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Abstract

The numerical investigation of strongly correlated electron systems is a funda-
mental goal of modern condensed-matter systems. Unfortunately, standard meth-
ods to solve the many-body system have their limitations: straight-forward exact
the problem is only possible for a small number of sites, as the effort grows ex-
ponentially in the number of sites [1]. Standard lattice Monte Carlo methods fail,
as the sign problem [2, 3] makes low temperatures and large systems inaccessi-
ble. Other methods like the density-matrix renormalization group theory [4], are
limited to the ground state of (quasi) one-dimensional systems.

A useful and numerically feasible approach to treat fermionic systems in the
thermodynamic limit is the so-called dynamical mean field theory or DMFT. De-
velopment of this field started with the demonstration by Müller-Hartmann and
by Metzner and Vollhardt [5, 6] that the diagrammatics of lattice models of in-
teracting fermions simplifies dramatically in an appropriately chosen infinite di-
mensional (or infinite coordination) limit. This insight was developed by Georges,
Kotliar and co-workers [7, 8] who showed that if the momentumdependence of
the electronic self-energy may be neglected (Σ(p, ω) → Σ(ω)), as occurs in the
infinite coordination number limit, then the solution of thelattice model may be
obtained from the solution of a quantum impurity model plus aself-consistency
condition.

In this thesis, we explain recent algorithmic improvementsin the field of
fermionic lattice Monte Carlo solvers and their application. These novel solvers,
known as continuous-time solvers, are able to solve the impurity problems or-
ders of magnitude more efficiently than previous attempts [9] and therefore open
new horizons to the field. All impurity solvers described herein have been imple-
mented and tested thoroughly as part of this thesis, and one algorithm has been
newly developed [10].

We then apply these algorithms to physical problems: The four-site DCA
method of including intersite correlations in the dynamical mean field theory is
used to investigate the metal-insulator transition in the Hubbard model. At half
filling a gap-opening transition is found to occur as the interaction strength is in-
creased beyond a critical value. The gapped behavior found in the 4-site DCA
approximation is shown to be associated with the onset of strong antiferromag-
netic and singlet correlations and the transition is found to be potential energy
driven. It is thus more accurately described as a Slater phenomenon (induced by
strong short ranged order) than as a Mott phenomenon. Dopingthe gapped phase
leads to a non-Fermi-liquid state with a Fermi surface only in the nodal regions
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and a pseudogap in the antinodal regions at lower dopingsx ≲ 0.15 and to a Fermi
liquid phase at higher dopings.

A single-site dynamical mean field study of a three band modelwith the ro-
tationally invariant interactions appropriate to thet2g levels of a transition metal
oxide reveals a quantum phase transition between a paramagnetic metallic phase
and an incoherent metallic phase with frozen moments. The Mott transitions oc-
curring at electron densities n=2,3 per site take place inside the frozen moment
phase. The critical line separating the two phases is characterized by a self energy
with the frequency dependenceΣ(ω) ∼ √ω and a broad quantum critical regime.
The findings are discussed in the context of the power law observed in the optical
conductivity ofS rRuO3.

Finally, a simulation on Cerium using the realistic band structure and interac-
tion matrix is used to revisit the properties of theα - andγ - phase of Cerium.
Using LDA+DMFT-techniques we obtain spectra for the two phases and observe
the development of a Kondo resonance as well as crystal field splitting effects.

This thesis on continuous-time algorithms is arranged in two parts: the first
part presents algorithms and their implementation as well as an introduction to
the quantum mechanical framework needed to derive them. Thesecond part uses
these algorithms and applies them to problems in condensed matter physics.

The part on the continuous-time methods sets out with a description of the
dynamical mean field theory and partition function expansions. We present the
Monte Carlo method and show how it can be applied to the sampling of convergent
series with an infinite number of terms.

In the main part of the thesis, three “impurity solver” continuous-time algo-
rithms are presented. We set out with the description of the “weak coupling”
continuous-time algorithm by Rubtsovet al. that expands a Hamiltonian or action
in the interaction. We then present our recently developed continuous-time auxil-
iary field (CT-AUX) - algorithm that decouples the interaction using an auxiliary
Ising field. Finally, we derive the hybridization expansionalgorithm that is based
on an expansion in the hybridization between an impurity andits environment.

The application part consists of several independent parts: we first present a
comparison of the performance of continuous-time algorithms. Then we show
their application to a small cluster (2× 2 plaquette) and a 3-orbital model, and
finally we present some applications to “real materials”: within the framework of
LDA+DMFT the hybridization solver is used to compute the spectral function of
Cerium in theα andγ - phases.



Zusammenfassung

Die Erforschung von Systemen stark korrelierter Elektronen ist ein fundamenta-
les Problem der modernen Festkörperphysik. Standardmethoden zur Lösung des
Vielteilchenproblems sind stark limitiert: exakte Diagonalisierung ist nur für klei-
ne Systeme möglich, da der numerische Aufwand exponentiell in der Zahl der
berücksichtigten Teilchen wächst. Standard Gitter - Montecarlo - Methoden ver-
sagen, weil das Vorzeichenproblem tiefe Temperaturen und grosse Systeme un-
zugänglich macht. Andere Methoden, wie die DMRG, sind im Anwendungsbe-
reich eingeschränkt auf den Grundzustand (quasi-) eindimensionaler Systeme.

Eine Näherung, die für fermionische Systeme im thermodynamischen Li-
mes berechnen kann, ist die sogenannte dynamische Molekularfeldtheorie, oder
“DMFT”. Ursprünglich von Müller-Hartmann sowie spätervon Metzner und Voll-
hardt entwickelt, beruht sie auf der Tatsache, dass die Diagrammatik nichtwech-
selwirkender Fermionen sich im Limes unendlicher Koordinationszahl markant
vereinfacht. Diese Erkenntnis wurde darauf von Georges, Kotliar, et al. verwen-
det, um das Gitterproblem in diesem Limit unendlicher Dimension oder lokaler
Selbstenergie auf ein Störstellenproblem und eine Selbstkonsistenzgleichung ab-
zubilden.

In dieser Dissertation beschreiben wir algorithmische Entwicklungen im Ge-
biet der fermionischen Gitter-Monte Carlo-Algorithmen und Anwendungen da-
von. Diese neuen Algorithmen können das Störstellenproblem um Grössenord-
nungen schneller als alte Algorithmen lösen. Alle Störstellenprogramme, die hier
beschrieben sind, wurden im Rahmen der Dissertation implementiert und getestet,
und ein neuer Algorithmus wurde neu von uns entwickelt.

Wir wenden diese Algorithmen dann auf physikalische Probleme an. In der
vier-site DCA untersuchen wir den Metall-Isolator-Übergang im Hubbard - Mo-
dell. Wir finden eine Lücke, wenn die Wechselwirkunsgstärke über einen kriti-
schen Wert erhöht wird. Wir zeigen, dass dieses Verhalten mit dem Einsetzen
starker antiferromagnetischer Korrelationen zusammenf¨allt und von der potenti-
ellen Energie getrieben wird. Deshalb wird derÜbergang eher durch ein “Slater” -
Phänomen (d.h. durch kurzreichweitiges Verhalten bewirkt) beschrieben als durch
“Mott” - Verhalten. Wenn wir die gapped Phase dotieren, erhalten wir einen non-
Fermi-Liquid - Zustand, in dem die Fermifläche nur in den nodalen Regionen
liegt, und dessen antinodalen Regionen eine Pseudogap haben. Erhöhen wir die
Dotierung weiter, erhalten wir wieder das Fermi-Liquid - Verhalten.

Eine 1-Site Studie des Dreibandmodelles mit Wechselwirkungen, die rotatii-
onsinvariant im Spin- und Orbitalraum sind, zeigt einen Quantenphasenübergang
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zwischen einer paramagnetischen metallischen Phase und einem inkohärenten
Metall mit “frozen moments”. Der Mott-̈Ubergang für Elektronendichten von 2
oder 3 Elektronen pro Site findet innerhalb dieser “frozen moment” - Phase statt.
Die kritische Linie, die die beiden Phasen trennt, kann durch eine Selbstenergie-
Abhängigkeit vonΣ(ω) ∝ √ω in einem grossen Bereich des Quanten-kritischen
Gebietes beschrieben werden. Wir diskutieren diese Erkentnisse im Bezug auf das
Verhalten der optical conductivity vonS rRuO3.

Schliesslich integrieren wir eine realistische Bandstruktur und Wechselwir-
kungsmatrix, um die Eigenschaften vonα und γ - Cerium zu rechnen. Mit der
LDA+DMFT-Methoden berechnen wir das Spektrum der beiden Phasenbei ho-
hen und tiefen Temperaturen und finden die Kondoresonanz sowie Kristallfeld -
Effekte.

Diese Dissertation über fermionische Algorithmen ohne Zeitdiskretisierung
gliedert sich in zwei Hauptteile: einen Methodenteil, der die Algorithmen und ih-
re Implementierung vorstellt, und einen Resultateteil, der deren Anwendung auf
verschiedene Probleme der Festkörperphysik und die dabeigewonnen Erkennt-
nisse erklärt.

Der Methodenteil beginnt mit einer Einführung in die DMFT und in die Rei-
henentwicklung einer Wirkung. Wir erklären die Monte Carlo - Methode und zei-
gen, wie sie auf das Sampling von konvergenten Reihen mit unendlich vielen Ter-
men angewendet werden kann.

Im Hauptteil der Dissertation werden drei continuous-time- Algorithmen de-
tailliert hergeleitet: zuerst der sogenannte “weak coupling” - Algorithmus, der
eine Störungsreihe in der Wechselwirkung entwickelt und deshalb bei schwa-
cher Kopplung besonders effizient ist. Als zweites der von uns entwickelte
“continuous-time auxiliary field” - Algorithmus, der die Reihe ebenfalls in der
Wechselwirkung entwickelt und zur Entkopplung ein zusätzliches Ising-Hilfsfeld
benutzt. Und schliesslich der dazu komplementäre Hybridisierungalgorithmus,
der die Entwicklung im “Hüpfen” von Elektronen durchführt.

Der Anwendungsteil besteht aus einzelnen unabhängigen Teilen, die die An-
wendung der neuen Algorithmen auf physikalische Probleme zeigen. Einer Ver-
gleichsrechnung der verschiedenen Algorithmen folgt eineCluster-DMFT-Studie
und eine Anwendung für realistische Modelle von Materialien innerhalb der
“LDA +DMFT” - Methode, sowie eine Anwendung, die die volle Wechselwir-
kungsmatrix in einem Dreiorbitalmodell berücksichtigt.



Chapter 1

Introduction

The fundamental goal of condensed matter physics is the understanding of ma-
terial properties and phases of solids and liquids. Since the inception of the
field, enormously important discoveries with far-reachingconsequences have
been made – from the discovery of superconductivity by Kamerlingh Onnes in
1911, to applications of early quantum mechanics, the theory of metals by Fermi,
the discovery of high temperature superconductivity, and the recent Nobel prizes
in 2003 and 2007 that were awarded for research in this field. All this activity has
led condensed matter physics to become one of the largest fields in contemporary
physics, full of exciting open questions and opportunities.

For almost all materials in nature, a description within theframework of (ef-
fective) single particle quantum mechanics is sufficient. The major challenge,
however, arises from the infinite complexity that a system ofmanystrongly in-
teracting particles exhibits. While many single- and few-body problems can be
tackled either exactly or within well-controlled approximate methods, the behav-
ior of systems of a large number of correlated particles is ingeneral much more
complicated, and its understanding requires elaborate theories or computational
tools.

Nature has provided us with two distinct classes of particles: fermions and
bosons. Particles with half-integer spins, like electrons, belong into the first cate-
gory, while some atoms like4Heare bosonic. The fundamental difference between
the two is that the wave function of particles is even under the exchange of two
bosons, but odd under the exchange of fermions. The presenceof regions of the
wave function with opposite sign for fermions causes many computational algo-
rithms that are successful for bosons to fail for fermions. Thus, while bosons are
computationally tractable and systems of many strongly interacting bosons can
be solved up to almost arbitrary precision on today’s computers, even for tens of
thousands of particles, the simulation of strongly interacting fermionic systems is
still an open problem of great importance.

The electronic structure problem – the theory that describes how electrons in
a material interact with each other – is an important exampleof such a fermionic
problem. If we consider ions and electrons of a typical material, where the nuclei
are much heavier than the electrons, we can assume the atomicpositions to be
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fixed and employ the so-called Born-Oppenheimer approximation to obtain the
Hamiltonian of the electronic structure problem

H =
N

∑
i=1

(−h̵2

2m
∇2 +V(r i)) + e2∑

i< j

1
∣r i − r j ∣ , (1.1)

whereV(r j) describes the potential of the ions at the electron positions r j, ande
andm are charge and mass of the electrons.

The general solution of the Schrödinger equationHΨ = EΨ for this Hamilto-
nian is an open problem of enormous interest.

Over the years many successful approximations to Eqn. (1.1)have been devel-
oped, the most notable ones being the Fermi liquid theory andthe local density
approximation to the density functional theory [11, 12], for which the 1998 No-
bel prize in chemistry was awarded to Kohn. Density functional theory is an
exact theory based on two theorems by Hohenberg and Kohn, which state that
the ground state energy of a system in an external potential is a functional of that
potential and the ground state density with a universal functional, and that this
ground state density minimizes the functional. Thus instead of directly solving
the many-body Schrödinger equationHΨ = EΨ for Eqn. (1.1), the solution of a
mapping of the system onto a three-dimensional density is sufficient. The univer-
sal functional, however, is unknown and needs to be approximated. One popular
and very successful approach that works for most materials is the so-called lo-
cal density approximation or LDA, where the functional is written as a sum of
Coulomb, Hartree, and exchange terms and the exchange term is fitted to the one
of an electron gas.

In materials where correlations of electrons are weak, density functional the-
ory and the local density approximation are very successfuland manage to predict
experimental properties like the band structure of real materials to high accuracy.
Various improvements to it, like the local spin density approximation or the gen-
eralized gradient approximation have been developed [13].

All these approaches however share the weakness that the electronic correla-
tions are assumed to be small. For many interesting materials this approximation
is not valid – in fact it is the strong correlations that makesthese systems exhibit
interesting properties and phases. Typical materials of this field of strongly corre-
lated electron systems [14] include the cuprates, rare-earth systems, actinides, and
transition metal oxides. The features exhibited by materials with strong correla-
tion effects include metal-insulator transitions, magnetism, or superconductivity.

Physicists early on have been searching for model systems that are simpler
and easier to understand than the properties of real materials, but still capture the
essential properties and phases. One of the possible simplifications is the mapping
of the continuum problem (1.1) onto a lattice model that consists of a truncated
number of basis states and a Hamiltonian that has electron hopping and interaction
terms. In second quantized form:

H = −∑
i j

ti j a
†
iσa jσ + 1

2
∑

i jklσσ′
Vi jkl a

†
iσa†

kσ′alσ′a jσ. (1.2)
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Besides the limitation to a truncated basis set, we can further limit the interaction
termsV we allow in Eqn. (1.2). One popular choice that is often considered is the
so-called Hubbard model [15], where only the largest contributions of (1.2) are
kept. Vi jkl is restricted to the on-site Coulomb repulsionViiii = U andti j to purely
nearest neighbor hopping:

H = − ∑
⟨i j⟩,σ

ti j(c†
iσcjσ + c†

jσciσ) +U∑
i

ni↑ni↓. (1.3)

At largeU and low temperatures, away from half filling, we obtain thetJ-model
[16, 17] by preventing double occupancy and thereby limiting the number of avail-
able states per site to three. In the half-filled insulating state, Eqn. (1.3) simplifies
to the quantum Heisenberg model.

Even the solution of such a simplified model presents a serious challenge,
apart from the one-dimensional case where an exact solutionexists [18, 19]. The
solution therefore has to resort to approximate analyticalor numerical methods.
Limiting ourselves to a lattice with finite extent we can explicitly build the Hamil-
tonian matrix for a small number of sites and diagonalize it on a computer, obtain-
ing eigenvalues and eigenstates. This method, known as “exact diagonalization”
or ED [20], is exact but limited to few sites, as the size of theHilbert space (and
therefore the size of the matrix to be diagonalized) grows exponentially with the
number of sites. For one-dimensional systems like chains orladders, the density
matrix renormalization group theory [21, 22, 4, 23] provides an efficient vari-
ational method for the solution. While extensions to two-dimensional systems
have been proposed [24, 25, 26, 27, 28], it is not clear at the moment how well
they work [29]. Other approaches, like the mapping of the Hamiltonian onto a
stochastic differential equation [30, 31] and its integration or the straight-forward
Monte Carlo integration of the partition function expansion of the lattice model
are still being developed [32, 33].

It is therefore important to have approximate methods that are able to capture
the interesting correlation physics of the model, while being analytically or numer-
ically tractable. The dynamical mean field theory describedin chapter 2, where
(1.2) is mapped onto a quantum impurity problem that is numerically solvable, is
believed to be such a method. Its important property is that it becomes exact both
for very weak and very strong interaction, is exact in infinite dimensions, and able
to provide solutions in the intermediate regime.

In this thesis, we explain recent algorithmic improvementsin the field of
fermionic Monte Carlo solvers and their application. Thesenovel solvers, known
as continuous-time solvers, are able to solve the impurity problems orders of mag-
nitude more efficiently than previous attempts [9] and therefore open new horizons
to the field. All impurity solvers described herein have beenimplemented and
tested thoroughly as part of this thesis, and one additionalalgorithm has been
newly developed [10].

The thesis starts out with a general introduction to the DMFTfor the reader
who is not familiar with the subject. Then partition function expansions, the basis
for the diagrammatic quantum Monte Carlo impurity solvers,are explained. Af-
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terward we introduce three impurity solver algorithms: theweak coupling solver
[34], the continuous-time auxiliary field solver [10], and the hybridization expan-
sion solver [35].

The second part of this thesis contains applications of the impurity solvers.
First a performance comparison [9], then applications to plaquettes [36], real ma-
terials [37], and larger clusters. Some numerical tricks are explained in the ap-
pendix.



Chapter 2

Dynamical Mean Field Theory
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Figure 2.1: Illustration of the DMFT self consistency loop

This thesis describes continuous-time lattice and impurity solver algorithms
for fermions, which can in principle be studied without the application to the dy-
namical mean field theory, or DMFT. However, almost all results presented here
have been obtained by applying a DMFT self-consistency. We therefore give a
short introduction to the subject and refer the interested reader to an introductory
article [38], an extensive review on the subject [8], as wellvarious lecture notes
and reviews on electronic structure [39, 40, 41] and clusterDMFT [42] applica-
tions. We follow [8, 9] for most of the description.
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2.1 Single Site DMFT

The numerical investigation of strongly correlated electron systems is a funda-
mental goal of modern condensed-matter systems. Unfortunately, standard meth-
ods to solve the many-body system have limitations, as described in chapter 1:
straight-forward exact diagonalization of the problem is only possible for a small
number of sites, as the effort grows exponentially in the number of sites [1]. Stan-
dard lattice Monte Carlo methods fail, as the sign problem [2, 3] makes low tem-
peratures and large systems inaccessible. Other methods, like the density-matrix
renormalization group theory [4], are limited to the groundstate of (quasi) one-
dimensional systems.

A useful and numerically feasible approach to treat fermionic systems in the
thermodynamic limit is the so-called dynamical mean field theory or DMFT. De-
velopment of this field started with the demonstration by Müller-Hartmann and
by Metzner and Vollhardt [5, 6] that the diagrammatics of lattice models of in-
teracting fermions simplifies dramatically in an appropriately chosen infinite di-
mensional (or infinite coordination) limit. This insight was developed by Georges,
Kotliar and co-workers [7, 8] who showed that if the momentumdependence of
the electronic self-energy may be neglected (Σ(p, ω) → Σ(ω)), as occurs in the in-
finite coordination number limit, the solution of the lattice model may be obtained
from the solution of a quantum impurity model plus a self-consistency condition.

2.2 Single Impurity Anderson Model (SIAM) –
Hamiltonian

To describe the effect that local moments exhibit in diluted solutions of e.g. iron
and nickel in a nonmagnetic metal, Anderson [43] proposed todescribe them with
an “impurity model”: a model that is able to describe both localized electrons
on the iron or nickel atoms and free charge carriers. We allowfor electrons to
propagate either in the bands of the nonmagnetic metal, or tostay on the impurity
sites, and to hop from the impurity to the bath and back. When two electrons
are located on the impurity, we obtain a Coulomb repulsionU. This effect is a
many-body effect, and the model will exhibit correlation effects at largeU.

We will present the single impurity Anderson [43] model mostly following
[44]. The extensions to the multi-orbital and cluster models of section 2.4 and 2.5
are straightforward.

The system consists of two parts: an impurity part (designedto describe the
impurity atoms of the system), and a “bath” part that describes a collection of
uncorrelated states. The impurity is described by the operators cσ,c

†
σ while the

bath states are denoted here by operatorsapσ,a
†
pσ with an additional momentum
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index p. The Hamiltonian of the single impurity Anderson model is given by

H =Hµ +HU +Hbath+Hmix, (2.1)

Hµ = − µ [n↑ + n↓] , (2.2)

HU =U (n↑n↓ − n↑ + n↓
2
) , (2.3)

Hmix =∑
pσ
(Vσ

p c†
σapσ + h.c.) , (2.4)

Hbath =∑
pσ
ǫ(p)a†

pσapσ. (2.5)

The operatorsn↑ = c†
↑c↑ andn↓ = c†

↓c↓ act on the impurity site described by the four
impurity states⟨0∣, ⟨↑ ∣, ⟨↓ ∣, ⟨↑↓ ∣. The term

Hloc = Hµ +HU (2.6)

describes the influence of the chemical potentialµ and the on-site interactionU
on the impurity site. The impurity is coupled to a bath with dispersionǫ(p) by
a hybridization termVσ

p . The bath itself is described byHbath, and the mixing
between bath and site byHmix.

