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Abstract: The Munich chain-ladder method for claims reserving was introduced by Quarg
and Mack on an axiomatic basis. We analyze these axioms, and we define a modified
Munich chain-ladder method which is based on an explicit stochastic model. This stochastic
model then allows us to consider claims prediction and prediction uncertainty for the Munich
chain-ladder method in a consistent way.
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1. Introduction

The Munich chain-ladder method was introduced by Quarg and Mack [1] on a pure axiomatic basis,
and in 2003 it was awarded the Gauss prize by Deutsche Aktuarvereinigung (DAV) and Deutsche
Gesellschaft für Versicherungs- und Finanzmathematik (DGVFM), see [1]. However, today it is still
not known whether there is a non-trivial interesting stochastic model that fulfills these axioms, nor is
much known about the prediction uncertainty in the Munich chain-ladder method. Liu and Verrall [2]
propose to use bootstrap for the estimation of the prediction uncertainty in the Munich chain-ladder
method, however this requires existence of a model that fulfills the Munich chain-ladder axioms. The
aim of this paper is to study the axioms of the Munich chain-ladder method and to define a modified



Risks 2015, 3 625

Munich chain-ladder method which is based on an explicit stochastic model. This explicit stochastic
model gives a rigorous mathematical foundation for the analysis of claims prediction and its uncertainty.

There are two different ways to view the Munich chain-ladder method. The first way is to define a
stochastic model which has the required structure of the Munich chain-ladder factors; this is the approach
taken in [1]. The second way is to define a general chain-ladder model and to derive estimators in this
model that have the Munich chain-ladder factor structure; this is the approach taken in [3]. Here, we
analyze both of these views and we show how the second way leads to a modified Munich chain-ladder
method. This analysis is done within the family of multivariate log-normal models. The first main result
is that within this family of models, there is, in general, no interesting Munich chain-ladder model, see
Theorem 2 below. The resulting Munich chain-ladder predictor always has an approximation error which
is quantified in Theorem 3 below. Based on these findings, we define a modified Munich chain-ladder
model for which we can derive optimal predictors and the corresponding prediction uncertainty.

Organization of the Paper

In the next section, we consider stochastic models which simultaneously fulfill the chain-ladder
assumptions for cumulative payments and incurred claims. In Theorem 1, we see that such models only
permit rather restricted correlation structures. For these restricted chain-ladder models, we then study
the optimal one-step ahead prediction in Section 3. This optimal one-step ahead prediction can directly
be compared to the Munich chain-ladder axioms which are introduced in Section 4. In Theorem 2, we
find that, in general, the Munich chain-ladder axioms are not fulfilled in our modeling framework. This
motivates a modified Munich chain-ladder method which is presented in Section 5. For this modified
version, we derive optimal predictors and study prediction uncertainty in Section 6. These results are
compared numerically in Section 7. The numerical study is based on the original data set of Quarg and
Mack [1].

2. Chain-Ladder Models

We denote cumulative payments of accident year i and development year j by Pi,j and the
corresponding incurred claims are denoted by Ii,j for i = 0, . . . , J and j = 0, . . . , J . We define the
following sets of information

BPj = {Pi,k; k ≤ j, 0 ≤ i ≤ J} , BIj = {Ii,k; k ≤ j, 0 ≤ i ≤ J} and Bj = BPj ∪ BIj .

Assumption 1 (distribution-free chain-ladder model).

(A1) We assume that the random vectors (Pi,0, . . . , Pi,J , Ii,0, . . . , Ii,J) have strictly positive components
and are independent for different accident years i = 0, . . . , J .

(A2) There exist parameters fPj , f
I
j , σ

P
j , σ

I
j > 0 such that for 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

E
[
Pi,j+1| BPj

]
= fPj Pi,j and Var

(
Pi,j+1| BPj

)
= (σPj )2 P 2

i,j,

E
[
Ii,j+1| BIj

]
= f Ij Ii,j and Var

(
Ii,j+1| BIj

)
= (σIj )

2 I2
i,j.

These assumptions correspond to assumptions PE, PV, IE, IV and PIU in [1], except that we make
a modification in the variance assumptions PV and IV. We make this change because it substantially
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simplifies our considerations (we come back to this in Remark 1 below). Assumption 1 states that
cumulative payments (Pi,j)i,j and incurred claims (Ii,j)i,j fulfill the distribution-free chain-ladder model
assumptions simultaneously. Our first aim is to show that there is a non-trivial stochastic model that
fulfills the chain-ladder model assumptions simultaneously for cumulative payments and incurred claims.
To this end, we define an explicit distributional model. The distributions are chosen such that the analysis
becomes as simple as possible. We will see that assumption (A2) requires a sophisticated consideration.

We choose a continuous and strictly increasing link function g : R+ → R with limx→0 g(x) = −∞
and limx→∞ g(x) =∞. The standard example is the log-link function given by

g(x) = log x for x > 0, (1)

but the results derived in this section hold true for general such link functions. The log-link function has
the advantage of closed form solutions. For (general) link function g (as introduced above), we define
the transformed age-to-age ratios for 0 ≤ j ≤ J and 0 ≤ i ≤ J by

ξPi,j = g

(
Pi,j
Pi,j−1

)
and ξIi,j = g

(
Ii,j
Ii,j−1

)
,

where we set fixed initial values Pi,−1 = Ii,−1 = νi according to given volume measures νi > 0.
To simplify the outline, we introduce vector notation, for 0 ≤ i ≤ J we set

Ξi = (ξPi,0, . . . , ξ
P
i,J , ξ

I
i,0, . . . , ξ

I
i,J)′.

Assumption 2 (multivariate (log-)normal chain-ladder model I).

(B1) We assume that the random vectors Ξi are independent for different accident years i = 0, . . . , J .
(B2) There exists a parameter vector θ = (θP0 , . . . , θ

P
J , θ

I
0, . . . , θ

I
J)′ ∈ R2(J+1) and a positive definite

covariance matrix Σ ∈ R2(J+1)×2(J+1) such that we have for 0 ≤ i ≤ J

Ξi ∼ N (θ,Σ) .

For log-link Equation (1), we obtain the log-normal chain-ladder model and for a general link g a
general link ratio model. We have the following identities for the generated σ-algebras

σ {Pi,k; k ≤ j, 0 ≤ i ≤ J} = σ
{
ξPi,k; k ≤ j, 0 ≤ i ≤ J

}
.

Therefore, by an abuse of notation, we use BPj for both sets of information, and analogously for BIj
and Bj . From this, we immediately see that assumptions (A1) and (B1) agree with each other. Due to
the independence of different accident years i we have for ∗ ∈ {P, I}

ξ∗i,j+1|B∗j
(d)
= ξ∗i,j+1|{ξ∗i,0,...,ξ∗i,j},

(ξPi,j+1, ξ
I
i,j+1)|Bj

(d)
= (ξPi,j+1, ξ

I
i,j+1)|{ξPi,0,...,ξPi,j ,ξIi,0,...,ξIi,j}.

For ∗ ∈ {P, I} we denote by θ∗[j] = (θ∗0, . . . , θ
∗
j )
′ ∈ Rj+1 and let Σ∗[j] ∈ R(j+1)×(j+1) be the

(positive definite) covariance matrix of the random vector ξ∗i,[j] = (ξ∗i,0, . . . , ξ
∗
i,j)
′. Moreover, let

Σ∗j,j+1 ∈ Rj+1 denote the covariance vector between ξ∗i,[j] and ξ∗i,j+1, and let (s∗j+1)2 ∈ R+ be the
variance of component ξ∗i,j+1.
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Lemma 1. Under Assumption 2 we have for ∗ ∈ {P, I}, 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

ξ∗i,j+1|B∗j ∼ N
(
θ∗j+1 + (Σ∗j,j+1)′

(
Σ∗[j]
)−1 (

ξ∗i,[j] − θ∗[j]
)
, (s∗,post

j+1 )2
)
,

with (s∗,post
j+1 )2 = (s∗j+1)2 − (Σ∗j,j+1)′

(
Σ∗[j]

)−1

Σ∗j,j+1.

