)=r"—u)

dr=Ndr =dr'(V,, ®@r) =dr’ —du=N'dr’ — dr'(V,» @ u)

2.35
=F'N'dr’ = Fydr’ = F4Fgdr (2:35)
dr’ = N'dr’ = FNdr = Fgdr = FgFdr’
with
s=N—(Vy,ouw! ; FgFs=N ; FgFy=N (2.36)

where V,,/ represents the 2-dimensional derivative operator on the deformed curved surface. Because
both tensors Fg and F; contain projectors, the deformation gradient F'g is not the inverse of Fg.
According to Lagrange, we have

=WQLY ; VW=WV-=N (2.37)

where W = W7 = NWN describes the “inverse” bidimensional dilatation. The polar decomposition
according to Euler reads

Fs=V'Qg ; L=QLW' VW =WV =N (2.38)

where V! = VT = N'V/N’ and W' = W'T = N'W'IN respectively describe the bidimensional
dilatation and the “inverse” bidimensional dilatation. Proof:

n’ = Qgn = n= an' =1n'Qg
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FiFs = QiW'V'Qs = QIN'Qs = QL(I-n'®n")Qs

2.39
=Q5Qs —Qin’ @n'Qs =T-n®n=N (2:39)
FsF5 = V'QsQiW' = VW' = N O ged
In this case, we have
Deformation | = | Displacement | + | Rotation | 4 | Bidimensional dilatation (2.40)

Because both the undeformed and deformed surface configurations are described by the same curvilinear
coordinates, we have
dr-V,=dr'-V, =dr-NF'V,, =dr' NF'V,
=dr-FLv, =dr-FIV, ’
= V,=NF'Vv, =FfVv, ; V.=NF'V,=F;{V, (2.41)

Vdr, dr’

2.3 Nonlinear kinematics of deformation of a 3-dimensional object in space

In the case of large object deformation or in the case where the dilatation, rotation and displacement
components have different orders of magnitude, we may for example encounter small strains together
with moderate rotations and large displacements. In order to properly analyze such deformations, we
must develop the tensors previously introduced in this chapter up to higher order terms. The purpose
of this section is not to present an exhaustive theoretical background on this topic, but to introduce the
nonlinear relations needed in the following sections.

2.3.1 Vector coordinates

The one-one mapping that associates the whole set of points {P} of the undeformed configuration to the
set of points {P’} of the deformed configuration is described by a single set of curvilinear coordinates
0° (i = 1,2, 3) called convected coordinates as follows

r=r(0',0%0° — 1 =1'(r)=1"[r(06%06%)
/

91702793 {
_) v =1'(0",6%,0°) — r=r()=r['(0",6%60%)

(2.42)

Note: We show here that it is possible to easily compute complicated calculations by only using the intrin-
sic notation of tensor calculus, without requiring the notation with indices or any covariant, contravariant
or cartesian components.

2.3.2 Lagrangean representation of the deformation

r — u=ur)
r — ' =1r(r)=r+ur)

dr' =dr+du=dr+dr(V®u) = I+ (V®u)!]dr = Fdr (2.43)

— F=I+(Vouw! deformation gradient
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O

Fig.2.3: Deformation of a 3-dimensional object in space

d*r’ = dFdr + Fd*r = Fd®r 4+ dr(V @ F)dr
— VeF=VaeVeu! derivative of the deformation gradient
Polar decomposition:
Definition: U?=F'F with U=UT ; U!'=(UuH! =)
Definition: Q =FU™! with QTQ=QQ" =1 ; Q'=Q7
because QTQ=U"'FTFU'=U"'UUU ' =1

= F=I+(Veuw’ ' =QU : polar decomposition (2.44)
with FTF Cauchy-Green tensor (symmetric, positive defined)

U : symmetric tensor describing the dilatation

Q : orthogonal tensor describing the rotation

A general deformation of a 3-dimensional object in space is described in the neighborhood of a point P
by a dilatation followed by a rotation followed by a displacement of an infinitesimal volume element:

1°) The dilatation of the neighborhood of the point P of the undeformed configuration by means of the
symmetric tensor U.

2°) The “rigid body” rotation of the strained volume element around an axis A of direction na going
through point P by means of the orthogonal tensor Q.

3°) The displacement of the strained and rotated volume element from its position P to the new position
P’ of the deformed configuration by means of the displacement vector u.

This description is only valid for a single point of the configuration and vary from point to point.
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2.3.3 Definitions of the symmetric tensor £ and of the antimetric tensor 2

E=ET=_[Vou+ (Vau)T]

N =

1 (2.45)
Q=-0" = §[V®u— (VouT]

As previously mentioned, these tensors respectively approximate the dilatation and the rotation in the
special case of small deformations, which means that only the first-order linear terms are relevant in
their Taylor series development. For moderate deformation, we cannot use these above expressions to
describe the dilatation and the rotation because the second-order nonlinear terms of both expressions
contain coupled dilatation and rotation components.

234 Expressions of V ® u and F as function of £ and 2

Vou=Q+&

2.46
F=I4+(Vou =QU=1-Q+¢& (246)

As we can see, to separate the dilatation from the rotation, it is necessary to deal with the polar de-
composition of F. The main purpose of this section is first to write the different tensors describing the
deformation as function of the derivative of the displacement V ® u and as function of €2 and £, and
second to write their Taylor serie developments at least up to the second-order terms, which are built on
quantities containing only “pure” dilatation and rotation components.

2.3.5 Definition of the symmetric strain tensor £

£ = l(FTF 1) = 1(UQTQU 1) = l(U2 ~1)
2 . 2 2 (2.47)
=£-(Q+E)(Q-¢)

This tensor obviously only contains the dilatation. In the particular case where the deformation gradient
F is close to the identity I, which means that F ~ T and FT ~ I, we have

g— %(FTF “D)=0() ; 0<l<1 (2.48)

With the infinitesimal increments

dr = eds e-e=1

dI‘J_:eJ_dSJ_ . e e = . e-eL:O (249)
dr’ = €’ds’ = Fdr = Feds ’ e-e=1 ’ 0<le e |x1 '
dr’, =€/ |ds’, =Fdr, = Fe, ds, e e =1

the linear and angular dilatations read

_ds’' —ds ds’, —dsy

g gl =
ds ’

O ; cos(g —7)=siny=¢€ €
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_ 1,
5:e-8e:§e-(F F-1Te —
o 5 ] = e=V1+2-1=\1+2eEe—-1 (2.50)

~ = 1
EJ_:eJ_'geJ_:§eJ_'(FTF—I)eJ_

ds’? — ds2 1 = EL:\/l—i-QENL—l:\/1+2€L-geL—1
— 2L 2L

_ 1 2
2ds? =eL+ 5cL
Ly e fel =t . (FTF -1 ~
gl =erfer=ge (FF-Te, | % Ee,
ds’'ds’, 1 = sy = = =
- Tel) =3 i 1+ 2e- 142, -
2dsds | (e"-ey) 2(1+8)(1 +er)siny \/( +2e-Ee)(1+2e,-Ee))

2.3.6 Developments of the tensors U and Q

Because of F = QU ~ I, both tensors U characterizing the dilatation and Q charaterizing the rotation
are close to the identity I and can be developed as follows

1

577353 +0(n*) 0<n <1

R T \ with (2.51)
QZI—CEA-FECEA—gCEA“‘O(C) 0< ¢l <1

1
U=T+n€+ 5m° +

where 7 and ¢ are small independent parameters. For the tensors U and U~!, we have
u=u’ ; Vvp«l
— Elzng ) 82:g2T ) 83255
U 'u=UuU'=1 (2.52)
1 1
— U =T-n& + 50 (267 - &) - 6773(65{’ —3E1E, — 36261 + E3) + O(n*)

For the tensors Q and Q' we have

Q'Q=QQ"=1 ; V¢ <1 = Ex = —EX

¢ rotation angle (in radian) around the axis A going through point P

EA = Enp =npnE 2-dimensional second-rank permutation tensor

1 N direction of the rotation axis A withna -na =1

EAEA =EX = —Na

Nao=NA=T-np®nar : normal projector (2.53)

EA = NAEA = EANA = NAEANA
E} =ELEA = —NAEA = —Ex
wa =(na rotation vector (full describes the rotation of the volume element)
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CEA = Can = ZZwA = wAZZ
C2E2 = (ZwA)(ﬁwA) = (fwA)Q = —CQNA = WA ® WA — (wA . wA)I
which leads to

Q=T- (B + 34 — (C°BA +0(¢)

1 1 (2.54a)
—1—(Ea — 5cZNA + 6C“‘EA +0(¢*h)

1 1
QT =1+ CEA + §C2E2A + 6c?’E?’A +0(¢Y)

| 1 (2.54b)
=1+ (EA — §CzNA — 643EA +0(¢h
Proof:

By introducing the two unit vectors e = Naea and en; = Naea | such that

en-ea=en| -ean; =1 ; ex-na=ea; -na=0 ; ea lea; =—Epen (2.55)
we have

cos( =en-Qean =ean| -Qea

1
—eA'<I——CEA+ ¢? B4 ——§3E @C“E‘* ——g5E @gﬁEg—..)eA
=Ex — —

= —NA —EA = NA =Ea —NA
1
en- eA*—CeA A€A — o *ea-Nape e tg C en- EAeA+ C ean-Naea
V’ —_—— 27— —— —_———
L 5 L 6
— —( eA-EAeA——C eA-NAeA—... (2.56&)
-0 -1
s 1
—1——C+ 'C—ac +... O qed
Similarly, we have
smC:eAL-QeA:eAEA-QeA:C—gc —|—§C ——|C + (2.56b)
Thus, the orthogonal rotation tensor (Q can also be exactly written as follows
Q =Nacos( —Easin¢ +na @ na (2.57)
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which can be verified with

QT'Q = (Nacos¢+Easin¢ +na @na)(Nacos¢ —Easin¢ +na @np)
= Na cos? ¢ — Eacos(sin¢ + Easin¢cos¢ + Nasin? ¢ + na ® na (2.58)
=Na+npo®na =1 [ ged

23.7 Developments of U2, £,F, V @ u, £ and 2 as function of (EA, n&; and n2&,

By neglecting the third-order terms in ¢3, (%7, (n? and n3, we have

U? =1+ 20& + &L +n°E + O(n°) =1+ O(n)
E= (U~ 1) =1+ SP(E +E)+00) =0 =0() = 1=0()
F=QU=1+(Vou?!

=T (Ea + 761 + 3CEA — GBa&i + g€ + O(C,Cn, G n) = T+ 0(C,1)
Vou=F —I1=Q+&=0UQ" -1

=(Ea + 1€+ %C2E2A + (né1Ea + %77252 +0(C, Cn, ¢, n’) = O(¢,m)

E = %[V@u—l—(V@u)T] = %(QU+UQT) 1

= 71+ 5CBA — SCIBAE: — EB) + 31PEa + O(C!, 0, ) = O(¢,n)

Q= Liveu-(veuw=-LQu-uQ"
2 ) 2 (2.59)
= (EaA + §C77(EA51 +EEA) + O(Csa C2777 C772) = 0(()

2.3.8 Expressions of U and U~! as function of £ and Q

U2=1+26=1+26—(Q+E)(NQ-E)
=14 20& +1n*E2 +1°E + O(n?)

1 1 1
nE =& — E(Q +EQ-E) - 5772812 - 577252 +0(n*)
1 1
STEL = 5€ + O Cn (o)
1 1
= U= I+g - E(Q + 8)(9 - 6) - 582 =+ O(C4ag2777 C772a773)

1 , (2.60)
Ul =T1-E+45(Q2+E)(Q-E)+ € + 0, Cn, O )
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2.3.9 Expressions of Q and Q7 as function of £ and Q
F=I-Q+&=QU

Q'F=QIQU=U=T+£- (2+£)(@- &)~ 1€+ O, 0 r)

= I+ (Ea+ %CQEQA)(I —Q+E)+0(C)

=T (- £)+ (Ea — (Ba(@ - £) + ;A +0(¢% %)

(Ea=Q — %(Q +EQ-E) - %52 +(EA(Q - &) - %<2EZ +0(%, P, ¢n* )

(Ba(Q— €) = O — £) + O(C", ¢, rP)
SCBA = 202+ 0(¢',¢)

1
— Q=I1-Q+ (@ +Q€+£9) + 0.0 n)

QT =1+ () + %<Q2 — Q& — 89) + O(CS;C%%CUQ,US)

2.3.10 Expression of F~! as function of V' ® u, £ and Q (Lagrange)

r — u=nu()

r — r=r{)=r"—ul)

(2.61)

dr=dr' —du=dr' —dr' (V' @u) =[1— (V' @u)!]dr' = Fldr
F'=1-(Veouw =@QU)'=U0u"'Q" polar decomposition

F'F=FF '=F'1-Q+&)=1
— Fl=I+(Q-&) +(Q—E)2+03, )

FEFH=F)"=1I-(Q+ &)+ (Q+&)>+0(C nn”n°)

2.3.11 Connection between the undeformed and deformed configurations

(2.62)

The connections between the base vectors and between the derivative operators corresponding to the

undeformed and deformed configurations are

or . . or'
g =r; o0 g’ g =10, . gl =r,
or . ) 0 ) or’ ] ‘
dr = —d9’ = ldel : = kE_~Z — i [~ 7
= 500 g ; V=g 0% dr 50 de' = g;do
; 0 .0 , 0
V=db'g; gf—— =do' — =do'g} g~ — =dr’ - V'
dr-V =df'g; - g 0% 20 g g 20% r-V
dr - V=dr' - (FH)IV=dr' -V =dr-FIV' ;  vdr,dr
— V=F'v V =FH'Vv=F"1v
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dr’ = g/d¢' = Fdr = Fg,d§® ; v de’
— g§ =Fg;

0
_ ok Y
— 8 o
= g'=F")T¢

— (F—I)TV — (F—I)T k 9 : v —

/ —_—
v & ok

2.3.12 Expression of V' as function of V, £ and

V' =FNV=V-(Q+EV+(Q+E)V+0(, ¢, 1°)V

2.3.13 Expressions of the three invariants of an arbitrary 3-dimensional tensor T

Let us now briefly recall the expressions of the three invariants 1, I5 et Is of T

LH=trT=T-1 . Traceof T
I = %T (EE)T-T : Sum of the minor-determinants of T
I3 =detT = %T (gTE)T-T . Determinant of T

because

1
det (T — oI) = E(T —oD) - [E(T —oD)E]T - (T —0l)= -0+ [6*> — Lo+ I3=0

with
(£E)" - 1=1-(ZE)" = —(E-E) = -E-E=21

I-(ge)" - 1=21-1=6 ; I1I-1=3
(ETE)" - 1=1-(ETE)" = (£E)" . T =T (EE)”

I (ETE) - 1=T - ()" - 1=1-(ZE)" - T=2T"1

23.14 Summary

By neglecting the third-order terms in ¢3, (%1, (n? and n*, we have
F=1+(Vouw =QU=1-Q+¢&
Fl=I-Vou=U1!1QT=I1+Q-&6)+(Q-E&)?

~1—(Vouw! +[(Veul)?

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)
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V=FHYV2V-(Q+EV+(Q+E?V
>V - (VeuwV +(Veu)?Vv
£:£T:%[V®u+(V®u)T]:%(QU+UQT)—I

Q=-0"'=_[Vou- (Voul]= —%(QU—UQT)

| =

Vou=Q+&=U0Q" -1
(Voul =—-(Q-£6=QU -1

£ = (FTF—I):%(UZ—I):8—%(Q+£)(Q—8)

N = N =

Veu+(Veu)l —I—%(V@)u)(V@u)T

Ugng_%(sng)(n—g)—%s?
gI+%[V®u+(V®u)T]—%(V®u)2—%[(V®H)T12
i é[3(V®u)(V®U)T—(V®U)T(V®u)]
U*lgI—£+%(ﬂ+8)(Q—8)+§82
%I—%[V@u—i—(V@u)T]+2(V®u)2+g[(V®u)T}2

- %[(v u)(Veu' -3(Veuw' (Veu)

Q%I—Q—f—%(ﬂz—i—ﬁg—i—é’ﬂ)
1 3 1
%I—§[V®u—(V®u)T]+§(V®u)2—é[(V®u)T}2

N %[(v pu)(Veuw' +(Veou (Veu)

QT%I+Q+%(QQ—Q£’—8Q)

N 1 1 2, 3 T2
:I—|—§[V®u—(V®U) ]—g(V®u) +§[(V®u) ]
_vewveuw +(Vew (Veu)

8

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)
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2.3.15 Strain components of a 3-dimensional body in the 3-dimensional space written in a Carte-
sian system up to the second-order terms

Let us recall the general exact expression for the strain tensor of a 3-dimensional body
s Lop 1 Ty, 1 T
£:§(F F—I)ZE[(V®u)+(V®u) ]+§(V®u)(V®u) (2.80)

where F = I + (V ® u)7 is the deformation gradient of the body, FTF the related Cauchy-Green
tensor, V = g70/007 the 3-dimensional derivative operator and I = g; ® g’ the metric tensor in the
3-dimensional space (with 7,7 = 1,2, 3).

Introducing a Cartesian system (P, z, y, z) in some point P of the body, we write

- 1. T
€x §7acy %'Y:cz 1 0 0
S . 1_ - - A
£= 5oy Cy CRIT ; I=10 10 (2.81)
i %%@2 %?yz gZ ] _O O 1_
and
( a ) 4 ( ) (
< 1 0 0
ox “
. 0 . . . .
V = —_ poou= v ;7 e= 0 ; el = 1 ;o n= 0 (282)
dy
0
il 0 0 1
82’ J \ v \ \

where the sign ~ draws attention to the fact that the base vectors are omitted in the matrix representation.
In components, we have:

(0 0w o0 ow
ox or Ox Ox
R 0 ou Ov Ow
Vou ={ L Ve - | &Y
( u) 99 (u v w) % 0y Oy
) ou ov ou
0z Ldz 0z Oz
or Ody 0z
R ov Ov Ov
veouwl = | = 2 2 2.83
( u) or Oy 0z ( )
ow ou ou
Lox Oy 0z
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(Vou)(Veou)l =
Oz ox Ox Ordy Oxdy Ox dy Ox0z Oxr0dz Ox 0z
Oxrdy Oxdy Ox Jy y oy y Oy 0z 0Oy0dz OJdy 0z

Ordz Ox0z Ox 0z 0Oydz 0Oydz Oy 0z 0z 0z 0z

The components €, €y, €=, Vay/2, Vz-/2 and 7, /2 of the strain tensor £ can now exactly be written as

follows
= —ege—@_i_l @ 2+ @ 2_|_ a_w ’
fr =  Or 2 ox ox ox
g —=e .ge _@+1 % 2_|_ @ 2+ 8710 :
yv— =L J'_8y 2 [\ Oy oy dy
~ ~ ow 1 ou\ > ov\? ow\ >

L g (0w 00) L (0u0u 000 dwow
9wy = 72 oy Ox 2\0x 0y Oxdy Ox dy
1~ —e.gn—l 8_u_|_8_w _|_1 @@_F@@_i_a_wa_w
9wz = 2\ 0z Oz 2\0x 0z Ox0z Ox 0z
L el (v ow\ 1 (0udu dvow  owow
g vz — Tk S 2\0z Oy 2\0ydz Oyodz Oy 0z

To get the linear and angular dilatation €., €y, €., Vay /2, Vz2/2 and Vyz /2, we must take into account
the following nonlinear expressions

1 1 . Yy
-/ = —Ygy = — arcsin L —
€z =V1+2e —1 9wy = 5 <\/(1+2ex)(1+2ay)>

1 1 . Vez
ey =+1+26 -1 ; Evm = 3 arc sin (\/( " ) (2.85)

1+28,)(1+22,)

= 1 1 .
€, =142, -1 5’7yz:§arcsin(\/( Jyz >

1+ 28,)(1 1 22,)

which read after development up to the second order terms
— ~ 1
ez:\/1+25m—125m—55§+...
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Lo

Y

ﬁazy

+ ...

1 1 )
§’ny =3 arcsin

ﬁZEZ

NGET AT 2@)) -

1 1
—~., = — arcsin
Tez =5

V(L+28,)(1+ 2@))

?yz

1 1 .
—Yy» = — arcsin
27y 2acs

Thus we get for this case

1 1 @ 4 Ov
272 = 5\ ay T Bz
L fou ow
277 =5\ 9, " oz
L (o ow
2792 = 9\ 52 Oy

_>_

¢<1+2€y><1+2@>> -

Lfouou
2 \ 0z Oz

Oou Ow

v Ox

(
<8v ow

dy oy

ﬁxy__

= S5Vzz —

1
2

1

Yoy (Ex +&y) + ...

o2z +E2)+ ...