2.2.1 Impurity Solvers

We can also describe the impurity model (2.1) by an action with a time-dependent
bare Green’s functionG0(iωn), that represents the retardation effect from the bath
states that can be integrated out (see section 2.8, where thecalculation is per-
formed explicitly). This quantum impurity model is in the most general case de-
fined as

Seff = −∬
β

0
dτdτ′∑

i j

c†
i (τ)G−1

0 (τ − τ′)cj(τ) (2.7)

+∑
i jkl

Ui jkl ∫
β

0
dτc†

iσ(τ)c†
kσ′(τ)clσ′(τ)cjσ(τ),

where the indices can depict both different sites on a lattice or multiple orbital
indices. It simplifies to the single impurity Anderson Model(SIAM) in the action
formulation

Seff = −∑
σ
∬

β

0
dτdτ′c†

σ(τ)G−1
0σ(τ − τ′)cσ(τ) +U ∫

β

0
dτn↑(τ)n↓(τ). (2.8)

for a single impurity site with four states⟨0∣, ⟨↑ ∣, ⟨↓ ∣, ⟨↑↓ ∣. A “impurity solver” is
a numerical program or analytic scheme that is able to obtainthe observables of
interest, like the Green’s function,

G(τ − τ′) = −⟨Tτc(τ)c†(τ′)⟩Seff , (2.9)

from the effective action Eqn. (2.8). In the non-interacting caseU = 0, the Green’s
functionG(τ − τ′) is G0(iωn). Efficient impurity solvers are presented in section
2.6, and novel continuous-time algorithms that can be applied as quantum impu-
rity solvers are derived in chapters 4 through 7 of this thesis.
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2.2.2 Self Consistency Equations

DMFT is based on a mapping of the lattice problem (1.2) onto the impurity prob-
lem (2.7) and a self-consistency equation. While there are several ways to derive
these equations – the historically first one obtained by Müller-Hartmann and Met-
zner and Vollhardt [5, 6] – we will derive the DMFT equations here using the
so-called “cavity” method, following [8]. We pick one site of a lattice, call it
impurity, and treat it isolated from the remaining sites. What remains on the lat-
tice is a hole, or cavity. After integrating out all degrees of freedom of the lattice
Hamiltonian that are not on this one site we are left with the impurity action (2.7).

We derive the DMFT equations here for the Hubbard model Eqn. (1.3). In
Grassmann variablesc,c+ the partition functionZ for the Hubbard Hamiltonian
on a lattice is given by

Z = ∫ ∏
i

Dc+iσDciσe−SHub, (2.10)

SHub = ∫
β

0
dτ(∑

iσ

c+iσ(∂τ − µ)ciσ −∑
i j,σ

ti jc+iσcjσ +U∑
i

ni↑ni↓) . (2.11)

Denoting one particular site with the index 0 we find the effective single site prob-
lem by “tracing out”, i.e. integrating over all other sites:

1
Zeff

e−Seff[c+0σ ,c0σ] = 1
Z
∏

i≠0,σ

Dc+iσDciσe−SHub. (2.12)

This single site action will still give us access to impurityobservables (functions
of cσ,c+σ), but will not have the degrees of freedom nor the complexityof the
full problem. In order to obtain an expression forSeff, we split the action (2.11)
into three parts:Srem contains the operators on the lattice without the impurity,
S0 contains the action on the impurity, and∆S contains the action linking the
impurity to all remaining sites:

SHub = Srem+S0 + ∆S, (2.13)

Srem = ∫
β

0
dτ(∑

i≠0,σ

c+iσ(∂τ − µ)ciσ − ∑
i, j≠0,σ

ti jc+iσcjσ +U∑
i≠0

ni↑ni↓) , (2.14)

S0 = ∫
β

0
dτ∑

σ

c+0σ(∂τ − µ)c0σ +Un0↑n0↓, (2.15)

∆S = −∫
β

0
dτ∑

iσ

ti0(c+iσc0σ + c+0σciσ). (2.16)

Integrating out the variablesci (with ηi = ti0c0σ the source coupled toc+iσ and
G(0) the cavity Green’s function, i.e. the connected Green’s function of the cavity
HamiltonianHrem belonging toSrem) we obtain:

Seff =
∞

∑
n=1

∑
i1⋯in j1⋯ jn

∫ η+i1(τi1)⋯η+in(τin)η j1(τ j1)⋯η jn(τ jn)G(0)i1,⋯ jn(τi1,⋯, τ jn) (2.17)

+S0 + const
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This result is not useful in general, as the cavity Green’s function G(0) is not
readily available. However, in the limit of large dimension, the hoppingti j has
to be rescaled asti j ∝ 1/√d∣i− j∣ [6] to have interaction and kinetic terms of the
same order and obtain a non-trivial model. We can use this relation to simplify
Eqn. (2.17) in this limit of infinite dimensions: The scalingof ti j ensures that
G(0) ∝ ( 1√

d
)∣i− j∣, and therefore the leading term is of order 1, while all higher

order terms decay at least as fast as 1/d. As n-th order terms of (2.17) are of order(1/d)n, only the leadingn = 1 term remains ford→∞, and (2.17) simplifies to

Seff = −∫ dτdτ′c+0σ (−∂τ + µ −∑
i j

t0it0 jG(0))c0σ +∫ dτUn0↑(τ)n0↓(τ). (2.18)

Setting

G0(iωn)−1 = iωn + µ −∑
i j

t0it0 jG
(0)
i j (iωn), (2.19)

we obtain equation (2.7) for the effective action of the single impurity Anderson
model Eqn. (2.8):

Seff = −∬
β

0
dτdτ′∑

σ

c+0σ(τ)G0(τ − τ′)−1c0σ(τ) +∫ β

0
dτUn0↑(τ)n0↓(τ). (2.20)

Note that the cavity Green’s functionG(0) enteringG0 is still not known, and we
still have to relate it to the original lattice Green’s function. For some simple
cases, like the Bethe lattice (or Cayley tree, [45]), there is an analytic expression:

G0
Bethe(iωn)−1 = iωn + µ − t2GBethe(iωn). (2.21)

In this case the simplification is possible because the Bethelattice has no loops,
and the removal of a site restricts the summation in Eqn. (2.19) to i = j. As the
removal of a site does not change the Green’s function,G(0)ii =Gii .

For a general lattice the relation ofG(0) andG is obtained by expandingG
in the hoppingti j , and considering the infinite dimensional limit. This yields an
expression originally derived by Hubbard:

G(0)i j =Gi j − Gi0G0 j

G00
, (2.22)

which, when inserted into Eqn. (2.19) yields

G0(iωn)−1 = iωn + µ −∑
i j

t0it0 j (Gi j − Gi0G0 j

G00
) . (2.23)

To proceed, we Fourier transform hopping and Green’s function Gi j(τ − τ′) =−⟨ciσ(τ)c†
jσ(τ′)⟩ to frequency and momentum space. The density of statesD(ǫ)
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and the dispersionǫ(k⃗) have to be computed from the hopping elementsti j and
are related by

D(ǫ) = ∑
k∈BZ

δ(ǫ − ǫ(k⃗)), (2.24)

ǫ(k) =∑
i j

ti j e−k⃗(r⃗ i−r⃗ j). (2.25)

The tight binding band structure on a square lattice with nearest-neighbor hopping
t and next-nearest neighbor hoppingt′ that we will use in chapters 5 and 9 yields
a dispersionǫ(k) of

ǫ2d(k⃗) = −2t [cos(kx) + cos(ky)] − 4t′ cos(kx)cos(ky). (2.26)

The momentum dependent Green’s functionG(k⃗, iωn) for ξ = iωn + µ − Σ(iωn) is
given by

G(k⃗, iωn) = 1
iωn + µ − ǫk⃗ − Σ(iωn) = 1

ξ − ǫk⃗

, (2.27)

employing the DMFT-approximation that the self energyΣ(k⃗, iωn) = Σ(iωn) is
momentum independent. The transformation to momentum space of Eqn. (2.22)
shows that

G(0)i j (iωn) = ∑
k⃗∈BZ

ǫ2
k⃗

ξ − ǫk⃗

−
⎡⎢⎢⎢⎢⎣∑k⃗∈BZ

ǫk⃗

ξ − ǫk⃗

⎤⎥⎥⎥⎥⎦
2

/ ∑
k⃗∈BZ

1
ξ − ǫk⃗

, (2.28)

which we can also express as an integration over the density of states:

G(0)i j (iωn) = ∫ dǫD(ǫ)ǫ2

ξ − ǫ − [∫ dǫ
D(ǫ)ǫ
ξ − ǫ ]

2/∫ dǫ
D(ǫ)
ξ − ǫ , (2.29)

and simplify to

G(0)i j (iωn) = ξ − 1

∫ dǫD(ǫ)
ξ−ǫ

= ξ − D̃−1(ξ), (2.30)

where

D̃(ξ) = ∫ dǫ
D(ǫ)
ξ − ǫ . (2.31)

Therefore Eqn. (2.19) simplifies to

G0(iωn)−1 = iωn + µ − iωn − µ + Σ + 1/D̃(iωn + µ − Σ(iωn)) (2.32)

= Σ + 1/D̃(iωn + µ − Σ(iωn)).
Using the Dyson equation

Σ(iω) = G0(iωn)−1 −G(iωn)−1 (2.33)
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we see that̃D(iωn + µ − Σ(iωn)) is a momentum-averaged Green’s function that
we can express directly by momentum averaging or integration over the density
of states:

G(iωn) = D̃(iωn + µ − Σ) = ∫ ∞

−∞
dǫ

D(ǫ)
iωn + µ − ǫ − Σ(iωn) (2.34)

= ∑
k⃗∈BZ

1

iωn + µ − ǫ(k⃗) − Σ(iωn) . (2.35)

2.3 Self Consistency Loop

Equations (2.8), (2.9), (2.33), and (2.35) form a set of identities that can be em-
ployed to obtain a self-consistent solution of the effective action Eqn. (2.7), as
illustrated in Fig. 2. We start with an initial guess for the bare Green’s function of
the effective action,G0(iωn). The Green’s function for the non-interacting prob-
lem is one possible starting point. In this case the self energy is zero, and we can
employ Eqn. (2.35) or Eqn. (2.34) forΣ(iωn) = 0 to obtain an initial solution. This
initial Green’s function is metallic.

Instead of starting from the non-interacting solution we can start from the
Green’s function for the atomic limit. In this case there is no hybridization, and
the initial G0 is insulating. The two start solutions are complementary toeach
other and can be employed to detect coexistence regions of metallic and insulating
phases.

To determine the region of stability of phases with broken symmetries1 – for
example antiferromagnetic order – we can bias the initial Green’s function with a
small field and see if the converged solution falls into the symmetry broken phase.
Otherwise, if both the start solution and the Hamiltonian (or effective action) con-
serve the symmetry, the impurity solver should produce a symmetric solution,
and convergence to the symmetry broken phase will be dependent on numerical
roundoff errors or lack of ergodicity.

Having obtained such an initial starting solution, we need to solve the impu-
rity problem, i.e. obtainG(iωn) out of theG0(iωn) (section 2.2.1). While some
solvers, most notably the CT-AUX (chapter 5) and weak coupling (chapter 4)
solvers can efficiently obtain solutions directly in the Matsubara frequency do-
main, most finite temperature solvers obtain their solutionin the imaginary time
domain. These results then have to be Fourier transformed, which is not straight-
forward due to the antiperiodicity of the Green’s function (see appendix B for
technical details). All of these solvers are formulated foraG0(τ) in the imaginary
time domain, thus before the solver is started theG0(iωn) also needs to be Fourier
transformed.

The impurity solver step at iterationp consists of performing the following

1the current chapter deals only with the paramagnetic phase,ordered phases are described e.g.
in [8, 42]
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operations:

G0
p(iωn) FourierÐÐÐ→ G0

p(τ) SolverÐÐÐ→Gp+1(τ) FourierÐÐÐ→Gp+1(iωn). (2.36)

After obtaining a Green’s function as the output of the impurity solver and Fourier
transforming, we compute the self energy using the Dyson equation

Σp+1(iωn) = G0
p(iωn)−1 −Gp+1(iωn)−1 (2.37)

and then employ thek-summation Eqn. (2.35) or density of states integration
Eqn. (2.34) to obtain a new Green’s function (this Green’s function is usually
called the “lattice” Green’s function, while the solution of the impurity problem
is called the “impurity” Green’s function):

Glat,p+1 = ∑
k∈BZ

1
iωn + µ − ǫ(k) − Σp+1(iωn) , (2.38)

which yields

G0
p+1(iωn)−1 = Σ−1

p+1(iωn) +Glat,p+1(iωn)−1. (2.39)

The sequence

G(iωn)p+1
DysonÐÐÐ→ Σp+1(iωn) Self ConsistencyÐÐÐÐÐÐÐ→Glat,p+1(iωn) DysonÐÐÐ→ G0

p+1(iωn) (2.40)

closes the self consistency loop illustrated in Fig. 2. The selfconsistency is re-
markably stable: starting from an initial guess that has approximately the right
short-time behavior the loop converges after a few iterations to a self-consistent
solution. Far away from phase transitions this convergenceis rather quick and is
achieved within about 10 iterations. In the vicinity of phase transitions the con-
vergence slows down considerably, but is usually achieved within at most 30 iter-
ations. We did not observe cases in which this self consistency did not converge
or oscillate between various (meta-) stable solutions.

2.4 Multiple Orbital Extensions

We performed the derivation of the dynamical mean field theory equations starting
from the Hubbard model. If the same derivation is performed starting from a
multiple orbital problem that is – in the most general case – given by equation
(1.2), we arrive at the effective action for the multiple orbital problem:

Seff = −∬
β

0
c†

i (τ)G0
i j(τ − τ′)−1cj(τ′) (2.41)

+ ∑
i jklσσ′

Ui jkl

2 ∫
β

0
dτc†

iσ(τ)c†
kσ′(τ)clσ′(τ)cjσ(τ).

The indicesi, j,k, l denote orbitals on a local impurity (an “atom”), and the in-
teractions are given by the matrixUi jkl . The self-consistency condition is more
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complicated and will be explained for the example of Cerium in chapter 10. The
underlying approximation is still the same as in the single site case: the self-energy
is assumed to be local or momentum-independent. However, wenow allow for
Σ(iωn) to be different for different orbitals. Various simplifications to (2.41) are
possible and will be discussed in chapter 10.

In addition, we can orthogonalize our orbitals in the presence of symmetries
such that the hybridization does not mix different orbitals. Within the quantum
Monte Carlo impurity solvers, this reduced complexity prevents the algorithms
from obtaining a sign problem in some cases and therefore makes lower tempera-
tures accessible.

Multi-orbital problems with the full interaction part of (2.41) are still challeng-
ing to simulate, and only the algorithmic advances presented in this thesis made
some of these simulations possible. Chapter 11 shows the application of a three-
orbital model with the full (rotationally invariant) Hamiltonian of Eqn. (2.41).
Chapter 10, on the other hand, shows results for a fourteen orbital model (full
f-shell) with just density-density interactions and a diagonal bath.

2.5 Cluster Extensions

The DMFT in its single site version makes the approximation that the impurity
consists of only one site, and that the self energyΣ(p, iωn) = Σ(iωn) is completely
local or constant in momentum space. It is natural to ask how far this condition
can be relaxed, by either relaxing the condition that the impurity be just one site,
or taking into account some additional momentum structure of the impurity. These
extensions are known as cluster DMFT [42].

Cluster schemes are not unique, and various cluster DMFT schemes have been
proposed: Ref. [8] mentions some ideas, and Refs [46], [47] and [48] first sys-
tematically developed cluster DMFT extensions. A scheme developed by Licht-
ensteinet al. and Kotliaret al. based on real-space clusters is generally known
as CDMFT or “Cellular Dynamical Mean Field Theory”, while another scheme
developed by Hettler, Jarrell,et al. that describes momentum-space clusters is
known as DCA or “Dynamical Cluster Approximation”. Both schemes are in
wide use and – at least for large clusters – we could find no advantage of using
one over the other. They can both be viewed as a special implementation of a
more general framework, where the corresponding impurity models do not need
to represent a physical sub-cluster [49, 50, 51].

Maier et al. have described the cluster extensions in their excellent review
on the subject, Ref. [42]. We follow this paper and Ref. [51] here and refer
the interested reader to these two papers for a more detailedintroduction to the
subject.

For a cluster ofNc sites, we approximate the self energy byNc coefficients and
absorb their momentum dependence inNc basis functionsφλ(k) on the Brillouin
zone. The particular choice ofφλ(k) determines the cluster scheme, or the way
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Figure 2.2: Real-space cluster and momentum space cluster with four sites each (pla-
quette). Within CDMFT, the cluster is embedded in real spaceinto the lattice. DCA, on
the other hand, treats the cluster in momentum space, by choosing the self energy to be
constant on the shadedS, P, andD-patches of the Brillouin zone.

the impurity model and the lattice model are related to each other:

Σ(k, iωn)→ Σapprox(k, iωn) = Nc

∑
j=1

φ j(k)Σ j(iωn). (2.42)

The DMFT approximation consists of identifying the latticeself energy with the
approximated impurity self energy. An extrapolation toNc → ∞ should recover
the full momentum dependence of the original lattice model.Obviously, forNc = 1
the only sensible approach is the choiceφ1(p) = const, which is the momentum-
independent (local) self energy approximation of the dynamical mean field theory.

The (matrix) impurity problem that has to be solved is given by

Seff = −∬
β

0
dτ∑

i jσ

c†
iσ(τ)G0

i j,σ(τ − τ′)−1cjσ(τ′) + ∫ β

0
dτ

Nc

∑
j=1

Un j↑(τ)n j↓(τ),
(2.43)

where the cluster indicesi, j correspond to different “cluster” sites on the cluster
impurity model. In the following we explain the two important and frequently
used cluster schemes, the DCA and the CDMFT, following [42].

2.5.1 CDMFT

The CDMFT is based on the embedding of a real-space cluster into the infinite
lattice, as depicted in the left panel of Fig. 2.5. This real-space cluster is then
treated as the impurity. We start by taking a large subset of the infinite lattice
with N sites. We then tile this lattice into cluster tiles ofNc sites, each with origin
x̃ j. Each cluster pointx can then be described asx = x̃ + X, whereX denotes a
vector within a cluster and̃x one connecting cluster origins. One such tile of a
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simple 2×2 - cluster is depicted in Fig. 2.5. In reciprocal space, we describe each
reciprocal vectork of the N sites by a vector to one of theNc reciprocal cluster
points and a vector within a Brillouin zone patch:k = k̃+K . The reciprocal cluster
points of a(2× 2) - cluster are drawn in the right part of Fig. 2.5.

To find the cluster degrees of freedom, we split both the hopping and the self
energy into an intra-cluster part and an inter-cluster part:

t(x̃i − x̃ j) = tcδx̃i ,x̃ j + δt(x̃i − x̃ j), (2.44)

Σ(x̃i − x̃ j , iωn) = Σc(iωn)δx̃i ,x̃ j + δΣ(x̃i − x̃ j, iωn). (2.45)

All bold quantities denote matrices of sizeNc × Nc in the cluster sites. We then
expand the Green’s function both inδt andδΣ

G(x̃i − x̃ j , iωn) = g(iωn)δx̃i ,x̃ j (2.46)

+ g(iωn)∑
l

[δt(x̃i − x̃l) + δΣ(x̃i − x̃l, iωn)G(x̃l − x̃ j, iωn)] ,
whereg is the Green’s function restricted to the cluster, defined as

g = [(iωn + µ) − tc −Σc(iωn)]−1
. (2.47)

In momentum space, this equation simplifies to

G(k̃, iωn) = g(iωn) + g(iωn) [δt(k̃) + δΣ(k̃, iωn)]G(k̃, iωn). (2.48)

The DMFT approximation consists of choosing the self energy“local”. In the
cluster case, the self energy is chosen to be local within thecluster (δΣ = 0), and
we arrive at

G(k̃, iωn) = g(iωn) + g(iωn)δt(k̃)G(k̃, iωn) = [g−1(iωn) − δt(k̃)−1]−1
(2.49)

We can then “coarse grain” or momentum-average this quantity to obtain the
Green’s function restricted to the cluster,

G(iωn) = Nc

N
∑̃
k

G(k̃, iωn). (2.50)

The function corresponding toG0(iωn) in the single-site case is the so-called clus-
ter excluded Green’s function,G0

i j(iωn), the bare propagator toG

G0(iωn) = [G−1(iωn) +Σc(iωn)]−1
. (2.51)

Using these equations, we construct a self consistency scheme:

• computeG0
i j(iωn) using (2.51), the Dyson equation.

• solve the cluster impurity model 2.43, obtainΣc from the solver or from the
Green’s function, using again (2.51).

• obtain the coarse-grained Green’s functionG by summing up the lattice
Green’s function (2.50).

• compute the newG0
i j(iωn) from (2.51) and iterate.
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2.5.2 DCA

The DCA corresponds to choosing the self energy constant on different momen-
tum zone patchesZ of the Brillouin zone. These patches are chosen in such a way
that they are centered around the reciprocal lattice pointsof a real-space cluster:

φ j(p) = { const, p ∈ Z
0, else.

(2.52)

To derive the DCA, we compute the hopping integral in Fourierspace from the
dispersionǫ(k) = ǫ(K + k̃):

t(k̃)X i ,X j = 1
Nc
∑
K

eik(X i−X j)ǫ(k) = 1
Nc
∑
K

ei(K+k̃)(X i−X j)ǫ(K + k̃). (2.53)

In order to get a translationally invariant cluster, we restore the translational sym-
metry by integrating over allK - points:

[tDCA]Xi ,X j = 1
Nc
∑
K

eiK(X i−X j)ǫ(k̃ +K). (2.54)

Splitting this hopping into intra- and intercluster contributions, we obtain

[tc,DCA]X i ,X j = 1
Nc
∑
K

eiK(X i−X j)ǫ(K), (2.55)

[δtc,DCA(k̃)]X i ,X j = 1
Nc
∑
K

eiK(X i−X j)δt(K + k̃), (2.56)

where

ǫ(K) = Nc

N
∑̃
k

ǫ(K + k̃), (2.57)

δt(K + k̃) = ǫ(K + k̃) − ǫ(K). (2.58)

Due to the translational invariance of the hopping integrals, the cluster self energy
Σc becomes diagonal inK -space, and

G(K + k̃, iωn) = 1

g−1(K , iωn) − δt(K + k̃) , (2.59)

whereg denotes the Green’s function decoupled from the host

g(K , iωn)−1 = iωn + µ − ǫ(K) − Σc(K , iωn). (2.60)

We then construct a momentum-averaged Green’s function by computing

G(K , iωn) = Nc

N
∑̃
k

G(K + k̃, iωn). (2.61)

The self consistency scheme proceeds as in the case of the CDMFT, but the coarse
grained Green’s function and the lattice Green’s function are computed according
to (2.59) and (2.61). For a two-dimensional plaquette, the momentum space struc-
ture is illustrated in Fig. 2.5.
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2.6 Alternative Methods for the Solution of the Im-
purity Model

The (continuous-time) quantum Monte Carlo solvers described in the next chap-
ters of this thesis are just one possible approach to the solution of the impurity
models (2.8), (2.41), or (2.43). Their major advantage overother impurity solvers
is that they are numerically exact, easily adopted to multiple orbital systems or
clusters, and fast enough to reach low temperatures. Their main disadvantage is
that they work on the imaginary time or Matsubara axis. Real frequency data
like spectra or optical conductivities have to be extractedvia analytical continua-
tion [52, 53, 54]. Over the years, various other impurity solvers that have different
strengths and regions of applicability have been developed. In general, two classes
of impurity solvers can be distinguished: analytical methods and numerical meth-
ods. The analytical methods have the great advantage that they are free of numer-
ical noise and inaccuracies and that operations like Fourier transforms or analytic
continuations can be performed without loss of accuracy. However, because of the
inherently non-perturbative nature of many strongly correlated systems, approxi-
mate analytic methods are very limited in their applicability to the interesting parts
of phase space. Examples for such methods include renormalization group theory
[55], bosonization [56] or slave boson methods [57, 58]. I will not mention these
methods any further and concentrate in the following on numerical algorithms.

2.6.1 Numerical Renormalization Group (NRG) Solvers

The numerical renormalization group method is a systematicway to treat ener-
gies over many orders of magnitude. It has been developed forthe Kondo [59]
problem, where the physics is governed by energies of the order of the Kondo
temperatureTK , which is much smaller than the typical energiesU andt occur-
ring in the action. An introduction to the NRG as it is appliedto the dynamical
mean field theory is given in a recent review by Bulla, Costi, and Pruschke [60].
The method is based on the renormalization group theory originally developed
by Wilson [55] and applied to the single impurity Anderson model by Krishna-
murthyet al. [61]. The application to the dynamical mean field theory has been
pioneered by Sakaiet al. [62] and Bullaet al. [63, 64, 65] for both zero and finite
temperature. Various extensions, e.g. to the multi-band Hubbard model [66] have
been developed.

The NRG is based on a division of the energy support of the bathspectral
function into a set oflogarithmicallyspaced intervals. The continuous spectrum
is then reduced to a discrete set of states, which are mapped onto a semi-infinite
chain. The solution to the impurity model is obtained by the solution of this
mapped model, usually via iterative diagonalization [67, 68].

As a real-frequency method, NRG can avoid the difficulties that come from
analytic continuation and is able to produce results on the real frequency domain,
with a resolution proportional to the frequency. However, the method becomes
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extremely cumbersome for more than one impurity or channel and therefore is
inefficient when applied to multiple orbitals or clusters. Low-T results are in gen-
eral easier to obtain than high-T results, as higher excitations and therefore more
states contribute to the latter.

2.6.2 Exact Diagonalization (ED) Solvers

The exact diagonalization method [69] is a numerically exact method that gives
full access to all eigenvalues and eigenstates of the system. The major limitation
of other methods like the Hirsch Fye QMC algorithm (see section 2.6.4) is that low
temperatures are not easily accessible. ED provided an efficient method early on
to overcome this problem by truncating the number of bath states and solving the
impurity problem by diagonalizing the Hamiltonian in a finite basis for a small
number of bath states. As in the case of lattice exact diagonalization methods,
the practical limitation of the method is given by the exponential growth of the
Hilbert space – here in the number of bath states considered.While systems at
finite temperatures could be solved for up to 6 bath states, iterative sparse solvers
allowed access to the ground state with up to 10 bath states. The availability of
eigenvalues allows for direct access to the real frequency spectrum and makes
analytic continuation unnecessary. However, larger systems or multiple orbitals
are not accessible, and the energy resolution of the resulting spectrum is very
coarse. Details are available e.g. in Ref. [8].

2.6.3 DMRG

The Density Matrix Renormalization Group theory [4] is the method of choice for
the solution of one-dimensional systems like chains or ladders. In the context of
the dynamical mean field theory, the application of the DMRG has been pioneered
by Garciaet al. [70] and Nishimotoet al.[71]. As a real frequency, ground state
method, spectra are obtained directly as a function of frequencies and do not need
to be analytically continued.

These early implementations of the DMFT within the DMRG however seem
to be plagued by stability problems, and the results published up to now for the
single site case show clear indications of numerical artifacts. It is not clear yet how
accurate the method works, and more research is needed to show its usefulness as
an impurity solver.

2.6.4 Discrete Time QMC Solver – The Hirsch-Fye Algorithm

The algorithm of Hirsch and Fye [72, 73] – developed long before DMFT as an
algorithm to solve the Anderson impurity model – was the firstquantum Monte
Carlo algorithm applied to the DMFT impurity problem and is still in wide use. In-
stead of a perturbative partition function expansion, it isbased on a Trotter-Suzuki
decomposition of the effective action and a discrete Hubbard - Stratonovich trans-
formation [74, 75] and therefore requires a discretizationof imaginary time into
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N so-called “time slices”∆τ = β/N:

Z = Tre−βH = Tr
N

∏
l=1

e−∆τH ≈ Tr [e−∆τH0e−∆τH1]N . (2.62)

In each time slice, the four-fermion interaction termH1 = U(n↑n↓ − 1/2(n↑ +
n↓)) is decoupled using a discrete Hubbard-Stratonovich transformation,

e−∆τU(n↑n↓−1/2(n↑+n↓)) = 1
2
∑
s=±1

eλs(n↑+n↓), (2.63)

where coshλ = e∆τU/2. Using this identity, we can express the interaction as the
sum of an exponential of single-particle operators, at the cost of introducing aux-
iliary Ising fieldss = ±1 over which we need to sum. The identity Eqn. (2.63) is
easily checked for the four possible states

⟨0∣e−∆τU(n↑n↓−1/2(n↑+n↓))∣0⟩ = ⟨↑↓ ∣ ⋅ ∣ ↑↓⟩ =1 =1
2
(e0 + e0) (2.64)

⟨↑ ∣e−∆τU(n↑n↓−1/2(n↑+n↓))∣ ↑⟩ = ⟨↓ ∣ ⋅ ∣ ↓⟩ =e∆τU/2 =eλ/2 + e−λ/2
2

. (2.65)

The Trotter-Suzuki [76, 77] decomposition Eqn. (2.62) causes the algorithm to
have a systematic discretization error ofO(∆τ)2 (see Fig. 5.1 and Ref. [8]). With
this decomposition, the partition function is expressed asthe sum over Ising spins
of a trace of a product of exponentials of quadratic operators, which according to
[78] can be expressed as the determinant of a matrix, yielding an expression for
the partition function of the form

Z = ∑
{si}

det[DG0,↑(s1, ..., sN)DG0,↓(s1, ..., sN)]. (2.66)

Here,DG0,σ(s1, ..., sN) denotes theN×N matrix of the bare Green’s function of the
effective actionG0(iωn) for a particular configuration of the auxiliary Ising spin
variabless1, . . . , sN [8]. The derivation of this expression employs the same math-
ematics as the continuous-time auxiliary field algorithm that will be described in
detail in chapter 5, even though the auxiliary field decomposition Eqn. (2.63) is
different from Eqn. (5.2).

The Monte Carlo sampling of this expression proceeds by local updates in
these spin configurations(s1, ..., sN). Each successful update requires the calcula-
tion of the new matricesDG0,σ in Eq. (2.66), at a computational cost ofO(N2).

The problem with this approach is the rapid (and, for metals,highly non-
uniform) time-dependence of the Green functions at low temperature and strong
interactions. The initial drop of the Green function is essentially ∼ e−Uτ/2, from
which it follows that a fine grid spacingN ∼ βU is required for sufficient reso-
lution. In the Hirsch-Fye community,N = βU is apparently a common choice,
although we will see in chapter 5 and 8 that this number is too small and leads
to significant systematic errors. As noted in Ref. [35] a resolution of at least
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N = 5βU is typically needed to get systematic errors below the statistical errors
of a reasonably accurate simulation. To ascertain control over the extrapolation
errors, multiple simulations and the extrapolation of∆τ→ 0 have to be performed.

At half filling, the determinants of the matricesDG−1
0 ,↑ andDG−1

0 ,↓ are identical
and it then follows immediately from Eq. (2.66) that the Hirsch-Fye algorithm
under these conditions does not suffer from a sign problem. In fact, a closer
analysis reveals that the sign problem is absent for any choice ofµ [79].

A systematic extrapolation in∆τ seems to alleviate the problem of using too
few time slices at least for relatively high temperatures. The improved algorithm
[80, 81] resorts to solving the same problem for various discretizations. However,
it is not clear if this method remains competitive with continuous-time algorithms,
where the matrices are smaller and no extrapolations need tobe performed.

2.7 Interaction Representation

In order to generate a framework in which we can treat all continuous-time algo-
rithms on equal footing, we introduce the interaction representation. For this, we
split the HamiltonianH into two parts:H0 andV. The difference between the
various algorithms stems from the particular choice ofH0 andV.

Time dependent operators in the interaction representation are defined as

O(τ) = eτH0Oe−τH0. (2.67)

Furthermore, we introduce the operator

A(β) = eβH0e−βH, (2.68)

Z = Tr [e−βH0A(β)] . (2.69)

This operator has the property that

dA
dβ
= −V(β)A(β), (2.70)

A(β) = Tτe− ∫
β

0 dτV(τ), (2.71)

whereTτ is the imaginary time ordering operator.
Inserting Eqn. (2.71) into Eqn. (2.69), we obtain an expression that contains

the partition function as a time-ordered exponential ofV(τ). Expanding this ex-
ponential in a power series, we obtain

Z = Tr [e−βH0Tτe− ∫
β

0 dτV(τ)] (2.72)

=
∞

∑
k=0
∫ dτ1⋯∫

β

τk−1

dτkTr [e−βH0eτkH0(−V)⋯e−(τ2−τ1)H0(−V)e−τ1H0] . (2.73)

Note that the trace in the expressions above goes both over the impurity space and
all the bath states.
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2.8 Action Formulation

We still need to show how we can arrive from the Anderson impurity model in
the Hamiltonian formulation of Eqn. (2.1) at a time-dependent effective action
Eqn. (2.8). As the bath operatorsaσ,p,a

†
σ,p do not directly contribute to any of the

observables defined on the impurity it is possible to integrate them out and instead
only use the operatorscσ,c

†
σ of the impurity.

The local HamiltonianHloc stays invariant, as it only involves impurity opera-
tors. The bath Hamiltonian is traced out and remains as an irrelevant prefactor of
the partition function. The mixing HamiltonianHmix causes retardation effects in
the system: electrons can hop from the impurity site to the bath and return at some
later time. This is the reason why the propagatorG0 of the action (2.8) becomes
time-dependent.

We start by introducing coherent states∣φ⟩ in Fock space and Grassmann vari-
ablescα, following Refs [82, 83, 84]:

∣φ⟩ = exp[−∑
α

φαc†
α] ∣0⟩, (2.74)

cα∣φ⟩ = φα∣φ⟩. (2.75)

These states fulfill the relation

∫ ∏
α

dφ∗αdφαe
−∑α φ

∗
αφα ∣φ⟩⟨φ∣ = 1. (2.76)

The trace of an operatorA may be written as

TrA =∑
n
⟨n∣A∣n⟩ = ∫ ∏

a
dφ∗adφae−∑a φ

∗
aφa⟨−φ∣A∣φ⟩. (2.77)

Defining the notation∏α dφ∗αdφα = dφ⃗∗dφ⃗ we obtain

Z = Tre−βH =∑
n
⟨n∣e−βH∣n⟩ = ∫ ∏

α

dφ∗αdφαe
−∑α φ

∗
αφα⟨−φ∣e−βH∣φ⟩ (2.78)

= lim
M→∞
∫

M

∏
m=1

dφ⃗∗mdφ⃗me−∑M−1
m=1 φ⃗

∗
mφ⃗m⟨−φ0∣e− β

M H∣φM−1⟩⋯⟨φ1∣e− β

M H∣φ0⟩ (2.79)

= lim
M→∞
∫

M

∏
m=1

dφ⃗∗mdφ⃗me−∑M−1
m=1 φ⃗

∗
mφ⃗m⟨−φ0∣1− β

M
H∣φM−1⟩⋯⟨φ1∣1− β

M
H∣φ0⟩ (2.80)

= lim
M→∞
∫

M

∏
m=1

dφ⃗∗mdφ⃗me−∑M−1
m=1 φ⃗

∗
mφ⃗me−∑

M−1
m=1 [φ⃗∗mφ⃗m−1+

β

M H(φ⃗∗m,φ⃗m−1)] (2.81)

= ∫ Dφ∗Dφe−S[φ∗,φ], (2.82)

with

S = ∫ dτ(φ∗∂τφ +H(φ∗, φ)). (2.83)
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The notationDφ denotes that we take the continuum limit. Inserting the Hamilto-
nianH = Hµ +HU +Hmix +Hbath of Eqn. (2.1) into Eqn. (2.83), we obtain

S = ∫ dτ [φ∗(∂τ − µ)φ +HU(φ∗, φ) +Hmix(φ∗, φ) +Hbath(φ∗, φ)] . (2.84)

This is the action for the full Hamiltonian that includes both impurity and bath
operators. However, these bath operators do not enter any ofthe observables of the
impurity problem, and we would therefore like to remove themfrom our action
and instead treat an effective action that does not contain them explicitly.

We start by stating the Gaussian integral for Grassmann variables in its most
general case:

∫ ∏
j

dφ∗j dφ je−∑i j φ
∗
i Ai jφ j+∑i J∗φi+Jφ∗i = detAexp[J∗A−1J]. (2.85)

Realizing that the bath operators in Eqn. (2.84) are of that type, with A =
δi j(∂τ − ǫ j), J = Vlφ

∗
0l we obtain (dropping the irrelevant contribution from the

bath determinant):

S = Seff +Sbath, (2.86)

Z = ∫ Dφ∗0Dφe−Seff , (2.87)

Seff = ∫ dτ[φ∗0(∂τ + µ)φ0 + φ∗0∑
lm

V∗l [(∂τ − ǫ)−1]lmVmφ0 +HU] . (2.88)

As the bath is diagonal, this expression simplifies to

Seff = ∫ dτ[φ∗0(∂τ + µ)φ0 + φ∗0∑
l

Vl[(∂τ + ǫl)−1]ll Vlφ0 +HU] . (2.89)

This expression looks like the effective action (2.8) for

−G0(iωn)−1 = −iωn − µ +∑
l

∣Vl ∣2
iωn − ǫl

. (2.90)

Thus, starting from a Hamiltonian with a bath specified by thetwo parametersVl

andǫl we could obtain an expression that has the form of the effective action for
the single impurity Anderson model. The Hamiltonian formulation and the action
formulation are equivalent, and we can use whichever we prefer. In this spirit, we
present the weak coupling algorithm in the effective action formulation, and both
the CT-AUX and the hybridization solvers in the Hamiltonianformulation.

2.9 Continuous-Time QMC Algorithms

In the weak coupling - algorithm derived in detail in chapter4, the operatorH0 of
section 2.7 is chosen to be

H0 = Hµ +Hmix +Hbath, (2.91)
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and the operatorV contains only the four-fermion interaction termsHU :

V = HU = U (n↑n↓ − n↑ + n↓
2
) (2.92)

The trace over the four-fermion operators is taken by decoupling the interaction
using Wick’s theorem.

In the CT-AUX algorithm of chapter 5, the choice ofH0 andV is the same.
Before the trace is computed, the interaction vertices are decoupled using an aux-
iliary field decomposition. These algorithms are thereforebest suited to situations
close to the noninteracting case, where the interaction term V of Eqn. (2.92) is
small. The hybridization algorithm of chapters 6 and 7, on the other hand, uses

H0 = Hloc +Hbath= Hµ +HU +Hbath, (2.93)

V = Hmix. (2.94)

The perturbation series expansion is only done in the hybridization part of the
Hamiltonian, while impurity states are treated directly inH0. Hbath is – as the
algorithm is best formulated in the action formalism – traced out and yields a time-
dependent hybridization functionF(τ). This algorithm is therefore best suited for
problems close to the atomic limit, where the hybridizationis weak, but turns out
to be superior to the algorithms using Eqn. (2.92) for many models, even atU ≪ t
(see chapter 8).



Chapter 3

Monte Carlo sampling of partition
functions

The term “quantum Monte Carlo” describes at least three entirely different classes
of algorithms, whose only shared property is that they employ a stochastic algo-
rithm and are applied to the solution of quantum mechanical problems: Algo-
rithms like variational Monte Carlo [85, 86] or diffusion Monte Carlo [87] sample
wave functions of interacting many-body systems. Path Integral Monte Carlo
[88] algorithms stochastically sample the action of a many-body problem. The
stochastic series expansion (SSE) [89, 90] algorithm and algorithms like the loop
[91, 92, 93] and worm [94, 95] algorithm are examples of such algorithms. Apart
from condensed matter, these algorithms are in wide use in lattice QCD. So-called
auxiliary field algorithms [78, 72] discretize the action ona fine grid and refor-
mulate the partition function integral as a discrete sum over a high-dimensional
configuration space, which is then sampled by Monte Carlo.

The continuous-time quantum impurity algorithms are variants of path integral
methods. The series in which the expansion is performed is the general series of
equation (2.73). This chapter will first give a brief introduction to Monte Carlo and
then show how the infinite but converging series of section 2.7 can be sampled on
a computer without systematic cutoff or truncation errors. For the most part of the
standard Monte Carlo text we follow the Monte Carlo introduction in [96, 97]. For
the reader unfamiliar with this topic, the excellent books by Landau and Binder
[98] and Krauth [99] give an extensive introduction to the subject.

3.1 Monte Carlo Integration

In many physical systems, especially thermodynamical systems, high-
dimensional integrals or sums over all configurations of a system have to be per-
formed. The quintessential examples are the partition sumsof classical magnets
like the two-dimensional Ising ferromagnet [100] or the solution of the equations
of state of simple classical fluids, like the Lennard-Jones fluid [101].

For the Ising system on a finite two-dimensional square lattice with N sites,
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the partition function of a finite system in the canonical ensemble is defined as

Z =∑
x∈C

e−βHI(x), (3.1)

with

HI(x) = J∑
⟨i j⟩

Si(x)S j(x). (3.2)

The Ising configurationsx – elements of the configuration spaceC – consist
of N “Ising spins”, each assuming either the value plus or minus one: x ={±1,±1,⋯,±1}. The sum Eqn. (3.1) involves 2N terms, and the straight-forward
summation of all configurations rapidly becomes impractical.

In the continuous case of a classical Lennard-Jones fluid, the partition function

Z = ∫
x∈C

dxe−βULJ(x), (3.3)

ULJ = −4ǫ ((σr )
1

2− (σ
r
)6) (3.4)

of a system withL particles entails an integral over the (physical) configuration
spaceC that contains allL positionsr j of atoms in the fluid. For each added atom,
the integral in (3.3) obtains three more dimensions, and a 3L-dimensional integral
has to be solved to obtain the solution to Eqn. (3.3).

The standard integration routines like the rectangular, trapezoidal, or Simp-
son rules scale unfavourably with the number of dimensions:while the error in
Simpson’s rule scales asO(N−4) in the number of integration points (function
evaluations) and therefore requires substantially fewer points than the rectangular
or trapezoidal rules, each added dimension needs a new discretization mesh and
thereby multiplies the number of integration points byN. For a two-dimensional
integral, the error scales thus only asO(N−2), and for an eight-dimensional inte-
gral it becomesO(N−1/2) (O(N−4/d) in general).

Fortunately there exists an integration method that is independent of the di-
mensionality of the integral: Monte Carlo - integration relies on sampling ran-
domly chosen elements of the integration domain or configuration space. If we
uniformly select elementsxi of the configuration spaceC, we obtain

1
Ω
∫ f (x)dx= lim

N→∞

1
N

N

∑
i=1

f (xi), (3.5)

whereΩ is the volume ofC. According to the central limit theorem, such a pro-
cess converges to the limiting distribution with an error proportional to 1

N1/2 , inde-
pendent of the dimensionality of Eqn. (3.5). This is the reason why in dimensions
larger than eight Monte Carlo integration is preferable to integration by Simpson’s
rule.
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3.1.1 Importance Sampling

Straight-forward generation of random elements of the partition function space is
not the ideal method to perform a Monte Carlo integration. This can easily be
illustrated in the case of the Ising model, where the system is in an ordered phase
at lowT and typical low energy configurations have large domains, asopposed to
randomly generated configurations that are typically disordered. At low temper-
atures, such higher energy configurations are suppressed exponentially, and most
randomly generated configurations therefore contribute very little to Z.

Instead, if we were able to generate configurations that contribute more to the
integral with higher probability, we could increase the efficiency of our sampling.
This is known as “importance sampling”.

The error of the Monte Carlo simulation of Eqn. (3.5) is givenby

∆ =
√

var( f )
N

=
¿ÁÁÀ f 2 − f

2

N − 1
. (3.6)

As functions in phase space are often strongly peaked (e.g. in the low energy
range for low temperatures in Eqn. (3.1)), this variance canbecome very large.
We can however generate configurations that are not distributed with an uniform
distribution, but with a general probability distributionp(x) on the phase spaceC,
where

∫C p(x)dx= 1. (3.7)

Eqn. (3.5) then becomes

⟨ f ⟩ = 1
Ω
∫C dx

f (x)
p(x) p(x)dx= lim

N→∞

1
N

N

∑
i=1

f (xi)
p(xi) , (3.8)

where the pointsxi are generated such that they are distributed according to the
probability distributionp(x). The integration error Eqn. (3.6) is

∆ =
√

var( f /p)
N

. (3.9)

It is thus advantageous to generate configurations of the configuration spaceC
distributed with a distribution that is similar to the sampled functionf .