Proof. This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. �

Using Lemma 1, we can calculate the conditionally expected claims for given link function g. We have
for 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

E
[
Pi,j+1| BPj

]
= Pi,j E

[
g−1

(
g

(
Pi,j+1

Pi,j

))∣∣∣∣BPj ] = Pi,j E
[
g−1

(
ξPi,j+1

)∣∣BPj ] , (2)

E
[
Ii,j+1| BIj

]
= Ii,j E

[
g−1

(
g

(
Ii,j+1

Ii,j

))∣∣∣∣BIj] = Ii,j E
[
g−1

(
ξIi,j+1

)∣∣BIj ] . (3)

In a similar way, we obtain for the conditional variances

Var
(
Pi,j+1| BPj

)
= P 2

i,j

(
E
[
g−1

(
(ξPi,j+1)

)2
∣∣∣BPj ]− E

[
g−1

(
ξPi,j+1

)∣∣BPj ]2) , (4)

Var
(
Ii,j+1| BIj

)
= I2

i,j

(
E
[
g−1

(
(ξIi,j+1)

)2
∣∣∣BIj ]− E

[
g−1

(
ξIi,j+1

)∣∣BIj ]2) . (5)

We have assumed that Σ is positive definite. This implies that also (Σ∗[j])
−1 is positive definite for

∗ ∈ {P, I}. We then see from Lemma 1 that, in general, the last terms in Equations (2)–(5) depend on
ξPi,[j] and ξIi,[j], respectively. Therefore, these last terms are not constant w.r.t. information BPj and BIj ,
respectively, and Assumption 1 (A2) is not fulfilled unless both ΣP

j,j+1 and ΣI
j,j+1 are equal to the zero

vector. This immediately gives the next theorem.

Theorem 1. Assume that Assumption 2 is fulfilled for general link function g as introduced above.
The model fulfills Assumption 1 if and only if

ΣP
[J ] = diag

(
(sP0 )2, . . . , (sPJ )2

)
and ΣI

[J ] = diag
(
(sI0)2, . . . , (sIJ)2

)
. (6)

Under Equation (6), we have in the special case of the log-link g(x) = log x and for 0 ≤ j ≤ J − 1

and 0 ≤ i ≤ J

E
[
Pi,j+1| BPj

]
= Pi,j exp

{
θPj+1 + (sPj+1)2/2

}
,

Var
(
Pi,j+1| BPj

)
= P 2

i,j exp
{

2θPj+1 + (sPj+1)2
} (

exp
{

(sPj+1)2
}
− 1
)
.

Analogous statements hold true for incurred claims Ii,j+1, conditioned on BIj .

Remark 1. The previous theorem says that covariance structure Equation (6) is a necessary condition
to obtain the chain-ladder model of Assumption 1. This holds for general link functions g, see
Equations (2)–(5), and under Gaussian age-to-age ratios. The resulting variance properties differ from
the classical ones of Quarg and Mack [1]. However, our argument does not use the variance assumption
in a crucial way (it is already sufficient to consider Equations (2)–(3)), except that under Assumption 2
the analysis receives an analytically tractable closed form solution. Therefore, we expect this result to
hold true in broader generality.
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Under the assumptions of Theorem 1, the process (Pi,j)0≤j≤J has the Markov property, and we obtain
the following chain-ladder parameters for the log-link g(x) = log x

f ∗j = exp
{
θ∗j+1 + (s∗j+1)2/2

}
and (σ∗j )

2 = (f ∗j )2
(
exp

{
(s∗j+1)2

}
− 1
)
, (7)

with ∗ ∈ {P, I}. Moreover, the covariance matrix Σ under Theorem 1 is given by

Σ =

(
ΣP

[J ] = diag
(
(sP0 )2, . . . , (sPJ )2

)
A

A′ ΣI
[J ] = diag

(
(sI0)2, . . . , (sIJ)2

) ) , (8)

for an appropriate matrix A ∈ R(J+1)×(J+1) such that Σ is positive definite.

Lemma 2. A symmetric matrix Σ of the form Equation (8) is positive definite if and only if the matrix

SP[J ] = ΣI
[J ] − A′

(
ΣP

[J ]

)−1
A is positive definite,

or, equivalently, if and only if the matrix

SI[J ] = ΣP
[J ] − A′

(
ΣI

[J ]

)−1
A is positive definite.

Proof. This lemma is a standard result in linear algebra about Schur complements, see Section C.4.1
in [5]. �

The matrices S∗[J ] are called Schur complements of Σ∗[J ] in Σ, for ∗ ∈ {P, I}. One may still
choose more structure in matrix A = (ak,l)0≤k,l≤J , for instance, a lower-left-triangular matrix is often a
reasonable choice, i.e., ak,l = 0 for all k < l. For the time-being, we allow for any matrix A such that Σ

is positive definite. This leads to the following model assumptions.

Assumption 3 (multivariate (log-)normal chain-ladder model II).

(C1) We assume that the random vectors Ξi are independent for different accident years i = 0, . . . , J .
(C2) There exists a parameter vector θ = (θP0 , . . . , θ

P
J , θ

I
0, . . . , θ

I
J)′ ∈ R2(J+1) and a matrix Σ of

the form Equation (8) with positive definite Schur complements SP[J ] and SI[J ] such that we have
for 0 ≤ i ≤ J

Ξi ∼ N (θ,Σ) .

Corollary 1. The model of Assumption 3 fulfills the distribution-free chain-ladder model of Assumption 1
for any link function g (as introduced above). The chain-ladder parameters are given by Equation (7) in
the special case of the log-link function Equation (1).

The previous corollary states that we have found a class of non-trivial stochastic models that fulfill the
distribution-free chain-ladder assumptions simultaneously for cumulative payments and incurred claims.
Note that an appropriate choice of matrix A in Equation (8) allows us for dependence modeling between
cumulative payments and incurred claims, this will be crucial in the sequel.
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3. One-Step Ahead Prediction

Formulas (2) and (3) and Theorem 1 provide the best prediction of Pi,j+1 based on BPj and the best
prediction of Ii,j+1 based on BIj , respectively, under Assumption 3. The basic idea behind the Munich
chain-ladder method is to consider best predictions based on both sets of information Bj = BPj ∪ BIj ,
that is, how does prediction of, say, cumulative payments Pi,j+1 improve by enlarging the information
from BPj to Bj . This is similar to the considerations in [3]. In this section, we start with the special
case of “one-step ahead prediction”, the general case is presented in Section 6, below. We denote by
θ[j] = (θP0 , . . . , θ

P
j , θ

I
0, . . . , θ

I
j )
′ ∈ R2(j+1) and let Σ[j] ∈ R2(j+1)×2(j+1) be the (positive definite)

covariance matrix of the random vector ξi,[j] = (ξPi,0, . . . , ξ
P
i,j, ξ

I
i,0, . . . , ξ

I
i,j)
′. Moreover, let Σ

(∗)
j,j+1 ∈

R2(j+1) denote the covariance vector between ξi,[j] and ξ∗i,j+1 for ∗ ∈ {P, I}. Note that in contrast to
Lemma 1 we replace Σ∗j,j+1 by Σ

(∗)
j,j+1, i.e., we set the upper index in brackets.

Lemma 3. Under Assumption 3 we have for ∗ ∈ {P, I}, 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

ξ∗i,j+1|Bj ∼ N
(
θ∗j+1 + (Σ

(∗)
j,j+1)′ Σ−1

[j]

(
ξi,[j] − θ[j]

)
, (s

(∗),post
j+1 )2

)
,

with (s
(∗),post
j+1 )2 = (s∗j+1)2 − (Σ

(∗)
j,j+1)′ Σ−1

[j] Σ
(∗)
j,j+1.

Proof. This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. �

The previous lemma shows that the conditional expectation of ξPi,j+1, given Bj , is linear in the
observations ξi,[j]. This will be crucial. An easy consequence of the previous lemma is the following
corollary for the special case of the log-link.

Corollary 2 (one-step ahead prediction for log-link). Under Assumption 3 we have prediction for
log-link g(x) = log x and for 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

E [Pi,j+1| Bj] = Pi,j exp
{
θPj+1 + (Σ

(P )
j,j+1)′ Σ−1

[j]

(
ξi,[j] − θ[j]

)
+ (s

(P ),post
j+1 )2/2

}
= fPj Pi,j γ

P
j (ξi,[j]) = E

[
Pi,j+1| BPj

]
γPj (ξi,[j]),

with for ∗ ∈ {P, I}

γ∗j (ξi,[j]) = exp
{
β∗j (ξi,[j])− (Σ

(∗)
j,j+1)′ Σ−1

[j] Σ
(∗)
j,j+1/2

}
,

β∗j (ξi,[j]) = (Σ
(∗)
j,j+1)′ Σ−1

[j]

(
ξi,[j] − θ[j]

)
.

Analogous statements hold true for incurred claims Ii,j+1.

The term γPj (ξi,[j]) gives the correction if we experience not only BPj but also BIj . This increased
information leads also to a reduction of prediction uncertainty of size

(sPj+1)2 7→ (s
(P ),post
j+1 )2 = (sPj+1)2 − (Σ

(P )
j,j+1)′ Σ−1

[j] Σ
(P )
j,j+1 ≤ (sPj+1)2.
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Example 1 (log-link). The analysis of the correction term γPj (ξi,[j]) is not straightforward. Therefore,
we consider an explicit example for the case J = 2 and j = 0, 1. In this case, the covariance matrix Σ

under Assumption 3 is given by

Σ = Σ[2] =



(sP0 )2 0 0 a0,0 a0,1 a0,2

0 (sP1 )2 0 a1,0 a1,1 a1,2

0 0 (sP2 )2 a2,0 a2,1 a2,2

a0,0 a1,0 a2,0 (sI0)2 0 0

a0,1 a1,1 a2,1 0 (sI1)2 0

a0,2 a1,2 a2,2 0 0 (sI2)2


.

• Case j = 0. We start the analysis for j = 0, i.e., given information B0.

Σ[1] =


(sP0 )2 0 a0,0 a0,1

0 (sP1 )2 a1,0 a1,1

a0,0 a1,0 (sI0)2 0

a0,1 a1,1 0 (sI1)2

 and Σ−1
[0] =

1

(sP0 s
I
0)2 − a2

0,0

(
(sI0)2 −a0,0

−a0,0 (sP0 )2

)
.

Moreover, Σ
(P )
0,1 = (0, a1,0)′. This provides credibility weight (αP[0])

′ ∈ R2 given by

αP[0] = (Σ
(P )
0,1 )′ Σ−1

[0] =
1

(sP0 s
I
0)2 − a2

0,0

(
− a1,0a0,0, a1,0(sP0 )2

)
,

and posterior variance

(s
(P ),post
1 )2 = (sP1 )2 − (Σ

(P )
0,1 )′ Σ−1

[0] Σ
(P )
0,1 = (sP1 )2 − (a1,0s

P
0 )2

(sP0 s
I
0)2 − a2

0,0

.

Observe that a1,0 = Cov(ξPi,1, ξ
I
i,0) is the crucial term in the credibility weight αP[0]. If these two random

variables ξPi,1 and ξIi,0 are uncorrelated, then a1,0 = 0 and we cannot learn from observation ξIi,0 to
improve prediction ξPi,1. The predictor for log-link g(x) = log x is given by

E [Pi,1| B0] = Pi,0 exp
{
θP1 + βP0 (ξi,[0]) + (s

(P ),post
1 )2/2

}
= fP0 Pi,0 γ

P
0 (ξi,[0]),

with

βP0 (ξi,[0]) = αP[0]

(
ξi,[0] − θ[0]

)
= − a1,0a0,0

(sP0 s
I
0)2 − a2

0,0

(
ξPi,0 − θP0

)
+

a1,0(sP0 )2

(sP0 s
I
0)2 − a2

0,0

(
ξIi,0 − θI0

)
.

Also remarkable is that observation ξPi,0 is used to improve the prediction of ξPi,1, though these two random
variables are uncorrelated under Assumption 3. This comes from the fact that if a0,0 6= 0 then ξPi,0 is used
to adjust ξIi,0.
• Case j = 1. This case is more involved. Set

b0,0 = (sI0)2 − a2
0,0/(s

P
0 )2 − a2

1,0/(s
P
1 )2, b0,1 = − a0,0a0,1/(s

P
0 )2 − a1,1a1,0/(s

P
1 )2,

b1,1 = (sI1)2 − a2
0,1/(s

P
0 )2 − a2

1,1/(s
P
1 )2,

c0,0 =
b0,1a0,1 − b1,1a0,0

(b0,0b1,1 − b2
0,1)(sP0 )2

, c0,1 =
−b0,0a0,1 + b0,1a0,0

(b0,0b1,1 − b2
0,1)(sP0 )2

,

c1,0 =
b0,1a1,1 − b1,1a1,0

(b0,0b1,1 − b2
0,1)(sP1 )2

, c1,1 =
−b0,0a1,1 + b0,1a1,0

(b0,0b1,1 − b2
0,1)(sP1 )2

.
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We have the following inverse matrix for Σ[1], see Appendix B for the full inverse matrix,

Σ−1
[1] =


∗ ∗ c0,0 c0,1

∗ ∗ c1,0 c1,1

c0,0 c1,0
b1,1

b0,0b1,1−b20,1
−b0,1

b0,0b1,1−b20,1
c0,1 c1,1

−b0,1
b0,0b1,1−b20,1

b0,0
b0,0b1,1−b20,1

 .

Moreover, Σ
(P )
1,2 = (0, 0, a2,0, a2,1)′ is the covariance vector between ξi,[1] and ξPi,2. This provides

credibility weight (αP[1])
′ = ((Σ

(P )
1,2 )′Σ−1

[1] )′ = Σ−1
[1] Σ

(P )
1,2 ∈ R4 given by

αP[1] =

(
a2,0c0,0 + a2,1c0,1, a2,0c1,0 + a2,1c1,1,

b1,1a2,0 − b0,1a2,1

b0,0b1,1 − b2
0,1

,
−b0,1a2,0 + b0,0a2,1

b0,0b1,1 − b2
0,1

)
,

and posterior variance

(s
(P ),post
2 )2 = (sP2 )2 − (Σ

(P )
1,2 )′ Σ−1

[1] Σ
(P )
1,2 = (sP2 )2 −

b1,1a
2
2,0 − 2b0,1a2,1a2,0 + b0,0a

2
2,1

b0,0b1,1 − b2
0,1

.

We again see that the crucial terms are a2,0 = Cov(ξPi,2, ξ
I
i,0) and a2,1 = Cov(ξPi,2, ξ

I
i,1). If these two

covariances are zero then incurred claims observation is not helpful to improve the prediction of ξPi,2.
Therefore, we assume that at least one of these two covariances is different from zero. The predictor for
the log-link g(x) = log x is given by

E [Pi,2| B1] = Pi,1 exp

{
θP2 + βP1 (ξi,[1]) + (s

(P ),post
2 )2/2

}
= fP1 Pi,1 γ

P
1 (ξi,[1]).

with

βP1 (ξi,[1]) = (a2,0c0,0 + a2,1c0,1)
(
ξPi,0 − θP0

)
+ (a2,0c1,0 + a2,1c1,1)

(
ξPi,1 − θP1

)
(9)

+
b1,1a2,0 − b0,1a2,1

b0,0b1,1 − b2
0,1

(
ξIi,0 − θI0

)
+
−b0,1a2,0 + b0,0a2,1

b0,0b1,1 − b2
0,1

(
ξIi,1 − θI1

)
.

Again ξPi,0 and ξPi,1 are used to adjust ξIi,0 and ξIi,1 through a0,0, a0,1 and a1,0, a1,1, respectively, which are
integrated into c0,0, c0,1 and c1,0, c1,1, respectively.

4. Munich Chain-Ladder Model

In Corollary 2, we have derived the best prediction under Assumption 3 for the log-link. This best
prediction is understood relative to the mean-square error of prediction, and it crucially depends on the
choice of the link function g. Since our model fulfills the chain-ladder model Assumption 1 for any link
function g according to Corollary 1, it can also be considered as the best prediction for given information
Bj in the distribution-free chain-ladder model for other link function choices g. The Munich chain-ladder
method tackles the problem from a different viewpoint in that it extends the distribution-free chain-ladder
model Assumption 1, so that it enforces the best prediction to have a pre-specified form. We define this
extended model in Assumption 4, below, and then study under which circumstances our distributional
model from Assumption 3 fulfills these Munich chain-ladder model assumptions. Define the residuals

ε
I|P
i,j =

Ii,j − E
[
Ii,j| BPj

]
Var

(
Ii,j| BPj

)1/2
and ε

P |I
i,j =

Pi,j − E
[
Pi,j| BIj

]
Var

(
Pi,j| BIj

)1/2
.
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The adapted Munich chain-ladder assumptions of Quarg and Mack [1] are given by:

Assumption 4 (Munich chain-ladder model). Assume in addition to Assumption 1 that there exist
constants λP , λI ∈ (−1, 1) such that for 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ J

E [Pi,j+1| Bj] = fPj Pi,j + λP Var
(
Pi,j+1| BPj

)1/2
ε
I|P
i,j ,

and
E [Ii,j+1| Bj] = f Ij Ii,j + λI Var

(
Ii,j+1| BIj

)1/2
ε
P |I
i,j .

Remark 2. The idea behind these additional assumptions is that one corrects for high and low
incurred-paid and paid-incurred ratios via the residuals ε

I|P
i,j and ε

P |I
i,j because, for instance for

cumulative payments, we have

ε
I|P
i,j =

Ii,j − E
[
Ii,j| BPj

]
Var

(
Ii,j| BPj

)1/2
=

Ii,j
Pi,j
− E

[
Ii,j
Pi,j

∣∣∣BPj ]
Var

(
Ii,j
Pi,j

∣∣∣BPj )1/2
=
Q−1
i,j − E

[
Q−1
i,j

∣∣BPj ]
Var

(
Q−1
i,j

∣∣BPj )1/2
,

with incurred-paid ratio Q−1
i,j = Ii,j/Pi,j . Therefore, the additional assumptions in Assumption 4

exactly provide PQ and IQ of Quarg and Mack [1]. If we choose the log-link for Assumption 3
then the incurred-paid ratio Q−1

i,j is turned into a difference on the log scale, that is, log(Q−1
i,j ) =

log Ii,j− logPi,j =
∑j

l=0 ξ
I
i,l−

∑j
l=0 ξ

P
i,l. The aim of this section is to analyze under which circumstances

these Munich chain-ladder corrections lead to the optimal predictors provided in Corollary 2. Below we
will see that the constants λP and λI are crucial, they measure the (positive) correlation between the
cumulative payments and the incurred-paid ratio correction (and similarly for incurred claims), see also
Section 2.2.2 in [1]. Moreover, λP and λI receive an explicit meaning in Theorem 3, below.

The tower property of conditional expectations E[Pi,j+1|BPj ] = E[E[Pi,j+1|Bj]|BPj ] implies under
Assumption 4

E [Pi,j+1| BPj
]

= fPj Pi,j + λP Var
(
Pi,j+1| BPj

)1/2 E
[
ε
I|P
i,j

∣∣∣BPj ] = fPj Pi,j.

Therefore, Assumption 4 does not contradict Assumption 1. As mentioned in Remark 2,
we now analyze Assumption 4 from the viewpoint of the multivariate (log-)normal chain-ladder
model of Assumption 3. We therefore need to analyze the correction term defined in the Munich
chain-ladder model

λP Var
(
Pi,j+1| BPj

)1/2
ε
I|P
i,j = λPσPj Pi,j ε

I|P
i,j , (10)

and compare it to the optimal correction term obtained from Lemma 3 and Corollary 2, respectively. We
start with log-link g(x) = log x and then provide the general result in Theorem 2, below. For the log-link
we have representation of incurred claims

Ii,j = νi exp

{
j∑
l=0

ξIi,l

}
. (11)

Therefore, for εI|Pi,j we need to determine the conditional distribution of
∑j

l=0 ξ
I
i,l, given ξPi,[j].
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Lemma 4. Under Assumption 3, we have

j∑
l=0

ξIi,l|BPj ∼ N

(
j∑
l=0

θIl + (aI0:j)
′ (ΣP

[j]

)−1 (
ξPi,[j] − θP[j]

)
, (sI,post

0:j )2

)
,

with covariance vector aI0:j = (
∑j

l=0 a0,l, . . . ,
∑j

l=0 aj,l)
′ ∈ Rj+1 for A = (ak,l)0≤k,l≤J , and posterior

variance (sI,post
0:j )2 =

∑j
l=0(sIl )

2 − (aI0:j)
′
(

ΣP
[j]

)−1

aI0:j .

Proof. This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. �

Example 2 (log-link). We consider log-link g(x) = log x. In this case, we have from Equation (11) and
using Lemma 4 for the residual of the correction term

ε
I|P
i,j =

exp{
∑j

l=0 ξ
I
i,l} − E

[
exp{

∑j
l=0 ξ

I
i,l}
∣∣∣BPj ]

Var
(

exp{
∑j

l=0 ξ
I
i,l}
∣∣∣BPj )1/2

=

exp

{∑j
l=0(ξIi,l − θIl )− (aI0:j)

′
(

ΣP
[j]

)−1 (
ξPi,[j] − θP[j]

)
− (sI,post

0:j )2/2

}
− 1(

exp
{

(sI,post
0:j )2

}
− 1
)1/2

.

This implies for the Munich chain-ladder model Assumption 4, we also use Equation (7),

fPj Pi,j + λPVar
(
Pi,j+1| BPj

)1/2
ε
I|P
i,j = fPj Pi,j + λPσPj Pi,j ε

I|P
i,j = fPj Pi,j γ

P,MCL
j (ξi,[j]),

with Munich chain-ladder correction factor defined by

γP,MCL
j (ξi,[j]) = 1 + λP

√
e(sPj+1)2 − 1

e(sI,post0:j )2 − 1

(
e
∑j

l=0(ξIi,l−θ
I
l )−(aI

0:j)′(ΣP
[j])
−1

(ξPi,[j]−θP[j])−
(s

I,post
0:j

)2

2 − 1

)
. (12)

We analyze this Munich chain-ladder correction factor for j = 1. It is given by

γP,MCL
1 (ξi,[1]) = 1 + λP

√
e(sP2 )2 − 1

e(sI,post0:1 )2 − 1
(13)

×

e(ξIi,0−θI0)+(ξIi,1−θI1)−
a0,0+a0,1

(sP0 )2
(ξPi,0−θP0 )−

a1,0+a1,1

(sP1 )2
(ξPi,1−θP1 )−

(s
I,post
0:j

)2

2 − 1

 .

We compare this to the best prediction under Assumption 3 in the case j = 1 characterized by
Equation (9) and under the additional assumptions that a2,0 = 0 and a2,1 6= 0. In this case we obtain
from Equations (7) and (9) correction term

γP1 (ξi,[1]) = exp

(
βP1 (ξi,[1])−

b0,0a
2
2,1

2(b0,0b1,1 − b2
0,1)

)
= exp

{
a2,1

b0,0b1,1 − b2
0,1

[
−b0,1

(
ξIi,0 − θI0

)
+ b0,0

(
ξIi,1 − θI1

)]
(14)

+a2,1

[
c0,1

(
ξPi,0 − θP0

)
+ c1,1

(
ξPi,1 − θP1

)]
−

b0,0a
2
2,1

2(b0,0b1,1 − b2
0,1)

}
.
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Note that Equations (13) and (14) differ. This can, for instance, be seen because all terms in the sum∑j
l=0(ξIi,l − θIl ) in γP,MCL

1 (ξi,[1]) are equally weighted, whereas for the best predictor we consider a
weighted sum −b0,1(ξIi,0 − θI0) + b0,0(ξIi,1 − θI1) in γP1 (ξi,[1]). We conclude that, in general, Assumption 3
does not imply that the Munich chain-ladder model Assumption 4 is fulfilled.

The (disappointing) conclusion from Example 2 is that within the family of models fulfilling
Assumption 3 with log-link g(x) = log x there does not exist (a general) interesting example satisfying
the Munich chain-ladder model Assumption 4. Exceptions can only be found for rather artificial
covariance matrices Σ, for instance, a choice with A = 0 would fulfill the Munich chain-ladder model
Assumption 4. But this latter choice is not of interest because it requires λP = λI = 0 (which does not
support the empirical findings of [1] that these correlation parameters should be positive). The result of
Example 2 can be generalized to any link function as the next theorem shows.

Theorem 2. Assume that cumulative payments Pi,j and incurred claims Ii,j fulfill Assumption 3 for
a given continuous and strictly increasing link function g : R+ → R with limx→0 g(x) = −∞ and
limx→∞ g(x) =∞. In general, this model does not fulfill the Munich chain-ladder model Assumption 4,
except for special choices of Σ.

Proof. The optimal one-step ahead prediction for given link function g is given by, see also Lemma 3,

E [Pi,j+1| Bj] = Pi,jE
[
g−1

(
ξPi,j+1

)∣∣Bj] ,
with

ξPi,j+1|Bj ∼ N
(
θPj+1 + (Σ

(P )
j,j+1)′ Σ−1

[j]

(
ξi,[j] − θ[j]

)
, (s

(P ),post
j+1 )2

)
.

From the latter, we observe that observation ξIi,[j] is considered in a linear fashion c′ξIi,[j] for an
appropriate vector c ∈ Rj+1, which typically is different from zero (for A 6= 0) and which does not
point into the direction of (1, . . . , 1)′ ∈ Rj+1, i.e., we consider a weighted sum of the components of
ξIi,[j] (with non-identical weights).

On the other hand, the correction terms from the Munich chain-ladder assumption for a given link
function g are given by, see also Equation (10),

λPσPj Pi,j ε
I|P
i,j = λPσPj Pi,j

g−1(νi)
∏j

l=0 g
−1(ξIi,l)− E

[
Ii,j| BPj

]
Var

(
Ii,j| BPj

)1/2

= λPσPj Pi,j
g−1(νi) exp

{∑j
l=0 log

(
g−1(ξIi,l)

)}
− E

[
Ii,j| BPj

]
Var

(
Ii,j| BPj

)1/2
.

Thus, the only link function g which considers the components of ξIi,[j] in a linear fashion is the
log-link g(x) = log x. For the log-link we get

λPσPj Pi,j ε
I|P
i,j = λPσPj Pi,j

exp
{
νi +

∑j
l=0 ξ

I
i,l

}
− E

[
Ii,j| BPj

]
Var

(
Ii,j| BPj

)1/2
.

From this we see that all components of ξIi,[j] are considered with identical weights, and, therefore,
it differs from the optimal one-step ahead prediction (if the latter uses non-identical weights). This is
exactly what we have seen in Example 2 and proves the theorem. �



Risks 2015, 3 635

In Theorem 4.1 of [3], the Munich chain-ladder structure has been found as a best linear
approximation to E [Pi,j+1| Bj] in the following way

Êlinear [Pi,j+1| Bj] = argmin
X=c1Pi,j+c2Ii,j ; c1,c2∈L(BPj )

E
[
(X − Pi,j+1)2

∣∣BPj ] (15)

= fPj Pi,j + Corr
(
Pi,j+1, Ii,j| BPj

)
Var

(
Pi,j+1| BPj

)1/2
ε
I|P
i,j ,

where L(BPj ) is the space of BPj -measurable random variables. Note that this approximates the exact
conditional expectation E [Pi,j+1| Bj] and it gives an explicit meaning to parameter λP ∈ (−1, 1) (which
typically is non-constant in j), see also Section 2.2.2 in [1].

Theorem 3 (approximation error of MCL predictor). Under Assumption 3 and the log-link choice
g(x) = log x we have approximation error for the Munich chain-ladder predictor Êlinear [Pi,j+1| Bj]
given by the difference

Êlinear [Pi,j+1| Bj]− E [Pi,j+1| Bj] = fPj Pi,j

(
γP,MCL
j (ξi,[j])− γPj (ξi,[j])

)
,

where γP,MCL
j (ξi,[j]) is given in Equation (12) with λP replaced by Corr(Pi,j+1, Ii,j|BPj ) and γPj (ξi,[j]) is

given in Corollary 2.

Proof. This proof follows from Example 2. �

Remark 3. In Theorem 2, we have seen that, in general, the Munich chain-ladder model Assumption 4
is not fulfilled for chain-ladder models satisfying Assumption 3. If, nevertheless, we would like to
use an estimator that has Munich chain-ladder structure, we should use it in the sense of best-linear
approximation Equation (15) to the best prediction E [Pi,j+1| Bj]. Theorem 3 gives the approximation
error of this approach for the log-link choice.

5. The Modified Munich Chain-Ladder Method

In the sequel, we concentrate on the model of Assumption 3 with log-link function g(x) = log x.
This provides the chain-ladder model specified in the second part of Theorem 1 and the one-step ahead
prediction given in Corollary 2. The issues that we still need to consider are the following: (i) We
would like to extend the one-step ahead predictions to get the predictions of Pi,J and Ii,J , i.e., the final
values of each accident year i = 1, . . . , J ; (ii) Typically, model parameters are not known and need to be
estimated; (iii) We should specify the prediction uncertainty. In order to achieve these goals, we choose
a Bayesian modeling framework.

We remark that we consider tasks (ii) and (iii) in a Bayesian framework which turns out to be rather
straightforward. Alternatively, one could also consider these questions from a frequentist’s viewpoint.
In this case, (ii) is solved by maximum likelihood estimation and (iii) can be assessed either with
bootstrap methods or by (asymptotic) results for maximum likelihood estimates. Our experience is that
in many cases these different assessments lead to rather similar values if one uses non-informative priors
in the Bayesian approach.
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Assumption 5 ((Bayesian) modified Munich chain-ladder model). Choose log-link g(x) = log x and
assume the following: There is given a fixed covariance matrix Σ of the form Equation (8) having
positive definite Schur complements SP[J ] and SI[J ].

• Conditionally, given parameter vector Θ = (ΘP
0 , . . . ,Θ

P
J ,Θ

I
0, . . . ,Θ

I
J)′, the random vectors Ξi

are independent for different accident years i = 0, . . . , J with

Ξi|Θ ∼ N (Θ,Σ) .

• The parameter vector Θ has prior distribution

Θ ∼ N (θ, T ) ,

with prior mean θ ∈ R2(J+1) and symmetric positive definite prior covariance matrix
T ∈ R2(J+1)×2(J+1).

We first merge all accident years i = 0, . . . , J to one random vector

Ξ = (Ξ′0, . . . ,Ξ
′
J)′,

which has conditional distribution
Ξ|Θ ∼ N

(
BΘ,Σ+

)
,

for an appropriate matrix B ∈ R2(J+1)2×2(J+1) and covariance matrix Σ+ = diag(Σ, . . . ,Σ). The
following lemma is crucial, we refer to Corollary 4.3 in [6].

Lemma 5. Under Assumption 5 the random vector ζ = (Ξ′,Θ′)′ has a multivariate Gaussian
distribution given by

ζ =

(
Ξ

Θ

)
∼ N

(
µ =

(
Bθ

θ

)
, S =

(
Σ+ + BTB′ BT

TB′ T

))
.

An easy consequence of Lemma 5 is the following marginal distribution

Ξ ∼ N
(
Bθ,Σ+ + BTB′

)
.

This shows that, in the Bayesian multivariate normal model with Gaussian priors, we can completely
“integrate out” the hierarchy of parameters Θ. However, we keep the hierarchy of parameters in order
to obtain Bayesian parameter estimates for Θ.

Denote the dimension of ζ by n = 2(J + 1)2 + 2(J + 1). Choose t, v ∈ N with t + v = n.
Denote by Pt ∈ Rt×n and Pv ∈ Rv×n the projections such that we obtain a disjoint decomposition of the
components of ζ

ζ 7→ (ζt, ζv) = (Ptζ, Pvζ) . (16)

The random vector (ζ ′t, ζ
′
v)
′ has a multivariate Gaussian distribution with expected values

µt = E [ζt] = Ptµ and µv = E [ζv] = Pvµ,

and with covariance matrices

St = Cov (ζt) = PtSP
′
t , Sv = Cov (ζv) = PvSP

′
v, S ′v,t = St,v = Cov (ζt, ζv) = PtSP

′
v.

The projections in Equation (16) only describe a permutation of the components of ζ. In complete
analogy to Lemma 1 we have the following lemma.
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Lemma 6. Under Assumption 5, the random vector ζv|{ζt} has a multivariate Gaussian distribution with
the first two conditional moments given by

µpost
v = E [ζv| ζt] = µv + Sv,t (St)

−1 (ζt − µt) ,
Spost
v = Cov (ζv| ζt) = Sv − Sv,t (St)

−1 St,v.

This lemma allows us to estimate the parameters and calculate the predictions at time J , conditionally
given observations

DPJ = {Pi,j; 0 ≤ i ≤ J, 0 ≤ j ≤ J ; i+ j ≤ J} ,
DIJ = {Ii.j ; 0 ≤ i ≤ J, 0 ≤ j ≤ J ; i+ j ≤ J} ,
DJ = DPJ ∪ DIJ .

Choose t = |DJ | and v = n − t and denote by Pt the projection of ζ onto the components ξPi,j
and ξIi,j with i + j ≤ J . These are exactly the components that generate information DJ . Lemma 6
allows us to calculate the posterior distribution of ζv, conditionally given DJ . We split this calculation
into two parts, one for parameter estimation and one for claims prediction. We consider therefore the
following projection

PΘ ∈ R2(J+1)×v with PΘζv = Θ.

This projection extracts the parameter vector Θ from the unobserved components ζv.

Corollary 3 (parameter estimation). Under Assumption 5, the Bayesian estimator for the parameter
vector Θ is at time J given by

θpost = E [Θ| DJ ] = PΘµ
post
v .

This can now be compared to the individual estimates

θ(∗),post = E [Θ| D∗J ] , (17)

where for ∗ ∈ {P, I} we either condition on DPJ or on DIJ .

6. Claims Prediction and Prediction Uncertainty

For the prediction of the total claim amount of accident year i, we have two different possibilities,
either we use the predictor of cumulative payments Pi,J or the one of incurred claims Ii,J . Naturally, these
two predictors differ and the Munich chain-ladder method exactly aims at diminishing this difference
by including the incurred-paid and paid-incurred ratios, see Remark 2 and [1]. Choose the log-link
g(x) = log x, then we calculate for i = 1, . . . , J the best predictors

E [Pi,J | DJ ] = Pi,J−i E

[
exp

{
J∑

l=J−i+1

ξPi,l

}∣∣∣∣∣DJ
]
,

and

E [Ii,J | DJ ] = Ii,J−i E

[
exp

{
J∑

l=J−i+1

ξIi,l

}∣∣∣∣∣DJ
]
.
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Assume again that ζt exactly corresponds to the observations in DJ . Then we define for i = 1, . . . , J

and ∗ ∈ {P, I} the linear maps

G∗i ∈ R1×v with G∗i ζv =
J∑

l=J−i+1

ξ∗i,l.

This is the sum of the unobserved components of accident year i at time J for cumulative payments
and incurred claims, respectively.

Theorem 4 (modified Munich chain-ladder (mMCL) predictors). Under Assumption 5, the Bayesian
predictors for the total claim amount of accident year i = 1, . . . , J at time J are

P̂mMCL
i,J = E [Pi,J | DJ ] = Pi,J−i exp

{
GPi µ

post
v + GPi S

post
v (GPi )′/2

}
,

and
ÎmMCL
i,J = E [Ii,J | DJ ] = Ii,J−i exp

{
GIiµ

post
v + GIiS

post
v (GIi )

′/2
}
.

The conditional mean-square error of prediction is given by

msep∑J
i=1 Pi,J |DJ

(
J∑
i=1

P̂mMCL
i,J

)
= Var

(
J∑
i=1

Pi,J

∣∣∣∣∣DJ
)

=
J∑

i,k=1

P̂mMCL
i,J P̂mMCL

k,J

(
exp

{
GPi S

post
v (GPk )′

}
− 1
)
,

and analogously for incurred claims msep∑J
i=1 Ii,J |DJ

(
∑J

i=1 Î
mMCL
i,J ).

This can now again be compared to the individual predictors

P̂HCL
i,J = E

[
Pi,J | DPJ

]
and ÎHCL

i,J = E
[
Ii,J | DIJ

]
, (18)

and the corresponding conditional mean-square errors of prediction. Note that these individual predictors
correspond to the predictors in the model of Hertig [7] under Gaussian prior assumptions for the
(unknown) mean parameters. Predictors and prediction uncertainty of Equation (18) can (easily) be
obtained from Theorem 4 using the particular choice A = 0 in Σ.

Before we give a numerical example, we briefly describe these predictors. The likelihood function of
Assumption 5 is given by

L(Ξ,Θ) =
1

(2π)2(J+1)2/2 det(Σ+)1/2
exp

{
−1

2
(Ξ− BΘ)′ (Σ+)−1(Ξ− BΘ)

}
× 1

(2π)2(J+1)/2 det(T )1/2
exp

{
−1

2
(Θ− θ)′ T−1(Θ− θ)

}
.

Under the additional assumption of diagonal matrices

Σ = diag
(
(sP0 )2, . . . , (sPJ+1)2, (sI0)2, . . . , (sIJ+1)2

)
, (19)

T = diag
(
(tP0 )2, . . . , (tPJ+1)2, (tI0)2, . . . , (tIJ+1)2

)
,
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we obtain log-likelihood (we drop all normalizing constants)

logL(Ξ,Θ) ∝ −1

2

J∑
j=0

[
J∑
i=0

(
ξPi,j −ΘP

j

)2

(sPj )2
+

(
ΘP
j − θPj

)2

(tPj )2
+

J∑
i=0

(
ξIi,j −ΘI

j

)2

(sIj )
2

+

(
ΘI
j − θIj

)2

(tIj )
2

]
.

From this, we see that the Bayesian estimators of the parameters are for j = 0, . . . , J and ∗ ∈ {P, I}
under Equation (19) given by, see also Corollary 3,

E
[
Θ∗j
∣∣DJ] = z∗j Θ̂

∗
j + (1− z∗j )θ∗j ,

with prior mean θ∗j , and empirical mean Θ̂∗j and credibility weight z∗j given by

Θ̂∗j =
1

I − j + 1

J−i∑
i=0

ξ∗i,j and z∗j =
J − i+ 1

J − i+ 1 + (σ∗j/t
∗
j)

2
.

If we now let the prior information become non-informative, i.e., t∗j →∞, we obtain estimate

lim
t∗j→∞

E
[
Θ∗j
∣∣DJ] = Θ̂∗j , (20)

and posterior variances (σ∗j )
2/(J − i+ 1). In view of Theorem 4, this provides under Equation (19) and

in the non-informative prior limit

lim
tPj →∞

P̂mMCL
i,J = Pi,J−i

J∏
j=J−i+1

exp

{
Θ̂P
j +

(σPj )2

2

(
1 +

1

J − i+ 1

)}
= Pi,J−i

J−1∏
j=J−i

f̂Pj , (21)

where the latter identity defines the chain-ladder parameter estimates f̂Pj for our model. This is exactly
the chain-ladder predictor obtained in Hertig’s log-normal chain-ladder model, see formula (5.9) in [7].
The corresponding result also holds true for incurred claims under Equation (19).

As was investigated by Quarg and Mack [1], see also Remark 2 above and Figure 1 below, we
expect positive dependence between cumulative payment residuals and incurred-paid ratios (and between
incurred claims residuals and paid-incurred ratios). This will be reflected by a covariance matrix choice
Σ that does not have diagonal form Equation (19) but a general off-diagonal matrix A in Equation (8)
such that the Schur complements are positive definite (see Assumption 5). In this case, the best
predictors are provided by Theorem 4. They do not have a simple form (though their calculation is
straightforward using matrix algebra). We will compare these predictors to the Munich chain-ladder
predictors Equation (15) which are non-optimal in our context (see Theorem 3).

7. Example

We provide an explicit example which is based on the original data of Quarg and Mack [1], the data
is provided in the appendix. We calculate for this data set Hertig’s chain-ladder (HCL) reserves
according to Equations (18) and (21), the reserves in the modified Munich chain-ladder (mMCL)
method of Theorem 4 and the (non-optimal) log-normal Munich chain-ladder (LN–MCL) reserves
Equation (15) (according to Assumption 4). These reserves are based on the Bayesian multivariate
log-normal framework of Assumption 5 with log-link g(x) = log x. For comparison purposes, we also
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provide the classical chain-ladder (CL) reserves together with the Quarg and Mack Munich chain-ladder
reserves (QM–MCL); these two latter methods differ from our results because of the different variance
assumption in Assumption 1. In order to have comparability between the different approaches, we choose
non-informative priors tPj , t

I
j →∞ in the former Bayesian methods, see also Equations (20) and (19).

First, we need to estimate the parameters in the log-normal model of Assumption 5. For sPj and sIj ,
we choose the sample standard deviations of the observed log-link ratios ξPi,j and ξIi,j , i+ j ≤ J , with the
usual exponential extrapolation for the last period j = 6. Using these sample estimators, we calculate
the posterior means θ(P ),post

j and θ(I),post
j using Corollary 3 under choice A = 0. In the non-informative

prior limit, these posterior means are given by Equation (21) (and similarly for incurred claims). This
then allows one to calculate Hertig’s chain-ladder parameters f̂Pj and f̂ Ij , see Equation (21). These
parameters are provided in Table 1. Note that these chain-ladder factors differ from the ones in the
classical chain-ladder model because of the different variance assumptions.

Table 1. Sample standard deviations sPj and sIj ; posterior means θ(P ),post
j and θ

(I),post
j

obtained from Corollary 3, see also Equation (21); and Hertig’s chain-ladder estimates f̂Pj
and f̂ Ij according to Equation (21).

a.y. i/d.y. j 0 1 2 3 4 5 6

θ
(P ),post
j 7.2195 0.9163 0.1203 0.0296 0.0216 0.0205 0.0137
sPj 0.4972 0.1600 0.0515 0.0069 0.0036 0.0101 0.0036

f̂Pj 1,573 2.5376 1.1296 1.0301 1.0219 1.0208 1.0138

θ
(I),post
j 7.8404 0.5151 0.0137 0.0003 0.0115 −0.0090 −0.0037
sIj 0.5182 0.1503 0.0406 0.0146 0.0022 0.0180 0.0022

f̂ Ij 2,963 1.6959 1.0148 1.0004 1.0116 0.9912 0.9963

Using these parameters, we calculate the HCL reserves (prediction minus the last observed cumulative
payments Pi,J−i at time J), and for comparison purposes we provide the classical CL reserves. These
results are provided in Table 2. The main observation is that there are quite substantial differences
between the HCL reserves from cumulative payments of 6,205 and the HCL reserves from incurred
claims of 7,730, see Table 2. This also holds true for the classical CL reserves 5,938 versus 7,503.
This gap mainly comes from the last accident year i = 6 because incurred claims observation I6,0 is
comparably high. We also note that the HCL reserves are more conservative than the classical CL ones.
This mainly comes from the variance correction that enters the mean of log-normal random variables,
see Equation (21).

To bridge this gap between the cumulative payments and the incurred claims methods we study the
other reserving methods. We start with the LN–MCL method under the log-normal assumptions of
Assumption 4. First we determine the correlation parameters. We use the estimators of Section 3.1.2
in [1] with changed variance functions. This provides estimates λ̂P = 49% and λ̂I = 45%. Note that
this exactly corresponds to the positive linear dependence illustrated in Figure 1; Quarg and Mack [1]
obtain under their (changed) variance assumption 64% and 44%, respectively, which is in line with
our findings. Using these estimates we can then calculate the reserves in our LN–MCL method and in



Risks 2015, 3 641

Quarg-Mack’s QM–MCL method. The results are provided in Table 2. We observe that the gap between
the cumulative payments reserves of 6,729 and the incurred claims reserves of 7,140 becomes more
narrow due to the correction factors. The same holds true for QM–MCL with reserves 6,847 and 7,120,
respectively. Moreover, both models LN–MCL and QM–MCL provide rather close results, though their
model assumptions differ in the variance assumption.

Table 2. Resulting reserves from the Hertig’s chain-ladder (HCL) method based on paid
and incurred; from the log-normal Munich chain-ladder (LN–MCL) method based on paid
and incurred; from the modified Munich chain-ladder (mMCL) paid method; the classical
chain-ladder (CL) method based on paid and incurred (inc.); and the Quarg and Mack
Munich chain-ladder (QM–MCL) method paid and incurred.

HCL LN-MCL mMCL CL QM-MCL
a.y. i

paid inc. paid inc. paid paid inc. paid inc.

1 32 97 35 95 16 32 97 35 96
2 157 92 92 147 115 158 88 103 135
3 337 286 262 346 375 332 276 269 326
4 416 201 289 330 382 408 191 289 302
5 925 459 656 688 906 924 466 646 655
6 4,339 6,594 5,395 5,534 5,130 4,084 6,385 5,505 5,606

total 6’205 7’730 6’729 7’140 6’924 5’938 7’503 6’847 7’120

Figure 1. (lhs) Incurred-paid residuals obtained from Q−1
i,j = Ii,j/Pi,j , see Remark 2,

versus claims payments residuals obtained from Pi,j+1, straight line has slope λ̂P = 49%;
(rhs) paid-incurred residuals obtained from Qi,j = Pi,j/Ii,j versus incurred claims residuals
obtained from Ii,j+1, straight line has slope λ̂I = 45%.
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Finally, we study the modified Munich chain-ladder method mMCL of Assumption 5, see Theorem 4.
We therefore need to specify the off-diagonal matrix A = (ak,l)0≤k,l≤J , see Equation (8). A first idea
to calibrate this matrix A is to use correlation estimate λ̂P = 49% from the LN-MCL method. A crude
approximation using Theorem 3 provides

49% = λ̂P ≈ Corr
(
Pi,j+1, Ii,j| BPj

)
≈

∑j
k=0 aj+1,k

σPj+1

(∑j
k=0(σIk)

2
)1/2

=

∑j
k=0 Corr(ξPi,j+1, ξ

I
i,k)σ

I
k(∑j

k=0(σIk)
2
)1/2

.

From this, we see that in our numerical example we need comparatively high correlations, for
instance, Corr(ξPi,j+1, ξ

I
i,k) ≥ 40% would be in line with λ̂P = 49%. The difficulty with this choice

is that the resulting matrix Σ of type Equation (8) is not positive definite. Therefore, we need to choose
smaller correlations. We do the following choice for all i, j ≥ 0

Corr(ξPi,j+m, ξ
I
i,j) =


40% for m = 1,
30% for m = 2,
20% for m = 3,

(22)

and 0% otherwise. This provides a positive definite choice for Σ of type Equation (8) in our example.
This choice means that we can learn from incurred claims observations ξIi,j (which relate to residuals
ε
I|P
i,j ) for cumulative payments observations ξPi,j+m with development lags m = 1, 2, 3, but no other

conclusions can be drawn from other observations. Note that, in this example, we only use correlation
choices Equation (22), but no similar choice for Corr(ξIi,j+m, ξ

P
i,j) is done. The reason is that if we choose

positive correlations for the latter, in general, Σ is not positive definite. This shows that requirement
Equation (8) is rather restrictive and we expect that data usually does not satisfy Assumption 1, because
both plots in Figure 1 show a positive slope.

The resulting mMCL reserves

R̂mMCL
i = P̂mMCL

i,J − Pi,J−i,

according to Theorem 4, are provided in Table 2. Correlation choice Equation (22) means that we learn
from incurred claims, which are above average for accident year i = 6. This substantially increases the
mMCL reserves based on cumulative payments to 6’924. Note that we do not provide the values for
incurred claims: positive definiteness of Σ restricts Corr(ξIi,j+m, ξ

P
i,j) = 0 (under Equation (22)) which

implies that we obtain almost identical values to the HCL incurred reserves for ÎmMCL
i,J − Pi,J−i.

Finally, we analyze the prediction uncertainty measured by the square-rooted conditional mean square
error of prediction. The results are provided in Table 3.

The prediction uncertainties of the HCL reserves and of the mMCL reserves were calculated
according to Theorem 4. For the former (HCL reserves), we simply need to set A = 0. We see that the
uncertainties in the modified version for cumulative payments are reduced from 1’249 to 1’208 because
correlations Equation (22) imply that we can learn from incurred claims for cumulative payments. For
incurred claims, they remain (almost) invariant because of choices ak,l = 0 for k < l.
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We can now calculate the prediction uncertainty for the LN–MCL method (which is still an open
problem). Within Assumption 5, we know that the mMCL predictor is optimal, therefore, we obtain
prediction uncertainty for the LN–MCL method

msep∑
i Pi,J |DJ

(∑
i

P̂MCL
i,J

)
= msep∑

i Pi,J |DJ

(∑
i

P̂mMCL
i,J

)
+

(∑
i

P̂MCL
i,J −

∑
i

P̂mMCL
i,J

)2

, (23)

and similarly for incurred claims. The second term in Equation (23) is the approximation error because
the LN–MCL predictor is non-optimal within Assumption 5.

Table 3. Resulting reserves and square-rooted conditional mean square error of prediction
of the different chain-ladder methods. ∗ is calculated from Equation (23).

Reserves msep1/2

Hertig’s chain-ladder HCL paid 6,205 1,249
Hertig’s chain-ladder HCL incurred 7,730 1,565

log-normal Munich chain-ladder LN–MCL paid 6,729 1,224∗

log-normal Munich chain-ladder LN–MCL incurred 7,140 1,673∗

modified Munich chain-ladder mMCL paid 6,924 1,208
modified Munich chain-ladder mMCL incurred 7,730 1,565

classical chain-ladder CL paid 5,938 994
classical chain-ladder CL incurred 7,503 995

Quarg-Mack Munich chain-ladder QM–MCL paid 6,847 n/a
Quarg-Mack Munich chain-ladder QM–MCL incurred 7,120 n/a

To resume, the modified Munich chain-ladder method for cumulative payments and under assumption
Equation (8) provides in our example, claims reserves that are between the HCL paid and the HCL
incurred reserves (as requested). Moreover, it provides the smallest prediction uncertainty among the
methods based on multivariate normal distributions. This is because, in contrast to the HCL paid and
HCL incurred methods, it simultaneously considers the entire information DJ , and because there is no
bias (approximation error) compared LN–MCL paid and LN–MCL incurred. These conclusions are
always based on the validity of Assumption 5 which is the weakness of the method because real data
typically requires different covariance matrix choices than Equation (8).

8. Conclusions

We have studied the Munich chain-ladder axioms of Quarg and Mack [1] under the moment
assumptions of Assumption 1. In a multivariate log-normal modeling framework, this provides rather
restrictive covariance matrix Σ requirements, see Equation (8), so that Assumption 1 is simultaneously
fulfilled for cumulative payments and incurred claims. For instance, a reasonable choice of Σ for the
data of Quarg and Mack [1] will differ from structure Equation (8), see Section 7 where a simultaneous
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choice of Equation (22) for cumulative payments and a similar choice for incurred claims would lead to
a covariance matrix Σ that is not positive definite.

If Equation (8) holds, then there exists a consistent Munich chain-ladder framework, see
Assumption 3, for which we can analyze claims reserves and their prediction uncertainty, see Theorem 4.
Moreover, the Munich chain-ladder predictor is non-optimal in this framework, see Theorem 2, and the
approximation error is provided in Theorem 3.
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Appendix

A. Data of Quarg and Mack [1]

Table A1. Observed cumulative payments Pi,j , i+ j ≤ 6, source Quarg and Mack [1].

a.y. i/d.y. j 0 1 2 3 4 5 6

0 576 1,804 1,970 2,024 2,074 2,102 2,131
1 866 1,948 2,162 2,232 2,284 2,348
2 1,412 3,758 4,252 4,416 4,494
3 2,286 5,292 5,724 5,850
4 1,868 3,778 4,648
5 1,442 4,010
6 2,044

Table A2. Observed incurred claims Ii,j , i+ j ≤ 6, source Quarg and Mack [1].

a.y. i/d.y. j 0 1 2 3 4 5 6

0 978 2,104 2,134 2,144 2,174 2,182 2’174
1 1,844 2,552 2,466 2,480 2,508 2,454
2 2,904 4,354 4,698 4,600 4,644
3 3,502 5,958 6,070 6,142
4 2,812 4,882 4,852
5 2,642 4,406
6 5,022
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B. Inverse Matrix Σ[1]

Consider the matrix

Σ[1] =


(sP0 )2 0 a0,0 a0,1

0 (sP1 )2 a1,0 a1,1

a0,0 a1,0 (sI0)2 0

a0,1 a1,1 0 (sI1)2

 .

Set

b0,0 = (sI0)2 − a2
0,0/(s

P
0 )2 − a2

1,0/(s
P
1 )2,

b1,1 = (sI1)2 − a2
0,1/(s

P
0 )2 − a2

1,1/(s
P
1 )2,

b0,1 = −a0,0a0,1/(s
P
0 )2 − a1,1a1,0/(s

P
1 )2.

The inverse matrix of Σ[1] is given by

(
Σ[1]

)−1
=


1

(sP0 )2
+

b0,0a20,1−2b0,1a0,0a0,1+b1,1a20,0
(b0,0b1,1+b20,1)(sP0 )4

b0,0a0,1a1,1−b0,1(a0,0a1,1+a1,0a0,1)+b1,1a1,0a0,0
(b0,0b1,1−b20,1)(sP0 )2(sP1 )2

b0,1a0,1−b1,1a0,0
(b0,0b1,1−b20,1)(sP0 )2

−b0,0a0,1+b0,1a0,0
(b0,0b1,1−b20,1)(sP0 )2

b0,0a0,1a1,1−b0,1(a0,0a1,1+a1,0a0,1)+b1,1a1,0a0,0
(b0,0b1,1−b20,1)(sP0 )2(sP1 )2

1
(sP1 )2

+
b0,0a21,1−2b0,1a1,1a1,0+b1,1a21,0

(b0,0b1,1+b20,1)(sP1 )4
b0,1a1,1−b1,1a1,0

(b0,0b1,1−b20,1)(sP1 )2
−b0,0a1,1+b0,1a1,0

(b0,0b1,1−b20,1)(sP1 )2

b0,1a0,1−b1,1a0,0
(b0,0b1,1−b20,1)(sP0 )2

b0,1a1,1−b1,1a1,0
(b0,0b1,1−b20,1)(sP1 )2

b1,1
b0,0b1,1−b20,1

−b0,1
b0,0b1,1−b20,1

−b0,0a0,1+b0,1a0,0
(b0,0b1,1−b20,1)(sP0 )2

−b0,0a1,1+b0,1a1,0
(b0,0b1,1−b20,1)(sP1 )2

−b0,1
b0,0b1,1−b20,1

b0,0
b0,0b1,1−b20,1

 .
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