2
- 1. -
Yyz — Evyz(sy +E)+ ...
oudv 0w du
oy oy Ox Oy
dudw o ov
0z 0z Ox 0z
L ow_oudu
0z 0z Oy 0z

(2.86)

(2.87)

2.4 Nonlinear kinematics of deformation of a 2-dimensional curved surface in

the 3-dimensional space

In the case of large deformation measurement of opaque bodies by means of holographic interferometry, or
in the classical cases of deformation analysis of plates and shells, the dilatation, rotation and displacement
components often have different orders of magnitude. Practically, one may encounter small strains
together with moderate rotations and large displacements. In order to properly analyze such deformations,
we must develop the tensors previously introduced in this chapter up to higher order terms. Because only
the surface of an opaque object (not the interior of the body) can be recorded by means of holographic

interferometry, it is necessary to introduce here the basic concepts of surface deformation.
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24.1 Vector coordinates

The one-one mapping that associates the whole set of points { P} on the undeformed curved surface to the
set of points {P’} on the deformed curved surface is described by a single set of curvilinear coordinates
0 (o = 1, 2) called convected coordinates as follows

— 01’02 - - 91’02
o — L T e 259
v =1(0",0°) — r=r()=r[r'(6",6%)]
nS
O
Fig.2.4: Deformation of a 2-dimensional curved surface in space
2.4.2 Lagrangean representation of the deformation
r — u=u(r)
r — r=r'(r)=r+u(r)
dr’ = N'dr’ = dr + du = Ndr + dr(V,, ® u)
=[N+ (V, ®u)’]dr = FNdr = Fgdr
N =I-n"®n" : normal projector , n’ Ldr' |, (n'-n'=1)
— Fg=FN=N'FN = QUN (2.89)
=NFs=N+(V,ou? deformation gradient of the surface '
d*r’ = dFgdr + Fgd?r = Fgd?r 4 dr(V, ® Fg)dr
— VR®F5:Vn®Vn®u)T—I—B®n+B®n)T : derivative of F'g
where Fg is a mixed semi-projection of the deformation gradient F of a 3-dimensional body.
Polar decomposition:
Fs=N+(V,ou! =QsV : polar decomposition (2.90)
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with F{Fs=V? ; V=V =NVN ; QfQs=QsQf=1I ; Q;'=Qf

F%:FS : Cauchy-Green tensor of the surface (2-dimensional, symmetric, pos. def.)
A% : 2-dimensional symmetric tensor describing the dilatation of the surface
Qs : 3-dimensional orthogonal tensor describing the rotation of the surface in space

Expression of the unit normal n’ of the deformed surface:

FS = Q5V:N/Fs = (I—n'®n')QSV: QsV—n/®n,QsV ; n’ 750
= n'QsV=0 ; VQsV#0 ; VQin #0
= n'QsN=NQIin' =0 because V =NVN

= an’ =n < n = Qgsn (2.91)

Expression of the normal projector N’ relative to the deformed surface:
N =I-n"®n =QsQf - Qsn®nQf = Qs(I-n®n)Qs = QsNQf (2.92)

A general deformation of a 2-dimensional curved surface in space is described in the neighborhood of
a point P by a bidimensional dilatation in the tangential plane followed by a rotation followed by a
displacement of an infinitesimal surface element:

1°) The bidimensional dilatation of the neighborhood of the point P on the undeformed curved surface
by means of the 2-dimensional symmetric tensor V.= N'VIN.

2°) The “rigid body” rotation of the strained surface element around an axis Ag of direction ng going
through point P by means of the 3-dimensional orthogonal tensor Q.

3°) The displacement of the strained and rotated surface element from its position P on the undeformed
surface to the new position P’ on the deformed surface by means of the displacement vector u.

This description is only valid for a single point and vary from point to point on the surface. Let us also
recall that the 3-dimensional rotation tensors Qg and Q are in general not identical, that means Qg # Q
and ng # na. This comes from the 3-dimensional symmetric tensor U, which would not only acts as
a bidimensional dilatation of the surface element but also as a rotation out of the tangential plane of the
undeformed curved surface.

243 Expressions of V,, ® u, (V,, ® u)’, F5 and F, as function of N, £ and

V,2u=N(Q+&)

(Ve,ou)l =—(2-&N (2.93)
Fs=N+(V,ou)  =N-(Q-&N=(1I-Q+&N
FL=N+V,u=N+NQ+& =NI+Q+&)

In holographic interferometry, we will see that the derivative of the displacement V,, ® u, which contains
the deformation, appears in the expression of the fringe vector fr. This vector describes the fringe spacing
and the fringe direction. Contrary to the measurement of small deformations where only the first-order
linear terms are considered, moderate and large deformation measurements by means of holographic
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interferometry may only be done properly, if the quantities describing the dilatation and that describing
the rotation respectively only contain dilatation and rotation components up to the higher order terms in
their developments.

2.4.4 Definition of the 2-dimensional symmetric strain tensor + of the surface

1 1 1
7= §(F:§FS -N) = §(VQ£Q5V -N)= §(V2 -N)
1 1 1
= Q(NFTFN —N) = 5N(FTF ~I)N = 5N(U2 ~I)N (2.94)

= NEN = NEN — %N(Q +E) (N -EN

This tensor obviously only contains the dilatation. In the particular case where the surface deformation
gradient F g is close to the normal projector IN, which plays the role of the identity on the curved surface,
we have with Fg = Q¢V ~ N and FL ~ N

-1 P
7= 5(F’-gFS —-N)=NEN=O0() ; 0<x1 (2.95)

With the infinitesimal increments

dr =eds Ne=e e-e=1

dr; = e ds; ' Ne, =€ ' e e =1 _ e-e =0

dr’ = e'ds’ = Fgdr = Fgeds " Ne=e¢ ~ €-e=1 ' o0<le €1
dr’, =€’ ds, =Fgdr, = Fge ds ‘e =¢€| e e =1

(2.96)
the linear and angular dilatations read

ds’ —d ds’, —d

dSJ_ 2

= e=VI+2-1=1+2e7e—1 (2.97)

~ - 1
€J_:eJ_"YeJ_:§eJ_'(FgFS—N)eJ_

ds’2 — ds2? 1 = EL:\/1+25L_1:\/1+26L';;’6L_1
— 1 1 2

= W =&, + §€L
1. ~ 1 T
57:e~76l:§e'(FsF5_N)eJ— . 2e"?ej_
ds'ds’, 1 . T T T 20 A0 1 26, 701
= (e-€e)==-(14¢)(1+4+¢c,)siny
2dsds 2
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2.4.5 Developments of the tensors V and Qg

Because of Fg = QgV ~ N, the tensor V characterizing the dilatation is close to the normal projector
N and the tensor Qg characterizing the rotation is close to the identity I. For the tensor V, we write

V=N+V;, with V;=V{=NVN
VZ=N+29=N+2V, +V?

1
Vi=9-35Vi=0() =0 (2.98)
Vi=5"+00r)

~ 1
— V:N+'y—§’72+0(n3)

For the tensors Qg and Qg, we have

1
Qs =1-xEs + 5x"E§ + O(x")
1 with 0< |y <1 (2.99)
QL =1+ xEs+ §X2EZS +0(x*)

where x is a small parameter describing the rotation angle in radian. We have

QiQs=QsQ5 =1 ; V|x|]<1 =  Eg=-EI

X rotation angle (in radian) around the axis Ag going through point P

Es=FEng =ngE : 2-dimensional second-rank permutation tensor

ng direction of the rotation axis Ag withng -ng = 1 (2.100)
Ng = NZL = —E% =I-ng®ng : normal projector

Egs =NgEgs = EgsNg = NgEgNg

wg =xNng rotation vector (full describes the rotation of the surface element)

XES = ans = fws = wsf

2.4.6 Decomposition of the rotation vector wg in interior and exterior parts

ws=xns=m+Ew with w = Nw by definition (2.101)

where (2n and E w respectively describe the exterior and the interior parts of w relatively to the tangential
plane of the surface element.

24.7 Decomposition of the tensors Qs and Qg in interior, semi-exterior and exterior parts

YEs=FEws=E®n—-E®n)” +n®E](n+ Ew)
=NE+ w®n-n® w
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YEL = (Ews)(Ews) = (PE+ w®n-n® w)(PE+ w®n—-n® w)
= PN+ NPEwdn—-w®w+n®NEw— (w-wn®n

1 1
Qs=I-NE— w®n+n® w+§QEw®n—|—§n®(2Ew

1
— §[QQN+ w® w+ (w- wnen]+0(x*) (2.102)
T 1 1
Qs=I+PE+ w®n—n® w+§QEw®n+§n®QEw

1
—§[Q2N+ w® w+ (w- wnen]+0(x*)

For the orders of magnitude, we have

V=N+0®n) ; Qs=I+0(x)

U=I+0(n ; Q=I+0()

V,2u=N(Q+&) =NF" -1I) =NUQT —1) = 0(¢,7n)
=F{-N=VQ} - N=0(x,n)

= x=0(¢n) (2.103)

—~~ =

24.8 Developments of V,, ® u, NEN and NQN as function of YEg and ~
V,2u=N(Q+&) =F, -N=VQ} -N
_ 1 _ 1

= XNEs + 5 + o X*NE§ + x7Es — 55 + OO, x*n, xn*,n°) = O(x. )

1
NEN = 5[(Vn @uN+N(V, @u)’]

_ 1 1 o 1

=7+ 5X°NEGN — ox(NEs — YEsN) — 277 + O(x*, x*n, xn*,n*) = O(x*,m)

NON = %[(Vn ®u)N-N(V, @u)’]

1 (2.104)
= XNEsN + ox(NEsy + YEsN) + O(x”, x*n, xn*) = O(x)
249 Expression of V as function of N, £ and 2
~ 1 1
4?* = NENEN — SNEN(Q +£)(Q - EN - SN(Q + £)(2 - £)NEN
1
+ZN(Q+8)(Q—8)N(Q+8)(Q—E)N (2.105)

= NENEN + O(x*, x*n, xn?, 1)
1 1
— V=N+NEN - -N(Q+£)(Q - £)N - ZNENEN + O(x*, 1, X, 1)
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2.4.10 Expression of Qg as function of N, £ and (2

FL=VQL=NI+Q+&)

F1Qs = VQLQs = V = N(I+Q + £)Qs (2.106)

with the two essential conditions:

(@) Vn=NI+Q2+&)Qsn=0

(b)) VN=NI+Q+EQsN=V (2.107)

Before solving (a) and (b), we write

{a scalar equal to

f— . P T . = — . = . . .
n-Egn = (Esn)-n=nEg-n n-Esn=0 its opposite is zero

Esn=IEsn = (N+n®n)Esn = NEgn +n(n-Egn)
= Egn = NEgn
NE?n = NEgIEsn = NEg(N + n®n)Esn = NEgNEgn + NEgn(n - Egn)
= NE%n = NEsNEgn
EsN =IEsN = (N+n®n)EgN
(2.108)
= EgN =NEsN +n®nEgN
NE%N = NESIEsN = NEg(N 4+ n ® n)EgN
= NE%N = NEsNEsN + NEsn ® nEgN

Es=IEsI=(N4+n®nEs(N+n®n)
=NEsN+NEsn®@n+n®nEsN+ (n-Egn)n®n

= Eg=NEsN+NEsn®n+ng®nEgN

Solving (a)

1
0=Vn=N{I+Q+&)Qsn=[N+N(Q+ &) <I —xEg + §x2E%>n+ O(x*)

= —XNEsn + N(Q + €)n — xN(22 + £)Esn : )
2.109
1
+ ZX*NEgn + O(x*, x*n)

1

= XNEgn=N(Q+E)n— yN(Q+ E)NEgn + §X2NESNESn + 0%, x*n)
1

= xnEgN =n(Q2 - &)N + ynEgN(Q2 — &)N — §X2nESNESN + 00, x*n)
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Solving (b)
1 1
V=NI+9Q+&)QsN=N+NEN - N(Q+E)(Q - &N - [NENEN
+ 00t XPn xn® )
1
=[N+ N(Q+ &) <1 —xEs + 5X?Eg)N +0(x?)
1
=N — xNEgN + N(Q + &)N — xN(Q + £)EgN + §X2NE§N
+00* x*n)
1 1
YNEsN = NON + 5N(Q +E)(Q - EN + 5Nf:Nf:N — xN(Q2 + E)NEgN
1 1
= — xN(Q + &)n @ nEgN + 5X2NESNESN + 5X2NESn @ nEgN
(2.110)
+ 003 X, xn? )
The second-order terms can be explicitly written with the following three linear approximations
XNEsn = N(Q + £)n + O(x*, xn)
xnEsN = n(2 — £)N + O(x?%, xn) (2.111)

XNEsN = NOQN + O(x*, xn,7°)
We get
1
XNEsn =N(Q+En—-N(Q+ENQ2+E)n+ §NQN(Q +&E)n+ O3, x*n, xn*, 1)
1
XnEsN =n(2 - &)N +n(Q - E)N(Q - &E)N — §n(ﬂ — E)NON + 0%, x*n, xn*,n°)
1 1
xNEgN = NOQN + §N(Q +E)(Q—-EN-N(Q+ E)NON + §N£N8N
1 1
+ ;NONON — 5N(Q +EN@n(Q - EN + 003, x*n, xn*,n%) (2.112)
The antimetric tensor YEg and symmetric tensor x*E% read
xEs = xXNEgN + YNEsn ® n + yn @ nEgN
1
=NON+NQ+E€non+n@n(Q - &N — §(NQNSN + NENQN)
1 1
—N<§Q+8>N(Q+8)n®n+n®n(ﬂ—S)N(EQ—E,')N (2.113)
+00¢, X, xn?, 1)
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Y’Ef = NONON + NON(Q + E)n®@n +n®@n(Q — £)NON
+NQ+EnenQ—-EN+n-(2—ENQ+Enn®n (2.114)
+00¢, X, xn? )
The orthogonal tensor Qg can now be written as follows

1
Qs =I-xEs+ §X2E?9 +0(x%)
—I-NON-N(Q+&n®n-non(Q - &N + %(NQNQN + NONEN + NENQN)
1
+NQ+ENQ+ENOn+n@n(Q - E)NEN + EN(Q +E&n®n(2—-E&)N
1

- §[N(Q+5)n]2n®n+0(x3,x277,xn2,n3) (2.115)

24.11 Expressions of w, {E and {2 as function of N, £,Q and V,, ® u

From the relation
XEs=0E+ w®n—n® w
1
=NON+NQ+E&n®n+n®n(2—- &N — §(NQN8N + NENQN) (2.116)

_ N<%Q n g)N(Q +&n®n+n®n(Q— s)NGQ - £>N + 008, X, xn*n°)
we get

w = xEgn = Y\NEgn

1
=NQ2+&n-N (50 + e)N(Q +En+ 00, X0 xn*, 1)
; 1 (2.117)
= (V,®@u)n— [Z(V” @ N+ N(Vn @ w)" | (V@ wn + O, x>0, xn*, 1°)

QE = Y\NEgN

1
= NON - _(NQNEN + NENON) + OO, X0, xn?,m*)

~—

= %[(Vn @uN-N(V,ou)’] - >[(V,®u)(V, @ uN - N(V, ®u)"(V, @u)’]

=

+ 003, X, xn? 1) (2.118)
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2= 1E E= 1EE— 1QEE
= 2X S = 2X s = 5
1 1
= —§NQN -E + Z(NQNsN + NENQN) - E + 0%, x*n, xn*,n%)
1 1
+ 00, X0, xn?, 1) (2.119)

24.12 Expression of V,, ® u as function of v, w and (2

V,2u=FL, -N=VQ), -N

-~ 1. 1 1
:<N+7—§72)(I+QE+ wRn—neE w+§QEw®n+§n®QEw

1
—5[(22N+ w® w+ (w- w)n®n])—N+0(X37"73)
_ 1 o 1
=3+ 0E+ w®n—§(’y2+(22N+ W w)+nyE+’yw®n+§QEw®n

+ 00, X0, xn”, 1) (2.120)

2.4.13 Expression of the unit normal n’ of the deformed curved surface as function of w and (?

1 1

24.14 Expression of the normal projector N’ as function of w and (?

N =QsNQ.L =I-n'"®n’ (2.122)

1 1
=N+n® w+ w®n—§(2Ew®n—§n®QEw—w® wH(w-wneon+0(x?)

24.15 Expression of F'; as function of V! @ u, N, £ and 2 (Lagrange)

r — u=nu()
r — r=r{)=r"—ul)

dr = Ndr = dr’ — du = N'dr’ — dr/(V] ®u)

2.123
= [N — (V)@ u)T]dr’ = F'N'dr’ = Fisdr’ (2:123)

. s=F'N=NF'N'=U"'Q'N
=NFy =N —(V,ou =WQ§ polar decomposition
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where W = WT = NWN. It follows that

dr’ = Fgdr = FgFqdr’ = N'dr’ v dr’ = N'dr’
= FsFy=QsVWQL =N — VW=N
dr = Fydr’ = FyFgdr = Ndr ; YV dr = Ndr
5 5 (2.124)
= FiFs=WQ;QsV=WV =N
For the tensor W, we write
W=N+W,; with W, =W =NW,;N
~ 1.
N=WV=(N+W)N+7— 572 +0n?)]
1
W, =-5-WAF+-7+0n*)=0() =0

Wiy = -3+ 0(n’)

_ 3.
W =N-5+ 5 +0@)

1 3
=N-NEN + §N(Q +E)(N-E)N+ ENSNSN + 00t xX*n, xn*n?)
The tensor Fg can now be written as follows

~ 1. -
s=WQL=N-5+0QE+ w®n+§(372—92N— w® w)
~ ~ 1
— VB - Jwen+ ;OBw@n+ O, x*n,xn",n’) (2.126)
“ N+ N(Q - EN+NQ+Enen+ N - &N - £)N

+N(@Q+En@n(Q - E)N - 2NEN(Q + E)n®@n+ 00, x*n, xn* 1)

2.4.16 Connexion between the undeformed and deformed configurations

The connections between the base vectors and between the derivative operators corresponding to the
undeformed and deformed curved surface are

Or or’

= = — M ﬁ- = 6 / = / = M ,ﬂ- / = ﬁ

A =Ta = 50 ; a”-a, =0", A =T = oa ; a,=09",
Jr o or’ 0
dr = do* = a,do™ n:ﬂ I a _ ol gpe . AN
= 5pa a A v a’ 503 dr &gade a,dg* ; V,=a 207
0 0 0

. A%, . aB_ Y gpa_ Y gpan! L8 Y g4
dr-V, =df%, -a aeﬁ—dﬂ 89‘1_d9 a,-a 805_dr A%
dr -V, =dr -FIV,=dr' -V, =dr-F{V/ ;  Vdr=Ndr, dr = Ndr
= V,=FLv, . V,=F]V,
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dr’ = a/,d0* = Fgdr = Fga,d0® ; vV do”

= a, = Fga,

0 0 0
V/ — B~ :F/Tvn:F/T B_~ . vV
nT® ggs TS S 908 205 (2.127)
— af =FZa’ ; n’ = Qgn

2.4.17 Expression of V/, as function of V,,,~, w and (2

T 1
VI =F¢V,=V,—(¥+02E - V.4 =(37% — 2°N —
n 5 ( ne w) 2(3 w® w (2.128)

+20B7 - 2@ Fw+n® PEwW)V, + 03, 20, xn%n*) Va,

2.4.18 Expressions of the three invariants of an arbitrary 2-dimensional tensor T

Let us now briefly recall the expressions of the three invariants I, I and I3 of a 2-dimensional tensor
T =NTN

I[L=trT=2Hr=T-N :  Trace of T

1
Iy =det(T+n®n)=Kp = —§T -ETTE : (Minor-)determinant of T (2.129)
I3=detT =0 :  Determinant of T

24.19 Determination of the curvature tensor B of the undeformed surface

The curvature < and the radius of curvature R relative to some direction e in the tangential plane of the
surface are defined as follows

m:%:nc'lisd;r . dr=Ndr=eds ; e-e=1 (2.130)
We have
n-dr=0 ; dr I n
dn-dr)=dn-dr+n-d* =0
n-d’r=—dn-dr=—dr-(V,®n)dr = —e- (V,, ® n)eds?

1
= r=p=e-Be with B=B"=NBN=-V,®n (2.131)
! ! Eigenvalues of B
Kl = — Koy = — :
1 R, 2 Ry g
1 1 1 1/1 1
HBzitrBziBN:§(KJ1+F{,2):§<R—1+R—2> : Mean curvature
1
Kp=det(B+n®n)=—-B:-EBE = k1kq R Gaussian curvature
P32
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To take into account the order of magnitude of B, we introduce a radius of comparison, i.e. a curvature
of comparison, and write by definition

1 1 1/1 1 1
2 2 2
fn =z = 3l R) =3 (R% * R%) 2 (2.132)
1 1
= itrzB—det(B—i—n@n) = 5[(B-N)2+B-EBE]
1 ) R, :  Radius of comparison
B=0(kn,) =0 | —= with ,
R, K : Curvature of comparison
2.4.20 Definition of the tensor of curvature change

k=N&kN=—(V,® w)N  with w&# k’ (2.133)

2.4.21 Definition of kg

The tensor kg is built on the derivative of the rotation vector wg as follows

Ks=—-V,® ws=-V,® 2+ Ew)=0(ky,)
=-V,23n-0V,n—(V,E)w+ (V, ® w)E (2.134)
=B - kE—- (BEw+V,2)®n

With the comparison parameter «,,, the orders of magnitude are

ks = O(ky) = O(xEn)
Kk = O(ky) = O(xkn) (2.135)
V.02 = O(ky) = O(xkn)

2.4.22 Determination of the curvature tensor B’ of the deformed surface

Before writing B’ explicitly, let us first take a look at some derivatives

V., w=V,®(Nw)=(V,oN)w+ (V, ® w)N
=Ben+Ben)w+(V,® o) N=Bw®n-— k

Vi@ (REw) =V, 23Ew+ 2(V,E)w—-2(V,® wE
=V, 2Ew+ NBEw®n+ 2kE

Vo@[(w-wn=V,(w - w)®dn+(w:- w)V,@n=2(V,@ w)w®n— (w- w)B
=2kw®n— (w-w)B

With n' = n3g” and n3I7[; =n'-aj, 5, we have
B/ _ B/T _ N/B/N/ _ _F/TV ® (Q N v /13 18
= = =-FgV, sn)=-V, @on' =n3ly;a"®a
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~ 3. 1 1 ~ ~
= [—Vn+(7+QE—n®w—§72+§QQN+ §w®w—QE'y—|—n®7w

1 1 1
—§n® QEw)Vn} ® [n— w+ §QEw - §(w w)n]

- 3 1 1 - - 1
= {—N+7+QE—n®w— 5’72+592N+§w®w—QE'y+n®7w— §n®QEw]

1 1 1 1
{—B—i— K+§V7LQ®EQ)+ 5(2;@E+§(w- w)B + <—B+ n+§QBE> w®n]

~ 3. 1 1
=B - K,—'yB—_QEB—I—n(X)Bw—i—Bw@n—i—i’yQB—5(22B—§(w-w)B
1 ~ ~ 1 1 ~
—§w®Bw+QE7B+7IQ+QEl@—iﬂnE—ivnQQ@Ew—n@Bﬂyw

~ 1 1
—’wa®n+§n®QBEw—§QBEw®n—QEBw®n—n® WKk— Kw®n
+(w-Bwnen+ 00, x*n, x1°)in

—B-_-[k+ kT +B7y+9B - 2(BE-EB)|+n®Bw+Bw®n

+

N = N W | -

~y o~ 1 1
(B4 +4°B) — §[QQ+(w- w)|B — Z(w@BijBw@ w)

~ ~ 1 . ~ 1 1
2(BAE — EAB) + 5(7&—1— k1Y) + 5Q(En — k'E) + ZQ(EmT — kE)
1 ~ ~ ~ ~
— (VnQ®Ew+Ew®VnQ)—§[n®(B’yw+’wa)—i—(B’yw—i—’wa)@n]

(n®QEBw+QEBw®n)—%[n® wik+ &)+ (k+ kT wen]

+

—~

w-Bwn@n+ O, x*n, xn*)kn (2.136)

2.4.23 Determination of the normal curvature change

The exact relation for the difference of the normal curvatures between both deformed and undeformed
curved surfaces, i.e for the normal curvature change reads

1 1 e-FIB'Fge
/‘il—/@:E—E:e/'B/e/—e'Be:m—e'Be (2137)
2.4.24 Summary
By neglecting the third-order terms in x?3, x27, xn? and 1>, we have
Fs=N+(V,2u)’ =QsV=FN=QUN=N - (2 - &N
~ 1
’£N+7—QE+n®w—i(’y2+(22N+w®w) (2.138)

~ ~ 1
—QE’y+n®’yw+§n®QEw
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V,2u=FL -N=VQL - N=N(Q + &)
_ 1,
%7+QE+w®n—§(~/2+Q2N+w®w) (2.139)

~ - 1
+!27E+'yw®n+§(ZEw®n

NQ+En=(V,@un=n(V,2u)! = -n(Q-&N

. (2.140)
Y wtyw+ 5[2Ew
1
NEN = 2 (Vo @ u)N + N(V, @ u)’]
. . (2.141)
>y 5(7)/24—(22N+ w® w)+§!2(7yE—E7y)
1
NON = —[(V, @ u)N - N(V,, ® u)’]
2 ) (2.142)
=~ K + §Q(f~yE + E~)
1, 1, = 1
¥ =-(FLFs—N)=-(V2—-N)=NEN = NEN — -N(Q + &)(Q2 — )N
f 2 , 2 (2.143)
= 5[(Va @ N+ N(V, @ w)T] + (Vo @ u)(V, @ u)”
we N(Q+8)n—N<%Q+8>N(Q+£)n
; 1 (2.144)
=(V,®un— [Z(Vn ®@u)N + ZN(V" ou)!’|[(V,®2un
QFE =~ NON — 1(NQNEN + NENQN)
2 (2.145)

~ (v, ® N - N(V, 9 w)] -

5 ((V,®u)’N - N[(V, @ u)?]")

1
4

1 1
2= - NON-E+ _(NONEN + NENON) - E

= _i[(vn @uN-N(V,ou!] E+ é((vn ®u)’N-N[(V,ou)?")-E (2.146)
NEw = NON(Q+ E)n = %[(vn ®u)N -N(V, @u)’](V, ®un (2.147)
w-w=w 2 [NQ+&En)?=[(V,®un)? (2.148)
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1
VE=N+y -5

1 1
~ N +NEN - ON(Q + £)(Q — £)N — ;NENEN

. h (2.149)
~ N + 5[(Vn @u)N+N(V, @u)T] + E(V” ®u)(V,®u)"

- é[(vn 2 WN + N(V,, @ u)T]2
3

W%N—’7+§%Z

1
=N - NEN+  N(Q+E)(Q - &N+ ;NSNsN

. h (2.150)
=N-S[(Vh@uN+N(V, @ W - 2(V,ou)(V,2u)’

\V)

_l’_

| W

(V,®uN+N(V, ®u)’]?

sEZI-NE—-w®n+n® w+%QEw®n+%n®QEw
—%[QzN—k w®w+ (w- wnon]
2=I-NON-NQ2+&n®n-n®n(Q - &N
—|—%(NQNQN—G—NQNEN—I—NSNQN)+N(Q+8)N(Q+8)n®n

1 1
+n®n(2—-E&NEN + §N(Q +E&n®n(2 - &N — §[N(Q +EnP*n®n

1
=3 = 5[(Vn®u)N—N(Vn®u)T] —(Vy,@uneon+neon(V,@u)’

1
(V,®u)’N — §[(V” @uUN+NV, 2w+ (V,®u)’n®n

(2.151)
+

N = N = N =

nen(V,2u)’[(V,®u)N+N(V,ou)’] - %(Vn @unen(V,@u)’

(V,®un]’n®n

1 1
n':QSn§n—w+§(2Ew—§

~n— N(Q+ En+ N+ E)NQ + E)n — %[N(Q + En’n

(w- w)n
(2.152)
=0~ (V, @ uwn+ (V@ wn— (V.o wn]’n
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N =QsNQL =I-n"®n’
“*N+n® w+ w®n—%QEw®n—%n®QEw—w® wH (w-wn®n
“*N+NRQ2+E&nn—nenQ-EN-NQ+ENQ+En®n
—nen(@Q-ENRQR-EN+NQ+ENRn(Q - EN+ [N(Q+En°’neon
“N+(V,@unen+neonV,ou)! —(V,®u)’n®@n -nen[(V, ®u)?|”

—(Vpy,ounenV,2u)! +[(V,®u)n]’n®@n (2.153)

y=N-(V,ouw =WQi=F'N'=U"'Q'N
~“N -5+ 02E+ w®n+%(3f~72—92N— w® w)— N7E
—wa@n—}—%QEw@n
“N+NQ-EN+NQ+En@n+ N —ENQ - EN
(2.154)
+NQ+ENnQ2-E)N-2NEN(Q2+En®n

~“N-NV,2uw +(V,@un@n+N[(V, @u)?”

—(VyeuneonV,ou)! - [(V,euN+N(V,®2u)!](V,®uneon

Vv, =Flv,
2V, -+ 2E—-—n® w)V,

+-B¥-N-w® w+20E7 —2n®Fw+n® PEW)V,

| —

>V, -N(Q+E)V, —nn- (Q-E)V,]+N(Q+ENRQ+E)V,

+N(Q+Enn- (- E)V,]+2nn - (2 - E)NEV,,] -
>V, (V,®u)V, +nn-(V,ou)’V,]

+(V,®u)?’V, - (V,@unn-(V,@u)'V,]

—n(n- (v, @ (V)@ uN+N(V, 20)]V,)
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B'=B7 =N'B'N =-F{V,®(Qsn) = -V, @n' =nil}a" @a”
*B-_-[k+ k! +BY+4B - 2(BE-EB)|+n®Bw+Bw®n
i(w@Bw+Bw®w)
2(BAE — EAB) + ;(:ymr kTY) + %Q(Em — kTE)

1
(B +7°B) — 12+ (w - w)}B -
X (2.156)
QE" - I@E)—Z(Vn()@Ew—i-Ew@VnQ)
mh® (Byw+Bw)+ (Byw +9Bw) @ n]

n® NEBw + PEBw ®n)

w\»—lwlv—lwlv—whlv—‘wlwuklcow“_.

me wk+ )+ (k+ kHwen+ (w-Bwn@n

2.4.25 Strain components of a 2-dimensional curved surface in the 3-dimensional space written
in a Cartesian system up to the second-order terms

Let us recall the general expression for the in-plane strain tensor of a 2-dimensional curved surface

N:%(FEFS—N) (V. @uN+N(V,ou)’]+ %(Vn®u)(Vn®u)T (2.157)

l\.’)lr—A

whereFg = N+(V,,® u)T is the deformation gradient of the surface, FEF s the related Cauchy-Green
tensor, V,, = a®9/06° the 2-dimensional derivative operator and N = a, ® a® = I — n ® n the metric
tensor of the surface (with o, 3 = 1,2). The 3-dimensional displacement u, which generally points out
of the surface, can be decomposed into interior and exterior parts as follows

u=Iu=(N+n®n)u=Nu+ (n-u)n=v+wn (2.158)

where v = Nu and w = n - u. The decomposition of the derivative V,, ® u and its transpose read

V,2u=(V,®v)N—-wB+ (Bv+V,w)®n

2.159
(Ve,ou)! =N(V,2v)l —wB+n® (Bv+ V,w) ( )
where
V,®v=(V,@v)N+Bv®n (2.160)
which gives
(V,®u) : (V,®v) Tw (2.161)
N(V,®u)" =N(V,®v) —wB
and
(Veoou)(V,2u)! =(V,evN(V,ov)] —w(V,®v)B-uwB(V, V)" (2.162)

+w?B? + (Bv + V,w) ® (Bv + V,w)
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Thus, we get explicitly

1 1 1

q = 5[(Vn @V)N+N(V, @v)T] —wB + 5w2B2 + §(Vn ®v)N(V, @v)"
(2.163)

1 1

— §w[(Vn 2@ v)B+B(V,®v)T]+ §<BV + V,w) ® (Bv+ V,w)

In order to write the tensor 7 in a matrix representation, we introduce in a point P on the curved surface a
Cartesian base with constant orthogonal unit base vectors e, e | and es in space. In point P, the direction
e3 is perpendicular to the surface and gives the direction of the z-axis. The unit base vectors e and e |
are tangential to the surface and perpendicular to each other (e L e ), respectively giving the directions
of the 2 and y-axis. Note that in another point P, e3 may not be normal and e and e, not tangential to
the surface, which means that es = n is only valid in point P. Recalling that the sign ~ means that the
base vectors are omitted in the matrix representation, we write

1 0 0
e=40 ;e =<1 ;i es—=exeL=e Ee= (0 (2.164)
0 0 1

The identity tensor reads

1 00
I=g'®g =g Rg =eete e +tes®@e3= [0 1 0 (2.165)
0 0 1
The metric tensor of the surface (normal projector) reads
N=a"®a,=a,®a"=I-n®n (2.166)
which means in point P
1 00
N=I-e3Qes=e®Re+e; ®e; = |0 1 0 (2.167)
0 0 0

Both base vectors a,, and a® can now be decomposed and written relatively to the constant Cartesian
base (e, e ,e3) as follows

a, =al=a,(e®Rete e +e3®e3) =(ay-ele+ (a,-ei)el + (a, -e3)es

2.168
a’ =aT=a(e®ete ®e, +tes®e3)=(a’-ele+(a’-e )e; +(a’ -e3)es ( )

In point P, we have a,, - e3 = a®.e; =0and we get
a, =asN=as(e®ete ®e )= (as ele+(aq-eL)es (2.169)

a’ =a’N=aeve+e, ®e )= (a" ee+(a’ e e,
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The 2-dimensional antimetric permutation tensor of the surface reads
E=FE.,a"®a’ = En (2.170)

where E,p = +v/aifaf =12,E,3 = —y/aifaf =21, E,3 = 0if @ =  and a = det ang. In point
P, we have

0O 1 0
E=FCe;=e®e, —e, ®e= | -1 0 0 (2.171)
0O 0 O

Let us now decompose and write the interior part v = Nu = v,a“ of the displacement u = v + wn in
the Cartesian system as follows

v=v,a% =12l =v,a%eRe+e  ®e| +e3Re3) U
vy (2.172)

>

=v,(a”-e)e+v,(a” e )el +v,(a” - e3)es : v

=ue +ve| +v,e3

- €)vq ; v=1v, = (a®

e )Uq ; v, = (a% - e3)v, (2.173)
are the components of v relatively to the x, y and z-axes by definition. In point P, the interior and exterior
parts of u read

U 0
v=ue+ve, =< v ; wn= ¢ 0 (2.174)
0 w

Written in the Cartesian system, the 2-dimensional derivative operator reads

vV, = aﬂ% = aﬁI% = [(a” -e)e+ (a” -e))ey + (a” - eg)eg]% (2.175)
In point P, we have
(9
ox
Vn—aﬁa%iﬁ—aﬁNa%gﬁ—[(aﬁ-e)e—l—(aB eL)eL]%—e% —i—eL%L (% (2.176)
where 0 9 9 9
i (a” ©)5pF By = (a® e1) 505 (2.177)
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It follows that (in P)
28 0w 8w ow ow ow

The strain tensor 4 reads in point P

SO 1. ~ .
’7=€xe®e+§’yxy(e®e¢+eL®e)+eyeL®e¢: Yoy  Ey O (2.179)

Obviously, a 2-dimensional surface in space has no thickness, which means that the components &, 7.,
and 7, do not exist. In point P, the curvature tensor B reads with I‘i 5= F3a

B=-V,®n=nI%;a"® a’ = nsl's5(a%e)e + (a%e e ] ® [(a”-e)e + (a’e)e,]
= ngf‘iﬁ[(a”‘-e)(aﬁ-e)e ®e+(a%e)(a’el)(e®es +e  ®e)+ (a%e )(a’el)e ®e,

=r;e@e+ryle®el +el®e)+re ®eyr
Ke Kgy O

=y w0 (2.180)
0 0 0

where , and x,, are the normal curvatures of the surface relatively to the x and y coordinates. Remember
that Fiﬁ =g a, 3 and ng = £1/4/¢33. The mean curvature of the surface is Hg = trB/2 =
B -N/2 = (kg + ky)/2 = (k1 + k2)/2 and the Gaussian curvature Kp = det(B + n® n) =
—-B-EBE/2 = Kgky — ngy = K1k2, Where k1 and k9 are the principal curvatures of the surface. In
point P, the interior part of the tensor V,, ® v reads

(V, @ V)N = (vg,q — ﬁvy + ngg?’“’lﬂiﬁvw)ao‘ ®a’

= (Ug.a — T gvy +136°7 T3 5v,)[(a%e)e + (a™e1 e ] ® [(a’e)e + (a’e )e, ]

—a—e®e+a—e®e —1—8 e ®e—|—a—e ® e

= oz or € By € By L €
du v
ox Oz

. | Ou Ov

= | — — 2.181
0 0 0
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where the cartesian components Ju/0x, 0v/0x, du/dy and dv/dy contain the covariant derivatives
V.o = Vp.a — Logty + n3g°7T3 30, of the components of v = v,a® on the curved surface. With

equations (1.110a), (2.173) and (2.177), we have

20 = I (o)) = (a ) s (a - )u]
=(a’-e) [(aa -e)% - (e- g%;) Vo + (aa : ;72) va}
— (2% o) [(a ©)ts + (a7 €)a, - Tay ] (2.182)
— (2" - e)(a” - ©)vey + (a7 - e)(a” - ©)(~T, + nig™ T,
= (2" -e)(a” - )[us.0 — T g0, + n3g* T 0,]
2 = Il eu)ua] = (a7 - e) o5 ((@” - e1)u]
~ oo+ (er 5 )it (a7 505 ) ]
_ (2 o) [(aa vas + (a7 -el)a, - g‘;‘; ] (2.183)
= (2" 0)(a” e )ua 5 + (a7 ) a7 - 01)(~TF, + n3g* T v,
= (a%-e)(a” - e )(vg,a — Faﬁm +n2g I‘aﬁv,y)
o = ol ea] = (a7 e1) s (@ - o
— (@ e)) [(aa - e)% + (e- g%;) Ve + <aa - (%‘;) va]
— (% e)) [(a €)vas + (a7 - €)a, - g‘;‘; ] (2.184)
— (% e.)(@® e)vag+ (a7 -e1)(@l - e)(—T%, + nig*T? v,
=(a% e )(a”- e)(vga — I 50y + nig® I‘aﬁvy)
o = gl esa] = @ e) s (e )ud)
— (@ ey [(aa-en% ; <eL - %) v+ <aa )]
= (a’-e1)(@” el )vas+ (a7 -e1)(a? - el)(-TF, +n3g* T}, v

(a*-eL)(a”-el)(vga
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where we have used the following relations (in point P)

e=Ne=(a,®a")e=a,(a’-e) ; e, =Ne, =(a,®a")e; =ay(a” -e))

0vq, Oe Oe da“” o o 9 303

o7 ~Uep ogpn =0 ¢ ggp =0 ¢ ggp = Ay = T, g,
(2.186)

The semi-exterior part of V,, ® v reads (with n = ez in point P)

Bv ®n = n3a"’T?0,a% @ n = (kg + Kpyv)e ® 1+ (Kgyu + Kyv)el @ n

Ke Kgy O u 0 0 Kpu+ Kgyv
= Key Ky 0] qwv ®(0 0 1)=10 0 FKyyu+ryo
0 0 O 0 0 0 0 (2.187)
It follows that
[Ou  Ov i
9% Or Kzt + KgyV
V,®v=(V,®v)N+Bven= g_;‘ g_z Kyl + Kyv (2.188)
0 0 0

In the special case where gz = g = n with n3 = 1, the contravariant base vectors g” are normal
to n, which means that Ng’ = gf = a” and ¢* = g®- g’ = n-a? = 0. Therefore, we have
Vpia = V.o — Llgvy and =I5 = g7, - g3 = a7, - n = T 5, which means that V,, @ v =
(vg.a — T2 5vy)a* @ @ — T30 2% @ n.

Remark: On a curved surface, one must first compute the quantities with the intrinsic tensor notation (or

with the notation with indices), paying special attention on derivatives, before to write any components
in some matrix! For example, it is wrong to write

fou v O_
Jx O
0 0 ou Ov
V,®v e—+e — | ®uetve, )= | — — 2.189
# < 5. T el 8y> ( 1) 9 9y ( )
0 0 O
Thus we have on the curved surface in point P
[Ou Ov 17T i [Ou  Ov ]
% % KeU + Ry 1 0 0 % % 0
. | Ou Ov ou Ov
V,@Vv)N= | — — kg, 01 0fl=|=— = 0 2.190
( ) 9y Oy Kyl + Kyv 9y Oy ( )
0 0 0 0 0 0 0 0 O
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— — 0 - zy 0
or Jy o Bay
N(V,ov) = v v i wBZE |k Ky, 0w (2.191)
oxr Oy Y v
0 0 0 0 O
Ky Kagy O [ Ky HKay O K3+ K2, Kay(Kz + Ky) 0
wB? = |k Ky O | Key Ky 0|0 Kay(ke +Ky) Ko +KE, 0 w?
0 0 of][O0 o0 0 0 0 0] (2.192)
(ou\, () dwou ovon ]
oz Oz Ox dy Oz Oy
. Oudu  Ov v ou\ > ov\>
V,ov)NV,ev) = | =4 — —) o0 2.193
(Vo &VIN(Vn & ¥) 950y 0w 0y (ay) +<ay> (2:195)
0 0 0
'8_u @ 0_ _H K 0_ _m%—i-/ﬁ @ K % m@ 0_
or Oz * w “ox Yor T ox Yox
ou Ov ou ov ou ov
V,@v)B= | — — 0 . 0| = |Kep +FKayr- Keyr- — 0
( ) oy oy Key Ky liay—F/{yay Ry8y+ﬁy8y
0 0 O 0 0 O 0 0 0
(2.194)
_m @ + K Ov K @ + K @ ]
Toxr Yox oy Yoy
T ou ov ou ov
B(V,®@v) = Kay 5 + Ky mwya—y + K,ya—y (2.195)
0 0
_ ol ( (0 [ o+ iy + 22
Ky  Kay u e Rall + Koyt + =
Bv + V,w = 0 = o 2.196
VEVaW = | ey Ky 0 vt 8_y w= ’%yu‘f‘“yv‘i‘a—y (2.196)
0 0 O 0 0 { 0
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(Bv+ V,w)® (Bv+ V,w) =

ow
/{zUz"‘ K/ryv + %
N w ow ow 2.197
= Kayl + Kyv + a_y ® | Kgu + Kgyv + 5y eyl + Ky + a_y 0 (2.197)
0
KzU + K v+8_w 2 KaU+K ’u—i—a—w KayU+FK v+8—w 0-
v i ox v W ox i YU oy
= KU+ K v+aw KeyU+K v+8w + + O\ 0
- T T a T . RgyU T Ry .
) 81’ Y Y ay ) Y ay
0 0 0

The components €, €, and 7, /2 of the surface strain tensor - can now exactly be written as follows

ox ox T ox H$y8x

ow\ 2 2.198
(ﬁxu + Kay¥ + %> ( )

~ ~ ou 1
Ex =€ Y€ = — — KW

ox +§

1 1
+ 511)2(/12 + K2,) + 3

g —=e| -~e —@_ _|_1 @2_‘_ @2_ K@—}— %
y = eLeL = oy Ty oy oy v Yoy fay oy
1 1 ow\” (2.199)
+ 5’(02(/{12/ + Iiiy) —+ 5 (/{yv + KzyU + a—y>

9Ty =T YOL =g dy  Ox wt Ty Ox dy Oz Oy

ke 2 e (22 Y 4, 20 4 L (Ko + fiy)
2 oy Y \ox Oy " or oW BayFa T Iy

(2.200)
5 | e 2y . KyU + Kyl "

To get the linear and angular dilatation ., £, and 7, /2, we must take into account the following
nonlinear expressions

ex=V1+2e,—1 1 1 . Yoy
; Yzy = = arcsin — —
ey = VI+25, -1 272 VIF2ZE)I+2E)
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which read after development up to the second order terms

- -1
gy:w/1+25y—1ggy—§sy2+... (2.202)

1 1 . Vay 1 1 G +E) 4
—Vpy = — arcsin — = ~ -~ — =Vou(Ex + €
27 = VOt 251 25,)) 22 v

Considering surfaces where the displacements are much smaller than the principal radii of curvature
(Jlu|] < |1/k1,2]), we get explicitly [2.9]

A ou . 1 /0v)> ov n 1 5, n 1 n n ow\ >
2 — —RKpyW+ = [ =— | —Wkyy=— + W’k — | KpU + KpyV + —

€ N@—,«; w+1<@>2—wn @4—}102%2 +1<n v+ K u+8_w)2
Yy — Y Yy 2 83/ xyay 9 Ty 2 Y Yy 83/ (2204)

L Ufou v\ 1 (oudv oudw
97 =5 oy Oz Y 2\ 0x0x Oydy

1 ov ou Ov ou 1 5
+sw + Kay + + — W Ky (kg + Ky)

2% " oa ox " ay) " ay] T2 (2.205)
41 + v + 49w
5 Kzl + Ky o KyV + Kyl Jy
For plane surfaces with no curvature, we have B = 0 and
Ep @ + L _ @ : + aﬂ ’
T or 2 |\oz ox
IS VAN TAN
Y7oy 2|\ oy oy
1 1 /0u Ov 1 /Oudv Oudv Owdw
gy~ = [ = | o [ e — 2.206
9wy 2<8y+8x> 2(8x8m+8y8y oz 8y> ( )

24.26 Rotation components of a 2-dimensional curved surface in the 3-dimensional space written
in a Cartesian system up to the first-order terms

The rotation of a surface element is fully described by the exact rotation vector wg = {2n + Ew or by
the orthogonal tensor Qg , which reads up to the second-order terms

1 1
Qs ZI-NE—-— w@n+n@ w+ - PEw®n+ -n® PEw
2 2
) (2.207)
—§[Q2N+ w® w+ (w- wn®n]
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where
3 1 .
w>(V,un— Z(Vn ®@u)N + ZN(VH ®@u) [(V,®@u)n

NE =

S =N

N-

By only considering the first-order terms, we have

w>(V,®@un=Bv+V,w

1
fm= - ((V,@Vv)N-N(V,@v)'] E)n
which gives in components
i 0_ 2 N N B_UJ 3 (
Kz Kay u o Kall + Kay¥ + o Wy
w= |k ky O] Qwvp+ 9 L= Koyl + Ky + Qu b _ w
vy Ay Ty y By Y
0 0 0 0 0 0 0
L 4 \ / / \ /
0 1 0] | kau+ Kayv+ Z—Z Ky + Ky + Z—Z
Ew= -1 0 0 ﬁxyu+ﬁyv+g_1; = 0 —Kall — Kay¥ — 2_1: —
0 0 0 0 0
i ov  Ou ] i 7
0 il 0 20
oxr Oy
L ou Ov
QE=o | o~ — 0 0|={-2 0 0
2|10y Ox
0 0 0 0 0 0
[ v ou 1T N ()
0 — 5 0 0 10 0 0
Jx 0Oy
L1 ou  Ov
fn=—- 1| o= — - 0 0|-|-1 0 0[[q0,= 0
4 oy Ox
0 0 0 0 0 0 1 1 @ -
- - = - { 2 \ Oz
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(V) @ w)N — N(V, @ u)T] — %((vn % w?N - N[(V,, @ u)?|7)

(V, ®u)N-N(V,2u)?] E+ é((vn ®u)’N - N[(V, ®u)’|]")-E

(2.208)

(2.209)

(2.210)

(2.211)

(2.212)

9]

W

(2.213)
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wRn=

Qs =ZI—-NE— w®n+n w= | N

Keyth + K U+8w 0
T a w o
Y Y dy y
0
— Kl — KgyU — 8—: =4 —wg =1 {2 (2.214)
1 /0v OJu
— = - = 0 2,
(2 (63) 8y> J J
0 0 wg
®(0 0 1)=1{0 0 w, (2.215)
0 0 O
1 -2 —w, 1 -2, £
1 —w =02 1 - (2.216)
Wz Wy 1 -2, (2, 1

The components §2;, £2,, and {2, of the rotation vector wg describe both the out-of-plane and the in-plane
rotation of a surface element. We have up to the first-order terms
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w
2, = Wy = KgyU + KyV + —

dy
2y = —wy = —KgU — KgyU — (;_w (2.217)
o
1 /0v Ou
2=0=3 (% B a—y>
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3. Recovery of interference fringes in holographic interferometry

3.1 Introduction

This section first assumes that the reader already knows the basic concepts of holographic interferometry
[3.1-3.55], and second shows an example of application of the intrinsic tensor calculus presented in the
previous sections. Its purpose is to explain how to apply holographic interferometry to large deformation
measurement and how to deal with the related problem of vanishing fringe patterns.

In common industrial environment, large deformation measurements of opaque bodies by means of holo-
graphic interferometry are often related to the problem of decreasing fringe spacing and contrast, causing
the loss of the interference fringe pattern, which contains the whole information on the corresponding
deformation. Therefore, the only way to determine the surface strain, rotation and displacement compo-
nents of a structure element under load relatively to the unloaded state is first to recover the interference
fringes — at least locally — and then to use the correct adequate relations to process the recovered fringe
pattern properly.

The main purpose of this section is to explicitly and quantitatively present the general equation system
for a systematic fringe recovery procedure in the general case of a large unknown object deformation.
The relations for the quantitative evaluation of the recovered fringes, i.e. the optical path difference and
the exact fringe vector of the modified interference pattern, are explicitly presented. All needed relations
are first introduced in form of general vector and tensor equations. Then, equations for fringe recovery
are written in cartesian components and used within a quantitative practical experiment to demonstrate
the reliability of the theory. These relations are general and may also be used in other application fields
(with their related problems) of holographic interferometry, when the loss of fringe spacing and contrast
should be compensated.

3.2 Optical path difference by a geometrical modification

To enable fringe recovery in a general geometrical case, three important points must be considered:

1) The holographic setup should allow a geometrical and/or an optical modification to adequately
compensate the unknown mechanical deformation and the optical image aberrations.

2) The holographic method should be one allowing independent acting on the holographic images,
e.g. one of the type belonging either the real-time technique or the double exposure technique on two
holograms (because not all holographic methods are suitable for this purpose [3.45]).

3) The holographic images of the deformed and undeformed body must sufficiently overlap, the fringe
spacing must be large enough and the fringe visibility must have sufficient quality to be analysed
properly.

Considering the formation of fringes in a general case, we choose here, without restricting the generality,
both the real-time technique and the double exposure technique on two holograms with a geometrical
modification at the reconstruction, that means the possibility of moving the reference source and the

hologram corresponding to the undeformed configuration. No move of the object source, no change
of the wavelength A and no modification on the deformed configuration will be considered here. This

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



— 82 —

enables to present an analogous situation for both real-time and double exposure techniques (Fig.3.1).
For an observer in R (point R is the collineation center of the observing system), the intensity J in some
point K in the 3-dimensional space is given as follows [3.29,3.43,3.44]

J = Ag+ Ajcos <2;Dd> = Ay — A cos (%TDT> = Ag+ Ajcosd (3.1)

where D, and D, respectively are the optical path differences in the case of the double exposure and of
the real-time technique and where @ is the phase (or phase difference) used as alternative to the optical
path difference. The observing system, e.g. a CCD camera, is focused in point K where the fringes
are observed, which means that point K is in the object plane of our optical system. The minus sign in
equation (3.1) explains that white interference fringes in double exposure correspond to dark fringes in
real-time.

X

X
\
T\
e\
W H
T\

Fig.3.1: Holographic setup at recording and reconstruction with modification

t

)

The phases in some points P and P’ on the image surfaces are given by the two following equations of
interference identity

Gt t Tp—a) - G-D]+ @)
A% B (3.2)
B =t Tl o)~ DN+ @ )

where ¢ and ¢’ respectively are the phases in P and P’ on the real surfaces at the recording, where ¢ and
¢’ respectively are the phases in P and P’ on the image surfaces, where 1) and ¢’ respectively are the
phases in the reference sources Q and Q’, where p, p’, p and p’ are the lengths between the object surface
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and the hologram(s), and where ¢, ¢, ¢ and ¢’ are the length between the reference sources Q and Q' and
the hologram(s). As a convention, the sign ’/ (prime) describes a quantity in a deformed configuration
and the sign ~ (tilde) a quantity in a modified configuration. In the case of real-time, we have ¢’ = ¢’
because the deformed object surface is identical with its image. The optical path difference Dy for the
double exposure and D,. for the real-time in some point K in the space R? respectively are defined as

follows \ \
Dy=(206G-L)-(Z2@F -1
d <27r(p > <27T90 >

N R ) B (3.3)
DT — AN So-a _ L _ o ~/ _ L/
(5:6-m-I)-(57-T)
and the phase relations reads

27 27 ~ 27 " ~

(pZT(LTS‘FLS)"‘(PT ¢:7LTQ+<PT ¢:7LTQ+SOT+A¢
/ 27 / / ; / 27 / / ; " 27 / ~ (3‘4)

© :T(LTs-i-LS)‘HPT (] :TLTQ‘HOT (0 :TLTQ‘HOT

where @7, ¢/ and @ respectively are the phases at the first beam-splitter at recording (undeformed and
deformed configuration) and at reconstruction. The phases v and 1)’ respectively are the phases in the

“new” point sources Q and Q" = Q' at reconstruction. The phase increment A1) is used at reconstruction
in the phase-shifting method. In case of the real-time technique, we have ¢/, = @r.

Because no modification is performed on the deformed configuration, the point P’ is identical with its
image P’ and we have p’ = p’ and ¢ = ¢’. Introducing equations (3.4) in equations (3.3), we find the
same expression D = Dy = D,. for the optical path difference of the double exposure and the real-time
technique, both expressed as a sum of length differences.

D=tv= b= (I~ D)~ (s~ L)+ @)~ G-p)+ A0 (35)

where v is the so-called fringe order. Assuming a large deformation and a large modification, we can
develop the length L', ¢ and p in equation (3.5) up to the second-order nonlinear terms as follows

1
s=Ls+u-h+—u-Hu+... ; |lu| <« Lg
2Lg
- ~ 1 ~ -
q:q—i—c'(t—d)—Q—a(t—d)‘C(t—d)—l-... ; It], |d| < ¢
1 1 1 1 ]1 ~
—=-——c-(t—d —|——[—t—d-Ct—d+E~t—d 2]—1—... 3.6
- ~ 1 - ~
p:p+k~(t—v)—%(t—v)~K(t—v)+... ; It],|v| < p
1 1 1=~ 11 ~
—=-—-—=k-(t—v —&——[—t—v-Kt—v—l—k-t—v 2]—}—
S= ke (b= v+ o |5 v) R(t - v) K- (6 V)
where _ _ o
H=I-h®h ; C=I-c®c ; K=I-k®k (3.7)
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respectively are normal projectors relative to the directions h, ¢ and k. The observing direction is given
by the unit vector k, the illuminating direction by the unit vector h (h’ for the deformed object surface),
and the direction of the corresponding reference ray at reconstruction by the unit vector ¢. The vector u
represents the unknown displacement of the surface point P to the new position P’ = P’, the modification
vector t represents the displacement of the hologram point H to the new position H and the modification
vector d represents the displacement of the reference source Q in the new position Q. The aberration
vector v is the displacement of the object surface point P to the image point P caused by both the
modification of the reference source and the hologram.

As it has been observed, a contribution to the interference phenomenon in point K is given by the whole
bundle of rays coming from K and entering the aperture A of our observing system, which is assumed
to be small compared to the distances involved in our holographic setup. In order that both image areas
A and A’ around the points P and P’ on the object image surfaces contribute to the interference, the
rays coming from K and going through the corresponding points P and P’ must enter the aperture of the
observing system [3.45]. It follows that both areas A and A’ on the object image surfaces, which are
related to the aperture A of the optical system, must overlap respectively to the observing direction k
while remaining very small (same order as the aperture). With the aperture radius 7 and the small vector
W in the aperture plane, which connect both corresponding rays coming from K, we have to consider the
overlapping condition

Kw
£+p+L

Ku
L

|w| < 7 = < = = ; lul < £ (3.8)

where K1 is the lateral offset of the image points P and P contained in the so-called superposition vector
fs = K1 and where {o is some characteristic length of the setup. Equation (3.8) gives a condition on
the order of magnitude of the vector Ku respectively to the length L and the vector Kw. Assuming now
in our further considerations that both rays KP and KP’ enter the aperture of the observing system, we
can develop the length L relatively to the length L up to the second-order nonlinear terms as follows

o o~ o~ 1 o~ ~ ~ ~ 1~ ~
I'=L+u-k+—=u-Ku+...=L+f - k+—=fs-fg+... (3.9)
2L 2L

where 1 - k is the longitudinal offset contained in the so-called longitudinal superposition vector ?L =
(u - k)k. Introducing equations (3.6) and the above development (3.9) in equation (3.5), we get with
u=u-—v

N - 1 1 ~
1 (t—v) Kt — )+—1? f. +—/\A{/?+ (3.10)
o VLt o '

where g = k — h is the modified sensitivity vector and where the vector Kv represents the unknown
lateral aberration of the image point P relatively to P caused by our geometrical modification.
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3.3 Aberration and astigmatism of holographic images

In equation (3.10), the lateral aberration Kv appears in the second-order nonlinear terms and can be
determined according to the Bragg condition for thin holograms. Assuming the existence of an image
point P, which can be easily verified in an experiment, the interference identity equation (3.2) must have
a stationary behavior up to the second derivative in a small area (related to the aperture of the optical

system) around the corresponding hologram point H (Fig.3.2). With the constant phases ¢, ¢, 1) and 1; ,
we write the stationary behavior of the phase difference function © p = 27[(p — q) — (p — ¢)]/ A for both
points P and P assumed to be fixed in space. By setting the first total differential equal to zero, we get
with p = p(r),q = q(r),p = p(r) and g = ¢(T)

27

A

27 oo~ -~
-

0=d0p = T[dF- V(5 — ) — df - Valp— )] = S[dF - N(k =) —df - N(k —¢)] (3.11)

where df = Ndf and dr = Ndr respectively are the vector increments (or first differentials) on the
hologram before and after modification [3.29]. The 2-dimensional derivative operators V; and V-
enable us to compute the gradients of the lengths on the hologram planes, which lead to units vectors
associated with their normal projectors. As we can see in the second part of equation (3.11), we have

V-(p—-¢q) = N(k — ¢€) and V;(p — q) = N(k — ¢). The two normal projectors N = I — i ® fi and

—~

N = I — n ® n respectively project onto the hologram plane before and after modification. The two unit
vectors nn and n are normal to their corresponding hologram plane.

{K}

Fig.3.2: Aberration and astigmatism of an image point due to a modification at reconstruction

Because of the rigid body motion of the hologram, both vector increments dr and dr are related by the
following relations N N R R
dr=QTdr=drQ dr = Qdr = drQ” (3.12)
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where Q is the orthogonal tensor describing the rotation of the hologram that means QTQ =Tor

Q! = Q7. It follows that we also have ni = Q7n,n = Qn,N = QT’NQ and N = QNQT. For
moderate and large rotations, the tensor Q which is still close to the indentity tensor I, can be developed
up to the second-order terms as follows

~

~ ~ 1 -~
Q:I+(Q—I):I—)QEH+§§<2E§{+... (3.13)

where By = —}AEE is the 2-dimensional antimetric tensor describing a — /2-rotation in a plane normal

to the rotation axis A g of unit direction vector ny and where Y is the exact angle of rotation around the
rotation axis in radians. The tensor E2, = (E2 )T is symmetric and can also be written in the form of a

negative normal projection E2 = N n = —I+ny ®ny onto the plane normal to ny . Remember that

Epy = Eny can be determined by contracting the vector ny with the so-called third-rank permutation
tensor E. It follows that the rotation is completely described by the exact rotation vector Wy = xng.

Introducing equation (3.12) in equation (3.11), which must be valid for all vector increments dr and dr,
we get the well known ray-tracing equations

NQ'(k-¢) - (k—-¢)]=0 ; N[k-8 -Qk—c)]=0 (3.14)

which have the same meaning but are expressed either relatively to the unmodified or to the modified
hologram For a given modification, because all the units vectors ¢, ¢, n, n and the rotation tensor
Q can be measured, equations (3.14) give, together with the auxiliary conditions [k| = [k| =
relation between the observing direction k at recording and the corresponding observing direction k at
reconstruction.

Because our modification can be large, we develop the directions k and c respectively to the configuration
at reconstruction up to the second-order terms as follows

k:k—~K(t—v)—2;2(t—v):7~((t—v)+
- 1¢t-d) - Lt—d)ct—d (319
c=¢-= (t— )—@( —d)C(t—d)+

with the two superprojectors (triadics) X = Kok+K ®k)T + k@K and C=Cw®c+C ®¢)T +¢®C.
By eliminating the lengths p and ¢ with equations (3.6), equations (3.15) read

k=K - “K(t—v)— —[(t—v) Kt —v)k+...

e 21p N ) (3.16)
c=¢-— QC(t—d)—ﬁ[(t—dyC(t—d)]c%—...

Considering the configuration at reconstruction, we define the non-symmetric oblique projector M =
I — n ® k/n - k, which acts as a projection along the direction 1 onto a plane perpendicular to the
observing direction k (if applied from the left onto an arbitrary vector on its right). Its transpose
M? =1-k®n / k-nis also an oblique projector and acts as a projection along the observing direction
k onto a plane perpendicular to the unit normal n of the hologram.
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Introducing equations (3.16) in the right equation (3.14), we can write the lateral aberration Kv up to
the second-order terms as follows

%f{(t V) =M%, +M% =  Kv=Kt— pMv — pM¥ (3.17)
with
¥ = %é(t )+ (Q-1E-3) (3.18)
%= (@1 (- MG~ ) - Q- (k-9
4 %Q (q%(t — )8t —d) — (¥ - MTle)E> +o

where |[v5| < |v1], MN = M and MK = K. The first and second-order terms are explicitly defined
as function of the modification t, d and Q.

Introducing equation (3.17) in equation (3.10), the optical path difference reads

~ ~ 1 1 ~
D=u-g—t-(k—c¢c)—d- c—fu Hu—2—(t—d)-C(t—d)
S q
D3y MTMF, + s - Fs + A + (3.19)
1 1 2ES S 27‘(’ .

and can be used to calculate the displacement u from the interference fringe pattern with more accuracy
by still using conventional methods.

By setting the second total differential of the function © p equal to zero, we get

A _ _ . _
0= d*0p =dr- [V @ V(p—9ldr + &’ - V(5 - q)
m

—dr- [V ® Via(p — ¢)ldf — d°T - Via(p — q)
—dr-N <~K — ~C> Ndr — df - N <K _ C) Nd7
P g pq

+d’r-N(k —¢) — d’F - N(k — ¢)

Because second derivatives of lengths or better to say gradients of unit vectors lead to normal projectors,
we get the two normal projectors K = I-k®k and C = I—c®c. The second differentials d°T = Nd*r
and d2T = Nd2T of the position vectors T and T on the hologram planes before and after modification
depend on the set of curvilinear coordinates on the object surface and are generally not equal to zero.

Because of the rigid body motion of the hologram, the rotation tensor Q is constant on the hologram plane
and the deformation gradient of the hologram surface reads Fy = QN N + (Vi ®t)T. Thus, the
second differentials are related by the equation dr = Qer, which implies with equation (3.14) that the
last two terms in equation (3.20) give zero. Introducing the variable unit vector m = Km perpendicular
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to the observing direction k, we may write with the vector increment dk = mdgb the affine connection

dr = ﬁMTdk pd(me With equation (3.12) and m - MKM™m=m -Km =1 , equation (3.20)
becomes

—~=m-Tm ; T:M[—ZC—QGK—EQQT]MT (3.21)
q p q

where T is the 2-dimensional symmetric curvature tensor of the wavefront at point H at reconstruction,
which travels along diverging rays in the direction k from the point P. As we can see, equation (3.21)

describes an astigmatic interval {P} while rotating m in the plane normal to k. Both minimum and
maximum values —1/p; and —1/ps correspondlng to the directions m; and m2 (my L my,) are the

eigenvalues of T deﬁnmg the endpoints P, and P, of the astlgmatlc interval {P} The two invariants of

the curvature tensor T of the wavefront, i.e. the mean curvature H and the Gaussian curvature K can
be calculated as follows

~ o~ = 1 1 ~ ~  ~ =~ 14 = 1 ~
trT=T K=———-—=2H ; det(T+k®k)= ——T E,TE, = — =K (3.22)
pP1 P2 p1D2
where 2H represents the trace and K the determinant of T. The tensor E;, = —E{ is a 2-dimensional

antimetric tensor describing a —/2-rotation in the plane normal to the observing direction k. By
introducing the equations (3.6) and (3.17) in equation (3.21), we get
~ 1 ~ V1 - MTMv

m-Tm 2m - Tm

Equation (3.23) gives the longitudinal part k-v up to the second-order terms of the point aberration v

relatively to the observing direction k by taking into account the astigmatism of point {P} Because of
this astigmatism, the length p varies within the astigmatic interval as function of the direction of m. As

such, any arbitrary point on the ray of direction k in the astigmatic interval can be chosen as a reference
point for {ﬁ} in our considerations. According to the mean curvature of the wavefront at H, the position
of the particular point 130 in the astigmatic interval can be determined for example by writing its distance
Do to the hologram as follows

1/1~ =~ ~ ~ 1 1~ =~ 1 /1 1
2 \ po po 2 2\p1 P2

With the corresponding point aberration v, equation (3.23) can be related to ﬁg by writing

~ 2 M7 Mv
Rovompt -2tk 4 MMV (3.25)
T K T K

3.4 Superposition, visibility and fringe vectors

In the unpleasant case where no fringe pattern is present (because of our large deformation), we need
first to recover the interference fringes before being able to apply equation (3.19). Fringe recovery
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can be achieved with a suitable geometrical modification of the hologram and the reference source at
reconstruction [3.46-3.51]. In order to find this modification, we must now deal with the concepts of
superposition, visibility and fringe vectors.

3.4.1 Superposition vectors

Considering the second-order terms, the superposition vector fs (Fig.3.3) describing the lateral overlap-
ping of the image points P and P’ relatively to the observing direction k reads with equation (3.17)

fs:Rﬁ:f(u—f{v:K(u—t)—i-pl\h/Iﬁ+p1\7[§2+---

%é(t _d)+(Q-D(k- a]
(3.26)

Considering the second-order terms, the longitudinal superposition vector fL (Fig.3.3) describing the
longitudinal offset of the images relatively to the direction k reads with equations (3.23)

fr=(k wk=[k-(u-v)k= [_p_

1 ~ Vi - MTMv
VU YV R4 (3.27)

4 k-(u-t) - L2 E
m-Tm 2m - Tm

The modification must be chosen according to equation (3.8), which implies that the superposition vector
remains very small, i.e. ?S =~ 0. In this case, the small areas corresponding to the aperture of the optical
system around the image points on the object surface lateraly overlap, which is one of the necessary (but
alone not sufficient) conditions for the recovery of interference fringes. The longitudinal superposition
vector f7, canbe used to* ‘adjust” the longitudinal aberration and the astigmatism of point {P} Introducing
equation (3.26) in equation (3.19), the optical path difference reads

~ 1 1 ~
D=u-g—t (k--de u-Hu o (t—d) Clt—d) (3.28)
2Ls 2q
1 ~ ~ 1/1 1\~ 1~ A~

A

Fig.3.3: Superposition vectors fs and f,
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3.4.2 Visibility and fringe vectors

For the recovery of interference fringes, two suplementary necessary conditions (as single condition
not sufficient) may be found by writing the quasi-stationary behavior of the optical path difference D
respectively to the collineation centers K and R. This leads to the visibility vector fx and to the fringe
vector f, Rr» Which must be kept very small, i.e. f ' ~ 0and f r =~ 0. In order to see interference fringes, the
intensity contribution in point K of all rays included in the bundle going through the aperture of the optical
system must be similar. This property is described by the first derivative of the optical path difference
D relatively to the observing direction k and the fixed point K (collineation center) at reconstruction
(Fig.3.4a). This case will be treated as case (A).

Fig.3.4a: Case (A): Configuration at reconstruction with K as collineation center

On another hand, considering the variable point K in the neighborhood of K on the object plane of the
optical system, the intensity contribution of the rays in K must be similar to that in K in order to have a
sufficient fringe spacing. This property is described by the first derivative of the optical path difference

D relatively to the observing direction k and the fixed point R (collineation center) at reconstruction
(Fig.3.4b). This case will be treated as case (B).

For the recovery of interference fringes, we only need to consider the first-order linear terms in the
derivatives of equations (3.10) or (3.19), whereas for the determination of the deformation, we have to
consider the derivatives of equation (3.5) at least up to the second-order nonlinear terms.

By only considering the first-order linear terms in equation (3.19), the first total differential of the optical
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Fig.3.4b: Case (B): Configuration at reconstruction with R as collineation center

path difference reads in both cases (A) and (B)

dD=du-(k—h)+u-(dk—dh) —dt-(k—¢)—t-(dk —d¢) —d -de + ... (3.29)
with
du = dr(V, ®u) . dk=dr(V-®k)
de = dr(V_®¢) = %d?ﬁé :  dh=dr(V,®h) = LisdrNH (3.30)
t=r—7 . dt=dr—df=dr(I- Q)

where the vector increments dk, d¢ and dh are the first total differentials respectively corresponding
to the collineation centers K in case (A) or R in case (B), C and S. Note that the vector increment
dr = Ndr is perpendicular to the unit normal n of the object surface. The first total differential du of
the displacement vector u of a point P on the object surface contains the dilatation and the rotation of a
surface element. For moderate deformations, the tensor V,, ® u reads

N 1, I 1
Vn®u:7+QE+w®n—5(72+02N+w®w)+97E+7w®n+5(2Ew®n (3.31)

where 7 is the 2-dimensional symmetric surface strain tensor and wgs = yng = 2n + Ew the exact
rotation vector of a surface element (with w = Nw). The direction vector ng is parallel to the rotation
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Fig.3.5a: Case (A): Apparent image deformation of an point neighborhood with fixed point K

axis Ag and y is the angle of rotation in radians. The 2-dimensional interior antimetric tensor (2E first
describes the “in-plane” rotation and the 2-dimensional semi-exterior tensor w ® n first describes the
“out-of-plane” rotation of a surface element.

In case (A), we have (Fig.3.5a)

- 1 - =~ P+ Lp
dk= — _drNK =mda ; dr=(5+L)damM = 2 MTdr (3.32)
p+L L
and in case (B), we have (Fig.3.5b)
R T
dk = —?dFNK: —mdg : dr = /df/mM = 17—~M dr (3.33)
+Dp

We now have to explicit the vector increment dr on the object surface as function of the vector increment
dr on the hologram in both cases (A) and (B). This must be done by considering the first-order transverse
ray aberration dn of the skewed rays in the corresponding virtual points {K} and {R} at recording. We
write therefore in a plane perpendicular to k the first-order transverse ray aberration relatively to both
normal projections Kdr and Kdr. In case (A), we have

dnx + Ldk = Kdr ~ ; dnk + (L + p)dk = Kdr (3.34)

and in case (B) - B
dng — (¢ + p)dk = Kdr ; dngr — ¢dk = Kdr (3.35)

where dk = Kdk represents the first-order vector increment between the skewed directions k and k at

recording (Figs.3.5a and 3.5b). Because the corresponding rays are skew, no collineation center exists
for the directions k and k. We therefore write dk (instead of dk) to remind us that corresponding
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o
=< RN

Pl

Fig.3.6: Cases (A) and (B): Affine connection between Kdr and Kdr at recording

virtual points {K} and {R} are astigmatic. Substracting the right equation (3.34) and (3.35) from the
corresponding left equation, we can eliminate the “astigmatic” lengths L and ¢. In both cases cases (A)
and (B), we get (Fig.3.6)

Kdr = Kdr — pdk (3.36)

To determine the still unknown vector increment dk, we can write, with ﬁ - N agd (3 = Q, the
corresponding ray-tracing equation (3.14) for the neighboring rays of directions k and k

NQT(k-3) — (k—¢)] =0 (3.37)
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Substracting equation (3.14) from equation (3.37), we get by only considering the first-order terms
N[Q"(dk —d¢) — (dk—dc¢)] =0 =  dk = M[Q”(dk — dg) + dc] (3.38)
where M =T -0 ® k/n - k is an oblique projector and where we have used the calculation rules

MN = M and MK = K. The vector increment dc is the first total differential corresponding to the
collineation center (Q, that means

~ 1<
de = di(V,; ® ¢) = —~dfNC (3.39)
q

Introducing equations (3.12), (3.30), (3.32), (3.33) and (3.39) in equation (3.38), we get with dr =
Ndr = M7 dr for case (A)

dk = —Tgdr with Tg=M [QT (—~ ~K + :C) Q- —C} M7’ (3.40)
p+L q q

and for case (B)

dk = —Tgrdr¥ with Tr=M [QT (?K + :C) Q- —C} M7’ (3.41)
q q

The 2-dimensional symmetric tensor T’k represents the virtual tensor of curvature of the wavefront at
point H at recording, which travels along diverging rays in the direction k from the astigmatic interval
{K}. The 2-dimensional symmetric tensor T  represents the virtual tensor of curvature of the wavefront
at point H at recording, which travels along converging rays in the direction k to the astigmatic interval
{R}. With the variable unit vector m perpendicular to the direction k, we have similar to equation (3.21)

1 1
which respectively define the distances from the hologram to the virtual astigmatic intervals {K} and
{R} at recording. By introducing equations (3.40) and (3.41) in equation (3.36), we get with equations
(3.12),(3.32) and (3.33) in case (A)

p+L

dr = M7 (K 4+ pTg)df  ;  Kdr= = (K 4 pTx)Q"MTKdr (3.43a)
and in case (B)
~ ‘ e
dr= M7 (K +pTr)dr ; Kdr= e (K + pTr)QTMTKdr (3.43b)
+p

where M = I — n ® k/n - k is an oblique projector and where we have used the calculation rules
KM’ = K and dr = MTKdr. In equations (3.43a) and (3.43b), the first part describes the mapping
dr — dr of the hologram surface onto the object surface at recording, and the second part describes the
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inverse mapping Kdr — Kdr of the apparent projected image surface deformation at reconstruction
onto the projected object surface at recording.

On the other hand, both tensors T i and T i are related to the tensor T by the following dual equations

~~ (1 —~ ~ [ — ~ ~\ A~
MQ(—K+TK>MT:M<~ ~K-T)QMT
D p+L

! " (3.44)
MG (Z;K N TR) M7 — M <zf< _ T) v

where we have used the calculation rules MQM = MQ and M7QM” = QM. With equations
(3.12), (3.29), (3.30), (3.32), (3.33) (3.43a) and (3.43b), the derivatives of the optical path difference D
relatively to the fixed collineation centers K and R read respectively

dD = dD =
da dg

with

~

fi ~ (p+ L)M [Q(K + pTx )Mw + %é(t —d)+(Q-T)(k— E)] +K(u—t) (3.46)

fp ~ (M [Q(K + pTr)MW + %é(t —d)+(Q-I)(k— E)] ~K(u-t) (3.47)

and 1
S

where ?K and ?R are respectively the visibility vector and the fringe vector (here only written up to
the first-order terms), and where w is a 2-dimensional vector containing the deformation of the object
surface. Both vectors fx and fr always are perpendicular to the observing direction k.

3.5 Recovery of interference fringes

It has already been said that for moderate or large deformation no interference fringes appear. Practically,
this fact may be observed for example in real-time by continually increasing the deformation of the object.
During this process, the interference fringes lose contrast and become less visible; they also at the same
time become closer and closer to each other. In addition, the holographic images may move away and
get more separated from each other. Finally, no convenient observation may be done because the fringes
have totally disapeared. The purpose of this section is to explain how to quantitatively compensate this
problem.

3.5.1 Fringe contrast and visibility

The visibility vector i gives an information on the fringe contrast and visibility. For optical systems
with a small aperture A compared to the distances involved in the holographic setup, the visibility V' of
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the interference fringes in point K can be written as follows

/ [ exo (_@ ADK) aA

=dDgk + dDK+

Jma:c - mzn
V= =

3.49
Jmaac + szn ( )

where ADg = dDg + d?>Dy /2 represents the 1ncrement of the optical path difference D in point K
related to the corresponding neighboring rays of directions k and k’ going through the aperture (Fig.3.7).
Considering only the first-order terms in equation (3.49), the visibility can be increased by reducing the
value of dDk to zero. According to equations (3.45) and (3.47), this can be done by setting at least the
first-order terms in the development of the visibility vector fx equal to zero.

Fig.3.7: Contribution of the corresponding neighboring rays to the visibility

3.5.2 Fringe spacing and direction

Along a fringe, that means in the direction my parallel to the fringe, the optical path difference D is
constant and we write according to equation (3.45)

D _ ~ _ ~
dd—ﬂNR =my - fr=0 = m, 1 fr (3.50)

which means that the fringe vector fR is always perpendicular to the fringes. For two neighboring
interference fringes, we can write with the fringe spacing d in the direction m | perpendicular to the
fringe

AD MNC+p+L) - o~ o~
R AP ):mL,fR:‘fR‘ L (3.51)
AB df (+p+ L |fg|
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Fig.3.7a: Geometrical meaning of the fringe vector

which means that by setting the fringe vector ?R of equation (3.47) near to zero, the fringe spacing d
can be increased.

3.5.3 Conditions for a fringe recovery

The developments of the equations (3.44) up to the first-order terms read

MQ(K + pTx) = pM( _K - T)QMT MKQMT

p+L p+L (3.52)

MO(K + pTr) = pM <?R _ T) ON” — %KQQT +

and can be introduced in equations (3.46) and (3.47). We get by only considering the first-order terms

fx ~ (p+ L — pKQM MW + (p+ L)M Eﬁ:(t —d)+(Q-TI)(k— E)} +Ku—t) (3.53)

fr ~ ((+ p)KQM Mw + (M [%é(t —d)+(Q-T)(k— 5)] ~K(u-—t) (3.54)

Fringe recovery can be achieved by setting simultaneously the three vectors fs, fK and FR near to zero,
that means setting equations (3.53) and (3.54) and the first-order terms in equation (3.26) equal to zero.
Because of the linear interdependance of the three vectors fs, f o and f R, both lengths p + L and / can
be eliminated and we get the so-called equations for fringe recovery

~ - —
fs ~0 “Ku—t)—KQM Mw =0

k=0 e Y L o (3.55)
Fr 0 EK(u—t)—i—EMC(t—d)—FM(Q—I)(k—c):O
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which represent a system of two bidimensional vector equations (four scalar equations) [3.44]. According
to equations (3.25) and (3.27), we may also write an auxiliary condition of longitudinal superposition
(not required for fringe recovery) as follows

fr ~0 & k-(u-t)—p—===0 (3.56)

3.6 Fringe Analysis

In order to properly analyse the interference fringes, we have to consider the exact fringe vector FR.
It follows that not only the first-order terms, but also the higher-order terms must be considered if a
development is performed. This can be achieved by directly writing the first differential of the optical
path difference [3.51,3.54] from equation (3.5) as follows

dD = (dL' — dL) — (dLs — dLg) + (d§ — dq) — (dp — dp) (3.57)

With R as fixed collineation center, we have with L' = L'(¥,¥), L = L(F, ¥), L'y = Ls(x'), Ls =
Ls(r), ¢ = q(r),q = q(r),p = p(r,T) and p = p(r, r)

dL' = d¥' - 97 L' + di - 85 L' = d¥ - N’k — di - NK'

dL = dt - 8; L + di - 8,L = dr - Nk — di - Nk

ALy = d¥ - Vi Ly = di - N'h’

dLg =dr-V,Lg =dr-Nh

dg =dr-V_g=dr-N¢ (3.58)
dg = dr - V;q = dr - Nc

dp = dr - 8_p + dr - 83p = dr - Nk — dr - Nk

dp = dr- 8;p +dr - 8,p = d¥ - Nk — dr - Nk

where N = I — n ® 1 is a normal projector, which projects onto a plane parallel to the object plane of the
optical system. The vector increment df represents the first total differential on the object plane of our
observing system (Fig.3.7b), which is normal to the optical axis of unit direction 1. The corresponding
affine connections read with their relative oblique projectors

. . h ok
di=({@+p+L)dgmM  ;  M=1-"%

N En'k (3.59)
dF = ((+p)dfmM I\N/I:I—I:®E

n.

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



— 99 —

Fig.3.7b: Derivative relatively to the fixed point R on the image surfaces

Let us now recall the total differential dr’ on the deformed object surface, which is related to the total
differential dr on the undeformed object surface by the deformation gradient F g as follows

r=r+u = dr’ =dr 4+ du = Ndr +dr(V, ®u) = Fgdr (3.60)

where Fg = N'FN = N + (V,, ® u)? is a mixed semi-projection of the deformation gradient F of
a 3-dimensional body. Because no optical or geometrical modification is performed on the deformed
configuration, we have k' = k/, d¥’ = dr’ and N’ = N’ = I — n’ ® n’. Introducing equations (3.12),
(3.14),(3.58) and (3.60) in equation (3.57) gives

dDg = dr - N[FL(K' —h’) — (k —h)] — df - N(K’ — k) (3.61)

Considering the affine connections (3.43b), (3.59) and the dual equation (3.44), we get

dDr _ o fr (3.62)
dg

with the exact fringe vector containing the deformation

A~~~ v o~

fr=pK - (T) QM M[FL (k' —h') — (k= h)] — ({ +p+ L)M(K — k) (3.63)

Once the fringe pattern has been recovered with equations (3.55), the expression (3.63) must be used (at
least up to the second-order terms) for the fringe analysis. Note that, by only considering the first-order
terms, the approximate expressions (3.47) and (3.54) for the fringe vector may be obtained by introducing
equations (3.15), (3.16), (3.17), (3.18), (3.44) and (3.52) in equation (3.63) together with the calculation
rule MK = K and the development

~ 1 ~_
k’:k’:k+fKu+... (3.64)
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3.7 Experimental verification

3.7.1 Theoretical verification

Equations for fringe recovery (3.55) can be used to recover the interference fringe pattern when the object
surface deformation is large and unknown! This can be achieved by first pointing the observing system,
e.g. our CCD-camera, on the deformed object surface to get approximately the observing direction
k ~ k' for a given point P’. Because the deformation is unknown, it is not possible to directly find
quantitatively the required modification. However, this problem can still be solved by doing a systematic
search, while reducing the independent modification parameters to a strict minimum. Assuming that the
geometrical quantities in our holographic setup are known (at least approximately), we can measure the
lateral displacement Ku of the object surface by image processing and introduce its value in equations
(3.55). Because INCQ/N\ITMVNV is bidimensional, we can write a parametric representation of this unknown
“projected deformation vector” as follows

KQ/MTMW = —O'lffll - 0’21:1712 5 1’?11 1 ﬁlg (365)

where o1 and o5 are two linear independent factors and where m; and my are two unit vectors perpen-
dicular to the observing direction k. Introducing equations (3.13) and (3.65) in equation (3.55), we get
by only considering the first-order terms

1~ 1~ ~ -
-Kt = -Ku+ oym; + gomy
vt (3.66)

aMC(t —d) — {MEy (k — ¢) = o1y + o911y

Because of the linear interdependance of the components contained in the modification terms t, d and
XEm, the equation system (3.66) has several solutions, which give us some flexibility for the fringe
recovery procedure. By only varying the modification terms while keeping in a first approximation the
other geometrical quantities in equations (3.66) constant, we get the required modification as function
of the two “modification” parameters o1 and 5. The search must then be done around the zero value in
the parametric plane (o1, 02) until fringes appear.

t = t(O’l, 0'2)
01,02 — d =d(o1,02) (3.67)
XEx = g (01, 02)

Equations (3.66) are independent from the choice of the coordinate system. In order to write them in
components, we first choose a right handed cartesian vector base system (e1, €2, €3) such thate; / my,

e, // My and e // k for a selected observing direction k (often the optical axis of the observing system).
In the system (e1, ez, e3), we have for the geometry of the optical setup

1 0 (0 [T 0 0
=40y 3 me=<1py ; k={0y ; K= {0 1 0
0 0 1 00 0
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C1 _ 1—¢& —G16y —C1C3
E = 52 N C= —5261 1-— é% —5263 (368)
3 —G36) —@C3cp 1—C32
ﬁl . 1 0 —ﬁl/ﬁg
ﬁ = ﬁz 3 M = 0 1 —ﬁg/ﬁg
13 0 0 0

Uy t dy N1
u = U2 ; t = tg ; d = d2 ; (DH = )A(ﬁH = )A( ﬁHg (369)
us t3 d3 ﬁHB
R 0 gy —Nm2 f:fﬁl(%fh2®ﬁ+ﬁ12®ﬁ®ﬁl1 -
XEH:)A(fﬁHﬁ)A( _ﬁHS 0 N1 5 +k®1’ffll®fflg—l’fflg®ffll®k
ey~ 0 — 1 ® k© 1y — k© My ® iy

where the sign = draws attention to the fact that the base vectors are omitted in the component
notation. Introducing the relations (3.68) and (3.69) in equations (3.66) gives

1
—t1 = —u1 + o1
p p

—to = —ug + 02
b (3.70)
As1(ty — dy) + Asa(te — do) + Ass(ts — d3) + Asax = 01
Ag1(ty — di) + Ago(te — da) + Ays(ts — ds) + Agax = 02
where
1 - ny . . 1 . ny . .
A31 = = 1-— C% + 710163> ) A32 = :(—0162 + 716263>
q ng q ng
1 . n 5 n; . . R n . N R .
A33 = :(—0163 — A—l(l — C§)> ; A34 = —A—lancl + (an -+ rlnH1>02 + an(l — 63)
q 3 N3 ns
]. o o~ ﬁ2~ - ]. ~2 ﬁ2~ ~
A41 = =| —C1C2 + ——C1C3 ) A42 = = 1-— Co -+ ——C2C3
q ng q ng
1 . n 5 R s . - Ny . . R .
Ayz = :<—0203 -=201- C?,)) ;o As=— (an + r2nH2>01 + =26 — i (1 — &)
q i3 3 ns

By choosing the geometry in the optical setup and the modification such that d = 0 and A;; # 0, which
means that only the position of the hologram in space can be modified while the reference source Q
remains fixed, we get with A;; = Ao = 1/p the following matrix equation system

A11 0 0 0 tl (75} 01
0 Ago 0 0 to 1) uy 02 1

= - s At} =- 3.71
st Asy Ass Asa| ) ts 210 (T o [Al{t} p{u}+{0} (3.71)

Apn Age Ays Au X 0 g
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For [A] not singular, equation (3.71) gives the modification “vector” {t} as function of the measured
lateral “vector” {u} and the parametric “vector” {o'}

{1y = %[A]l{u} + 4] o) (3.72)

In some special geometrical cases, the matrix [A] may be singular. However, equation (3.71) can be
solved in most cases by setting t3 = at; + bt2, where a and b are constant proportionality factors, or by
slightly changing the geometry.

In order to numerically verify the vahdlty of equation (3.72), we still have to determine the values of o
and o3 in the deformation vector KQMTMW of equation (3.65). This step is not necessary for fringe
recovery, but will be performed here to prove that equations (3.66) are correct. With the developments
(3.13) and (3.16), the oblique projectors M and M can be developed up to the first-order terms as follows

— 1

M=M+ — k[(n®Mv1)M+M(XnEH®k)]
nes (3.73)
n®k 1 ~ oy — ~

M=1I- — + —[(n-kin®@ Mv; — (n- Mv;)n® k| +
n-k (n-k)?

A first approximation of equation (3.65) can now be written with equations (3.13), (3.48) and (3.73)

n®k
n-k

KQM"Mw = <1_ ) [(V ®u)(k —h) — LLNHu +... (3.74)
S

In order to write equation (3.74) in components, we introduce in some selected point P on the object
surface another right handed cartesian vector base system (e, e,, e ) such thate, 1 e,,e, 1 n,e, L n
and e // n. The bridge between the component notation of any arbitrary vector {v} or 3x3 matrix [M]
in either the coordinate system (e, e,, e.) or (e1, ez, e3) is given by the 3 x3 orthogonal matrix [Z] as
follows

{U}<e1,ez,es) = [Z]{U}<ew,ey,ez> [M] (e1,e2,e3) — [Z} [M] (ex,ey,ez)[Z]T

{U}<em,ey,ez> = [Z]T{U}(el,eg,es> [M] (es,ey.ez) — [Z]T[M] (e1,e2,e3) [Z]
where
[Z] = | €2 ey2 exn (3.75)
with the columns of [Z] representing the components of the base vectors e, e, and e, written relatively

to the system (e, e, e3). Because [Z] is orthogonal, it describes a rotation and we have [Z]~! = [Z]7T.
In the system (e, ey, e.), we have for the geometry of the optical setup

1 0 0 N 0
e, = {0 ;oe, = (1 ; e.=n=<¢0  k=[Z2]T 0 (3.76)
0 0 1 1
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N 1 00 hy 1—h% —hyh, —hgh,
K=[Z1"{0o 1 0|[Z] ; h={ h, ; H= | —hyh, 1—hl —hyh,
000 h —hyhy  —hyhy 1—h?

E=e,Q0¢,0n+e,0nR®e, +n®e, e, —e,0e;,dn—e,dnR®e, —n®e, e,

1 0 0 0 1 0
N=e,®e,+te,®e,= [0 1 0 ; E=FEn=e,®e,—e,®e,= |1 0 0
0 0 O 0 0 0
and for the deformation [3.52,3.55]
Uy Wy Ex %Vzu 0 nse
u= Uy ; w= Wy ) :7; = %wa Ey 0 ; ng = NSy
Uy 0 0 0 0 nsz
£x 3Vey + 2wy
(Vo,ou) =3+ RE+w@n= |1y, -0 Ey Wy (3.77)
0 0 0
0 Wy Wy nsg Xz
wsg=xng=MM+Ew=<¢ 0 s+ —w, 0 =49 —Wz =X NSy ¢ = Xy
9 0 2 ns. Xz
Equation (3.65) then reads with equations (3.48), (3.74) and (3.75)
N 1 0 0 W
KQM Mw = 0 1 0 W, p+... (3.78)
—eg3/ezs —ey3fess 0 0
with
Wy € %%y + 02 wy ez3— hy 1 1-— hi —hghy hoh, Uy
Wy o= %’ywy - N Ey Wy ey3— hy I —hyhy 1— hfj —hyh, Uy
0 0 0 0 e.3— h. S 0 0 0 u,

The two parameters o1 and o9 are calculated from equations (3.65) and (3.78) as follows

= —m; - KQM"Mw 1 0
ot 1 RQM o om=[ZT{o0% ; m.=(z7{1 (3.79)
oy = —my - KQM"Mw 0 0

and can be introduced in equation (3.71) for fringe recovery together with the auxiliary relation for the
lateral components 11 and us of the displacement

Uy €x1 €y1 €1 Uy
Up p = |€x2 €y2 €12 Uy (3.80)
us €x3 €Ey3 €3 Uy
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3.7.2 Numerical verification

The following quantitative experiment confirms the theory. The object shown in figure 3.8 allows
to perform deformations with large displacements and moderate rotations. Figures 3.9 to 3.11 show

decreasing fringe spacing and contrast while increasing the object deformation. If not precised, all
numerical values are written in the system (e, e,, €).

e Geometry of the holographic setup:

p ~ 427.87 mm : q ~ 822.35 mm ; Lg ~ 387.58 mm
0.760 0.537 —0.492
c=1<¢0.134 ; h= 0.013 ;o n= 0.174
0.636 —0.844 —0.853
e Observing system (E is chosen parallel to the optical axis):
0.966 0.000 _ 0.259
m; = ¢ —0.051 ;o my = 0.980 ; k= ¢ 0.192
—0.254 —0.198 0.947
e Deformation of the object (Fig.3.12):
1.073 mm —0.000172
u= < 0.116 mm : x=2031.1071=012° ; ng= 0.171832
0.045 mm —0.985126
0.00.10~4 —3.49 .10 0
wg = 3.49 .10~4 ;o w= 0.00 .10~* ; (n= 0
—20.01.1074 0 —20.01.1074
0 0 0 —30.04 .10~* —4
_ PN _ =31.11 .10
5~10 0 0| ;: KQM'Mw={ —-838.10-*% . 7t »
00 0 9.93 .10~ o2 = 10.18 .10
Note that in the system (ej, e2, e3), the displacement u reads u; = 1.019 mm, us = 0.105 mm and
uz = 0.343 mm.
e Needed modification for fringe recovery (Fig.3.13):
2.004 mm 0.00
t= 0.213 mm . v =09287.100*=053° ; ny={ 1.00
—1.672 mm 0.00
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Fig.3.8 Real object. The center of the cross
represents the point P on the object surface at
recording. The nearly horizontal line gives the
direction of e; in the object plane of the optical
system (this means that ey is not parallel to the
vertical line).

Fig.3.10 Real-time reconstruction with a mod-
erate deformation and no modification. The
camera is focused on the object. The interfer-
ence fringes disappear slowly.

Habilitationsschrift, November 1998

Fig.3.9 Real-time reconstruction with no de-
formation and no modification. The camera is
focused on the object. Because of repositioning
errors, some interference fringes appear.

Fig.3.11 Real-time reconstruction with a large
deformation and no modification. No inter-
ference fringes can be observed. Deformation
measurements are impossible.

29.11.1999, Ph. Tatasciore
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Fig.3.12 Real-time reconstruction with a large
deformation so that the relative lateral displace-
ment of the images becomes visible and can
be measured by image processing (see the two
vertical lines around P). No modification is
performed and no interference fringes can be

Fig.3.13 Fringe recovery. Real-time recon-
struction with the same large deformation as in
figure 3.12, but with a suitable modification of
the hologram. The images are superposed and
the interference fringes spaced and contrasted.
The deformation can be measured by taking into

observed.

account the modification values. The center of
the cross represents now the point P.

Summary:

Figure 3.10 shows the following moderate deformation of the object:
Uy = 0.037 mm, u, = 0.012 mm, u, = 0.000 mm,
x = —15.00.10~% = —0.09°, ng = (0,0, 1).

Figure 3.11 shows the following large deformation of the object:
Uy = 0.152 mm, u, = 0.116 mm, u, = 0.045 mm,
x =20.31.107% = 0.12°, ng = (—0.000172,0.171832, —0.985126).

Figure 3.12 shows the following large deformation of the object:
uy = 1.073 mm, u, = 0.116 mm, u, = 0.045 mm,
x =20.31.10% = 0.12°, ng = (—0.000172,0.171832, —0.985126).

w1 = 1.019 mm, ug = 0.105 mm, uz = 0.343 mm.

Figure 3.13 shows the fringe recovery with the following modification of the hologram:
u, = 1.073 mm, u, = 0.116 mm, u, = 0.045 mm,
x =20.31.10* = 0.12°, ng = (—0.000172,0.171832, —0.985126).
ty = 2.004d mm, ¢, = 0.213 mm, {, = —1.672 mm,
X =92.87.107* = 0.53°,ny = (0,1,0).
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4. Calibration of projection moiré pattern

4.1 Introduction

Before to perform any deformation measurement of opaque objects by means of holographic interferom-
etry as described in the previous section, it is necessary to first determine the shape of the object surface
in the 3-dimensional space. For plane surfaces, this process is obviously very trivial. For curved surfaces
however, we need an optical method which allows accurate quantitative acquisition of the whole surface
shape. This can be achieved by applying the projection moiré technique, which for example allows
measuring the direction of the unit normal in each point P on the surface and thus enables the calculation
of the corresponding normal and oblique projections. In this section, we assume that the reader already
knows the basic concepts of projection moiré and show how to apply the intrinsic tensor calculus to this
topic.

The shape of an opaque curved object surface in space can be quantitatively described using the projection
moiré technique [4.3—4.20]. The purpose of this section is to present the general tensor equations of
projection moiré for all geometrical cases. Emphasis is put on relative moiré, which is used in most
experiments, and on difference moiré, which is generally used to calibrate optical systems. The concept
of the sensitivity vector, which comes from holographic interferometry, is introduced. The obtained
theoretical tensor equations are used to describe how an optical setup can be correctly calibrated without
using other optical methods.

In the last section, we describe how to calibrate an optical setup and perform a quantitative experi-
ment. Using a computer-based image processing system, an experimental verification of the theoretical
equations is performed. Simultaneously, we gain evidence of a few nonlinear effects and show which
parameters of the setup are of importance and should be carefully controlled.

4.2 Principle of projection moiré

The introduction of computer-based image processing systems have enabled a rapid development of the
applications that use the prqjection moiré technique, which as such is not new. By means of a light source
S (or projector), a gratlng G is projected onto the surface G of an object (Fig.4.1). The observation of
the projected grating G on the object through another gratmg G from the point R (or camera) enables
seeing moiré fringes if the projections of the two gratings G and G onto the object surface are similar.
The whole information concerning the shape of the object surface is contained in these fringes.

Assuming two sinusoidal gratings, the transmittance functions 7" of G and T of G are written

f:%[l—cos(%rﬁ)] . T =—[1—cos(2xD)] (4.1)

l\DI}—\

where D is the line order of grating G and D that of G. Maximal transmittance (i.e. a white line) is

reached for T = 1or T = 1 respectively, and no transmittance (e.g. a black line) for T=0orT =0
(Fig.4.2). The intensity distribution I p over the object shape depends on the intensity /g of the projector
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and the transmittance 7' of the grating G. In a similar way, the intensity /r received by the camera
depends on the intensity /p over the object and the transmittance 7" of the grating G.

Fig.4.1: Principle of projection moiré

Assuming a uniform intensity, we have

Ip =TIg = Ig[1 — cos(2nD)]/2
(4.2)
- = Is = =~ Is Is
Ir=TIp=TTIg = Z[l — cos(2m D) — cos(27D)] + 3 cos(2mwD,,) + 3 cos(2mDyy)

In the above expression for the intensity /g, the term before the last term represents an invisible high
frequency moiré with fringe order D,,, = D + D and the last term a visible low frequency moiré with

fringe order Dy, = D-D (Fig.4.3). Here, we are only interested in the visible moiré Dj; which
contains the needed information on the shape of the object surface.

Grating Transmittance Transmittance function

=4 00 w w w ‘ ‘

I, Tig 00 05 10 15 20

lwh

Fig.4.2: Transmittance function of a sinusoidal grating
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Fig.4.3: Formation of moiré fringes

Grating G Grating G Superposition

Fig.4.4: Examples of moiré fringes formation in the case of two linear gratings

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



- 110 —

Grating G Grating G Superposition

Fig.4.5: Examples of moiré fringes formation in the case of one nonlinear grating

4.3 Optical model

The optical system of the camera (like that of the projector) can be described in the ideal case by the
following geometrical relations (Fig.4.6)

1

1 1
- —_ 4.3
f s s L. L (43)

o *

where f is the focal length, where s and s* are respectively the distances from the principal points H and
H* to the “object” and “image” points K and K*, and where L, and L are respectively the distances from
the principal points H and H* to the collineation centers R and R*. For the camera, the projection centers
R and R* are respectively located in the entrance pupil (aperture stop) and in the exit pupil [4.1-4.5].
With £/¢* = (s — f)/f, we may define in this optical model a virtual collinear image K, on the object
side associated to the point K and its image K* such that

& _ &
Sy — L s— L,

& =8 = sv:f<8_Le>+Le (4.4)

s—f

where &, £ and &, are respectively positive distances in the object, image and virtual image planes of
the optical system.
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Fig.4.6: Model of the optical system

4.4 Line order of the camera grating

The line order D of the camera grating is first defined on the camera grid-plane in point P (Fig.4.7). In
case of a grating of equidistant straight line, the expression for the dimensionless scalar D reads

D-DF) =g NF-7.) : N=I-noa (4.5)

A

where the vector n is the unit normal to the grid-plane and the tensor N the corresponding normal
projector. The constant scalar value ) represents the line spacing between two neighboring lines on the

camera grid-plane. The caracteristic unit vector g = Ng is situated in the camera grid-plane (g | n)
and is perpendicular to the grating lines. The variable vector r is a vector coordinate giving the position

of point P on the camera grid-plane, and T represents the vector coordinate of some reference point on
the grid-plane such that D(r.) = 0.

The line order D of the camera grating can be extended in the space R? by central projection relatively
to the collineation center R (Fig.4.8), its value remaining the same on the straight line passing through
the points R, P, P and K. With the vector coordinate r = r — pk of the point P in space, we have

-~ 1. ~ _ ~ n®k
D=D()=-g MI'(r—7.) ; Mk:I—nﬁ?k

(4.5)
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where Mk is an oblique prOJector projecting along the direction n onto a plane normal to k. With
MTk =0 and MTN N, we can demonstrate the following

~ = 1. -~ —~ 1 7 - ~ 1. =7, _
D=D(r)= =g M(r—1c) = =g M (r —pk — 1) = =g - M (T — T)
A A A
1. —po o 1. & - =
=g -MiN(r—-r1.) ==-g N(r —r.) = D(r) [J qed
A A

o (0]

Fig.4.7: Line orders of the camera grating and of the projector grating

4.5 Line order of the projector grating

The line order D of the projector grating is also first defined on the projector grid-plane in point E
(Fig.4.7). In case of a grating of equidistant straight line, the expression of the dimensionless scalar D
reads

PN 1. ~ 1 N -
D=DF) =g NFE-F)- V¥ ; W=xg Ak ; AR =NAT =g (4.6)

where the vector ni the unit normal to the grid-plane and the tensor N =I-1n®nthe corresponding
normal projector. The constant scalar value P\ represents the line spacing between two neighboring lines
on the projector grid-plane. The caracteristic unit vector g = Ng is situated in the projector grid-plane
(g8 L n) and is perpendicular to the grating lines. The variable vector T is a vector coordinate giving the
position of point P on the projector grid-plane, and T, represents the vector coordinate of some reference
point on the grid-plane such that D(r.) = —W. The scalar increment ¥ plays an important role in the
phase shifting method to get a phase image [4.6,4.7] and the vector increment Ar, = \I/XQ describes a
uniform in-plane translation of the grating on the grid-plane, the translation being in the direction of g
for W positive. The line order D of the projector grating can also be extended in the space R? by central
projection relatively to the collineation center S (Fig.4.8), its value remalnmg the same on the straight
line passing through the points S, P,P and Q. With the vector coordinate r = T + pgh of the point P in
space, we have

g Mi(r—%) ; M=I-— (4.6)
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where Mh is an obhque prOJector projecting along the direction n onto a plane normal to h. With
MZh =0 and MZN = N, we can demonstrate the following

~ o~ 1. — N 1. — 1 o~
D =D(r) = ig ME(r—-7,) = ig -MFE +psh—71.) = ig M} —7,)
1. =ro 1. S o ~
:ig MZN(r—rC)—ig N(r—r.) = D(r) O ged

4.6 Moiré fringe order

Considering the formation of moiré fringes in space with the two fixed collineation centers R and S and
their corresponding fixed grating G and G, the vector variables T and T are not independent (Fig.4.8). Both
are functions of the vector coordinate r of some point P in the space R*, which means r — r = (r)
and r — T = T(r). The moiré fringe order D) in point P is then written as follows

. ~ 1. o
Dy =Dpy(r) =Dy(r,t)=D—-D=—-g-N(r—r,.) —
A

g-NT—T)+0  (47)

>l =

Note that a moiré surface in the space R?® can be described by a set of vectors r = r; for which the
moiré fringe order D), is constant, which means rjp; — Djps(rps) = ¢ On another hand, we may
choose for our purposes the point P on the object surface G and look at the behaviour of Dj,. This is
useful for the study of the object shape. Then, for a given fixed object surface G, the function Dj; can
also by definition be extended in the space R? by central projection relatively to the collineation center

R, its value remaining the same on the straight line passing through R, P, P and K. For another point
Py on the object surface, we have

1

Daso = Das(rg) = Day(To,To) = Dy — Dy = ig ‘N(To—Te) — =8 - N(Fg —Fe) + ¥y (4.8)

> =

where Do = D(To) = g-N(tg—T.)/A and Dy = D(¥y) = [g-N(To—T.)/A| — ¥y are respectively
the line order of the camera grating in Py and that of the projector grating in ﬁo. Practically, ¥ and ¥
are the same in most of the cases. The value D, is used later as reference for the other values of D).

4.7 General expression of relative moiré

We can now define a relative moiré value ADj; in some point P in the space R? by taking the value of
the moiré fringe order in a point P as reference (Fig.4.8). We write with ¥ = W,

ADy; = Dy — Do = Dyr(r) — Das(ro) = (D — Do) — (D — Dy)

1. < 1. & 0 1 - 1. . 4.9
=—-g-Nr—r9) —=g-N(r—ry) = =g-Ar — =g - Ar (4.9)
A A A A

where AT = N(r — ) and AT = N(F —T) are, respectively, the vector increments on the camera
and projector grid-planes. The dimensionless scalar ADy, is simply called relative moiré in point P.
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Because Do = ¢, the moiré surfaces are still described by a set of vectors r = r; for which ADy; = ¢.
Equation (4.9) is general and is valid for all geometrical configurations of the optical setup. For a given
fixed object surface G, the relative moiré AD ), can also be extended in space like the moiré fringe order

Dy, its value remaining the same on the straight line passing through R, P,P and K.

Y

0

Fig.4.8: Model of a general geometrical moiré setup

In order to write equation (4.9) explicitly, we introduce the exact affine connections making the bridge
among the vectors Ar, Ar, Ar, Ar,, Ar,, At and Ar,,. These affine connections involve normal and
oblique projectors in R? similar to those previously introduced. Figure 4.8 shows that Ar = r — r
is the vector going from Py to P in the 3-dimensional space, that Ar,, and AT, are, respectively, the
virtual collinear images of Ar and AT in the virtual image planes of the camera and the projector, that
Ar, = Ar, is the virtual collinear image of Af in the virtual image plane of the camera, and that A¥ is
the collinear image of Ar in the object plane of the optical system of the camera. With the unit vectors k
and h, we first write the two normal projectors K = I—k®k and H = I— h®h, with K projecting onto
a plane perpendicular to the optical axis of the camera, and with H projecting onto a plane perpendicular
to the optical axis of the projector. We then write the following oblique projectors

s k : h . hok
My =1 — ~2 . M, =I- 22 . M =1- 22 (4.10)
k-k h-h h-k

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



- 115 —

with M, projecting along k onto a plane normal to k, with Mh projecting along h onto a plane normal
to h, and with M projecting along h onto a plane normal to k. Remember that this description is only
valid if the vector is applied “on the right” of the corresponding oblique projector. The two directions
k and h are commonly called observing and illuminating direction. Thus, the exact affine connections
read

A oo b mr to T
Ar = NAr = y— M Ar = p— M Af = 7 AEOM » AT, (4.11)
B S lso < lso T Ae

Ar=NAr= —"—M; Ar= ————M; AT, 4.12

lso+pso " loo+Alsg " (4.12)
AF, = A, = KAF, = 0580y ag - oAl ot Al (4.13)

Lo Lo+po Lo+po+Lo
AT, = HAT, = MMZA?: MMZAI’ (4.14)
Ls0 ls0+pso

MTAr = 0P e f0FPO A RAr (4.15)

fo—i-po-i-L() = go—i-Afo
with

éo = loko - k ; AZo = Aloko k ;Do = poko - k ; Lo = Loko - k
lso=1lsohg-h ; Algy=Alsoho-h ; pso=psoho-h ; Lso=Lsoho-h
Assuming P and Py on the object surface, the vector Ar is of particular interest because it quantitatively

describes the surface shape. A normal decomposition of Ar into interior and exterior parts relatively to
the direction k = 1 of the optical axis of our observing system gives

with
2 ¥ 6 = Keé 6, = Ke exé, =k
KAr::z:é+yél ; 2=k -Ar : {e e ; €y e;] ; exXel
é-ée=e e, =1 ; e-e =0

where € and € are unit vectors situated in the plane normal to the direction k and where z,y, z are
the cartesian components of point P relatively to Po. An oblique decomposition of Ar relatively to the
direction k and the plane normal to k gives with z = Ck - k

T k- Ar T
Ar = M} Ar + . k = M. Ar + Ck (4.17)

AerArz(l\v/IZ k®k>

With equations (4.12) and (4.13), the general equation for relative moiré (4.9) reads explicitly

ADy =g ar-lgar—ar (D Mg 0 Wig)=Argloh) (418)
A N A(o+po) A(€so+pso)
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The meaning of the above equation (4.18) becomes clear by considering the scalar product of the vector
Ar = r — ro with the vector g = g(k, h). The so-called shape vector Ar describes the object shape
in the 3-dimensional space and the sensitivity vector g depends only on the observing direction k and
on the illuminating direction h for a given optical setup. Note that this definition is similar to that of
the fringe order D = u - g in standard holographic and speckle interferometry. The shape vector Ar
and the sensitivity vector g respectively correspond to the displacement vector u and to the sensitivity
vector g of holographic interferometry (only their definitions differ). The moiré surfaces in space are
then described by a set of vectors Ar = Ary; = rj; — ro for which AD,; = ¢. Because the sensitivity
vector g(k, h) is not constant, we must pay a particular attention to the fact that the moiré surfaces in
space may generally be curved.

4.8 General expression of difference moiré

4.8.1 Theoretical calibration of a moiré setup

To illustrate the calibration procedure in a projection moiré experiment, we consider the general setup
of figure 4.9, where, without restricting the generality, the two grid-planes are perpendicular to their
respective optical axes, which means n = —k, n = h and where Ay = Algy = 0. In place of the
object, we consider a calibration plane G of unit normal n which can be moved in any directions to a new
position G (Fig.4.9). In a real experiment, neither the positon of the centers of projection (R and S) nor
the distance to the object surface are known exactly. We can therefore choose in the 3-dimensional space
some arbitrary reference point P (not necessarily on the calibration plane) that plays a central role in
the calibration process. All the geometrical quantities needed to calculate the calibration factors of the
moiré setup are expressed relatively to this point. This approach is very useful to practically get accurate
calibration constants and correction terms from the exact theoretical equations. Considering both points
P and P on the calibration plane in its original position G, we have according to equation (4.18)

ADy; = Ar - g(k,h) = Ar - (A%ng — ESth> (4.19)
A(lo + po) X(£so + pso)
Moving the calibration plane G by a known amount in translation and rotation, the moir¢ fringe order
in each point as observed by the camera changes. Considering a point P on the calibration plane G
in its new position (unit normal n), the general expression for the relative moiré relatively to the same
reference point P reads

= _ 0 = _
M,g — A;O)th> (4.20)

ADy = AF - g(k,h) = (Ar +7k) - (Ai
Ao + po) A(€so + pso

with ADy; = ADy+6Dyy, AT = Ar+nk and the two oblique projectors My, = I— [ﬁ®ﬂ/(ﬁ£)]
and M, = I—[fi®h/(fi-h)] . By choosing point P on the same observing direction as point P, we have

k = k and Mk - M = 1\7Ik . Consequently, the so-called difference moiré o D M= AD v — ADyy
gives the difference in fringe order between both configurations G and G of the calibration plane as viewed
by asingle pixel of the CCD array of the camera. With l\A/IZk = Oand the definition A = X(Z so+pso0)/lso,
the difference moiré D M reads

~ 1 — e~ =
6D =y Ar- <th - th) - gk Mg (4.21)
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and only depends on the projector grating (the camera grating is however still needed to view moiré
fringes because of our low pixel resolution). Note that in the particular case of collimated illuminating

light, which means parallel projection h = h, we have Mh = ﬁh and only the last term of equation

(4.21) gives a contribution. In the general case, which does not depend on g/ X, we can use the vector
definitions

SP = ({s + ps)h = ({so + pso)hg + Ar

SP = ({5 + ps)h = (£s + ps)h +nk = ({50 + pso)ho + Ar + 17k (4.22)

to write the oblique projectors as follows

® [(€so + pso)hg + Ar] ~ n® [(¢so + pso)ho + Ar + nk]

n
M), =1-— ; M), =1-— 4.23
" n - [(£so + pso)hg + Ar] " n - [(£s0 + pso)ho + Ar + nk] (4.23)
_—— —
R
jo 50 Iv~0
Fig.4.9: Calibration process of a general moiré setup
Equation (4.21) can now be written in a slightly different form. We get after some calculations
= 1 i o (£so + pso)ho - 1
0Dy =——(nk-M — 4.24
M )\ (77 hg) [(KSO +pSO>hO + AI‘ + le} .0 ( )
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where (¢so + pso)ho - n = lgo + pso = ¢. The above expression for 6§Dy, obviously only depends
on the vectors Ar and 7k, all other quantities remaining constant during the calibration process. The
vector Ar, which does not depend on the translation and rotation of the calibration plane, describes the
behavior of the difference moiré 0 D) across the field of view of our observing system while traveling
on the calibration plane and going from one pixel to another on the CCD-array. Considering only one
pixel at a time, the vector nk, which depends on the translation and rotation of the calibration plane and
also on the vector Ar, describes the behavior of the difference moiré § D, along the observing direction
k while moving the calibration plane.

Note that equation (4.24) remains valid if the reference point Py is not situated on the calibration plane
(Fig.4.10). In this case, we must write

v =Nv =M} Ar N=I-n®n
Ar=v+v : A ; k 4.25
0 Vo = n r kozvgk():(t M0:I—n® 0 ( )
n - kg n- kg

where v is a vector lying on the calibration plane, v a corresponding constant offset vector parallel to
the direction kg, IN the (well-known) normal projector onto the calibration plane G and M an oblique
projector. This case will not be treated here.

Fig.4.10: General case where Py is not lying on the
calibration plane

In our case, without restricting the generality, the point Py is choosen for practical reasons on the
calibration plane G in its initial position. With the vector definitions

KR=({+p+ Lk=(p+po+ Loko — AF  ; AF = NATF = 36 + jé, (4.26)
where AT is a variable vector in the object plane of the observing system (also called lateral object plane
vector) and N = I — n ® n the corresponding normal projector, we introduce the oblique projector

n®k n ® [(lo + po + Lo)ko — Ar]
M=I-——=1I- 4.27
n-k l’l'[(fo —|—p0+Lg>k0—Af‘] ( )
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which allows us to write the following exact affine connection

Ar = NAr = —
Lo+po+Lo lo+po+Lo

Lo+po MT Af — Lo+po < . [(lo+po+Lo)ko — AF| ® n) AR (4.28)

[(€0+p0+L0)k0 — AIV‘} N

Fig.4.11: Motion of the calibration plane

In order to write equation (4.24) explicitly, we first write the kinematic relations of the motion of the
calibration plane. To bring the calibration plane from its initial configuration G to its final configuration
G’ = G, we can perform a rotation followed by a translation (Lagrangean representation) or a translation
followed by a rotation (Eulerian representation). For a point P, we have

P — P r=r+u ; n=n=Qn (4.29)

with r =ry + Ar, u = u(r) = u(Ar) and Q7' Q = I. The constant orthogonal tensor Q describes
the rotation of the whole calibration plane G, the vector u represents the displacement of point P and
r’ the vector coordinate of point P’ on G. Generally, both points P’ and P do not coincide, but their
associated unit normals n” and n are the same. Assuming that the displacement u of the reference point
Py is known, we have

Py — Py r;, =ro+ up ; Ar' =r1' —rj) = QAr (4.30)

and get explicitly
u=up+ (Q—-I)Ar (4.31)

Thus, the motion of the calibration plane from G to G can be either decomposed in a rotation QQ around
an axis of direction na going through point P followed by a translation ug from P to point P}, or in
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a translation ug from Py to point P{, followed by a rotation Q around an axis of same direction na but
going through point P{,. By introducing a right-handed cartesian vector base (e, e ,n) on G such that

e = Ne ; e, = Ne ; exe; =n

ece=e; e, =n-n=1 : ee,=e;,-n=n-e=0 (4.32)

the rotation tensor Q can be explicitly written as follows

Q=€ ®e+e| ®e, +n"@n=Nacosy — Easiny +na ®na (4.33)
where
e = Ne' = Qe : e, =Ne| =Qe, : n=n=Qn
N=I-na®n ; N=I-n®n ; N=N (4.34)
NaA =I—-na ®na ; EA = Ena

F=e®e, dn—e®@n®e|; +e; InRe—e; el®dn+n®e®kRke —nRe Qe

and where  is the rotation angle around the axis A of direction na. Both projectors N and N’ are
identical and project onto the calibration plane G in its final position. The expression (4.33) for Q can be
demonstrated by rigidly connecting some point P3 in the 3-dimensional space with the calibration plane
G as follows

r3 =rg+ Ar 4+ zn : Ar = ze + ye | (4.35)

where rj is the vector coordinate of point P3 and z, y the cartesian components of Ar on G. The motion
of the calibration plane implies a motion of point P3 to a new position P4, which reads

ry =ry+Ar' +2n’ =r; +us ; Ar' = ze' + ye', (4.36)

where r} is the vector coordinate of point P% and us the displacement of P3 to P4. Subtracting equation
(4.35) from (4.36), we get

uz3=rh —r3=r;—ro+Ar — Ar+ z(n’ — n)

4.37
=ug+x(e —e)+y(e| —ey)+z(n —n) (437)
With the identity I =e® e + e ® e + n ® n and the 3-dimensional derivative operator
0 0 0
V=e—+e —+n— (4.38)

ox oy 0z
the deformation gradient of the 3-dimensional space around G reads

F=QU=I+(V®us)"
=I+(e—e)®e+ (e —e)®e;, +(n —n)®n (4.39)
—e'®e+e| ®e, +n'®n

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



- 121 -
With FITF = U2 =1 and U =1, we have
F=Q=¢®e+e| ®e, +n'®n (4.40)

Proof:
F'F =UQTQU = U?
=(e®e +te, ®e| +tnen)(eRet+e| ®e, +n @n) (4.41)
—e®Ret+e, ®e, +ndn=1
F'Q=uQ'Q=U
=(e®e +e;, ®e +tnen)Q=e2Q’e +e; ®Q%e +n® Q1
—e®e+te;  ®e, +nen=1I [l qed
where € €/ =e-Q'Qe, =e-e; =0, ¢, 'n"=e;, -Q'Qn=e, ' n=0 and n'-€ =
n-Q’Qe=n-e=0.
According to Lagrange, the motion of the calibration plane G can be described by a rotation
Q=QiQ,
L gives no contribution (4.42)

gives a contribution

followed by a translation

ug = Iug = <M+ n®~n> uO:I\N/Iuo—i- (uo ~n> nzl\N/Iuo—i-zon
n-n n-n
L L gives a contribution (4.43)

gives no contribution

where Q,, is the in-plane rotation of G around the axis A, of direction n going through point Py, Q; the
out-of-plane rotation around an axis A; of direction n; = Nn; lying on G and going through the same
point Py, zon = [ug-n/(n-n)|n the translation normal to the calibration plane G, Muy, the translation
parallel to the calibration plane G and M = I — [n ® n/(n - n)] the corresponding oblique projector,
which projects along the direction n onto a plane normal to n. Obviously, both in-plane rotation and
translation of the calibration plane do not change the value of § D, and consequently give no contribution
to the calibration process.

According to Euler, the motion of the calibration plane G can be described by a translation

uO:IuO:(ﬁ—i—ﬁ@ﬁ)uo:ﬁu0+(u0-n)nzﬁuo+50ﬁ

L L gives a contribution (4.44)

gives no contribution

followed by a rotation
Q =Q,Q;
L gives a contribution (4.45)
gives no contribution
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where Zon = (ug - n)n is the translation normal to the calibration plane G, Nuo the translation parallel
to the calibration plane G, Q) the out-of-plane rotation around an axis A} of direction n} = n; going
through point P, and Q,, the in-plane rotation of G around the axis A}, of direction n’ = n going
through the same point P{;. Obviously, both in-plane rotation and translation of the calibration plane do
not change the value of 6Dy and consequently give no contribution to the calibration process. With

e;) = Qe, e’J_p =Qpeip, n=Q,n, N'=N and E’' = E, we write explicitly

Q, =Ncosx, —Esiny, +n®n

—e¢ ®ete, ®e, +n®n ; Q;,:N’cosxp—E’sinXp+n’®n’ (4.46)
— tp 1p

where X, = X;, is the rotation angle around the unit normal n (or n’). It follows that Q; = Q;. Proof:

Q; :QQ;F =(e'®e+e€| ®e, +n'@n)(Ncosy, +Esiny, + n®n) (4.47)
=e' ®ecosy,+€ ®e cosy,+e ®e siny,— € ®esiny,+n @n '
Q,=QQ=(Ncosy,+E'siny,+n ®@n')(e®e+e| ®e, +n' @n)

=e ®ecosy,+€ ®ejcosy,—€ Qesiny,+€ e, siny,+n'@n=0Q; [qed

€ ) A;
e‘J_p e'p € n //1 .
i
RC AL Vs
~n e “n=e; e
Fig.4.12: Unit base vectors and rotation angles
Let us now introduce the orthogonal tensor Q,, such that
Qu=1n;0%e+e;®e; +e;;®n=Ncosa—Esina+n®n (4.48)

which describes a rotation of angle a around the unit normal n (Fig.4.12). The direction n; of the
rotation axis A; together with the associated unit vectors e; and e ; read explicitly

n; = Qqe ' e; = Qae. ‘ el =Qqen (4.49)
. ) . ) *
=ecosa+e] sima = —esina + e cosw =n
with
eiENiei > eLiENieLi:n ; e, Xel;=n; ; ei-eh:0 (450)

The out-of-plane rotation Q;, which rigidly rotate the system (e;, e  ;, n;) onto (e, €, ;, n}), or better to
say (e;,n,n;) onto (e}, n’, n;), such that

e; = Qe eli =Qie; = n'=n n; =Qn,;

. . ; (4.51)
= e;CosX; +e;sny; —e; S y; +€e1;Ccosx; =n,
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is completely defined by the exact rotation vector w; = Nw; = x;n;, where Y; is the out-of-plane
rotation angle around the rotation axis A; of unit direction n;. With

Ni:ei®ei+eh®eu:I—ni®ni:Qa(I—e®e)QZ (4.52)
E,=e;®el;—e;®e =En =EQe=Q.le; ®n—n®e,)QL

we have , , , )
Q =¢e,®e +€e;®e;+n,®n; =N;cosy; —E;siny; +n; ®n,

4.53
=Q.I-e®e)cosy; — (e, ®n—n®e,)siny; +e®e|QL (4.53)

The exact displacement vector u can be connected to the apparent displacement vector nk lying on
the observing direction k by using the 2-dimensional unknown vector w connecting P’ with P on the
calibration plane G. We write
nk=u+w ; w=Nwln (4.54)
By contracting nk with the unit normal n, the vector w can be eliminated and we get with equation (4.31)
nk-n=u-n=u-Qn=uy-Qn+Ar-(I-Q)n=(up — Ar)-Qn (4.55)
With the vector definitions

PoR = (4o + po)ko ; PR = ({+p)k = (fo + po)ko — Ar (4.56)

the apparent displacement reads explicitly

B nk-n B up-Qn — Ar-Qn
2= (i) P = (i ) (o = x)(457)

or with equation (4.28)

Lo+po

~ Uy - Qn — —AfF - MQn
k-n l L .
nk = (Mﬁ) ({+p+L)k = 0FPF 20 3 [(Co+po+Lo)ko — AF]
p [(eo—i-po-i-Lo)ko — AI‘} . Qn
(4.58)
Thus, with equations (4.28), (4.58) and
Qn=Q;Q,n=Q,n=n=n'=esinasiny; — e, cosasin y; + ncos x; (4.59)

ug-Qn:uo-ﬁ:EQ:(ﬁuo—kzon)-ﬁ:zon'ﬁ:zon-Qn:zon-Qin:zocosxi

the variation of 6D M along the observing direction and across the field of view is exclusively described
by the following five independent scalar parameters

T,y : contained in the lateral object plane vector A¥
Q, X : contained in the rotation tensor Q (4.60)
20 : contained in the translation vector ug
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Before explicitly writing equation (4.24) for 6D as function of these five independent parameters, we
first have to introduce some definitions and to perform some calculations:

Geometrical constants:

o~

)\_)\(éso-i-pso)_(t T éﬂ_d: o = lo+po
T A N S N A L By Ay

S0 A A 0 +po+ Lo (4.61)
Ag = (Lso +pso)ho -n = ¢

Ay = (€so +pso)ho - g = ¢ Bi=é-n=¢ Ci=é, -n=¢

Ag = (bo+po+ Lo)ko -0 =¢ By=é-n=¢ Co=6, -ni=4¢

Az = (lo+po+ Lo)ko-8=¢ ; By=é-g=¢ ; C3=¢é,-g=¢

Ags = (lo+po+ Lo)ko - n=1¢ By=é-e=¢ Ci=6,-e=¢

As = (lo+po+ Lo)ko e =1¢ Bs=é-e; =¢ Cs=¢é, -e; =¢
Ag = (bo+po+ Lo)ko -eL = ¢

The constants A; have the dimension of a length and the constants B; and C'; have no dimension.

Functions:
fo = fo(xi) = cosxi ‘ Fy = Fi(a) = Bysina — Bscosa
G1 = Gi(a) = Assina — Agcosa ’ H, = Hi(a) = Cysina — Cs cos (4.62)

f1 = fi(a, xi) = Basinasin x; — Bs cos asin x; + By cos x; = Fysin x; + Bi cos x;
hi = hi(a, x;) = Cysinasin x; — Cs cos asin y; + Cy cos x; = Hj sin y; + C cos x;
g1 = g1(a, xi) = Assinasin x; — Ag cosasin x; + Agcos x; = Gy siny; + Agcosx;

Intermediate calculation:

— k- -0(A; +Ar-g) (Ao +Ar-f)nk-g— (A + Ar-g)k- @
kMg — kg - DAL+ Ar-g) (Aot Ar-Rjpk-g — (A + Ar-g)rk - n

Ao—{—AI"fl A0+Arﬁ
~ .~ (Ag—Af‘ﬁ)Af'n _ A4Ai‘~ﬁ—A2Ai’-n
Ar nc()(Ar " A, — AF-n = Co A, — AfF-n
~ .~ (Ag—Af‘g)Af‘n N A4A1‘~§-A3A1‘~ﬂ
Ar g_CO<Ar & A, — AF-n = Co A, — AF-n
Ao+ Ar-fie Ag 1 Co A;;Ar-n—{lgAr-n :A0A4—(AO+COA2)AVr-n+CoA4Ar~n
As— AF-n As— AF-n
—~ A4Af‘ . /g\ - AgAf‘ n A1A4 - (Al + C()Ag)Af‘ -n—+ 00A4Af‘ . g
A +Ar-g=A —
1T Aar-g 1+C°< A, —Af-n ) A, —Af-n
N ug - Qn — CoAr - MQn > o
k-n= Ay — AF -
e <<€o+p0+Lo>ko-Qn—Af-Qn (42 —AF-D)
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ug - Qn — CoAr - MQn > R
As — AT -
(lo 4+ po + Lo)ko - Qn — Af - Qn (4s I8
Af~n[(€o +]90+L0)k0'Qn—Af‘-Qn]

Ar - MQn = Ar - Qn —

A4—Af'-l’l (4 63)
_ AUATF-Qn — [(lo + po + Lo)ko - Qn]AF - n -
B A, —Af-n
ugp - Qn — CoAF - MQn = up - Qn — C <A4Ar -Qn — [(4o + po —f Lo)ko - Qn]AF - n)
As— Ar-n

(1,10 Ql’l) (A4 —Ai’-n) —COA4Af‘-Qn—|—C'O [(EO —|—p0—|—L0)kg Qn]Ai‘n

A4—Af'-n
Qn =esinasiny; —e  cosasiny; +ncosy; ; ug-Qn=zmn-Q;n = zycosx; = fozo
Ar-n =Bz + CLy ; AT -n = By + Cay ; AT - g = B3T + C3y

AT - Qn = (Bysinasin y; — Bs cosasin x; + By cos x;)&
+ (Cysinasin x; — Cs cos asin x; + C1 cos x;)y
= fiZ+ 1y

(bo + po + Lo)ko - Qn = As sin asin x; — Ag cos asin y; + Agcos x; = ¢1

(Lo + po + Lo)ko - Qn — Af - Qn = Aj sin asin x; — Ag cos asin x; + Ay cos x;
— (Bysinasin x; — Bs cos asin x; + By cos x; )&
— (Cysinasin x; — Cs cos asin y; + C1 cos ;)7

=g — it — My

Introducing (4.61) to (4.63) into equation (4.24) for §D M gives

61~)M:_@< (nk - M,8) )Z_@ {(Ao%—Ar-ﬁ)nk-g—(A1+Ar.g)nk.ﬁ}

A \Ag+Ar-n+nk-n A (Ap+ Ar-n)(Ap + Ar-n+nk - n)

- —%(Arm«n)(

[A0A4 — (A() + C()AQ)Af' ‘n + C()A4Af‘ . ﬁ}?]k . g
[AgAs — (Ag + CoA2)AF -n+ CoALAF -0
—[A1 A4 — (A1 4 CoA3) AT - n + CoALAF - lnk - 1
- [AgAs — (Ag + CoAg)AF -1+ CoA4AF -0+ (Ay — AF -n)nk - ﬁ]>

Ao [ (uo-Qn— CoAF-MQn)(As — Af-n) ] [[AoAs — (Ao + CoA2)AF - n
DY [A0A4 — (Ao + CoA2) AT - n + CoALAF - ﬁ} [ [(lo+po+Loko-Qn
+CoA4AF - 0](As — AF - 8) — [A1 Ay — (A1 + CoA3)AF - n
 —AF-Qnj[AgAs — (Ag + CoAo)AF -n+ CoA4AF -1
+C A4AF - 8](Ay — AF - 1)
 +(up - Qn — CoAF - MQn) (A — AF -n)(Ay — AF- ﬁ)}

. Ao (uo . Qn)(A4 — Ar - Il) — O()A4Af‘ : Qn + Co(fo + po + Lo)(ko . Qn)Af‘ -n
- _7 |: A0A4 — (Ao + CoAg)Af‘ -n + C()A4Af' -n
[AgAs — (Ao + CoA2)AF - n + Co Ay AF - 1] (A5 — AF - §)
[[(50 +po + Lo)ko - Qn — AF - Qn][AgAs — (Ap + CoA2)AF - n + CoA4AT - 1
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—[A1 A4 — (A; + CoA3)AF -1
~ +[(ug - Qn)(Ay — AF-n) — CoA4AF-Qn
+CA4AF - 8](Ay — AF - 1)
"~ +Co(fo + po + Lo) (ko - Qn)AF - n](Ay — AF- ﬁ)]

@ |:A1A2 — AgAs + [A()Bg, — A1 By + Co(AQBg — AgBQ)]:f + [A()Cg — A0y

A ApAy — [AgBy + Co(A2 By — AyBs)|z — [AoCh

- +C0 (A0 — ABC2)]Q} [ A fozo — [Bifozo
+Co(A2Ct — A4Co)ly ]| | Aogr + Az fozo — [Aof1 + Bafozo

+Co(Aaf1 — B1g1)]& — [C1 fozo + Co(Ash1 — Cig1)ly }
+Co(A2f1 — Bag1)]Z — [Aoht + Ca fozo + Co(Azh1 — Cag1)]y

| A1+ Bt +Cny (A4 — Bix — C19) 20 cos X
a { 1+ B12% + C129 } {(Az — Bai — Cog)zgcos x; + [AgAs + (—AoB1
. +[(Co[A4Bs — AgB1 )i
+C0[—AgBl + A4BQ])5§ + (—A()Cl + Co[—AgCl + A4C2])g] COS X
) +Co[A4C5 — AgCh]y) cos N
+([—AoAs + (Ao Bs + Co[A2Bs — AsBa))E + (AgCs + Co[A2C5
. +(Co[As By — AyBy]E
—AeCo))g| cosa + [AgAs + (—AoBy + Co[As Ba — A3 By)) i
+Cy[A5C1 — A4C4ly) sina] sin x;
+(=ApC4 + Cp[A5Cy — A2Cy])y] sin ) sin x;

A1+ B+ Cniy Ayzo cos x; + [—Bi2 cos x;
| 14 Bz + Chay } [(A0A4 + Aszp) cos x; + Ag(—Ag cos a
+(Co[AsBs — AgB1] cos a
4 Assina)siny; + [(—AoB1 + Co[A4By — AyB1] — Bazo)cosx;
+Co[As By — AyBy]sin o) sin x;]%
) +((A()B5 + Co[AzB5 - A6B2]) cos o + (—A0B4 + Co[A5BQ
+[—C12p cos x;
- —AyBy])sina) sin ;]2 + [(—AgCy + Co[AsCa — AsCH]
+(Cp[A4C5 — ACH] cos a
: —CQZO) CcoS x; + ((AOC5 + CO[A2C5 — AﬁCg]) COS (¢ :
+C() [A5C1 - A4C4] sin Ol) sin Xl]y
 +(—ACy + Cy[A5Cy — A3Cy]) sina) sin x4y

(4.64)

With the constants

Ay Ay — AgAs Ag As
Ay = Az —Aods o, A s
11 )\A4 ) 12 A4 3 13 A4

B AgB3 — A1 By + Cy(A2 B3 — A3By) , B —AoBy + Cy(AsBy — A2 By)
11 A, ; 12 oA,

. AgBs + CO(A2B5 — AGBQ) ) _ —AoB4 + C[)(A5B2 — A2B4)
BIB - ) Bl4 —
AgAy AgAy
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Co(A4B5 — A6Bl) Co(A5Bl — A4B4)

By; = . Big=
15 oA, ; 16 oAy
Cuy = AgC3 — A1Cy + Co(AgCg — AgCQ) ' Crp — —AoC1 + CO<A4CQ — AgCl)
AAy ’ AgAy
Con AgCs + Co(A2Cs — AgCy) ) O —AgCy + Co(AsCy — AyCYy)
13 Aoy ; 14 oA,
O Co(A4Cs — AsCh) ‘ O Co(AsC1 — AsCy)
15 = ; 16 =
A0A4 AOA4
1 Ay By
a = LA . By =-— 4.65
21 Ao ) 22 AOA4 ) 21 AOA4 ( )
Boy — — . - _ . - _
22 Aod, ; Co1 Ao, ; Coo oA,
and the functions
_ A1 2o
g =7 + Agozo + (A12 cosa + Aggsina) tg x;
iy = Boi1zg + (B1s cosa + Bigsina) tg x;
L Agozg + (A1z cosa+ Ajgsina) tg x;
Ca129 + (015 cos a + (g sin Oé) tg X
hiy = , (4.66)
1+ Agozg + (Argcosa+ Ajgsina) tg x;
Fia = Bia 4+ Baazg + (Bisz cosa + By sina) tg x;
2= 14+ Agszo + (A12 cos o + Aq3sin a) tg X
Cia 4+ Cazp + (Cr3 cosa + Crysin o) tg x;
his = :
14 Aoz + (A2 cosa+ Ajzsina) tg x;
the equation (4.64) for §D s reads:
~ An +B1158+C'11§] [911 + fuu + hi1y
0Dy = 4.67
M 1+ Biok + Clgg 1+ ]012j + h12g ( )

This equation describes the most general case of difference moiré and is of great utility for calibrating
projection moiré systems for general geometries of optical setups. The real point position on the object
plane of the optical system (represented by a pixel of a CCD camera) is now connected to the motion
parameters 2q, @ and ; of the calibration plane through the difference moiré value § D ;. Therefore, the
calibration plane can be used as reference plane for the point coordinates of the measured object shape.
An example of calibration is shown in the next section.

4.8.2 Experimental calibration of a moiré setup

The purpose of this section is to demonstrate, with a practical example, that equation (4.67) works
correctly. Without restricting the generality, by only performing a translation of the calibration plane (no
rotation), we analytically compute a calibration process and compare the results with the corresponding
quantitative experiment. In case of a translation of the calibration plane G with no rotation, we have

u=uy = zon ; Q=1 (4.68)
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which means that « is arbitrary and x; = 0. In this case, equations (4.66) are written as follows

g = Aa120 , i = Bai1 29 _ oo — C2120
L + Aso20 , T + Aso20 7 T + Aso20

B2 + Baszp C12 + Ca2p
_ L g = M2 C22%0 4.69
f12 1 -+ AQQZQ 12 1 + A22Z0 ( )

Thus, the equation for difference moiré (4.67) read

~  [Aun+Buz+Cny (A21 + Bo1Z 4+ C217) 20

Dy = - - . _ v y (4.70)
14 Bz + Ch2y 1+ Bi12Z 4 C127 + (Agg + Baa + Ca29) 20

and is valid in the general case of a translation of the calibration plane.

Analytical calibration

For better visuality, let us now assume in our optical setup that the four vectors g, n, n and n are coplanar
and lie in the horizontal plane, the calibration plane beeing vertical. Let us also set both optical axes (of
the camera and the projector) in the horizontal plane and intersect the calibration plane in the point Py,
which means that the object plane of the observing system is also vertical. For this particular setup, we
have

n=h=hy, ; —n=n=k=ky hy-g=0 ko-g=0 (4.71)

Fig.4.13: Optical set-up for the experimental calibration

On the calibration plane and on the object plane of the camera, we respectively define two coordinate
systems (P, z,y) and (Ko, Z, ), where both x and Z-axes are horizontal and both y and y-axes are
vertical (Fig.4.13). With the corresponding unit direction vectors, the vectors Ar and A¥ read

Ar = ze + ye ; AT = €+ gé (4.72)
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Recalling the affine connection (4.28) between Ar and AF, we write

Lo + po T A
Ar=ze t+ye = ———M"'Ar
reTyeL Lo +po + Lo
€0+po ( k®n> N .
= (I— re + ye
Lo +po+ Lo k-n ( veL)

__ftpo {féJﬁé —:f(n'é>k]
€0+p0+L0 yer k-n

(4.73)

becausen- €, = 0and where M =TI —n ® k/(n - k). After contraction of equation (4.73) with e and

e, , the components of Ar and Ar are related to each other as follows

k-
z=Ar-e=Cy [i‘cosa3+i< e>sinaR]
k-n
k-
y=Ar-e; =Cjy [zj—l—:ﬁ(—eL)SinaR]
k-n

where

D«

-€ = COS QR Lo + po

; é-e; =0 ; Co=—"——
+ " Yo +po+ Lo

(08

‘n = —sinapg

Considering the triangle PRPg, we have
(¢ +p)k = —Ar + (o + po)ko = —re —ye + ({y + po)ko

which gives with kg - e = sinapg, ko -e; =0and kg - n = cosap

k-e ({+pk-e —x+ (l+po)sinar
k-n ({+pk-n (o + po) cos ag
k-e;, ({+pk-er -y

k-n ({+pk-n (€o + po) cosar

It follows that

~ (EO +pO+LO)COSO£R . KO —|—p0+Lg
T = - x ; = -
(lo +po) — xsinag (fo +po) — xsinag

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

The geometrical constants (4.61) read A = /)\\(ﬁso +pso)/lso, A1 = Ag=0,B5 =C1 =Cy =3 =

C4 = 0and

Ao = (£so + pso)

Ag = —(lo + po + Lo) cos(ar + ag)

Az = — (o + po + Lo) sin(ar + ag) ;
Ay = (bo +po + Lo) cosag

As = (o +po + Lo) sinag

By = —sinag
By = sin(agr + ag)
B3 = —cos(ag + ag)

By = cosap

Cs

1 (4.79)
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The geometrical constant (4.65) then read C1; = C12 = 0, Cy1 = Cao = 0 and

_ Asosin(ag + as)

A =
ACOS QR
Aor — 1
217 Zso + pso
cos(ag + ag)
Agp = —
(€so + pso) cos ag
_ £so[(fo +po) — (£so + pso) cos(ar + as)] (4.80)
Also + pso)(lo + po + Lo) cos g
By — (fo +p0) sin g + (550 —I—pso) sin o
(¢so + pso)(lo + po + Lo) cosar
Boi — tgar
2 (¢so + pso) (o + po + Lo)
sin(ag + ag)
Bay = —

(¢so + pso)(lo + po + Lo) cosar

The expression for the difference moiré § D a only depends in our case of the translation of the calibration
plane and of the horizontal position of point P, i.e. of point K. With equations (4.78), we have

5D — |:A11 + B11SVU} [ (A2 + Bo1Z)zo }
M 1+ Bia2 1+ B12& + (A2a + Baa¥)2 (4.81)
_ |:A11 + R11.§U:| |: (A21 + R21$)ZO ] '
1+ Riox 1+ Riox + (A2z + Raax)2g
where
RH _ gso[(fo +p0) COS QR — (ES() —|—p50) COS Oés]
)\(fo + po)(ﬁso + pso) COS QR

sin g

Rig= —— 22—

27 Uso + pso
Ro1 =0 (4.82)
Roy — — sinag

(4o + po)(so + pso) cosar

As already mentioned, the exact expression (4.81) for the difference moiré § D M describes the difference
of the relative fringe order in some point K for a known translation z, of the calibration plane G. Let us
also recall that K is the point in the object plane of the optical system associated to the corresponding
pixel in the image plane of the camera. Considering a fixed pixel, i.e. a fixed point K, while moving
the calibration plane by the translation amount zy, the difference moiré d Dy, gives the variation of the
relative moiré fringe order in depth of field, which is the scope of the calibration.
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Numerical calibration

Let us now quantitatively verify the theory with a measurement. In our experimental set-up, we used a
white painted mirror as calibration plane, which was installed on a translation stage to move it normally
to its surface. It was illuminated by a projector with a grating on a glass slide and observed through
a CCD-interline transfer camera, which pixel columns served as reference grating. The experimental
numerical values corresponding to the optical set-up of figure 4.13 needed to compute equation (4.81)
are

Projector Camera
Distance P to projection center lso + pso == 304.0 mm lo + po =~ 359.0 mm
Distance grating to projection center* lgo >~ 73.97 mm ly ~29.92 mm
Inclination of optical axis ag ~ 5.15° agr >~ 6.70°
Pitch of grating X =50 pm = 0.050 mm A =17 pm = 0.017 mm

* Respectively calculated with the magnification factors 4.11 and 12.0 on the optical axes

Introducing these numerical values in the equations (4.80) and (4.82) gives

A1 = 3.059.10 A1 =3289.10"%mm™' Ay =-3242.10"°mm™"
Ry =7.340.10'mm™" 7 Ry =2953.107*mm™" ’ Ry = —8.281.10""mm?2

The experimental calibration consists in determining the fringe order change per unit length in depth of
field for each pixel. Using a phase shifting device in the projector allows to measure the changes in terms
of a phase difference map. The frames were digitized with 8 bit resolution, the fringe order corresponding

to a phase change of 27 or 256 grey levels.

'l T '1 T}I’ o
Y 7 J11 100+
90+

i A i 80+
U 7 71 701

60T

g -

404
304
204

00+

(mm) 50 40 -30 20 -10 O 10 20 30 40 50 x
Fig.4.14: Lines of equal moiré fringe order Fig.4.15: Visualisation of the moiré surfaces

for a succession of ten translation
steps

Figure 4.14 shows lines of equal moiré fringe order, i.e. equal phase, for a succession of 10 translation
steps. Because the optic of the projector and that of the camera are not parallel, the density of moiré
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fringes varies across the calibration plane. For a step of Azp = 1.00 mm, the pattern nearly repeats
itself indicating a shift of approximatively one fringe order per mm. An horizontal cut (over the width)
through the calibration planes of figure 4.14 shows the corresponding moiré surfaces intersecting the
calibration plane in its different positions (Fig.4.15). The phase differences were then obtained by
digitally subtracting the phase map of the zero position (zg = 0) from the others. The result is a difference
in fringe order shown in the comparative phase difference map of figure 4.16, with the difference moiré as
function of the z-coordinate in mm. Figure 4.16 simultaneously represents our experimentally measured
difference moiré and that theoretically computed with equation (4.81) for different values of zy. This
confirms that the experiment and the theory are in agreement. The experimental phase difference map
contains the calibration factors over the width of the field of view for each translation step. Note that the
difference moiré varies almost linearly in the x-direction by approximately 20% change over the width,
whereas the change in the y-direction is negligible. It should also be mentionned that a small change of
ar and ag first influences the value of d Dy, whereas a small change of £y + pg and /s + pso first
influences the variation of 6D, across the field of view.

D 2o R
o4t Dy 2o =10 mm g LZ‘?[ L.- =
10.0 + Zo =9 mm "—"‘R;i:;'

9.0 / Zo=8 mm ‘:%{ﬂ? /;‘
L&

8.0 / zy =7 mm ;}% Lt //

i} l
7.0 + M N l)é J %
60 &3 ) 3
) Zy=5mm 5

5.0 + &

M‘ z, =4 mm ka
4.0 + M‘j =

Zo =3 mm
3.0 T+ WM‘

204 e ——l——te—d Z( = 2 MM

s
wadim

10 T iy lommeOimme Oty A O et el z,=1mm
00+ OO f————0—a  Z( = 0 mm

“
A

g

-1.0

Y

60 -50 -40 -30 -20 -10 O 10 20 30 40 50 X (mm)

fr
y

=

Fig.4.16: Phase difference map g.4.17: Contour plot of a CFRP-panel
— measured experimentally under load
- computed theoretically

Practically, considering the same point P on the calibration plane in its initial position (i.c. z = z. = ¢),
which also means considering a fixed pixel on the CCD array or a fixed point K (i.e. £ = Z. = ¢) on
the object plane of the observing system, the calibration plane can be translated by different values 2o,
for which the corresponding difference moiré § D;; can be measured. Then, with equation (4.81), an
equation system is built for each single pixel as follows

5D — [All + Rllfﬂc} { (A21 + Ro17¢)20i _ R 20
Mz 14+ Risz. 1+ Riox. + (Aaz + Rooxe)z0i 1+ Rozo;

(4.83)

where R; and R, are the geometrical constants associated to the considered pixel (other pixels get other
values of R; and Ry). Obviously, it is not necessary to know the geometry of the optical setup to perform
amoiré€ calibration. Both constants R; and R2 can be determined by solving the equation system (4.83).
This can be done by taking at least two set of values § D ; and zg; or better by doing several measurements
and applying the last square method.

In order to properly measure the object shape with projection moiré, the relative moiré ADy; corre-
sponding to the calibration plane in its initial position must be subtracted from the new relative moiré

Habilitationsschrift, November 1998 29.11.1999, Ph. Tatasciore



- 133 -

AD Mms corresponding to the object shape. The result is a difference moiré 6D MS = AD ms — ADyy
which must be compared with our experimental phase difference map d Dj;. If no experimental map is
available, it is also possible to use in a first approximation a theoretically computed one if the geometry of
the optical setup has been measured very carefully. Because 1 and Ry are known from the calibration,
the object shape zg corresponding to the difference moiré 0 D, is given by the following expression

8D

2§ = —————=——
Ry — RQ(sDMS

(4.84)

For example, figure 4.17 shows the surface shape under load of a carbon fiber reinforced polymer (CFRP)
panel reinforced with stringers on the back side. The phase pattern is pseudo-color processed to show a
contour plot display with 0.5 mm displacement in depth of field between each level line.

In the more general case of general geometries of optical setups, but still in case of a translation of the
calibration plane, we consider a fixed point K with constant coordinates (., §..) on the object plane and
write equation (4.70) as follows

§Di = _
Mi 14+ Bia&c+Cia¥e ||1+Biadc+Cra¥c+ (Azz+ BooZ .+ Caole) 204 1+ Rozp;

(4.85)

This shows that the moiré calibration can be performed independently for each pixel without needing to
measure the geometry of the optical setup.

A11+Bl1ic+C11?JcM (A21+ Bo1Zc+C219c) 206 _ Ryzp
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