In statistical mechanics, like for the Ising or Lennard-Jones systems mentioned
in Eqn. (3.3) and (3.1), it is natural to generate configurations that are distributed
according to the ensembleρ(x) that is simulated, i.e. according to the weight that
they contribute toZ = ∫ ρ(x)dx. The configuration space average of an observable
A in ρ(x), defined by

⟨A⟩ρ = 1
Z ∫C A(x)ρ(x)dx (3.10)
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then becomes

⟨A⟩ρ = ∫C A(x)ρ(x)dx

∫C ρ(x)dx
. (3.11)

If configurationsxj are generated according to a different distributionp, the ex-
pectation value⟨A⟩ρ in the ensembleρ has to be “reweighed”:

⟨A⟩ρ = 1
Z ∫C A(x)ρ(x)p(x)

p(x)dx= lim
N→∞

∑N
j A(xj) ρ(xj)

p(xj)
∑N

j
ρ(xj)
p(xj)

. (3.12)

3.2 Markov process and Metropolis Algorithm

As stated in Eqn. (3.9), it is best to generate configurationswith the weight that
they contribute toZ. What still remains to be seen is how configurations dis-
tributed according to such non-trivial distributions can be generated on a com-
puter.

As a solution we can employ a so-called Markov process. A Markov process
is a random process whose future values are only determined by the most recent
values. Starting from some elementx0 ∈ C, we generate a Markov chain

x0→ x1→ x2→ ⋯xk → xk+1⋯ (3.13)

of configurations in phase space, and we define a matrix of transition probabilities
between statesx andy in C as Wxy. Normalization (conservation of probabili-
ties) demands∑y Wxy = 1. Having a probability distributionp on C, we need to
find the elements ofWxy such that we asymptotically generate statesx with the
right probability distributionp. It is sufficient for W to fulfill the following two
conditions:

• Ergodicity: It has to be possible to reach any configurationx from any other
configurationy in a finite number of Markov steps.

• Detailed Balance: The probability distributionp(x) and the transition ma-
trix Wxy fulfill the equation

Wxy

Wyx
= py

px
. (3.14)

This condition is sufficient but not necessary – in principle we only need to
fulfill the equilibrium condition∑x pxWxy = py.

A particularly useful algorithm that satisfies detailed balance is the Metropolis
[102] algorithm: We split the transition matrix into two parts: a proposal part and
an acceptance part:

Wxy =Wprop(x→ y)Wacc(x→ y). (3.15)
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The detailed balance condition then reads

Wprop(x→ y)Wacc(x→ y)
Wprop(y→ x)Wacc(y→ x) = p(y)

p(x) (3.16)

or

Wacc(x→ y)
Wacc(y→ x) = p(y)Wprop(y→ x)

p(x)Wprop(x→ y) , (3.17)

which we can satisfy with Metropolis’ algorithm: we proposeto change the cur-
rent configurationx to a new configurationy (e.g. by performing a single spin
flip in the Ising model or shifting an atom in the fluid), and accept the change
according to

Wacc(x→ y) =min(1, p(y)Wprop(y→ x)
p(x)Wprop(x→ y)) . (3.18)

Straightforward insertion of Eqn. (3.18) into Eqn. (3.14) shows that the Metropo-
lis algorithm satisfies the detailed balance condition. Themajor advantage of the
Metropolis algorithm is that only probability density ratios are needed, not nor-
malized probability densities. Therefore any overall normalization coefficients
(here the unknown partition functionZ) cancel.

In the simplest case, the proposal probabilityWprop for a move and its reverse
move are equal. In the Ising model, for example, the proposalprobability for a
spinflip at sitej is 1/N (namely the probability of picking the particular site out
of N other sites) – and the proposal probability of the move for flipping it back is
exactly the same. Therefore the proposal probabilities need not occur explicitly in
the acceptance ratio, and are usually dropped:

Wacc(x→ x′) =min(1, p(x′)
p(x) ) . (3.19)

The general scheme of Monte Carlo algorithms is illustratedin Fig. 3.3.

3.3 Continuous-Time Partition Function Expan-
sions – the Sampling of Infinite Series

To illustrate the Monte-Carlo sampling of continuous-timepartition function ex-
pansions, we start with a typical series of integrals of thattype: the partition
function

Z =
∞

∑
k=0
∭

β

0
dτ1⋯dτkp(τ1,⋯, τk). (3.20)

This partition function consists of a sum of expansion orders from zero to infin-
ity, integrals from zero toβ overk variablesτ1,⋯, τk and coefficientsp(τ1,⋯, τk).
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Eqn. (2.73) described in the last chapter is of this type. Theprobability density
p(τ1,⋯, τk)dτ1⋯dτk is dependent on the details of the algorithm under considera-
tion. Additional integration variables or summations (like the sum over auxiliary
spins in the CT-AUX algorithm or overα in Rubtsov’s weak coupling scheme)
may need to be added.

We need to sample terms (“configurations”) of this integral with the weight
that they contribute to the partition function. Let us startby writing down the
lowest orders of the integral explicitly.

At order 0, there is no free parameter and the integral is simply 1. At first
order, we need to compute

Z1 = ∫
β

0
dτ1p(τ1). (3.21)

Each term of the integrand is described uniquely by the time{(τ1)}, and we can
sample Eqn. (3.20) up to first order with Monte Carlo: generating uniformly dis-
tributed random numbersτ1 j in the interval(0, β) we obtain

Z1 = lim
N→∞

1
N

N

∑
j=1

p(τ1). (3.22)

Analogously, the second order is described by the set{(τ1, τ2)} and – generating
uniformly distributed value pairs(τ1, τ2) in the interval(0, β) – we obtain

Z2 = lim
N→∞

1
N

N

∑
j=1

p(τ1, τ2). (3.23)

In theory, we could sample the integral up to some finite orderkmax and then
truncate. However, Prokof’ev, Svistunov, and Tupitsyn showed in 1996 how to
sample series of the type of Eqn. (3.20) exactly, without truncation errors.

The basic principle is that instead of sampling each order separately and trun-
cating, we sample all orders at once, and we employ Metropolis’ algorithm to
transition from one order to the next. We write the algorithmsuch that there is
no truncation at any order, and it ispurely the fact that the weight of very large
orders is exponentially suppressed (e.g. by the factor1

k! of the expansion of an
exponential) that guarantees that the sampling process does not run off to infinite
order. Theonly error of these calculations is the statistical Monte Carlo error,
which scales as 1/√N with the number of Monte Carlo samples.

In analogy to the Ising and Lennard-Jones systems we set out by defining the
configuration spaceC. Combining all possible orders,C is the set

C = {{},{τ1},{τ1, τ2},⋯,{τ1,⋯, τk},⋯} (3.24)

where theτ j are continuous variables. Without loss of generality we assume that
the configurations are time-ordered, i.e. thatτ1 < τ2 < ⋯ < τk. Each configuration
contributes some value to the whole partition function, andassuming that all the
expansion coefficients above are positive (otherwise we will have a sign problem,
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Figure 3.1:Pictorial representation of configurations{(τ1, τ2,⋯τ j)} ∈ C that occur within
the continuous-time algorithms. Diagrams for orders zero through three. The circles
represent imaginary times at which the interactions take place.

see section 3.4) and the partition function has a finite value, we can normalize
each valuep({(τ1),⋯, (τk)}) with the partition functionZ to obtain a normalized
probability distributionp({τ1,⋯, τk})/Z on the phase spaceC. Note that, due
to the infinitesimal probability of selecting oneτ j in the interval from 0 toβ,
p({τ1,⋯, τk})dτ1⋯dτk/Z is a k-dimensional probability density over which we
need to integrate. The overall normalization constantZ – the partition function –
is of course unknown during the simulation.

While the configurations inC had some intuitive physical meaning in the case
of the classical model systems, their interpretation is less obvious in the quantum
case, as they are just expansion coefficients of an infinite series. It is however
possible to represent these coefficients by pictures (see Fig. 4.2, Fig. 6.2, and
Fig. 7.1) and talk of the sampling of diagrams consisting of “vertices”, “segments”
or “auxiliary spins”.

We sample configurations contributing to the value of the integralZ by using
a Markov chain Monte Carlo process as detailed in figure 3.2: starting from
some initial configuration, e.g. the zeroth order configuration, we proceed from a
current configurationx to a new onex′ and in this way walk through phase space:
x0 → x1 → x2 →⋯→ xk → xk+1⋯

Updatesxk → xk+1 that are typically implemented in diagrammatic Monte
Carlo codes involve the raising of the order, i.e. the insertion of an additional(τ j)
-vertex, the lowering of the order (removal of an imaginary time vertex(τ j)), or
a local change at the same order(τ j) → (τ′j), like a spinflip or the change of aτ.
Insertion and removal updates are illustrated in section 3.2.

We can guarantee that this sampling process samples configurations according
to their contribution to the partition function if we can show that

• We can reach any configuration from any other configuration inafinitenum-
ber of steps (ergodicity).

Clearly we can reach a configurationy = ((τ′1),⋯, (τ′k)) from x =((τ1),⋯, (τk)) by simply removing all(τ j) - vertices and then inserting
all (τ′j) - vertices, so this condition is trivially fulfilled1.

1Whether such a series of updates is likely to occur during a typical simulation time is another
matter – additional updates may be required to speed up this process, especially in the presence of
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0 β
τ1 τ2 0 β

τ1 τ3 τ2

insert

remove

Figure 3.2: An insertion update and its corresponding removal update within the
continuous-time algorithms.

• The probabilityWxy of transitioning from configurationx with probability
densitypx to configurationy with weight py satisfies the detailed balance
condition or the balance condition

∑
x

Wxypx = py. (3.25)

We fulfill the detailed balance condition Eqn. (3.25 by performing our updates
using the Metropolis algorithm.

An insertion move that raises the order by one has to be balanced by a removal
move (Fig. 3.2). Assuming we have a configurationx = {(τ1),⋯, (τk)} and try
to insert a time vertex(τk+1) to obtain a configurationy = {(τ1),⋯, (τk), (τk+1)},
we have to guarantee the detailed balance according to Eqn. (3.14). The transition
probability densityWxy of going from statex to statey is

Wxy =Wprop(x→ y)Wacc(x→ y), (3.26)

Wyx =Wprop(y→ x)Wacc(y→ x). (3.27)

The proposal probability densityWprop(x→ y) of inserting a time vertex(τk+1) is
given by the probability of picking the imaginary time location τk+1:

Wprop(x→ y) = dτ
β
. (3.28)

The proposal probability of removing a vertex, on the other hand, is just the one
of selecting that particular vertex out of thek+ 1 available vertices:

Wprop(y→ x) = 1
k+ 1

. (3.29)

Therefore we have to choose the acceptance probabilitiesWacc(x → y) and
Wacc(y→ x) such that

Wxy

Wyx
= dτ
β

k+ 1
1

Wacc(x→ y)
Wacc(y→ x) = py

px

Wacc(x→ y)
Wacc(y→ x) = p(y)

p(x) 1/(k+ 1)
dτ/β (3.30)

ordered phases
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Applying Metropolis’ algorithm Eqn. (3.19) to fulfill detailed balance we ob-
tain

Wacc=min(1, p(y)Wprop(y→ x)
p(x)Wprop(x→ y)) =min(1, 1

k+ 1
β

dτ
p(y)
p(x)) . (3.31)

Most importantly, even though the configuration ratiopy/px is infinitesimally
small2, the transition rate from configurationx to y stays finite, as the extra in-
finitesimal element ofp(y) is canceled by thedτ of Eqn. (3.28).

In the following we will construct partition function expansions for various al-
gorithms and insertion/ removal updates of segments, vertices, or auxiliary spin/

time pairs. The scheme is always the same: we write down the expansion, find the
acceptance/ rejection probabilities, and generate configurations of the partition
function according to the weight that they contribute toZ. While sampling such
configurations, we measure observables as described in Eqn.(3.11).

This general sampling procedure is illustrated in Fig. 3.3.

3.4 The Sign Problem

Until now we have tacitly assumed that the expansion coefficients of our partition
function expansion are always positive or zero. This, and the fact that they stay
finite, allows us to interpret the weightsp(x)Z for configurationsx ∈ C as a normal-
ized probability density on the configuration space and allow the sampling with a
Monte Carlo process. If the expansion coefficientsp(x) become negative, thep
can no longer be regarded as a probability distribution onC. It is however only the
interpretation ofp(x) as a probability distribution that fails – both the definition
of the series and of the observable (3.11) are still meaningful.

The Monte Carlo process is based on sampling probability distributions – if p
loses that meaning, it cannot be sampled. The identity

⟨A⟩p = ∫ p(x)A(x)dx

∫ p(x) = ∫ ∣p(x)∣sgn(p(x))A(x)dx

∫ ∣p(x)∣sgn(p(x)) (3.32)

= ∫ ∣p(x)∣sgn(p(x))A(x)dx

∫ ∣p(x)∣dx
/∫ sgn(p(x))∣p(x)∣dx

∫ ∣p(x)∣dx

however allows us to express the observable⟨A⟩p as an observable in a purely
positive and normalizable ensemble: We measure⟨A⟩∣p∣ in the ensemble∣p(x)∣
and divide the result by the average sign⟨sgn(p(x))⟩∣p∣. With this technique we
can sample any expansion with arbitrary expansion coefficients and sign statistics
in Monte Carlo.

The sampling process illustrated in Eqn. (3.32) works well in practice as long
as the average sign is not close to zero, i.e. the expansion coefficients mostly have
the same sign. Otherwise, the expectation value of the denominator⟨sgn(p(x))⟩∣p∣

2after all, the probability densitiespx is in a k-dimensional andpy in a (k+1) - dimensional
space.
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becomes small, while the sampling errors decrease as1√
N

of the number of sam-
ples N taken, and the division in (3.32) leads to an amplification oferrors. In
general it is not possible to find an expansion with large sign, and sampling a
series with vanishing sign becomes exponentially hard [3].

We can see this by considering the free energyFp = −T logZp and F∣p∣ =
−T logZ∣p∣ for both the partition function of the “signed” quantityp and the “un-
signed” quantity∣p∣. Assuming that the free energy density stays invariant when
lowering temperature, we obtain for the free energy densityf = F/V and the
difference∆ f between the free energy forp and∣p∣

⟨sgn⟩ = Z
Z∣p∣
= exp(−βV∆ f ), (3.33)

and therefore an exponential dependence both on temperature and configuration
space volume. In addition to that, there is an overlap problem: we cannot guar-
antee that the configurations with a large contribution to∣p∣ are the ones having
large contributions top, and the reweighing formula Eqn. (3.12) shows that the
variance of (3.32) will be large if the overlap is small.

The relative error of the sign appearing in the denominator of (3.32) is given
by √

var(sgn)
M

/⟨sgn⟩ = 1√
M⟨sgn⟩ = 1√

M
exp(βV∆ f ), (3.34)

and therefore the error of (3.32) grows exponentially with configuration space
volume and inverse temperature. This exponential growth iscommonly known as
the sign problem.

We can identifyp as the distribution for the fermionic and∣p∣ the one for
the bosonic system. Eqn. (3.33) and (3.32) then show that we are sampling the
distribution of the positive, bosonic partition function while we are interested in
observables in the fermionic ensemble.

A proof by Yooet al. [79] derived for the CT-AUX algorithm in section 5.4
shows that the sign problem in the single site case for the Hirsch Fye algorithm
does not occur. The proof consists of replacing the bath witha semi-infinite chain
and showing that there is no sign problem in this geometry. This proof is also valid
for the hybridization, CT-AUX and weak coupling algorithmspresented in this
thesis. However, multiple orbital problems with general interactions and cluster
problems may obtain a sign problem.
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Figure 3.3:Monte Carlo Algorithm Flow Diagram
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Chapter 4

Weak Coupling algorithm

The original idea for an expansion of the effective action of the Anderson impurity
model goes back to a paper by Rubtsov and collaborators, [103, 104, 34]. This
algorithm is based on methods originally introduced by Prokof’ev and coworkers
[105] for bosonic models. Using a weak coupling expansion ofthe partition func-
tion Z = Tre−Seff the effective actionSeff is expanded and sampled using Monte
Carlo. Rubtsov for the first time realized that repulsive Hubbard models could
be simulated without a sign problem originating from the interactionU if one
performed an additional transformation on the interactionterm.

4.1 Single Impurity Anderson Model – Partition
Function Expansion

We illustrate Rubtsov’s weak coupling algorithm for the effective action Eqn. (2.8)
of the single band Anderson impurity model [43], where a bandof conduction
electrons interacts with an impurity,

Seff = −∑
σ
∬

β

0
dτdτ′c†

σ(τ)G−1
0 (τ − τ′)cσ(τ′) (4.1)

+ µ∫
β

0
dτ(n↑(τ) + n↓(τ)) + ∫ β

0
Un↑(τ)n↓(τ).

A generalization to multiple orbitals, multiple sites, andmore general interactions
will follow in sections 4.1.2 and 4.1.3.

We describe the sampling of Eqn. (4.1) in the weak coupling expansion along
the lines of chapter 3. The partition functionZ of (4.1) is given by

Z = TrTτe−Seff . (4.2)

To start, we split the action into two parts: a two-operator non-interacting part
containing hopping and chemical potential absorbed inG0, and an interacting part
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containing the four-operator interaction (HubbardU) terms:

S0 = −∑
σ
∬

β

0
dτdτ′c†

σ(τ)G−1
0 (τ − τ′)cσ(τ′) − µ∫ β

0
dτ(n↑(τ) + n↓(τ)), (4.3)

SU = ∫
β

0
Un↑(τ)n↓(τ), (4.4)

We then perform a weak coupling expansion of the partition function, expand-
ing Z around the non-interacting1 limit, as described e.g. in [83]:

Z = TrTτe−(S0+SU) = Z0⟨e−SU ⟩0, (4.5)

where the average⟨⋅⟩0 = 1
Z0

TrTτ ⋅ e−S0 goes over the non-interacting ensembleS0

and contains the time ordering.
Formally, we can therefore write this partition function as

Z = Z0 (4.6)

− U
1! ∫

β

0
dτ1⟨n↑(τ1)n↓(τ1)⟩0

+ U2

2! ∬
β

0
dτ1dτ2⟨n↑(τ1)n↓(τ1)n↑(τ2)n↓(τ2)⟩0

− U3

3! ∭
β

0
dτ1dτ2dτ3⟨n↑(τ1)n↓(τ1)n↑(τ2)n↓(τ2)n↑(τ3)n↓(τ3)⟩0

+⋯
On the right side there is a series of integrals of products ofexpectation values
in thenon-interactingensemble. In this noninteracting ensemble⟨⋅⟩0 we have a
Wick’s theorem, which we can employ to decouple the productsof density opera-
tors. As we can express−⟨c(τi)c(τ j)†⟩0 = G0(τi −τ j) we can convert the sum over
the contractions in Wick’s theorem [106] into a determinantof a matrix of bare
Green’s functionsG0:

⟨Tτn↑(τi)n↓(τi)n↑(τ j)n↓(τ j)n↑(τk)n↓(τk)⋯⟩0 =∑contract.=∏
σ

∣Gσ0 (τi − τ j)∣
(4.7)

4.1.1 Ensuring Positivity of the Weights

The expansion of the partition function (4.6) suffers from an obvious problem: the
sign of the expansion coefficient changes with every order. Therefore the average
sign will be very small, and sampling this series is difficult. An alternating series
is a typical case in which we obtain the sign problem described in section 3.4.

1Noninteracting here means withoutSU , i.e. the bare effective action. Within the DMFT,
the influence of U on sites other than the current impurity site is hidden within the bare Green’s
function for the effective action,G0, andS0 does not correspond to the noninteracting solution of
the lattice problem corresponding to the impurity problem.
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Figure 4.1: Hubbard interaction vertices for the weak coupling algorithm in the single
impurity Anderson model. Blue circles denote the interaction vertices. EachUn↑(τ)n↓(τ)
- vertex has four operators. These operators are connected by G0 - lines, as depicted in
the upper panel. The summation over all possibleG0 - line configurations is done via the
determinant in Wick’s theorem, and a Monte Carlo configuration inC is defined as in the
lower panel.

Rubtsov [103] found a “trick” to solve this problem: by shifting terms from the
noninteractingS0 to the interactingSU he could completely suppress the sign
problem of Eqn. (4.6), at the cost of introducing an additional constantα and
summing over it.

If we define our chemical potential such that half filling corresponds toµ = 0,
we can rewrite Eqn. (4.1) (up to an irrelevant constant) as

S0 = −∑
σ
∬

β

0
dτdτ′c†

σ(τ′)Gσ0 (τ − τ′)−1cσ(τ) (4.8)

SU = U
2
∑

s
∫

β

0
dτ (n↑(τ) − αs↑) (n↓(τ) − αs↓) (4.9)

The parametersδ andαsσ = 1/2+ σsδ control the strength of the auxiliary Ising
field s that he introduced to suppress the sign problem from the interaction for
small positiveδ. 2 The partition function expansion Eqn. (4.6) becomes

Z
Z0
=
∞

∑
k=0

(−U)k
k! ∭

β

0
dτ1⋯dτk ∑

s1⋯sk

∏
σ

⟨Tτ[nσ1(τ1) − αs1σ1]⋯[nσk(τk) − αskσk]⟩
=
∞

∑
k=0

(−U)k
k! ∭

β

0
dτ1⋯dτk ∑

s1⋯sk

∏
σ

detDσ
k (4.10)

Wick’s theorem leads to a product of two determinants (one for each spin) as in

2The term “auxiliary field” is not mentioned in the original Rubtsov papers, but only in [107].
Rubtsovet al. mention that theαs must be “symmetrized” by interchangingα↑ with α↓, which
corresponds to the summation over an auxiliary field.
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Eqn. (4.7):

detDσ
k = ⟨Tτ[nσ1(τ1) − αs1σ1]⋯[nσk(τk) − αskσk]⟩ (4.11)

=
RRRRRRRRRRRRRRRRRR

G0
σ(0) − αs1σ1 G0

σ(τ1 − τ2) ⋯ G0
σ(τ1 − τk)

G0
σ(τ2 − τ1) G0

σ(0) − αs2σ2 ⋱ ⋮
⋮ ⋱ ⋱ ⋮

G0
σ(τk − τ1) ⋯ G0

σ(τk − τk−1) G0
σ(0) − αskσk

RRRRRRRRRRRRRRRRRR
With the introduction of this auxiliary Ising spins we can guarantee that the sign
from the interaction is positive, in analogy to [79]. However, in addition to sum-
ming over all orders and integrating from zero to beta for each operator, we obtain
an additional sum over theαk.

4.1.2 Multiple Orbital Problems

The Hamiltonian for single site, multiple orbital problemsincludes additional
terms in the interaction: in addition to the repulsion on thesame site, we can con-
sider density-density interactions between different orbitals, or even more general
terms like exchange or pair hopping. The most general interaction for no spin-
orbitals is

W =
no

∑
i jlm=1

⨌
β

0
dτidτ jdτldτmUi jlm(c†

i cj − αi j)(c†
l cm− αlm), (4.12)

of which the single site Hubbard model is a special case forno = 2 with Ui jlm =
δi jδlmδ∣i−l∣1 U

2 . Our weak coupling series expansion Eqn. (4.10) has to be performed
in multiple dimensions, from which we obtain an additional sum over all orbitals:

Z
Z0
=
∞

∑
k=0

no

∑
i1 j1l1m1

⋯
no

∑
ik jklkmk

⨌
β

0
dτikdτ jkdτlkdτmk (4.13)

× (−1)kUi1 j1l1m1⋯Uik jklkmk

k!
∣Dl1m1⋯lkmk

k,i1 j1⋯ik jk
(τi1, τ j1,⋯τlkτmk)∣.

The Green’s function matrix

Dl1m1⋯lkmk
k,i1 j1⋯ik jk

(τi1, τ j1,⋯τlk , τmk) (4.14)

=
⎛⎜⎝
(G0

i1 j1
(τi1 − τ j1) − αi1 j1 G0

i1m1
(τi1 − τm1)

G0
l1 j1
(τl1 − τ j1) G0

l1m1
(τl1 − τm1) − αl1m1

) ⋯
⋮ ⋱

⎞⎟⎠
can be written as a block-matrix if the various orbitals do not mix, and we can
prove (see [79]) that for density-density interactions in this case no sign problem
appears. However, in general any orbital interacts with anyother orbital via the
bath, and there is no reason for the determinant ofD to have the same sign for all
configurations. The choice ofα - terms has an influence on the sign statistics, and
they need to be adjusted for each problem such that the expansion is sign - free
or at least has an average sign that is as large as possible. How this is best done
is still an open question, and an ansatz has been presented byE. Gorelovet al. in
Ref. [108].
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4.1.3 Cluster Calculations

In the case of the Hubbard model on a cluster, the Hamiltonianis

H = −t∑
⟨i j⟩
(c†

i cj + h.c.) +U∑
j

ni↑ni↓. (4.15)

The only difference to the single orbital case is that the operator acquires an addi-
tional site index. We can completely absorb all quadratic hopping terms in theG0,
and perform the weak coupling expansion in

SU =∑
i

(ni↑ − α↑)(ni↓ − α↓). (4.16)

Theα - terms are best chosen like in the single site case:α↑ = 1− α↓, with α↑ < 0
or α↑ > 1 and a symmetrization during the simulation. This guarantees that the
expansion in the interaction does not generate a sign problem. TheG0

i j(τi − τ j) is
site-dependent, but spin up and spin down part separate. We can therefore write
the partition function as

Z
Z0
=
∞

∑
k=0

∑
s1,⋯,sk=±1

(−U)k
k!

detD↑ detD↓, (4.17)

where(Dσ)i j = G0
i jσ(τi−τ j)−δi jαiσ. It follows immediately that the expansion does

not suffer from a sign problem for the half-filling case, where the determinants of
the up- and down matrices are identical. However, away from half filling a sign
problem occurs in general, see e.g. Fig. (5.4).

It is the cluster scheme (e.g [47], DCA [109, 42] or CDMFT [48]) and the clus-
ter self consistency that define the precise form of the inputbare Green’s function.
The impurity solver part is independent of the particular choice of self consistency
condition.

4.2 Updates

As in the CT-AUX algorithm, we obtain a series of integrals ofexpansion coef-
ficients that can be expressed as a product of a numerical factor and a product of
determinants of rather large matrices.

Z
Z0
=
∞

∑
k=0
∭

β

0
dτ1⋯dτk ∑

α1⋯αk

(−U)k
k!
∏
σ

detDσ({α1, τ1},⋯{αk, τk}). (4.18)

We can therefore employ the mathematics of chapter 3 to sample this series in
Monte Carlo, in analogy to Eqn. (3.20). In order to do this, wegenerate random
configurations of the sum overk, thek−dimensional integral overτ j, the possible
interactions strengths in the multiple orbital case and possible sites in the cluster
case, as well as theα j for each interaction.

The configuration space of this partition function is given by the set

C = {{},{(α1, τ1,U1)},{(α1, τ1,U1), (α2, τ2,U2)},⋯,{(α1, τ1,U1),⋯},⋯},
(4.19)

where theU j denote one of thenI different types of interaction terms.
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a)

0 β

b)

0 β

c)

0 β

d)

0 β

Figure 4.2: Updates in the partition function space: starting from configuration (a): In-
sertion of a vertex (b), removal of a vertex (c), and the shiftof a vertex in imaginary time
(d).

4.2.1 Insertion and Removal Updates

Using the insertion and removal updates detailed in section3, we obtain for the
acceptance ratio for an insertion update of an(αk+1, τk+1,Uk+1) - vertex:

Wacc= Uk+1nI

k+ 1
detDk+1({(α1, τ1,U1),⋯, (αk+1, τk+1,Uk+1)}

detDk({(α1, τ1,U1),⋯, (αk, τk,Uk)} . (4.20)

For the single impurity Anderson model, using the fact that we can write the
matrix D in two blocks (one for each spin) and take the determinant separately,
this amounts to

Wacc= U
k+ 1

detD↑k+1({(α1, τ1),⋯, (αk+1, τk+1)}
detD↓k({(α1, τ1),⋯, (αk, τk)}

detD↓k+1({(α1, τ1),⋯, (αk+1, τk+1)}
detD↑k({(α1, τ1),⋯, (αk, τk)} .

(4.21)

The acceptance probability for a removal move fromk + 1 to k vertices is the
inverse of the insertion probability derived above. These two moves are already
sufficient to be ergodic, as we can reach any element ofC from any other element
by for example going to zeroth order by removing all vertices, and then inserting
all new ones.

4.2.2 Shift Updates

Alternatively we can introduce (self-balancing) shift updates that shift a vertex
from timeτ to timeτ′, the acceptance probability of which is given by the deter-
minant ratio

Wacc=min(1, detDnew

detDold
) . (4.22)

These acceptance probabilities are identical to the ones ofupdates that changeα↑
to α↓ or interchange sites or orbitals: as long as the interactionstrengthsUk are
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not changed and the number of vertices is invariant, all the changes occur in the
Green’s function matrixD.

In practice, handling the matrixD numerically is impractical. Instead, we
employ the fast-update formulas of appendix A to compute theinverse matrix of
D, which in Rubtsov’s papers is calledM = D−1. By inserting or removing a vertex
into the series, we change one row and one column of the matrixD, and computing
the determinant ratios between the old and the newD-matrix is particularly easy
if the inverseM-matrix is known, see Eqn. (A.10): Determinant ratios for an
insertion update require a matrix-vector multiplication and areO(N2), while the
ones for a removal update are constant in time.

4.3 Measurements

The Green’s function of the effective actionSeff is defined as

Gi jσ(τp − τq) = −⟨Tτciσ(τp)c
†
jσ(τq)⟩ = − 1

TrTτe−Seff
TrTτciσ(τp)c†

jσ(τq)e−Seff

(4.23)

=∑
k

(−U)k
k! ∭

β

0
dτ1⋯dτk⟨ciσ(τp)c†

jσ(τq)c1(τ1.)⋯c†
2k(τ2k)⟩0.

(4.24)

We generate diagrams of the partition function with the weight that they contribute
to Z, not diagrams of the Green’s function. We therefore need to employ formula
(3.12) to obtain an estimator for the Green’s function and compute the ratio

r = ⟨ciσ(τp)c†
jσ(τq)c1(τ1)⋯c†

2k(τ2k)⟩0⟨c†
1(τ1)c1(τ1)c†

2(τ2)⋯c†
2k(τ2k)⟩0 . (4.25)

This is just a determinant ratio, similarly to what needs to be computed in the
updates (see appendix A), and is obtained from the matrixDpq

G0,σ
containing an

additional row and column:

Dpq
G0,σ
= ( DG0,σ G0,σ(τi − τq)
G0,σ(τp − τ j) G0,σ(τp − τq) ) . (4.26)

The relative weight of the Green’s function is given by the determinant ratio
detDpq

G0,σ
/detDG0,σ , which is computed using formula (A.10) (M = D−1):

detDpq
G0
= detDG0[G0(τp − τq)
−∑

i j

G0(τp − τi)(D−1G0
)i jG0(τ j − τq)]. (4.27)

Hence the formula for measuring the Green’s function becomes [34]:

Gpq(τp, τq) = G0
pq(τp − τq) − ⟨∑

i j

G0
pi(τp − τi)Mi jG0

jq(τ j − τq)⟩, (4.28)
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whereM = D−1G0
and angular brackets denote the Monte Carlo average. Fourier

transforming this formula yields a measurement formula in Matsubara frequen-
cies,

Gpq(iωn) = G0
pq(iωn) − ⟨β−1∑

i j

G0
pi(iωn)G0

jq(iωn)Mi j eiωn(τi−τ j)⟩, (4.29)

G(iωn) = G0(iωn) − β−1G0(iωn)2⟨∑
i j

Mi j eiωn(τi−τ j)⟩. (4.30)

Both measurements can be performed directly during an update of the parti-
tion function, thereby reducing the computational effort for measuring the Green’s
function at each step fromO(NM2) to O(NM), whereN is the number of time
slices or Matsubara frequencies andM the average matrix size [34].

The Matsubara Green’s function is required for the computation of the self-
energy and the Hilbert transform, so measuring the Green’s functions directly
in frequency space allows one to avoid the Fourier transformation of the Monte
Carlo-averaged Green’s function from imaginary time to Matsubara frequencies in
the self consistency. In addition to that, in the weak coupling algorithm the mea-
surement in Matsubara frequencies appears as a correction to the (known) bare
Green’s functionG0(iωn) which is suppressed by a factor of1

βiωn
. For high fre-

quencies, the errors converge very quickly and it is therefore possible to measure
the high frequency behavior in a short time, before focusingon lower Matsubara
frequencies for the rest of the simulation. This reduces thecomputational effort
significantly.

4.4 Implementation Notes

What follows are some remarks on how to best implement the weak coupling
algorithm. These remarks are of a rather technical nature and only important for
the implementation of the weak coupling - algorithm.

4.4.1 Factorization of the Measurement

In principle we can update the Green’s function belonging toa set of times and
alphas directly during an accepted update. As the update to the inverseM-matrix
is a rank-one update, we can factorize the Green’s function update. We start by
writing the inverse ofD, M, after a move from orderk to orderk+ 1 as

M = (P̃ Q̃
R̃ S̃

) , (4.31)

with P̃, Q̃, R̃, andS̃ as in appendix A. The Green’s function in Matsubara frequen-
cies is

Gk+1
pq (iωn) = G0

pq(iωn) −∑
i j

G0
pi(iωn)G0

jq(iωn)
β

eiωnτi Mi j e−iωnτ j , (4.32)
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Plugging inP̃ = P−1 + Q̃S̃−1R̃ and noting thatP−1 is the known matrix before the
update move from orderk to k+ 1, we obtain

Gk+1
pq (iωn) =G0

pq− 1
β

k

∑
i j

eiωn(τi−τ j)G0
piP
−1
i j G0

jq − 1
β
∑
i j

eiωn(τi−τ j)G0
pi(Q̃S̃−1R̃)i jG0

jq

− 1
β

k

∑
i

eiωn(τi−τk+1)G0
piQ̃iG0

(k+1)q −
1
β

k

∑
j

eiωn(τk+1−τ j)G0
p,k+1R̃iG0

jq

− 1
β

eiωn(τk+1−τk+1)G0
p,k+1S̃G0

k+1,q (4.33)

=Gk
pq− 1

β
[ k

∑
i

G0
piQ̃ieiωnτi] S̃−1 [∑

j

R̃jG0
jqe−iωnτ j]

− 1
β

k

∑
i

eiωn(τi−τk+1)G0
piQ̃iG0

(k+1)q −
1
β

k

∑
j

eiωn(τk+1−τ j)G0
p,k+1R̃iG0

jq

− 1
β

eiωn(τk+1−τk+1)G0
p,k+1S̃G0

k+1,q (4.34)

=Gk
pq− 1

β
[k+1

∑
i

G0
pi (Q̃S̃)

i

eiωnτi] S̃−1 [k+1

∑
j

(R̃ S̃)
j
G0

jqe−iωnτ j] . (4.35)

It is therefore possible to obtain a new Green’s function from the old one in only
O(k) steps.

Experience has shown that there is an accumulation of roundoff errors, espe-
cially in the cluster case, for this method of computing the Green’s function. As
it takes a sweep, orO(k) steps, to generate an independent configuration, there is
no overall benefit in computing the “factorized” version of the Green’s function
as opposed to a direct,O(k2), measurement. This measurement method should
therefore be avoided.

4.4.2 Frequency versus Imaginary Time Measurement

There are advantages and disadvantages both to measuring inthe frequency as
well as in the imaginary time domain. The measurement in the imaginary time
domain has a crucial drawback: the introduction of discretization errors. As the
cost of measurements is proportional to the number of imaginary time points at
which formula (4.23) is evaluated, a fine grid of time points becomes prohibitively
expensive, and one of the major advantages of the new algorithms – the elimina-
tion of discretization errors – is lost in this process. These discretization errors
however are of a different type than the ones in Hirsch Fye and similar discrete
time algorithms: while the entire simulation in Hirsch-Fyeis performed in dis-
crete time, here it is only the measurement of the Green’s function that has this
discretization problem.

The measurement in the Matsubara frequency domain, on the other hand, has
the advantage that it does not introduce any discretizationerrors. As the Matsub-
ara frequenciesωn are already discrete, we simply measure all frequencies up to a
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maximum cutoff ωmax. To obtain the number of frequency points needed we can
use the high frequency expansion of the self energy or the Green’s function: we
automatically adjust the cutoff frequency such that the systematic error from the
cutoff is negligible compared to the statistical errors. A systematic way of ob-
taining these high frequency expansion coefficients has been developed by Armin
Comanac and is described in his PhD thesis [110] and – for the Cerium problem
– illustrated in appendix B.

The insertion of two imaginary time pointsτ andτ′ into the configuration has
an additional degree of arbitrariness: the observable averageG(τ − τ′) is trans-
lationally invariant, while the configuration at hand is not, and we can choose
any imaginary time pointτ between 0 andβ for the first operator in Eqn. (4.28)
that we insert. The measurement process will, of course, eventually restore the
symmetry. In order to obtain the complete information of a particular partition
function configuration, we need to perform the measurement of G for all possible
(continuous)τ-points. Of course these measurements are highly correlated, and a
sensible compromise are O(k) measurements for a configuration withk vertices.
Such a measurement would completely dominate the simulation and is therefore
impractical.

4.4.3 Self Energy Binning Measurement

If the imaginary time measurement is fast or does not scale with the number of
available discretization points, the algorithm is not limited by the number of time
slices measured and the advantage of having a “continuous time” - algorithm is
maintained. This is the reason why the “self-energy binningmeasurement”, orig-
inally developed in the context of the CT-AUX algorithm, is faster. The measure-
ment formula is rewritten as

G(τ) = G0(τ) − ⟨∑
pq
G0(τ−τp)MpqG0(τq)⟩ (4.36)

= G0(τ) − ∫ dτzG0(τ − τz)⟨∑
pq
δ(τz− τp)MpqG0(τq)⟩ (4.37)

= G0(τ) − ∫ β

0
dτzG0(τz)⟨S(τz)⟩. (4.38)

In the Monte Carlo process, we only measure the quantity⟨S⟩, which we bin
into fine bins. This binning process is independent of the number of time slices
on which we measureG, and only requires the evaluation ofMG at runtime. In
practice we can employ the translational invariance in theτ - domain to obtain
multiple estimates of the Green’s function in the same step,and perform a matrix-
matrix multiplication of the matrixM and a matrixGq j = G(τq − τ j) to obtain
estimates forS.

The cost of such a calculation scales with the size ofM, not the number of
imaginary time measurement points. In practice, it turns out to be significantly
faster than the other methods and is therefore the method of choice for the mea-
surement in the weak coupling algorithms.
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The Matsubara Green’s function can also be extracted directly from the ex-
pectation value ofS:

G(iωn) = G0(iωn) − G0(iωn)∫ β

0
dτzeiωnτz⟨S(τz)⟩. (4.39)

4.4.4 Discretization of the Exponential Factors

The exponential factors exp(±iωnτ) are an expensive part of the simulation in the
case of a frequency measurement. Recomputing exponentials, even with special-
ized vectorized functions that are available e.g. as part ofthe Apple veclib, AMD
ACML or Intel MKL libraries, is time consuming and takes mostof the computing
time of the simulation for large simulations. An obvious simplification, originally
proposed in this context by A. Macridin, consists of creating a very fine imaginary
time grid (of, in our case, usually 10’000 time slices). At the start of the simula-
tion, exp(iωnτ) is computed for allωn needed and allτ on that grid, and the values
are stored. This may consume some memory, but it eliminates the expensive cal-
culation ofeiωnτ at runtime. We did not observe any inaccuracies introduced by
the discretization.

4.4.5 DCA Momentum Measurements

In DCA, only diagonal entries of the Green’s function in k-space are non-zero.
For a cluster withnc sites, this means that onlync independent Green’s functions
have to be measured instead ofn2

c for the real space Green’s function. Even if
we allow for antiferromagnetism on the cluster (and therebydouble the unit cell),
we only need to measureO(nc) elements of the Green’s function. Measuring
the k-dependent Green’s function requires an additional Fourier transform factor
exp(ikr) to be multiplied to the Green’s function at runtime, but thisis still less
expensive than directly measuring the full real space Green’s function. Therefore,
if the system is translationally invariant, this invariance should already be taken
into account during the measurement.

4.5 Green’s Function (“Worm”) –Sampling

When using the weak coupling solver, we generate diagrams orconfigurations ac-
cording to the the weight that they contribute to the partition function. We then
generate a diagram of the Green’s function by inserting two creation and anni-
hilation operators into the configuration that has been generated for the partition
function. As we have seen in Eqn. (3.9), we can reduce the sampling errors by
sampling a distribution that is close to the one of the observable we are inter-
ested in – in the sense that the variance var( f /p) is small – such that the sampled
distributionp and the function to be measuredf are at least large in the same area.

A priori, it is not clear that the configurations with large weight of the Green’s
function are the ones that are created by inserting two non-interacting bare Green’s
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function lines into the configurations that are important for the partition function.
It could be that the two distributions – the one for the Green’s function and the
one for the partition function – have small overlap, which inturn would mean
that the measurement of the Green’s function – while of course correct – becomes
inefficient and the observables have a large variance.

Instead, it is much more elegant to generate diagrams of the Green’s function
directly according to their contribution to the Green’s function. This method,
originally developed in the bosonic context by Prokof’ev and collaborators [94],
and later applied to the attractive -U Hubbard model [111] is known by the name
“worm algorithm”, referring to the two dangling Green’s function lines that build
the head and tail of the worm. While in principle superior to the naive partition
function sampling, the method has some important drawbackswhen applied to the
weak coupling algorithm that are illustrated in the following.

4.5.1 Derivation of the Worm Algorithm

We limit the explanation of the worm algorithm to the clustercase of section 2.5.
The extension to the multiorbital case is performed straightforwardly by adding
another orbital index. We expand the diagrams for the partition function in the
usual weak coupling series:

Z =∑
k

(−U)k
k!
∑
s,σ
∫ dx1⋯∫ dxk⟨c†

s1,σ1
(τ1)cs1,σ1(τ1)⋯⟩S0 (4.40)

and consider the series for the Green’s functionGσ,si ,sm(τi , τm) for operatorsci and
c†

m at timesτi, τm and on sitessi, sm with spinσ:

Gσ,si ,sm(τi , τm) = ∑
k

(−U)k/k!∑
s,σ
∫ dx1⋯∫ dxk

⟨c†
siσ
(τi)csmσ(τm)c†

s1,σ1
(τ1)cs1,σ1(τ1)⋯⟩. (4.41)

Instead of just sampling diagrams for the partition function, we sample both dia-
grams of the partition function and of the Green’s function space. The configura-
tion space is enlarged by configurations that have two more operators:csmσ,c

†
siσ

present and represent the Green’s function space:

C = {CZ,CG}, (4.42)

and the partition function of the combined system is the one of the original system
and the Green’s function, with an arbitrary factorη that controls the relative time
that is spent in each sector,

Ztot = Z + ηG. (4.43)

The weight of a configuration of the Green’s function includes the two new op-
erators. Within the “worm” algorithm community, the two newoperatorscsmσ,c

†
siσ

are called “Ira” and “Masha”. They form the head and tail of the “worm” diagrams
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0 β

c↑(τ1)
c†
↓
(τ1) c↓(τ1)

c†
↑
(τ1) c†

↑
(τi) c↑(τm)

Figure 4.3:Worm Algorithm: configuration of worms

(diagrams of the Green’s function). In order to perform an ergodic sampling of
the extended configuration space, we need to adjust our updates and in addition
to the partition function moves include updates that connect the partition function
to the Green’s function space, i.e. we need to include updates that insert a worm
or remove it. While in principle enough to guarantee ergodicity, we can add fur-
ther updates that stay in the Green’s function space and change the order or the
configuration there. These updates are explained in the following section.

4.5.2 Worm Updates

Worm Insertion

Consider two configurationZ ∈ CZ andG ∈ CG that have the Hubbard interaction
vertices at the same place and only differ by two added operatorsc†

i ,cm of G. Their
weight is given by the coefficients of Eqn. (4.41) and (4.40): a partition function
space configuration with k vertices at timesτ1,⋯, τk has the weight

pz(k) = (−U)kk!
⟨c†

s1,σ1
(τ1)cs1,σ1(τ1)⋯⟩S0, (4.44)

while a Green’s function configuration with the same vertices but two additional
operators atτm, τi obtains the weight

pg(k) = (−U)kk!
⟨c†

siσ
(τi)csmσ(τm)c†

s1,σ1
(τ1)cs1,σ1(τ1)⋯⟩. (4.45)

For the transition from one state to the other we need to satisfy the detailed
balance condition – now on the extended configuration space.It is given by

pzW(Z→G) = pGW(G→ Z). (4.46)

For the partition function and Green’s function sectors we obtain (up to an ar-
bitrary factorη that determines how much time we spend in Green’s function/
partition function sector) that the probability of going from the partition function
sector to the Green’s function sector by introducing two operators Ira, Masha at
timesτi, τm is

Wacc(Z→G) = min(1, η⟨c†
i cmc†

1c2⋯c2k⟩⟨c†
1c2⋯c2k⟩ ) . (4.47)
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Thus all we have to do is compute the determinant ratio of the configuration with
and without Ira and Masha. The formulas are exactly the same as the ones of the
vertex insertion, without the factors ofα andU/k.

Worm Removal

The corresponding removal probability that balances this move needs to cancel
theη factor of (4.47).

Wacc(G→ Z) = min(1, 1
η

⟨c†
1c2⋯c2k⟩⟨c†

i cmc†
1c2⋯c2k⟩) (4.48)

This factorη allows us to control how much time we spend in the Green’s function
sector and how much time we spend in the partition function sector. It seems that
η is best chosen of the order ofβ. In that way, acceptance probabilities for a worm
insertion and for a worm removal are both non-vanishing.

Worm Shift

Worm shift updates are illustrated in Fig. 4.4, (b) and (c): we take Ira and Masha
and propose to shift either Ira or Masha (or both of them) from(τi , si), (τm, sm) to a
different site, time or spin(τ′i , s′i), (τ′m, s′m). The weight of the initial configuration,
up to the overall normalizationZ, is

pC = (−1)kk!
Uk∏

σ

⟨csiσi(τi)csmσm(τm)†(n1σ(τ1) − α1)⋯(nkσ(τk) − αk)⟩, (4.49)

and likewise the one of the final configuration:

pC′ = (−1)kk!
Uk∏

σ

⟨cs′iσ
′
i
(τ′i)cs′mσ′m(τ′m)†(n1σ(τ1) − α1)⋯(nkσ(τk) − αk)⟩. (4.50)

This move is self balanced. As the proposal probability for ashift update and its
reverse update are the same and therefore cancel in the detailed balance equation,
the acceptance probability becomes

Wacc((ci ,c†
m)→ (ci′ ,c

†
m′)) = min(1, ⟨c†

i′cm′c
†
1c2⋯c2k⟩⟨c†

i cmc†
1c2⋯c2k⟩ ) . (4.51)

Worm shifts are an easy way to obtain measurements. As each worm configuration
yields just one estimate for a Green’s function⟨c†

i cm⟩, cheap worm shifts allow us
to improve measurement statistics by measuring a series of⟨c†

i cm⟩, ⟨c†
i c
′
m⟩, ⟨c†

i c
′′
m⟩,

. . . . In our implementation, most of the moves in the worm space are of this
nature. They are relatively fast and easily improve the measurements statistics.
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a)

0 β

b)

0 β

c)

0 β

d)

0β

e)

0β

f)

0β

Figure 4.4:Worm moves: starting from a): b) Insertion of the worm. c) shift of the worm
head. d) shift of the worm head and vertex removal. e) shift ofthe worm and vertex
insertion. f) removal of the worm with insertion of a vertex and return to the partition
function space.

Vertex Insertion with Worm

It is important to have a method by which we can change the expansion order of
the algorithm while staying in the Green’s function space. This assures that the
underlying partition function configuration is changed so that it corresponds to
Green’s function configurations that have high contributions. As in the case of
the partition function algorithm, we obtain the weights from the expansion (4.41),
and construct the acceptance ratios according to Metropolis:

Wacc=min(1, U
k+ 1

⟨cic
†
mc1⋯c2k⟩⟨cic

†
mc1⋯c2k+1⟩) . (4.52)

The numerical implementation is a bit tricky, as the inversematrices are stored
just for the partition function part of the determinant, andis described in the im-
plementation section 4.5.4. This move is balanced by an inverse vertex removal
move.

4.5.3 Measurements

Imaginary Time

The imaginary time measurement in worm space is trivial: We know the position
of the two Green’s function operators and we are creating configurations of the
Green’s function according to the probability with which they contribute to it, thus
we simply record a histogram of worm positions with the appropriate sign, and
increase it by one in the bin that belongs toτi − τm. Measurements are most easily
done in real space, not cluster momenta, as this avoids additional exponential
factors. The averaging of these data can be done during the Fourier transform.
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Avoiding Binning Errors

The imaginary time measurement above yields estimates for the Green’s function
on a continuous grid. These estimates then have to be binned.However, we
can directly measure the Green’s function on a fixed grid: Before a measurement
we propose a “shift” update to shift the worm onto the imaginary time location
where it should be measured. Shift update proposals are cheap: all we need to
do is compute the Green’s functions at the new position for Masha, and perform
a matrix vector multiplication and a vector inner product. We have implemented
this method, but not (yet) systematically explored it.

Matsubara Frequency

While it is of course possible to Fourier transform the deltafunction of the worm
distance measured above, this is very inefficient. The reason for this is that we
have to deal withO(N)measurements instead of a single one. A fine grid of mea-
surement points is therefore much more efficient than the frequency measurement.

4.5.4 Implementation Notes

For the vertex insertion and removal moves it is best to storethe inverse matrix of
the Green’s functions for the vertices only. The worms and the Green’s functions
G(τIra − τ j), G(τi − τMasha) are not inverted. This makes it very easy to change
from the partition function to the Green’s function space, and as there is always
just one worm present the formulae for handling this extra row and column of D
are still relatively simple.

D = (G0(τp − τq) − αpδpq G0(τp − τmasha)
G0(τira − τq) G0(τira − τmasha)) (4.53)

Let us partition this matrix according to Appendix A:

D = (P Q
R S

) = (P̃ Q̃
R̃ S̃

)−1

(4.54)

And compute its determinant as in Eqn. A.10:

detD = det(P Q
R S

) = det(P)det(S −RP−1Q) (4.55)

We choose to store the inverse matrixP−1 = M, the matrix for the partition func-
tion configuration, as well as the matrices (or vectors)Q, R, S andS̃. The deter-
minant ratio of adding a worm is then given by:

det(P)
det(D) = 1

det(S −RP−1Q) =
1

G0(τira − τmasha) −∑pqG0(τira − τp)MpqG0(τq − τmasha) = S̃. (4.56)
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Thus for inserting a worm we have to compute a matrix-vector product and
an inner product of two vectors, analogous to adding a new vertex. We store the
value ofS̃ (note: S and̃S have dimension 1 for a single worm) such that for the
reverse worm removal the probabilityS̃ is already known.

For the worm shift update we need to compute the determinant ratio of two
matrices:

detDold

detDnew
=

det(P Q
R S

)
det(P Q′

R′ S′
) =

det(P)det(S −RP−1Q)
det(P)det(S′ −R′P−1Q′) . (4.57)

As S̃ = 1/det(S −RP−1Q) is already stored we need to compute the determinant
ratio for the new position of either Ira or Masha (or both):

detDold

detDnew
= S−1

det(S′ −R′P−1Q′) = S̃−1

S′ −R′P−1Q′
. (4.58)

Thus, again, the numerics for a shift update reduces to a matrix-vector multipli-
cation and an inner product. As this move is self balanced we need no separate
inverse move.

Direct vertex removal and vertex insertion moves are more complicated. The
basic idea when adding a new vertex is that S is now a 2× 2 matrix with one
column containing the Green’s function of the new vertex, the other the one of
the worm. We compute the new weight of the entire matrix and divide it by the
weight of the worm that was already present. The formulae arethe ones of a two-
vertex insertion move, and in the end analogous to the concatenation of the worm
removal - vertex insertion - worm insertion moves.

4.5.5 Normalization

In order to get the normalization factors properly we have togo back and forth
between partition function space and Green’s function space. The ratio of time
we spend in these sectors (modified by theη factor in Eqn. (4.47)) will give us the
correct normalization.

Also, observables other than the Green’s function are easier to be measured
in the partition function space. Changing between worm and partition function
space frequently assures that observables measured in bothspaces obtain decent
statistics.

4.5.6 Reweighing

Having the worm offers the interesting possibility to do reweighing in order toget
better data for analytic continuation. This is promising especially in the insulat-
ing phase, where the steep exponential decay of the Green’s function is hard to
resolve with a delta function binning measurement. The reweighing can be done
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with a flat histogram method described in section 4.6, or by simply assuming a
form of the gap (e.g. an exponential decay) and reweighing with the inverse of
this function. Also possible are bins of unequal size, or measurements without
discretization errors: before a measurement the worm is moved to the nearest
(few) measurement point(s).

4.5.7 Results

The worm method is based on an entirely different measurements procedure, and
therefore different auto-correlation times and different variances can be expected.
As we sample the diagrams for the Green’s function that we areinterested in
directly instead of sampling the diagrams for the partitionfunction, the variance is
expected to decrease. Because we have more efficient moves, the auto-correlation
time also might decrease. However, instead of measuring a smooth estimate of
the Green’s function we will measure a series of delta functions, and these are less
close to the actual Green’s function. On the other hand, measurements in partition
function space are much more time-consuming than measurements in the worm
function space where we just have to record a “delta” at the right place.

For all the problems we examined, the worm algorithm did not result in much
better statistics than the partition function algorithm. Closer examination of the
sampling process showed that the partition function algorithm, too, had little sam-
pling problems and the overlap between the Green’s functionand partition func-
tion space was large. However, where reweighing is necessary to obtain decent
statistics, the worm algorithm might yet show advantages over the traditional par-
tition function implementation. In the end, the lack of imaginary time translation
invariance has to be set off by improved statistics and decreased autocorrelation
times. We did not perform a detailed analysis of the insulator, where the Hubbard
vertices are expected to freeze in a partition function algorithm and dynamics
might be much slower.

4.6 Wang Landau Sampling

In the usual sampling process of the partition function weakcoupling algorithm, as
well as in the other algorithms described in chapter 5 and 6, we sample diagrams
of the expansion (elements of the configuration space) with the weight that they
contribute to the partition function. We then measure the Green’s function and
other observables in this ensemble. Section 3.2 illustrates that in order to sample
the right equilibrium distribution, an algorithm does not only need to have the
transition probabilities between states chosen in the right way, but it also has to
be “ergodic”, i.e. in principle able to reach every configuration from every other
configuration in a finite number of steps. For a system with various well-separated
parts of phase space that contribute to the integral, this ishard, especially if they
are not known a priori.
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Figure 4.5:A worm algorithm example: Weak Coupling, Weak Coupling and Worm, and
Hirsch Fye data for a 2× 2 cluster away from half filling (n = 0.9). Green’s function in
imaginary time and real space (onsite, nearest neighbor andnext-nearest neighbor). The
points are Hirsch Fye points and the lines are continuous time lines for both worm and
partition function method. Both methods give identical results within error bars.

Figure 4.6 illustrates a typical situation: for a paramagnet, the average mag-
netization is zero, and the expansion converges to a typicalorder. Sampling such
a distribution is straightforward. For an antiferromagnetic system, two discon-
nected parts of phase space contribute to the partition function: one with majority
spin up, and the other with majority spin down. The usual algorithm will only
sample one of them and not be ergodic. In the intermediate case, the algorithm
will slowly oscillate between the upper and the lower minima. While it still covers
the whole phase space, the sampling becomes slow and autocorrelation times (and
Monte Carlo errors) become large.

We are however free to sample any ensemble we want – as long as we perform
the proper reweighing (3.12). While the samples generated might have a larger
variance (3.9), we can try to find an ensemble in which autocorrelation times are
significantly smaller. This is the idea behind the Wang-Landau algorithm pre-
sented here.

4.6.1 The Classical Wang - Landau Algorithm

In classical systems, similar issues exist. When simulating second order phase
transitions, for example, the autocorrelation times at thecritical point diverge.
Coexistence regions at first-order phase transitions consist of disconnected parts
of phase pace – e.g. solid and liquid ones – that are equally contributing to the
partition function. While cluster update schemes existed for a long time for the
second order case to counteract the “critical slowing down”, both in the classical
[112, 113] and quantum case [93], methods that can successfully overcome first
order phase transitions are harder to find.

A first step was taken in 1991 by Berg and Neuhaus, when they introduced



62 4. Weak Coupling algorithm

Figure 4.6: Sketch of the configurations contributing to the partition function of a Hub-
bard model in the antiferromagnetic phase, started from a paramagnetic solution: projec-
tion of the configuration space onto the two axes “expansion order” and “magnetization”.
Darker shading represents more likely configurations. Configurations with zero magne-
tization contribute in the paramagnetic phase. For an antiferromagnetic system with a
paramagnetic start solution, two disconnected parts of phase space contribute.

“multicanonical sampling” [114] to overcome the phase transition of the 10 states
Potts model, which exhibits a first order phase transition. In order to accurately
simulate the coexistence region they changed their ensemble: they increased sam-
pling in regions between the two coexisting phases, i.e. forconfigurations that
build interfaces. These configurations are then no longer suppressed by an expo-
nential weight factor, and tunneling between the two phasesbecomes easier. Their
algorithm requiresa priori knowledge about the structure of phase space and the
location of the barrier (phase transition).

Wang and Landau [115, 116] designed a general sampling scheme that is de-
signed to find and overcome barriers and phase transitions without prior knowl-
edge of where they are. They chose to project their configuration space onto an
additional “reaction coordinate”. This reaction coordinate should allow for the
system to be tuned continuously from one phase to the other. The example for
the Potts system is that at low energies the system is in an ordered phase, and at
higher energies in a disordered phase. In between the systemundergoes a phase
transition.

If we knew the density of states of the system as a function of the reaction co-
ordinate (ρ(E) if the energy is the reaction coordinate), and if we were sampling
states of the configuration space not with a physical ensemble, but in an ensem-
ble proportional to 1/ρ(E), each energy would be sampled equally often, and the
system would constantly change between configurations at low energy (i.e. or-
dered ones), and such at high energy. The histogramh(E) of the energy would
be completely flat. Closer analysis shows that this algorithm can be improved by
minimizing the round-trip time between low and high energy states [117, 118].

Observables that are a function only of the reaction coordinate can then be
obtained by integrating over the density of states after thesimulation. Observables
that depend on other variables are sampled once the density of states is converged
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by reweighing.

Knowing the density of states requires a solution of the model. The algorithm
therefore proceeds by assuming an initial guess for it and then iteratively changing
the density of states until it is converged. To do this it employs the fact that
the histogram of states in the converged ensemble is flat, i.e. every point of the
reaction coordinate gets visited equally often.

We start the algorithm with an initial guess for the density of states - for ex-
ample one, an initial multiplication factor (usuallye), and a histogram that is zero
everywhere. We then walk through phase space, measuring thehistogram for
each configuration and checking if it is flat. At the same time,every time a state
is visited, the density of states at this reaction coordinate (energy) is multiplied
by a constant amount. As this makes the DOSρ(E) at this state higher, it will be
visited less frequently, as it is weighted with 1/ρ(E).

After a number of steps the histogram accumulated is flat, andwe increase
our accuracy by changing the multiplication factor to a smaller value. This is in
principle done up to arbitrary precision.

This algorithm has been very successful in capturing the physics of first order
phase transition and is widely used in the context of molecular simulations.

4.6.2 Quantum Wang Landau

The idea of Wang Landau sampling in the context of a series expansion [119] is
to create a “flat histogram” up to a given order and thereby to force the algorithm
to generate diagrams both at the physically interesting order and at orders that
are very close to zero, i.e. the bare Green’s function or non-interacting partition
function. Originally the application to the weak coupling impurity solver goes
back to an unpublished idea by Rubtsov.

Deliberately generating configurations that have little weight to the partition
function may seem inefficient, as the whole point of importance sampling 3.1.1
is to generate the diagrams with the importance they contribute to the partition
function. However, when going back to the noninteracting case at 0th order of the
series, all vertices and therefore all correlations are removed, and when the series
is rebuilt it will likely end up in a different part of phase space – for example in
a different global symmetry sector. On the other hand, if the series is only built
once from zeroth order, the system might fall into one symmetry sector and spend
its entire time trapped there. This is, for example, obviousin the case of antiferro-
magnetic order (see sketch 4.6), where both configurations with majority spin up
or majority spin down are reached equally likely from the noninteracting solution,
but getting out of one antiferromagnetic state at strong interactions requires re-
moval of almost all vertices or enough knowledge about the symmetry to propose
the right global move - in this case the exchange of up- and down spin matrices.

In our implementation of the “quantum” Wang-Landau algorithm we generate
a flat histogram in the expansion orderk, i.e. the additional parameterλ(x) with
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which we reweigh the weight of the configurationsx is

λ(x) = λ({τ1, τ2,⋯, τk}) = λ(k) = { 1
p(k) ,k < kmax

1,k > kmax
(4.59)

wherep(k) is the probability of being at orderk. p(k) fulfills the role of the “den-
sity of state” on which the ensemble is projected,k is the “reaction coordinate”.
The probabilityp(k) is unknown at the start of the simulation. Therefore we spend
a short time of the simulation (usually no more than a couple of seconds) to find a
guess for it. As the ensembleλ(x) does not influence the expectation value of the
observables, it is not important to have a very accurate estimate of it, as long as it
is good enough to ensure ergodicity.

Fig. 4.7 shows the sketch of the histogram of the expansion order if Wang-
Landau sampling is performed up to the maximal order, or up tothe order that
contributes half of the maximum. In practice, flat-histogram sampling turned out
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Figure 4.7:Sketch of the histogram of the expansion order of flat histogram sampling.x-
axis: expansion orderk. y-axis: histogramh(k). Left panel: no flat histogram sampling.
Middle panel: flat histogram sampling up to half of the maximum order. Right panel: flat
histogram sampling up to the maximum contributing order.

to be very efficient at obtaining symmetrized, paramagnetic Green’s functions.
The fact that most configurations sampled have low order and contribute next to
nothing to the observables is compensated by the fact that they are very quickly
sampled due to theO(k2) scaling of the matrix operations. Nevertheless, global
update moves are more efficient if the symmetry is known exactly. We therefore
did not use Wang-Landau sampling in any of our production codes.



Chapter 5

Continuous-Time Auxiliary Field
Algorithm

E. Gull , P. Werner, O. Parcollet, M. Troyer,
EPL 82, 57003 (2008)

A first continuous-time auxiliary field method was developedby Romboutset
al. in 1998 [120, 121], and applied to the nuclear Hamiltonian and small Hub-
bard lattices. We rederived the solver for a time-dependenteffective action and
reformulated it as an impurity solver [10] for cluster impurity problems. This
CT-AUX algorithm is based on an auxiliary field decomposition of the interac-
tion and a partition function expansion, formulated in the Hamiltonian formalism.
The following derivation in the Hamiltonian formalism of section 2.7 is close to
the well-known Hirsch-Fye algorithm (see section 2.6.4 andRef. [72]), such that
some concepts and proofs can be borrowed from Hirsch-Fye literature.

In the second part we will reformulate the algorithm in the (equivalent) action
formalism to obtain a more natural derivation of the impurity solver algorithm.
Applications of the CT-AUX - algorithm will be shown in chapter 9.

5.1 Lattice Version – Hamiltonian Formulation

For the derivation in this chapter we mostly follow the original CT-AUX paper
[10]. We limit ourselves to the single site algorithm for most of the chapter, as
the generalization to clusters and multiorbital models is straightforward. We start
with the Hubbard Hamiltonian on a lattice, shifted such thatchemical potential
µ = 0 denotes half filling:

H = −t∑
⟨i, j⟩
(c†

i cj + h.c.) +U∑
i

(ni↑ni↓ − ni↑ + ni↓

2
) − µ∑

i

(ni↑ + ni↓). (5.1)

http://stacks.iop.org/0295-5075/82/57003
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Figure 5.1: Imaginary part of the self-energy for the DMFT solution of the single-site
Hubbard model. CT-AUX, Hirsch-Fye using 32, 64, and 128 auxiliary spins (time slices),
ED with 6 bath sites, atβ = 32,U = 3. Hirsch-Fye and ED results were taken from Fig.
15 of Ref. [8]. For CT-AUX, the average number of auxiliary spins was⟨n⟩ = 42.5.

for a repulsive on-site U. Note that we can write [120, 121]

1− βU
K
(ni↑ni↓ − ni↑ + ni↓

2
) = 1

2
∑
s=±1

exp(γs(ni↑ − ni↓)) , (5.2)

cosh(γ) = 1+ Uβ
2K

. (5.3)

As the fermion operatorsni↑,ni↓ can only assume values of zero or one, this aux-
iliary field decomposition is easily verified for the four possible local states. The
variables is an auxiliary Ising spin, andK some arbitrary positive real constant.

The partition function isZ = Tre−β(H0+HU). We are free to add and subtract a
constant to the Hamiltonian:

HU = U∑
i

(ni↑ni↓ − ni↑ + ni↓

2
) − K

β
, (5.4)

H0 = −t∑
⟨i, j⟩
(c†

i cj + h.c.) + K
β
− µ∑

i

(ni↑ + ni↓). (5.5)

And, applying Eqn. (5.2) to (5.4) and switching to the interaction representation
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Figure 5.2: Left panel: Average perturbation order for the continuous-time auxiliary-
field algorithm, forK = 1, and the weak coupling algorithm withα = 0.01. Single-site
Hubbard model, half-filling, semi-circular density of states of bandwidth 4t, at βt = 30.
Inset: Expansion order (matrix size) as a function ofK. Single site Hubbard model, half
filling, semicircular density of states of bandwidth 4t,U/t = 4, andβt = 10. Right panel:
Expansion order as a function ofβ for the four-site cluster with nearest-neighbor hopping,
U = 2, µ = −0.3757, t = 0.25. For the Hirsch-Fye, a reasonable compromise between
accuracy and speed would require at leastN = βUns time slices, which leads to larger
matrices whose determinants need to be updated.

as in section 2.7, we obtain withV = HU

Z = Tre−βH (5.6)

= e−KTre−βH0TrTτ exp∫
β

0
dτ(K

β
−U (ni↑(τ)ni↓(τ) − ni↑(τ) − ni↓(τ)

2
)) .

Dropping the irrelevant constant factore−K and applying the auxiliary field de-
composition Eqn. (5.2), we obtain

Z = Tre−βH0Tτ exp∫
β

0
dτ

K
2β
∑
s=±1

exp(γs(ni↑(τ) − ni↓(τ))) . (5.7)

The summands of this integral are always positive, as we are summing exponential
functions of real numbers. This is how we avoid the negative sign problem for
fermions stemming from the interaction. We may however still get a negative sign
problem from theH0 - part, i.e. the hopping in the multi-orbital or multi-site case.

We proceed by expanding the exponential of the interaction into a series while
taking care of the time ordering explicitly in the integration bounds:

Z = Tre−βH0

∞

∑
k=0
∫

β

0
dτ1⋯∫

β

τk−1

dτk( K
2β
)k

× (5.8)

[eτkH0 (∑
sk

eγsk(n↑−n↓))⋯e−(τ2−τ1)H0 (∑
s1

eγs1(n↑−n↓))e−τ1H0] .
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This partition function is of the form

Z =
∞

∑
k=0

∑
s1,⋯sk=±1

∫
β

0
dτ1⋯∫

β

τk−1

dτk ( K
2β
)k

Zk({sk, τk}), (5.9)

Zk({si , τi}) ≡ Tr
1

∏
i=k

exp(−∆τiH0)exp(siγ(n↑ − n↓)), (5.10)

with ∆τi ≡ τi+1 − τi for i < k and∆τk ≡ β − τk + τ1.
Eqn. (5.10) is very similar to the equations for the BSS [78] or the Hirsch -

Fye [72] algorithm, see e.g. the calculation in [8]: we need to compute the trace of
a product of exponentials of one-particle operators. This is done by reformulating
the trace of the operators as a determinant of a fermionic matrix as originally
introduced by Hirsch, [122] (see also [8], appendix B1). Forthe trace of three
exponentials of single particle operators and their three coefficient matricesA,B,C
it is easy to verify that

Trc†
i ,ci
{e−∑i j c†

i Ai j cj e−∑i j c†
i Bi j cj e−∑i j c†

i Ci j cj} = det(1+ e−Ae−Be−C) , (5.11)

and it can be proven that this statement holds for arbitrarily many matrices. We can
explicitly construct a block-matrixO that contains exponentials of the previous
matrices and has the same determinant:

O =
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 Bk({sk, τk})
−B1({s1, τ1}) 1 ⋱ ⋱ 0

0 −B2({s2, τ2}) 1 ⋱ 0
0 0 ⋱ 1 0
0 0 ⋯ −Bk−1({sk−1, τk−1}) 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

(5.12)

whereB j = e−∆τ j H0es1γσ1 in our algorithm. Following the derivation in Ref. [8],
equations (117) – (131), albeit with unevenly spaced time slices, we obtain an
expression for the Dyson equation that relates the weight ofthe noninteracting
system to the one of a system with auxiliary spins present:

Zk({si , τi})
Z0

= ∏
σ=↑,↓

detN−1
σ ({si, τi}), (5.13)

N−1
σ ({si , τi}) ≡ eV

{si}
σ −G{τi}

0σ (eV
{si}
σ − 1), (5.14)

eV
{si}
σ ≡ diag(eγ(−1)σs1, . . . ,eγ(−1)σsk), (5.15)

with the notations(−1)↑ ≡ 1, (−1)↓ ≡ −1 and(G{τi}
0σ )i, j = g0σ(τi − τ j) for i ≠ j,(G{τi}

0σ )i,i = g0σ(0+). As we handle a variable number of time slices at constantly
shifting imaginary time locations, it is advantageous to formulate the algorithm as
a function of the matrixN with G = NG0 instead ofG as in the Hirsch-Fye algo-
rithm. With the help of the Dyson equation (5.14) we express the weight of any
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Figure 5.3: Pictorial representation of configurations{(sj , τ j)} ∈ C that occur within
the CT-AUX algorithm. Diagrams for orders zero through three. In this algorithm, an
auxiliary spinsj (represented here by the red and blue vertices and the direction of the
arrows) needs to be sampled in addition to the imaginary timelocationτ j of a vertex.

given (auxiliary spin, time) - configuration in terms of the freeG0 Green’s func-
tion, the constantγ defined in Eqn. (5.3), and the determinant of a rather large
matrix. The contribution of such a configuration to the wholepartition function
is given by Eqn. (5.13). We will show in appendix A how to compute such deter-
minants efficiently, and chapter 3 has already shown how we can sample auxiliary
spins, times, and cluster site locations starting from Eqn.(5.14).

5.2 Updates

In the CT-AUX-algorithm, the partition function (5.9) consists of a sum over the
expansion order k up to infinity, another discrete sum over auxiliary fields s, and
a k-dimensional continuous time-ordered integral from zero to β. This partition
function is therefore of the type (2.73), and we can employ the sampling scheme
of chapter 3 to obtain expectation values of observables.

In addition to the vertices of last chapter, we also need to sample auxiliary
spinssj that are associated to each imaginary time vertex. Thus our configuration
spaceC is given by the set

C = {{},{(s1, τ1)},{(s1, τ1), (s2, τ2)},⋯,{(s1, τ1),⋯, (sk, τk)},⋯} (5.16)

where thesj are “auxiliary” Ising spins, i.e. take values±1, and theτ j are contin-
uous variables. Without loss of generality we assume that the configurations are
time-ordered, i.e. thatτ1 < τ2 < ⋯ < τk.

Note that this representation is different from the one that Rombouts originally
proposed in Ref. [121]: there, the configuration space consists of a number ofNmax

fixed “slots” at which interaction operators can be insertedinto an operator chain
(a so-called fixed length algorithm). This representation leads to an additional
combinatorial factor in the acceptance probabilities of [121].
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Figure 5.4:An insertion update and its corresponding removal update within the CT-AUX
algorithm.

5.2.1 Spinflip Updates

Let us first consider an update at constant order, e.g. a spinflip

((s1, τ1),⋯, (sj , τ j),⋯, (sk, τk))→ ((s1, τ1),⋯, (−sj , τ j),⋯, (sk, τk)). (5.17)

The probability density ratios ofx andx′ are easily computed from Eqn. (5.13):

p(x′)
p(x) = detN−1

↑
({s′i , τ′i})detN−1

↓
({s′i , τ′i})

detN−1
↑
({si , τi})detN−1

↓
({si , τi}) (5.18)

and the acceptance rate, according to Eqn. (3.19), is

Wacc=min(1, p(x′)
p(x) ) =min(1, detN−1

↑
({s′i , τ′i})detN−1

↓
({s′i , τ′i})

detN−1
↑
({si, τi})detN−1

↓
({si, τi}) ) . (5.19)

5.2.2 Insertion and Removal Updates

An insertion move, on the other hand, has to be balanced by a removal move
(Fig. 3.2). The procedure is similar to the one detailed in 3,the proposal probabil-
ity only being modified by the probability of picking a spinsj out of two possible
choices:

Wprop(x→ y) = 1
2

dτ
β
. (5.20)

The proposal probability of removing a spin stays invariant:

Wprop(y→ x) = 1
k+ 1

. (5.21)

Applying Metropolis’ algorithm Eqn. (3.18) to fulfill detailed balance we ob-
tain

Wacc=min(1, p(y)Wprop(y→ x)
p(x)Wprop(x→ y)) =min(1, 1

k+ 1
detN↑(y)detN↓(y)
detN↑(x)detN↓(x)) . (5.22)
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5.3 Measurements

5.3.1 Measurement of the Green’s Function

The main observable of interest in the simulations is the Green’s function
Gσ(τ, τ′). First, let us note that we are free to add two additional “non-interacting”
spinss= s′ = 0 to (5.10) at any arbitrary timeτ andτ′ (we denote the correspond-
ing matrices of sizen+ 2 with a tilde).ZGσ(τ, τ′) is then given by an expression
similar to Eqs. (5.10), with an insertion ofcσ(τ) andc†

σ(τ′) at the correspond-
ing times. We can again use the standard Hirsch-Fye formula for the discretized
Green function (Eq. (118) of Ref. [8]) to obtain

Gσ(τ, τ′) =1
Z
∑
n≥0

( K
2β
)n

∑
si=±1
1≤i≤n

∫
β

0
dτ1 . . .∫

β

τn−1

dτn

× Zn({si , τi})G̃{si ,τi}
σ (τ, τ′), (5.23)

with G̃{si ,τi}
σ = Ñσ({si, τi})G̃{τi}

0σ . Sinces= s′ = 0, a block calculation yields

G̃{si ,τi}
σ (τ, τ′) = G0

σ(τ, τ′)
+

n

∑
k,l=1

G0
σ(τ, τk)[(eV

{si }
σ − 1)Nσ({si , τi})]

kl
G0
σ(τl , τ

′). (5.24)

This formula is very similar to the one of the weak coupling measurement, with

M = Mkl = [(eV
{si}
σ − 1)Nσ({si , τi})]kl. (5.25)

Similar to there, we proceed by Fourier transforming with respect toτ andτ′ and
thereby reinstating the translational invariance along the imaginary time axis:

G(iωn) = G0(iωn) − G0(iωn)2
β

∑
pq

eiωnτpMpqe−iωnτq. (5.26)

In the Hirsch-Fye algorithm, where time slices are equally spaced, we can
relate the MatrixO of (5.12) and its inverseO−1 directly to the Green’s func-
tion G, which corresponds to theM-matrix (5.25) in our simulation. For the CT-
AUX algorithm the times at which the auxiliary spins are placed are not equidis-
tant but correlated, and therefore we need to measure the Green’s function using
Eqn. (5.24) or Eqn. (5.26).

Closer analysis of Eqn. (5.24) shows that it is possible to delay the multiplica-
tion with oneG0 to the evaluation step, and we just need to accumulate the values
of a matrixS(τ).

Gσ(τ) = G0
σ(τ) + ∫ β

0
dτ̃G0

σ(τ − τ̃)⟨S{si ,τi}
σ (τ̃)⟩, (5.27)

S{si ,τi}
σ (τ̃) ≡ n

∑
k=1

δ(τ̃ − τk) n

∑
l=1

M{si ,τi}
kl G0

σ(τl), (5.28)

M{si ,τi}
kl ≡ [(eV

{si}
σ − 1)Nσ({si, τi})]kl

, (5.29)
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where we have used translational invariance, setτ′ = 01, and denoted the Monte
Carlo average with angular brackets (our convention isg(τ) > 0 for 0 < τ <
β). Hence, we measure only the quantity⟨S{si ,τi}

σ (τ̃)⟩, which we bin into fine
bins. After the simulation is completed, the Green’s function is constructed using
Eq. (5.27).

Note that the Dyson equation

Gσ(iωn) = G0
σ(iωn) + G0

σ(iωn)Σσ(iωn)Gσ(iωn) (5.30)

implies that this procedure amounts to accumulatingΣσGσ. Besides the higher
efficiency with respect to the direct accumulation of the Green’s function, an im-
portant advantage of such a measurement is the reduction in high-frequency noise
by the multiplication withG0 ∼ 1/ωn (see also Ref. [60] for similar ideas in the
NRG-DMFT context).

A special case of the Green’s function are the densities. It is advantageous and
relatively cheap to measure these directly asG(τ = 0). Accurate values for the
density are important for many reasons: they enter the Fourier transforms in the
form of high frequency tails, they are needed to adjust the global net charge to zero
in the LDA+DMFT context, and they are also used to compute the magnetization
and double occupancy

Sz = ⟨n↑ − n↓⟩ (5.31)

D = ⟨n↑n↓⟩ (5.32)

S2
z = ⟨(n↑ − n↓)2⟩. (5.33)

and higher order correlators thereof with Wick’s theorem.

5.3.2 Four Point Functions

Four point correlation functions can also be computed in a similar way as in
Hirsch-Fye using the fact that for a fixed auxiliary spin configuration the problem
is Gaussian and Wick’s theorem can therefore be used together with Eq. (5.24).
Thus the problem reduces to the accumulation of the determinant of a 2×2 matrix

⟨∣(g12
0 + g1k

0 M{si ,τi}
kl gl2

0 ) (g14
0 + g1k

0 M{si ,τi}
kl gl4

0 )(g32
0 + g3k

0 M{si ,τi}
kl gl2

0 ) (g34
0 + g3k

0 M{si ,τi}
kl gl4

0 )∣⟩ (5.34)

with M{si ,τi}
kl defined in Eq. (5.29). If only a few correlation functions aremea-

sured, Eq. (5.34) is best evaluated directly during the simulation. If many or all
correlation functions have to be measured atnτ time points and the sizenM of
M is comparatively small, it is advantageous to accumulate only ⟨M{si ,τi}

i j ⟩ and⟨M{si ,τi}
i j M{si ,τi}

kl ⟩ and reconstruct the correlation function at the end of the compu-
tation. While binning the latter expression isO(n3

τ) in memory, it is onlyO(n3
M)

computationally (using time translation invariance).

1In practice, always choosingτ′ = 0 is not the best choice. Instead, we chooseO(⟨k⟩) random
timesτ′ for each measurement to obtain several estimates forS from the same configuration.
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Figure 5.5: Left panel: Susceptibility⟨S2
z,aux⟩ of the auxiliary spins as a function of the

parameterK. Higher K leads to a decreasing magnetization for the auxiliary spinsand
makes it easier to flip spins. Right panel: Sign problem as a function of the expansion
parameterK. IncreasingK increases the expansion order as in Eqn. (5.35), but raises the
average sign.

5.3.3 Role of the Expansion ParameterK – Potential Energy

The average perturbation order⟨nctaux⟩ is related to the parameterK, potential
energy and filling by

⟨nctaux⟩ = K − βU⟨n↑n↓ − (n↑ + n↓)/2⟩. (5.35)

This expression is obtained by applying the operatorK∂K ∣U/K to lnZ both in its
original form (5.6) and to (5.9), including the factore−K dropped after Eq. (5.6)
(see also Ref. [121]). In the case of the weak-coupling algorithm [34], ⟨nwc⟩α→0 =
−βU⟨n↑n↓−(n↑+n↓)/2⟩, whereα is the small parameter which must be introduced
to reduce the sign problem. Hence, the perturbation order inthe continuous-
time auxiliary-field method grows linearly withK (see inset of Fig. 5.1) and⟨nctaux⟩K→0 = ⟨nwc⟩α→0.

Figure 5.1 shows the perturbation orders for the two methodsas a function
of U. For these small values ofK andα, the perturbation orders are essentially
identical. Both weak-coupling methods scale roughly linearly with U, with a
kink visible at the Mott critical value. It also follows fromEq. (5.35) that the
perturbation order is essentially linear in the inverse temperatureβ.

Similar to the weak-coupling expansion parameterα [34], the parameterK
can be freely adjusted. While a largerK yields a larger expansion order, it also
reduces the value ofγ (see Eq. (5.2)). This makes it easier to flip auxiliary spins.
Therefore the auxiliary spins have less tendency to polarize for largerK. In prac-
tice, however,K-values of order 1 turned out to be adequate. Although we found
that the sign problem improves slightly with largerK, this small gain is more than
compensated by the increase in computational cost at largervalues ofK.
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5.4 Sign Problem

The decoupling of the interaction with the auxiliary field causes the prefactor of
the determinant to be positive for all configurations. The only potential source for
a minus sign problem is the determinant of the matrixN. Obviously there is no
sign at half filling for a particle-hole symmetric problem, where detN↑ = detN↓,
but the situation away from half filling is not obvious. As in the case of the
Hirsch Fye algorithm, the proof by Yooet al. [79], based on a mapping of the
Hamiltonian onto a linear chain, shows that a sign problem caused by a negative
determinant cannot occur in the single orbital case.

It is sufficient for a proof of the positivity of the matrix element to find one
basis of the fermionic Hilbert space in which all matrix elements ofe−τHbatheλsnσ are
positive. In order to find such a basis, we map the HamiltonianH0 = Hbath+ Hmix

onto a one-dimensional model equivalent to an open fermionic chain – a procedure
that in practice could be achieved by employing the Lanczos algorithm.

Recall that

Z =
∞

∑
k=0

∑
s1,⋯sk=±1

∫
β

0
dτ1⋯∫

β

τk−1

dτk ( K
2β
)k

Tr
1

∏
i=k

exp(−∆τiH0)exp(siγ(n↑ − n↓)),
(5.36)

and that, if we separate into up and down partition functions,

Z =
∞

∑
k=0

∑
s1,⋯sk=±1

∫
β

0
dτ1⋯∫

β

τk−1

dτk ( K
2β
)k

(5.37)

× Z↑(k,{(s1, τ1),⋯, (sk, τk)})Z↓(k,{(s1, τ1),⋯, (sk, τk)}).
The termsZσ(k,{(s1, τ1)⋯, (sk, τk)}) are defined by

Zσ(k,{(s1, τ1),⋯, (sk, τk)}) = Tr
1

∏
i=k

exp(−∆τiH0σ)exp(siγσnσ). (5.38)

We then convert the HamiltonianH0σ into the one of an open fermionic chain, i.e.
a tridiagonal form:

H0σ = −
N

∑
j

h jσ +ΛNσ, (5.39)

whereh jσ = α j f
†
jσ f jσ + β∗j f †

jσ f j+1σ + β j f
†
j+1σ f jσ. The operatorNσ = ∑ j f †

j f j is the
total particle number operator. The parameterΛ can be tuned in such a way that
all theα j on the diagonal of the spin chain are positive, and with a gauge trans-
formationβ j → ∣β j ∣eiφ j we obtain a tridiagonal matrix with only positive entries.
Therefore all elements of exp(−τH0) = exp(−τ(H0σ −ΛN)exp(−τΛN) are posi-
tive, as are those of the decoupled interaction exp(−γσsjnσ), and there is no sign
problem for the single orbital problem.

The same proof is easily extended to a multiple orbital case if different orbitals
do not hybridize. However, in the more general case of clusters or mixing orbitals
the mapping to the chain fails, and a sign problem is to be expected.
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Figure 5.6: Left panel: Sign problem for the CT-AUX algorithm: Upper axis and dashed
lines show the sign as a function ofβt for the 8-site cluster withU = 2, µ = −0.3757, t =
0.25. Lower axis and solid lines show the sign as a function ofU/t for the frustrated
plaquette at fixedβt = 10, t′/t = 0.9. Right panel: Real-space Green’s functions (onsite,
nearest-neighbor and next-nearest neighbor) for the four-site cluster with nearest-neighbor
hoppingt,U/t = 4, at a filling of 0.9 andβt = 2.5. Hirsch-Fye results with 40 time slices
are represented by the symbols, the weak coupling and CT-AUXresults by lines (on top
of each other).

We have studied two different cases with a sign problem: first of all, we have
decided to go to larger clusters and away from half filling, where a serious sign
problem eventually appears. Also, we have studied the frustrated plaquette on the
cluster: this model is known to exhibit a serious sign problem in the Hirsch-Fye
algorithm.

While we have no general comparison of the sign problem, we could see that
all weak -coupling algorithms for the cases examined had thesame sign problem:
CT-AUX, weak coupling and Hirsch Fye showed no difference within error bars.

5.5 Impurity Version – Action Formulation

In the equivalent action formulation in Grassmannian notation, the model is de-
scribed by

Seff = −∬ dτdτ′c†(τ)G0(τ, τ′)−1c(τ′) (5.40)

+U ∫
β

0
dτ [n↑(τ)n↓(τ) − n↑(τ) + n↓(τ))

2
] − K

= S0 +SU . (5.41)

This formulation makes it easier to derive an expression forthe Green’s function:
The Green’s function is computed by taking the derivative with respect to the
timesτ, τ′,

⟨Tτc(τ′)c†(τ)⟩ = 1
Z

δZ̃
δG0(τ − τ′)−1

= 1
Z0

δZ̃0

δG0(τ − τ′)−1
+ 1

ZU

δZ̃U

δG0(τ − τ′)−1
. (5.42)
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The first term yields aG0(τ−τ′). When we use the expansion for the second term,
we obtain

1
ZU

δ

δG0(τ − τ′)−1

∞

∑
k=0
∑

s1⋯sk

∭ dτ1⋯dτk ( K
2β
)k det(G−1

0 eV − eV + 1)
detG−1

0

. (5.43)

With G−1 = G−1
0 eV − eV + 1 and an expansion by minors, det(G−1) = det(G−1

0 eV −
eV + 1) = G0(τ − τ′)−1(minorτ,τ′G−1) + c, wherec is independent ofG−1

0 (τ − τ′),
we obtain

⟨Tτc(τ′)c(τ)⟩ = G0(τ − τ′) (5.44)

+ 1
ZU
∑
k
∑

s1⋯sk

∭ dτ1⋯dτk ( K
2β
)k detG−1

detG−1
0

(Gτ′,τ − (G0)τ′ ,τ)
= ⟨Gτ′,τ⟩. (5.45)

This average⟨⋅⟩ denotes the Monte Carlo average over partition function configu-
rations.



Chapter 6

Hybridization algorithm

A complementary approach to the weak coupling and CT-AUX solvers described
in chapters 4 and 5 has been developed by Werneret al.: They expanded the
impurity effective action in the hybridization around the local limit instead of
expanding in the interaction around the free, noninteracting case. The advantage
of this approach, as detailed in [9], is that the average expansion order for a typical
problem at the Mott transition is much smaller than in the weak coupling methods
and therefore lower temperatures are accessible. In their first paper, Ref. [123],
they presented the algorithm applied to the single impurityAnderson model. A
generalization to multiple sites and more general interactions or orbitals [35] with
application to the Kondo model and the two-orbital model soon followed, and
this algorithm was later applied by various groups to real materials [124], cluster
problems [125], cold atoms [126], the Holstein Hubbard model [127], or multi-
orbital problems [37]. We follow [44] for most of the description.

Our starting point is again the HamiltonianH = Hloc + Hmix + Hbath of section
2.2 for the impurity model. The Fock space for the impurity isspanned by the
l operatorsc†

j that create electrons on the impurity, and the one of the bathby

operatorsa†
p. We split the Hamiltonian Eqn. (2.1) according to 2.9 into a local

termH0 = Hloc + Hbath and an interaction termV = Hmix. The partition functionZ
is then computed according to (2.73) as

Z = Tre−βH = Tr [e−βH0Tτe− ∫
β

0 dτHmix(τ)] (6.1)

=
∞

∑
k=0
∫ dτ1⋯∫

β

τk−1

dτkTr [e−βH0eτkH0(−Hmix)⋯e−(τ2−τ1)H0(−Hmix)e−τ1H0] (6.2)

6.1 Partition Function Expansion

Formula (6.1) explains the expansion of the partition function into a series in the
interaction representation, where the “free” case of the series is given by the local
Hamiltonian (that contains the physical interaction) and the “interaction terms” by
the hybridization HamiltonianHmix.

The operatorV = Hmix = ∑p j (V j
pc

†
j ap +V j∗

p a†
pcj) = H†

hyb+Hhyb has two terms:
one that controls the hopping of electrons into the bath and one that contains the
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reverse process. As the operatorscj anda†
p occur only inH†

hyb, each such term
has to be balanced by aHhyb - term to yield a nonzero trace. Therefore only even
powers of the expansion with alternatingHhyb andH†

hyb contribute a nonzero trace:

Z =
∞

∑
k=0
∭ dτ1dτ′1dτkdτ′kTr [e−βH0TτHhyb(τn)H†

hyb(τ′n)⋯Hhyb(τ1)Hhyb(τ′1)] .
(6.3)

InsertingHmix explicitly yields

Z =∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

∑
p1,⋯pk

∑
p′1,⋯p′k

V j1
p1

V
j′1∗
p′1
⋯V jk

pk
V

j′k∗
p′k

(6.4)

× Tr [e−βHTτcjk(τk)a†
pk
(τk)apk′

(τ′k)c†
j′k
(τ′k)⋯cj1(τ1)a†

p1
(τ1)ap′1

(τ′1)c†
j′1
(τ′1)] ,

and separating the bath and impurity operators we obtain

Z =∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

∑
p1,⋯pk

∑
p′1,⋯p′k

V j1
p1

V
j′1∗
p′1
⋯V jk

pk
V

j′k∗
p′k

(6.5)

× Trc [e−βHlocTcjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)]

× Tra [e−βHbathTa†
pk
(τk)apk′

(τ′k)⋯a†
p1
(τ1)ap′1

(τ′1)] .
We would like to integrate out the bath operatorsap(τ), as they are non-
interacting. Let us first compute the bath partition function

Zbath= Tre−βHbath =∏
σ

∏
p
(1+ e−βǫp), (6.6)

and the contribution of a first-order term:

1
Zbath
∑

p
Vσ

p Vσ∗
p Tra [e−βHbatheτHbatha†

pe
−(τ−τ′)Hbathape−τ

′Hbath] (6.7)

=∑
p
∣Vσ

p ∣2 1
1+ e−βǫp

e−(τ−τ′)ǫp,

1
Zbath
∑

p
Vσ

p Vσ∗
p Tra [e−βHbatheτHbathape−(τ−τ

′)Hbatha†
pe
−τ′Hbath] (6.8)

=∑
p
∣Vσ

p ∣2 1
1+ e−βǫp

e−(β−τ)ǫpe−τ
′ǫp.

Defining the anti-periodic hybridization functionF,

Flm(τ) =∑
p

Vl∗
p Vm

p

e−ǫpβ + 1
× { e−ǫp(β−τ), τ > 0
−eǫpτ, τ < 0

, (6.9)

we obtain the determinant

1
Zbath

Tra[e−βHbathTτ ∑
p1,⋯pk

∑
p′1,⋯p′k

V j1
p1

V
j′1∗
p′1
⋯V jk

pk
V

j′k∗
p′k

(6.10)

×a†
pk
(τk)apk′

(τ′k)⋯a†
p1
(τ1)ap′1

(τ′1)] = detF,
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for an arbitrary product of operators or expansion order by decoupling with Wick’s
theorem, whereFlm = F jl jm(τl − τm). The hybridization functionF(τi − τ j) is anti
periodic and related to the bare Green’s function of the effective actionG0 by
Fi j(−iωn) = (iωn + µ)δi j − G0

i j(iωn)−1.

In practice, it will be more convenient to handle the inverseof this matrixF,
which we denote byM = F−1. In total, the partition function expansion for the
hybridization algorithm therefore amounts to

Z = Zbath∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

(6.11)

× Trc [e−HlocTcjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)]detF.

In the case of the single impurity Anderson model, where we have two creation
operatorsc†

↑
,c†
↓
, and a bath that does not mix spins, we can separate the contribu-

tions from each spin completely and obtain

Z = Zbath

∞

∑
k↑

∞

∑
k↓

∏
σ
∭ dτ1σ⋯dτk′σ (6.12)

× Trc [e−HlocTτ∏
σ

cjkσ (τkσ)c†
jk′σ
(τk′σ)⋯cj1σ(τ1σ)c†

j1′σ
(τ1′σ)]

×∏
σ

detFσ.

It is easiest to illustrate the partition function expansion part of the algorithm for
the case where we have just one single orbital in which electrons are created by
c†, and which has two “impurity” states⟨0∣, ⟨1∣. There, equation (6.11) simplifies
to

Z = Zbath∑
k
∭ dτ1⋯dτ′kTrc [e−HlocTc(τk)c†(τ′k)⋯c(τ1)c†(τ′1)]detF. (6.13)

6.1.1 Noninteracting Case

Let us first examine the possible terms for the non-interacting single-orbital case
(one spin species only) in the expansion of Eqn. (6.13) and find a suitable con-
figuration space and representation for them in analogy to Eqn. (5.16). For this
purpose we setHloc = 0.

We illustrate the expansion by explicitly writing down the lowest few orders
(see also Fig. 6.1):

Z0 = Tr1 = ⟨0∣1∣0⟩ + ⟨1∣1∣1⟩ = 2, (6.14)

Z1 =∬ dτ1dτ′1TrTτc(τ1)c†(τ′1)F(τ′1 − τ1). (6.15)

At zeroth order (6.14) there aretwo possible states for the system, namely the
orbital can be either completely full or completely empty. In both cases there is
no hybridization operator present.
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Figure 6.1:Configurations for the lowest expansion orders in the segment algorithm.

At first order (6.15) there is an electron “hopping” from a bath site onto the
orbital at timeτ1, staying there for some time, and then hopping into the bath at
time τ′1 < β. Alternatively, the electron can be present already at timezero, hop
out of the orbital at timeτ1, then hop in again atτ′1, and remain on the same site
until β. The two terms are given by the trace in (6.15).

Higher order terms involve multiple hybridization processes. However, each
creator has to be followed by an annihilator, and we have as many creation as
annihilation operators. We can therefore describe the expansion terms by elements
of the configuration space

C = {{empty},{full},{(τs
1, τ

e
1)},{(τs

1, τ
e
1), (τs

2, τ
e
2)},⋯, (6.16){(τs

1, τ
e
1), (τs

2, τ
e
2),⋯, (τs

k, τ
e
k)},⋯},

with τs
1 < τe

1 < τs
2 < ⋯ < ts

k and either 0< te
k < ts

1 or ts
k < te

k < β, as depicted for
the lowest two orders in Fig. 6.1 Each term in the expansion (6.13) is uniquely
described by such a configuration. The property that each creation operator is
followed by an annihilation operator makes it natural to define “segments”: inter-
vals in imaginary time in which the impurity site is occupiedby an electron. We
graphically represent an element ofC by drawing a fat line between the electron
creation and its corresponding annihilation operator (6.2).
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Figure 6.2: Hybridization algorithm: segment configuration. A typicalconfiguration of
an orbital for the hybridization expansion algorithm in thesegment picture containing
three segments with creation and annihilation operators attheir beginning and end.

There are several terms in the expansion of (6.1) that resultin the same con-
figuration of segment lines: The configurationC = {(τs

1, τ
e
1), (τs

2, τ
e
2), (τs

3, τ
e
3)} de-
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0 β 0 β

Figure 6.3: Hybridization algorithm: hybridization lines for a segment. Possible hy-
bridization lines of a particular segment configuration.

picted in Fig. 6.2 for example is generated by the terms drawnin Fig. 6.3:

F1 = c(τe
1)F(τe

1 − τs
1)c†(τs

1)c(τe
2)F(τe

2 − τs
2)c†(τs

2)c(τe
3)F(τe

3 − τs
3)c†(τs

3), (6.17)

F2 = c(τe
1)F(τe

1 − τs
1)c†(τs

1)c(τe
2)F(τe

2 − τs
3)c†(τs

3)c(τe
3)F(τe

3 − τs
2)c†(τs

2),
F3 = c(τe
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2)c†(τs
2)c(τe

2)F(τe
2 − τs

1)c†(τs
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3 − τs

3)c†(τs
3),

F4 = c(τe
1)F(τe

1 − τs
2)c†(τs

2)c(τe
2)F(τe

2 − τs
3)c†(τs

3)c(τe
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1)c†(τs

1),
F5 = c(τe

1)F(τe
1 − τs

3)c†(τs
3)c(τe

2)F(τe
2 − τs

1)c†(τs
1)c(τe
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2)c†(τs
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F6 = c(τe
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2)c†(τs

2)c(τe
3)F(τe

3 − τs
1)c†(τs

1).
Using F(τ − τ′) = −F(τ′ − τ + β) we can add up all hybridization terms in the
previous equation at once. After applying the trace (which is trivial in the nonin-
teracting case) we obtain

FC =∑
j

F j = det
⎛⎜⎝

F(τe
1 − τs

1) F(τe
1 − τs

2) F(τe
1 − τs

3)
F(τe

2 − τs
1) F(τe

2 − τs
2) F(τe

3 − τs
3)

F(τe
3 − τs

1) F(τe
3 − τs

2) F(τe
3 − τs

3)
⎞⎟⎠ (6.18)

Being able to integrate out the bath degrees of freedom and thereby treat all pos-
sible configurations of hybridization lines for a configuration of segments at once
is similar to employing Wick’s theorem to obtain products ofnoninteractingG0 -
lines in the weak coupling algorithms and is essential to avoid the sign problem
in the sampling process: some of the terms in Eqn. (6.18) havea positive sign,
others a negative sign. It would therefore be difficult to sample these diagrams
separately.

6.1.2 Interactions – Density - Density Case

In this section, we consider interactions betweenl orbitals, electrons in which are
created by the operatorsc†

j , for which the local HamiltonianHloc commutes with
the occupation number operator of the orbital. “Segments”,or occupied orbitals,
are therefore still a good concept, and we can represent all possible configurations
by l segment configurations of orbitals.
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Figure 6.4: Hybridization algorithm: segment overlap. Shaded are the “overlapping”
regions where the impurity is doubly occupied. The length ofthe shaded area enters into
an overall weighting factor for the potential energy (Hubbard U). Similarly, the length of
the black lines (occupied segments) enters the weighting factor for the chemical potential
according to Eqn. (6.21).

The trace over the local HamiltonianHloc of such a configuration is given by
Eqn. (6.11)

Wloc = Trc [e−HlocTcjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)] . (6.19)

As the local Hamiltonian is diagonal in the occupation number basis and only one
state contributes to the trace, the exponential of the localHamiltonian is easy to
compute: it is just a number1. For the SIAM (4.1) with Hubbard repulsionU, the
local Hamiltonian in the occupation number basis is

Hloc =
⎛⎜⎜⎜⎝

0 0 0 0
0 −µ 0 0
0 0 −µ 0
0 0 0 U − 2µ

⎞⎟⎟⎟⎠ , (6.20)

which for a combined length of segmentsL j in orbital j and an overlapOi j be-
tween orbitalsi and j leads to an overall weight factor

Wloc = eµ(∑
No
j L j)e−∑

No
i< j(Ui j Oi j ). (6.21)

The final algorithm for density-density interactions consists of three parts: the
generation of segment configurations, i.e. elements of the configuration space
(6.16), the computation of the hybridization matrix determinant according to
Eqn. (6.18) and (6.11), and the computation of segment length and orbital overlap
in Eqn. (6.21). The sampling process and the efficient computation of weights is
described in the next section.

6.2 Updates

In order to evaluate the integral in Eqn. (6.11) and the weight factor Eqn. (6.21),
we propose to generate segment configurations of (6.16) in a Monte Carlo process,

1this is the difference to the “Matrix algorithm” described in the next chapter.
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compute the corresponding hybridization matrix determinants (6.18) and the local
weight (6.21), and accept the change using (3.18) such that the configurations are
generated according to their contribution to the partitionfunction. This stochastic
process is carried out in complete analogy to the one described in chapter 3. The
two basic updates required to be ergodic are the insertion and the removal of a
segment. Further updates include the shifting of a segment or one of its endpoints
and the swapping of the segments of two orbitals.

0 β

lmax

0 β

remove

insert

Figure 6.5: An insertion update and its corresponding removal update within the hy-
bridization algorithm.

Starting from a configuration of segmentsck = {(τs
1, τ

e
1), (τs

2, τ
e
2),⋯, (τs

k, τ
e
k)}

we attempt to insert a new segmentsk+1 starting atτs to obtain a configurationc′k+1.
This move is rejected ifτs lies on one of the segments. Otherwise, we can choose
a random time in the intervalτs, τs′ of lengthlmax (Fig. 6.5), whereτs′ is given by
the start of the next segment inck, and compute the weight. For the reverse move,
The proposal probability of removing this segment is the oneof choosing it from
the set ofk+ 1 segments inc′k+1.

Therefore the proposal probabilities are

Wprop(ck → c′k+1) = dτ2

βlmax
, (6.22)

Wprop(c′k+1 → ck) = 1
k+ 1

. (6.23)

And the weight ratios

pc′k+1

pck

= detF(c′k+1)Wloc(c′k+1)
detF(ck)Wloc(ck) dτ2k+2/β2k+2

dτ2k/β2k
. (6.24)

Which, in complete analogy to Eqn. (5.22), yields

Wacc(x→ y) =min(1, p(y)Wprop(y→ x)
p(x)Wprop(x→ y)) =min(1, 1

k+ 1
lmax

β

(detF′)W′
loc(detF)Wloc
) ,

(6.25)

the prime denoting configurationy.
An important update that is completely equivalent to the insertion of a segment

is the insertion of an “antisegment”, i.e. instead of inserting a creator-annihilator
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0 β

d)
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f)

0 β

Figure 6.6: Updates of the hybridization algorithm as described in the text: Starting from
a): Removal of a segment (b), shift of an endpoint of a segment(c), insertion of an anti-
segment (d), removal of an anti-segment (e). Removal of another anti-segment such that
the remaining segment “wraps” aroundβ (f).

pair we insert an annihilator-creator pair. The acceptanceratio formulae are the
same as Eqn. (6.25). Besides smaller autocorrelation timesthese moves cause the
two zero-order contributions “full occupation” and “no segment” of Eqn. (6.14)
(Fig. 6.1) to be treated on equal footing.

Further moves, like the shift of an (anti-) segment or the shifting of one or
both end points do not change the order of the expansion, but help to reduce
autocorrelation times. The acceptance ratios for the self-balancing shift moves
are

Wacc(x→ y) =min(1, p(y)Wprop(y→ x)
p(x)Wprop(x→ y)) =min(1, (detF′)W′

loc(detF)Wloc
) . (6.26)

Global updates, like for example the interchange of all segments of two or-
bitals, may be required to assure that the algorithm is ergodic, i.e. that it does not
get trapped in a part of phase space. This can be used, for example, to obtain a
paramagnetic solution in a state that would otherwise seem to be antiferromag-
netic because of long autocorrelation times. Such updates require the configura-
tion to be recomputed from scratch, and are in general of order O(k3).
6.3 Measurements

In our simulation we generate configurations of segments with the weight that
they contribute to the partition functionZ as described in chapter 3. In order
to obtain expectation values of an observableA we can either simulate the se-
ries of that observable (which, for the Green’s function, would correspond to the
Worm algorithm), or obtain estimates of that observable by reweighing according
to Eqn. (3.12).

The single most important observable for quantum Monte Carlo impu-
rity solvers is the finite temperature imaginary time Green’s functionG(τ) =
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−⟨c(τ)c†(0)⟩, which is returned as a result from the solver.
The series for this observable is

G(τ, τ′) = −Zbath∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

(6.27)

× Trc [e−HlocTc(τ)c†(τ′)cjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)]detFk,

and in complete analogy to the partition function configurations we can identify
Green’s function configurations as segment configurations with two additionalc
andc† operators. We have two possible ways to proceed to obtain an estimator for
the Green’s function. The first consists of trying to insert the operatorsc(τ),c†(τ′)
into a configuration of the partition function, and then to compute the ratio of the
local weights. Alternatively, we can obtain an estimator ofG(τ) by identifying
two operators in a partition function segment configurationthat are an imaginary
time distanceτ apart, and removing the hybridization lines between them. Acon-
figuration for the partition function at orderk is thereby turned into a configuration
of the Green’s function at orderk− 1. This procedure is drawn in Fig. 6.7.

If the weight associated with a partition function configuration was

p({(τs
1, τ

e
1),⋯(τs

k, τ
e
k)}) = Trc [e−HlocTcjk(τk)c†

j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)]detFk,

(6.28)

the local weightWloc of Eqn. (6.19) given by the trace factor of the Green’s func-
tion configuration generated by this method stays invariant. The hybridization
determinantFk computed according to Eqn. (6.27), however, corresponds tothe
determinant of hybridization functions that do not involvethe Green’s function
operatorsc(τs

G) andc†(τe
G), i.e. to the determinant of a matrix with one row and

one column removed.

pG({(τs
1, τ

e
1),⋯(τs

k−1, τ
e
k−1)}, τs

G, τ
e
G) (6.29)

= Trc [e−HlocTcjk(τk)c†
j′k−1
(τ′k−1)⋯c(τe

G)⋯c†(τs
G)⋯cj1(τ1)c†

j′1
(τ′1)]detF

τs
G,τ

e
G

k−1 ,

For measuring the Green’s function, we employ formula 3.12 and therefore need
to accumulate

PG

Z
= pG({(τs

1, τ
e
1),⋯(τs

k−1, τ
e
k−1)}, τs

G, τ
e
G)

p({(τs
1, τ

e
1),⋯(τs

k, τ
e
k)}) = detF

τs
G,τ

e
G

k−1

detFk
, (6.30)

F
τs

G,τ
e
G

k−1 denoting the hybridization function matrix with the operator at τs
G andτe

G

removed.
The fast-update formulas of appendix A describe how such a determinant ratio

is computed:

G(ck)(τe
i , τ

s
j) = 1

β
M ji = 1

β
(F−1) ji , (6.31)
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Figure 6.7: Hybridization algorithm: Green’s function configuration.A typical config-
uration for a Green’s function, created by taking the partition function configuration of
orderk = 3 Fig. 6.2 and identifying a creation and an annihilation operator as the Green’s
function operators to obtain a Green’s function configuration corresponding to a partition
function configuration at one order lower. Red: creation andblue: annihilation operators
of the partition function. Light purple: Green’s function operators.

We can bin this into fine bins to obtain the Green’s function estimator

G(τ) = 1
β
⟨ k

∑
i j

M ji∆(τ, τe
i − τe

j)⟩ , (6.32)

∆(τ, τ′) = { δ(τ − τ′), τ > τ′
−δ(τ − τ′ + β), τ′ > τ. (6.33)

For a configurationck = {(τs
1, τ

e
1), (τs

2, τ
e
2),⋯, (τs

k, τ
e
k)} we can therefore obtain

a total of k2 estimates for the Green’s function – or one for every creation-
annihilation operator pair or every single element of the(k× k) - matrix M = F−1.

Efficient estimators exist for the density, the double occupancy and the poten-
tial energy (and similarly for all observables that commutewith the local Hamil-
tonian):

Ep =∑
i> j

Ui j ⟨nin j⟩, (6.34)

Di = ⟨ni↑ni↓⟩. (6.35)

The occupationn j of the j-th orbital is estimated by the lengthL j (Eqn. 6.21) of
all the segments:n j = L j

β
. A site is doubly occupied if the two orbitals overlap, and

therefore⟨Di⟩ = 1
β
⟨Oi↑,i↓⟩. The system has a magnetization ofSzi = (⟨l i↑ − l i↓⟩)/β.

As the overlap and length functions are used at every Monte Carlo step, where they
enter the local weight, these observables are readily available and very accurate.

The average expansion order of the algorithm is an estimatorfor the kinetic
energy, similar toEpot in the case of the CT-AUX algorithm:

Ekin = 1
β
⟨k⟩. (6.36)

6.4 Implementation Notes

For each configurationck in C we need to store the following elements: the seg-
ment length and overlap, the inverse hybridization matrixM = F−1, and the con-
figuration itself. It is sufficient to compute the change in length and overlap at
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each step to obtain the weight ratio, and we only need the fulloverlap and length
information for the measurements. We store the configuration as a self-balancing
tree of segments, i.e. a tree of pairs of times that contain the start- and end times of
each segment. IfF is diagonal, i.e. does not mix different orbitals, the determinant
can be written as a determinant of block-matrices with one matrix per orbital,

detF−1 = detM =∏
j

detM j . (6.37)

This significantly reduces the effort of taking the determinant. The operations that
need to be performed are:

• Check if we can insert an additional segment/ antisegment at a new time
(search operation,(O(logk)))
• Locate the nearest segment start/ endpoint at a time (increment, constant in

time).

• Insert a new segment (insertion, logk)

• Remove a segment (removal operation, logk).

The updates implemented in our code include the insertion/ removal updates for
the segments, as well as shift updates, and expensiveO(k3) global updates, like
the exchange of all segments between two orbitals.

In the code, we use the fast-update formulas that are explained in appendix
A to efficiently compute the determinant ratios of Eqn. (6.25). Thus, instead of
storing the F-matrixF j = F j(τp − τq) we computationally handleMpq = (F−1)pq.
This has the advantage that determinant ratios can be computed easily (O(k2) for
an insertion,O(k) for a shift move, constant in time for a removal move) and that
updates are – as in all the other QMC impurity solver algorithms – ofO(k3) for a
new independent configuration.



Chapter 7

Hybridization Algorithm – General
Interactions

This chapter generalizes the partition function expansionof the last chapter to
impurity Hamiltonians that have a more complex structure. To be specific: we
want to be able to compute the expansion Eqn. (6.11) for Hamiltonians that have
interactions that are more general than density-density interactions, for example
multiple orbital Hamiltonians with general, rotationallyinvariant Hund’s coupling
or cluster Hamiltonians, where the cluster contains the local on-cluster hopping.
The general framework has been developed by Werner and Millis in [35], and
applications to real materials (LDA+DMFT) and small clusters have later been
pioneered by Haule and collaborators e.g. in [124]. This impurity solver algo-
rithm, while in principle just an extension to the algorithmof the previous section,
is perhaps the most difficult one of the continuous-time impurity solver algorithms
to implement. A rather extensive part of this chapter is therefore dedicated to the
efficient implementation of this solver.

7.1 Partition Function Expansion

We refer to the previous chapter, where we wrote the partition function as a series
of integrals of a determinant of hybridization lines times an expectation value of
time-ordered operators (6.11):

Z = Zbath∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

(7.1)

× