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Abstract Spatial derivatives of the seismic wave
field are known to be sensitive to various site
effects (e.g., cavity effects, topography, and ge-
ological inhomogeneities). In this study, the fo-
cus is on strain rotation coupling that can cause
significant differences between point measure-
ments compared to array-derived rotational mo-
tions. The strain rotation coupling constants are
estimated based on finite element simulations for
inhomogeneous media as well as for the 3D topog-
raphy around Wettzell, Germany (the location of
the G ring laser). Using collocated array and ring
laser data, the coupling constants of the ring laser
itself are shown to be small. Several examples are

M. van Driel · J. Wassermann · M. F. Nader · H. Igel
Department of Earth and Environmental Sciences,
Ludwig-Maximilians-University,
Munich, Germany

B. S. A. Schuberth
Université de Nice Sophia-Antipolis,
Centre National de la Recherche Scientifique
(UMR 6526), Observatoire de la Côte d’Azur,
Géoazur, Les Lucioles 1, Sophia Antipolis,
250 Rue Albert Einstein, 06560
Valbonne, France

Present Address:
M. van Driel (B)
Institute of Geophysics, ETH Zurich,
Zurich, Switzerland
e-mail: vandriel@erdw.ethz.ch

shown to illustrate the order of magnitude that
strain-induced rotation might have on the seismo-
grams in the near field of volcanoes as well as in
the far field and in the low-frequency spectrum
(free oscillations).
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1 Introduction

Measuring the rotational component of the seis-
mic wave field is more challenging than it may
appear at first glance: To this day, there is no
sensor commercially available that suits the needs
of the different branches in seismology, i.e., strong
and weak motion seismology. Although this might
change in the near future, studies carried out so
far either used prototypes or large observatory
installations (e.g., Schreiber et al. 2009, 2006, 2003;
Nigbor 1994; Graizer 2009; Dunn et al. 2009;
Igel et al. 2007; Suryanto et al. 2006), sensors
with questionable reliability as the Eentec R1/R2
(e.g., Bernauer et al. 2012; Nigbor et al. 2009;
Wassermann et al. 2009; Evans et al. 2010), or
seismic array methods (e.g., Langston 2007a, b, c;
Spudich et al. 1995; Spudich and Fletcher 2009;
Suryanto et al. 2006). This study will show that
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array-derived rotational observations might have
intrinsic differences to direct point measurements.

1.1 Point measurements

Several physical principals have been used to di-
rectly measure rotations, among which are multi-
pendulums (e.g., Graizer 2009), liquid filled tori
(e.g., Nigbor et al. 2009), and optical gyros
(e.g., Schreiber et al. 2009). Rigidly attaching
a three-component rotational sensor to a three-
component seismometer would allow for measur-
ing all six degrees of freedom of this rigid body
and thus for recovering its complete trajectory
(Lin et al. 2010). In seismology, it is normally
valid to assume the rotation angles to be “small”
and neglect second-order terms. Therefore, the
dominant effect of rotations on translational seis-
mograms is the changing projection of gravity
onto the horizontal seismometer components due
to tilt (Graizer 2010). Correcting seismograms for
this tilt effect can be done if the effective tilt
of the seismometer is measured with appropriate
accuracy.

1.2 Array measurements

Another approach to measure rotational motions
are seismic arrays: Sampling the wave field in
adjacent locations, it is possible to estimate the full
spatial gradient of the wave field (at the free sur-
face, see Spudich et al. 1995; Spudich and Fletcher
2009; Suryanto et al. 2006), i.e., rotation as well as
normal and shear strain. The method is based on
the assumption that the deformation is linear over
the array area. Local site effects at single stations
are neglected and averaged out if enough stations
are used. Due to these site effects and in contrast
to point measurements, arrays do not necessarily
measure the rotation of the single stations and can
thus not be used for tilt correction.

Spudich et al. (1995) and Spudich and Fletcher
(2008, 2009) present a method to solve the in-
volved linear problem including a thorough error
analysis. Their Matlab code has been translated to
the Python scripting language (www.python.org)
and included in the ObsPy toolbox (Beyreuther
et al. 2010; Megies et al. 2011).

2 Site effects in the measurement of spatial
derivatives of the displacement field

Several studies have shown that the spatial deriv-
atives of the displacement field are strongly
affected by site effects, i.e., cavity and topogra-
phy effects as well as geological inhomogeneities
(e.g., Harrison 1976; Gomberg and Agnew 1996;
Berger and Beaumont 1976; Kohl and Levine
1995). In strong-motion seismology, the observed
rotational motions often exceed those expected
for homogeneous linear estimates by a factor of
10 or even more. This is likely to be caused
by strong near surface heterogeneities and the
strong-motion siting standards (John R. Evans,
pers. comm.). For the rotational component of
the wave field (i.e., the antisymmetric part of the
gradient), one important site effect is strain ro-
tation coupling (SRC), also called strain-induced
rotation.

2.1 Strain rotation coupling

Strain rotation coupling is a locally acting site
effect, which converts strain on a large scale
(wavelength of the seismic wave field) to rotation
on a local scale. Assuming linear elasticity for the
subsurface structure and for small deformations
(in the sense that the small angle approximation
is valid), this effect is also linear and the cou-
pling constants can be defined as (Harrison 1976;
Wielandt and Forbriger 1999):

cij = ω j

εi
= strain-induced rotation around j-axis

strain component i
(1)

Both strain and rotation are dimensionless and
therefore the coupling constants as well.

Following Cochard et al. (2006, Eq. (7)), at the
free surface, the normal strain perpendicular to
the surface is a linear combination of the normal
stresses parallel to it. Additionally, shear stress in
planes perpendicular to the surface is zero, so the
strain tensor has three degrees of freedom only:
the two horizontal normal strains and horizontal
shear strain (which will be denoted in the coupling
constants with index S).

Few authors have tried to estimate coupling
constants so far, among which are Harrison

http://www.python.org
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(1976), who found values of up to 1.5 for the cou-
pling constants in 2D simulations on large struc-
tures (east–west section of the Rocky Mountains).
Lambotte et al. (2006) used earth tide simulations
and data to determine coupling constants for GNI,
MAJO, and BFO stations and found maximum
values up to 0.8 at BFO for normal strain and 1.4
for shear strain. Wielandt and Forbriger (1999) es-
timated coupling constants of up to 0.3, comparing
tilts estimated with a relation between horizontal
and vertical seismograms by assuming a volumet-
ric point source (Mogi 1958) to finite differences
of the vertical components of two seismometers at
Stromboli volcano (Italy). Comparing the results
of two field experiments, they conclude that most
of the local (point measured) tilt was controlled by
the instrument installation procedure.

2.2 Simulating coupling constants
for inhomogeneous media

In this section, the aim is to quantify the strain
rotation coupling effect of inhomogeneities on the
scale of the size of the seismometer foundation
that are often found for example at seismic sta-
tions installed in volcanic environments. In the
seismic wave equation for linear elastic inhomoge-
neous media (e.g., Nolet 2008, Eq. 2.42), the time-
dependent term can be neglected, assuming that
the domain of interest (the site of the seismome-
ter) is small compared to the seismic wavelength:
The boundary conditions then change orders of
magnitude slower than the model adapts to them.
The instantaneous differential equation governing

the deformation of the site, using the strain of the
wave field as boundary condition, then reads:

∇·[μ (∇u+(∇u)T)]+∇ (λ∇ · u)=ρ
∂2u
∂t2

≈ 0 (2)

Here λ and μ denote the Lamè parameters, ρ the
density, the superscript T is the transpose, and ∇
the Del operator.

Using the escript/finley PDE solver module for
Python (Gross et al. 2007a, b), this equation can
be solved numerically using the preconditioned
conjugate gradient method. The model (see Fig. 1)
consists of a cuboid two-phase medium, generated
by clipping a Gaussian random medium: First, a
3D array of normally distributed random numbers
is generated and low-pass-filtered at the desired
correlation length (e.g., Yoon 2005). Next, the
absolute value is clipped at 20% of the maximum
amplitude and interpolated to the mesh.

The baseplate of the seismometer has a bulk
modulus of λ = 50 GPa and an artificially high
shear modulus of μ = 1,000 GPa to prevent it
from bending. This causes the rotation to be
constant over the baseplate. The size of the do-
main was chosen empirically to be larger than
8 and smaller than 20 correlation lengths of the
Gaussian medium; the mesh consists of 166,400
hexahedrons. Tests with 25% larger domain and
25% higher mesh resolution showed no significant
influence on the results.

In post-processing, the rotation is computed as
antisymmetric part of the gradient and averaged
over the baseplate. Using the definition (Eq. 1),
an estimate of the coupling constants cxx, cxy,
and cxz is obtained. Doing so for many randomly

Fig. 1 Sample 3D
random model(
3 × 3 × 1 m3), right:

imposed normal strain
εxx = 10−6, deformation
exaggerated by a factor of
105, local rotations caused
by inhomogeneities
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Fig. 2 Histograms of
coupling constants for 150
random models as in
Fig. 1, strain in x-direction
and rotation around x, y,
and z, respectively,
standard deviations are
0.09, 0.15, and 0.48

generated ground models, a symmetrical distribu-
tion with zero mean is obtained (see Fig. 2). The
width (standard deviation) is thus characteristic
for the coupling that can be expected for the input
parameter set.

2.3 Statistical analysis

To investigate the parameter space more system-
atically, it is necessary to reduce the number of
parameters—not only to reduce computational
cost but also to get a more general solution. In
addition, it is impossible to simulate the coupling
constants for a specific site because of the limited
knowledge of the local subsurface structure. The
aim of this study is an order of magnitude estima-
tion for the width of the distributions rather than
exact numbers for specific models.

The model presented above needs a few es-
sential parameters: the Lamé constants of the
medium (λ1, λ2, μ1, μ2), the correlation length (a),
and the (quadratic) plate size (l). All other para-
meters (model size, mesh spacing, etc.) are chosen
such that they do not influence the results in first
order.

The first strict assumption is λ = μ. It is obvious
that multiplying μ (and hence λ) by a constant fac-

tor does not change the solution u of Eq. 2, if the
boundary conditions are formulated as imposed
strain (Dirichlet). This motivates the definition
of the dimensionless contrast δ := μ1−μ2

μ1
. Scaling

the whole model, keeping the ratio of correlation
length a and plate size l and additionally the
strain constant, all angles and hence the coupling
constants remain the same. The two lengths can
therefore be replaced by the length parameter a

l .
The results of this parameter study are pre-

sented in Fig. 3 for the normal strain in the x-
axis: Each pixel represents at least 40 randomly
distributed models with a symmetric distribution
of coupling constants as in Fig. 2. The color scale
shows the standard error as a measure of the width
of these distributions as a function of dimension-
less contrast and the length parameter. The statis-
tic error of the standard error as an estimation for
the standard deviation is 1/

√
2N ≈ 12%, which is

acceptable as we are only interested in the order
of magnitude.

The standard deviations for normal strain in
y and for shear strain can be derived from the
results for strain in x without the need for further
simulations: Normal strain in y causes the same
distributions as in x for symmetry reasons. Shear
strain can be written as the sum of perpendicular

Fig. 3 Results of the
statistical analysis in the
reduced parameter space:
estimates of the standard
deviation of the
distribution of coupling
constants. The coupling
constants for shear strain
can be derived on this
basis analytically (see
text)
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normal strains with same magnitude but oppo-
site signs (rotation of the coordinates of 45◦).
Assuming the coupling constants to be normally
and independently distributed, the sum is hence
again normally distributed with the variance being
the sum of the two variances (standard deviation
squared).

For rotation around z-axes, this results in a
factor of

√
2 in the standard deviation of the cou-

pling constants of shear strain. For the horizontal
components, the sum of the squares is dominated
by the larger constant for perpendicular axes of
rotation and strain, and it is hence on the same
order of magnitude.

In general, the coupling constants are the
largest for rotation around Z and for perpendic-
ular axes of strain and tilt. Furthermore, they are
the larger, the larger the correlation length and
the contrast of the elastic constants (under the as-
sumptions stated above and within the parameter
space studied). Also it is an important result that
SRC due to inhomogeneity is likely to be negligi-
ble for short correlation lengths or small contrasts,
hence for many applications. Large contrasts can,
for example, be expected at volcanoes or young
fluvial sediments, where values of up to 0.7 to 0.98
(e.g., volcanic Breccia or Tuff in combination with
unconsolidated Ash) can be reached.

2.4 Simulating coupling constants for 3D
topography

With the same numerical approach as above,
strain rotation coupling due to 3D topography
can be estimated. The example presented here
consists of the topography around the G ring laser
in Wettzell (Germany), a large observatory instal-
lation originally intended for geodetical use only
that has also been used for rotational seismology
in the past years (Schreiber et al. 2006; Igel et al.
2007; Suryanto et al. 2006; Kurrle et al. 2010;
Nader et al. 2012).

The model consists of a homogeneous 5 × 5 ×
3.1-km3 cuboid with the topography of Wettzell
area on top (25 m resolution, DGM-D model of
the German Federal Agency for Cartography and
Geodesy). The tetrahedral mesh has a resolution
of 15 m at the surface and 200 m in the bulk,
the Young’s modulus is E = 68.8 GPa, and the

Poisson ratio is ν = 0.28. The boundary condi-
tions are set to a free surface on the top; the
other surfaces are free to move in parallel and
are fixed in normal direction. Strain (normal and
shear) is imposed as Dirichlet boundary condition,
and the coupling constants for each element are
computed. The numerical accuracy of the single
element values was estimated to be better than
0.05 on the basis of a simulation with 2.5D topog-
raphy but same mesh parameters, where four of
the coupling constants are expected to be zero.

Figure 4 shows all nine coupling constants
(three strains times three rotation axis) projected
onto the topography model as color scale. The G
ring laser location in the center is marked with
the green cones. As the ring laser is sensitive to
rotation around the z-axes, the last row is the most
relevant.

The results show that for the horizontal compo-
nents of rotations, the coupling is the strongest for
perpendicular axes of rotation and strain. It is on
the order of 0.4 for large areas and reaches local
maxima above 1.0 in the southwest corner, where
topography is the roughest. For the vertical com-
ponent, values are generally smaller and largest
for shear strain (which is not surprising because
shear strain is equivalent to simultaneous normal
strain on two perpendicular axes, see above).

The ring laser site happens to be right in
local minima of absolute values for all three
constants of rotation around the z-axis. Numer-
ical values averaged over all elements within
100 m radius around the ring laser site (356 el-
ements) are cxz = −0.016 ± 0.012, cyz = 0.021 ±
0.010, and csz = 0.02 ± 0.04, where the error es-
timates are the standard deviations of the values
within the same radius. It appears by coincidence
that topography does not cause large strain rota-
tion coupling at the site, but inhomogeneity on a
smaller scale or geometry of the monument and
vault (not included in the model) could still cause
the same effect. This can only be revealed by the
real G ring laser data.

2.5 Estimating coupling constants for the G ring
laser in Wettzell, Germany

The instrument setup used by Suryanto et al.
(2006) (collocated seismic array and rotational
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Fig. 4 Wettzell area, 5 ×
5 km: Strain rotation
coupling constants cij as
defined in Eq. 1 for
normal strain in x
(east–west, left), y
(north–south, center) and
horizontal shear strain
(right) coupling into
rotation around x-, y-,
and z-axis (top to bottom)
simulated for a
homogeneous medium
with topography (25 m
resolution, DGM-D
model of the German
Federal Agency for
Cartography and
Geodesy), ring laser site
is marked with green
cones. Upper colorbar for
the upper six models,
lower colorbar for the
lower three

sensor) allows to estimate the coupling constants
with a method similar to the one described and
used on earth tide tilt data by Lambotte et al.
(2006). Assuming that the point rotation mea-
sured by the ring laser ωRL

Z equals the rotation
averaged over the array area ωA

Z plus the strain
rotation coupling:

ωRL
Z = ωA

Z + εA
N cNZ + εA

S cSZ + εA
E cEZ . (3)

The coupling constants can then be estimated
by solving the overdetermined linear problem in a
least squares sense:

d = Gm ⇒ m ≈ (
GTG

)−1
GTd, (4)

where di = ωRL
Z (ti) − ωA

Z (ti), Gij = εA
j (ti) and m =

(cEZ , cSZ , cNZ )T . For earthquake data, it is im-
portant to use the residual of array derived and
point rotation and not the point rotation itself
because the rotation around Z -axes is highly cor-
related with the shear strain for the Love waves,
which causes non-unique solutions for the cou-
pling constants otherwise.

The method by Spudich and Fletcher (2009)
estimates rotation and strain as well as their co-
variance matrix from the array data. The variance
of the array and the ring laser data is estimated
as the variance of the signals 100 s before P-
wave arrival. As not only d but also G is based
on measurements and not exactly known, the
bootstrapping approach is used to estimate the
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Fig. 5 Rotational
seismograms for the
February 24th, 2006, M
6.3 Al Hoceima, Morocco
event: ring laser (RL)
compared to array
derived rotation (ADR),
bandpass filtered
0.03–0.3 Hz. Lower trace
is a zoom on the
maximum amplitudes

errors of the inversion result m: The inversion is
performed 10,000 times where each time random
noise according to the covariance matrix from the
array measurement plus the variance of the ring
laser is added to d and G. The distribution of the
results m then gives an estimate for the errors of
the inversion.

Applying this method to the seismic data in
Fig. 5 (time window of the upper trace) yields rela-
tively small values: cEZ = −0.011 ± 0.015, cNZ =
0.023 ± 0.027, and cSZ = 0.037 ± 0.031. This is
in agreement with the simulations above in the
sense that the values coincide within their er-
rors and the estimates are all small compared
to what would be expected on average for the
given topography. This also manifests itself in
the high correlation (xcorr = 0.96) and low RMS
difference (6% in the time window of the lower
trace in Fig. 5) between the two measurement
methods.

3 Strain rotation coupling effect on rotational
seismograms

Whether or not strain-induced rotation is a large
effect on rotational seismograms depends not
only on the coupling constants but also on the
relative magnitude of strain and rotation (radi-
ation pattern, source receiver distance, seismic
phases). This will be illustrated in the examples
below.

3.1 Near-field of active volcanoes

Recently, Maeda et al. (2011) proposed a method
to include tilt in the Green’s functions in the
moment tensor inversion at volcanoes. Besides
the numerical problems they mention, the ques-
tion arises, whether precise forward simulations of
tilt are possible in volcanic environments, where
inhomogeneities and rough topography are of-
ten present and thus strain-induced rotation can
be a significant contribution to the rotational
seismograms.

The first example deals with synthetic ro-
tational seismograms simulated for a homoge-
neous velocity model (vp = 3 km/s, vs = 1.5 km/s,
ρ = 2,200 kg/m3) including topography of Mt.
Merapi volcano (Java, Indonesia), see Fig. 6
(DEM by Gerstenecker et al. 1999, with 45 m
resolution, smoothed with a 225-m kernel), and
the stations are a subset of a deployed seismic
network (Wassermann and Ohrnberger 2001).

The computational domain consists of a cuboid
of 10 × 10 × 3 km3 with the Merapi topography
on top (free surface at the top and absorbing
boundaries at the other surfaces). The model was
meshed with hexahedrons of edge length 300 m
in the volume and refined to 100 m at the surface
for better topography approximation. The spec-
tral element method (SPECFEM3D, see Peter
et al. (2011) and the references therein) is used to
generate the seismograms. The source time func-
tion consists of a Ricker wavelet with width 1 s
and amplitude 1.27 × 1012 Nm (Mw = 2.0); source
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Fig. 6 Mt. Merapi
topography model and
station locations. DEM
with 45 m resolution by
Gerstenecker et al.
(1999), smoothed with a
225-m kernel

mechanism is an isotropic point source located at
2,000 m height under the summit (2,970 m).

The gradient of the wave field is estimated
using a 3D six point stencil of stations, each sta-
tion in 1 m distance of the translational station
in direction of the coordinate axes. Strain and
rotation are then computed as the symmetric and
antisymmetric part of the gradient.

As topography is included in the model, the
possible causes of strain rotation coupling are
inhomogeneities and small-scale topography that
is not resolved by the mesh (mesh spacing at
the surface is 100 m and the topography model
had to be significantly smoothed for hexahedral
meshing). Figure 7 shows the normalized synthetic
rotational seismograms, pure rotation as output of
the simulation (black), and with additional strain
induced rotation (gray) for 50 realizations of ran-
dom coupling constants.

Based on the previous considerations, all nine
coupling constants (see Section 2.1) are assumed
to be normally distributed. The standard devia-
tions are chosen σ⊥ = σZ = σS = 0.2 (for normal
strain coupling into rotation perpendicular to the
strain, for all strains coupling into rotation around

the z-axis, and for shear strain coupling into all
three components of rotation, respectively) and
σ‖ = 0.1 (for parallel normal strain and rotation
axes).

The effect is larger than 50% average RMS
(i.e., mean of RMS of the single traces) on the
Z component of all stations and up to 314% on
the Z -component of GMR. On the horizontal
components, the effect is smaller, about 10–20%
for most stations, but still reaches the extreme
value of 97% for the X-component of LBH. In
general, the magnitude of the effect at each station
also depends on the radiation patterns, which can
be different for rotations and strains (not in this
example, due to the isotropic source).

3.2 Far-Field

The second example deals with synthetic
rotational seismograms recorded in Wettzell,
Germany, for the M6.3 Al Hoceima, Morocco,
earthquake (great circle distance 18.5◦ or
2,058 km). The seismograms were calculated
with SPECFEM3D_GLOBE (Komatitsch and
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Fig. 7 Normalized synthetic rotational seismograms for an
isotropic point source at Mt. Merapi volcano, Indonesia.
Clean signal (black) and 50 random realizations of strain
rotation coupling effect on the rotational seismograms

(gray); numbers at each traces are maximum amplitudes
in radians and RMS errors averaged over the 50 traces;
(X, Y, Z ) corresponds to (south, east, up)

Tromp 2002a, b) down to 10 s period using the
tomographic mantle model S20RTS and crustal
model CRUST2.0 and including the effects of
attenuation (1D), topography, ocean loading,
ellipticity, earth rotation, and self-gravitation.
Rotations and strains are calculated using the

array with stations WET and S1–S4 as in Suryanto
et al. (2006).

Figure 8 shows the clean seismograms and 50
traces with additional strain-induced rotations.
The coupling constants are normally distributed
with standard deviation σ‖ = 0.1 and σ⊥ = 0.3 for

Fig. 8 Synthetic
rotational seismograms
for the M6.3 Al Hoceima,
Morocco, earthquake,
clean (black), and with 50
realizations of random
coupling constants,
low-pass-filtered at 20 s.
TRZ denotes transverse,
radial, and up component;
RMS denotes the root
mean square error
averaged over the 50
seismograms in the time
window shown. Lowest
trace zoom into the
P-coda of the
rZ-component
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Fig. 9 Amplitude spectrum for rotation around z-axis
for 36 h of synthetic data for the M9.0 Tohoku, Japan,
earthquake recorded in Wettzell, Germany. Pure rotation
with main peaks at toroidal modes (vertical lines mark 0Ti

modes); strain rotation coupling (here constants are chosen
cNZ = cEZ = −cSZ = 0.2) can cause additional peaks at
spheroidal modes (dashed lines mark 0Si modes)

the horizontal component, σZ = 0.2 for the nor-
mal strains into vertical component, and σS = 0.3
for all three rotational components.

The largest effects can be seen where the strains
are relatively large compared to the rotations:
SRC causes large errors in the rR-component (ro-
tation around horizontal axis pointing in direction
of the source), which has generally the smallest
amplitudes because it is neither sensitive to SH
nor to SV waves. Also, rotational signals in the P-
coda of the Z -component show up (this is not a
contradiction to Pham et al. 2009, who explain the
observed P-coda rotations with P to S scattering.
SRC can neither explain the correlation between
transverse acceleration and rotation rate around
Z -axis nor the flat distribution of backazimuths
shown in Figs. 4 and 8 in their paper).

Due to the large signals, the Z -component is
least affected in S and surface wave trains (which
are not well separated yet in the angular distance
of 18.5◦) but still has an average RMS of 19%.

3.3 Normal mode spectrum

Another effect of strain rotation coupling can
be seen in the low-frequency spectrum of rota-
tion around the Z -axes: Fig. 9 shows the ampli-
tude spectrum of 36 h of synthetic seismograms
generated with the MINEOS normal mode sum-
mation code (Masters et al. 2007) for the CMT
solution of the M9.1 Tohoku, Japan earthquake
recorded in Wettzell, Germany. Input model is the
spherical symmetric non-rotating earth (PREM).
The seismograms where recorded at four stations

arranged as a cross with diameter of 15 km, which
allows computation of rotation and stresses (de-
tails on the simulations, see Nader et al. 2012).

In the unperturbed rotation (RZ), the higher
peaks all correspond to toroidal eigenmodes.
Choosing the SRC constants to be cNZ = cEZ =
−cSZ = 0.2 (which is moderate in absolute value,
but the strains are highly correlated and the signs
are chosen such that they add up constructively
to show how large the effect could potentially
be) and adding the strain-induced rotation, the
synthetic spectrum (red in Fig. 9) shows that SRC
can cause additional peaks at frequencies corre-
sponding to spheroidal modes that are not ex-
pected in the unperturbed rotations: The strains
caused by Rayleigh waves that correspond to the
spheroidal modes are coupled into the rotation.
This effect might be relevant to understand the
coupling between spheroidal and toroidal modes
observed by Nader et al. (2012).

4 Conclusions

The results show that for tilt correction of horizon-
tal seismograms, point measurements of rotations
are necessary if SRC cannot be excluded. Array
derived rotation, as a measure of areal rotation
and strain, is not able to solve the problem be-
cause seismometer arrays then do not necessarily
measure the rotation of the individual seismome-
ters themselves. This also implies that forward
simulations of rotational motions that generally
do not include SRC can differ substantially from
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the actual measurements in regimes of large strain
rotation coupling. The effect of SRC onto the
moment tensor inversion scheme proposed by
Maeda et al. (2011) (i.e., including tilt into the
moment tensor inversion using simulated Green’s
functions for rotations) should be carefully
tested.

Studies that are mainly focusing on the rota-
tional component of the wave field (in contrast
to rotations of single stations) need to carefully
select the sites to exclude SRC or correct for it.
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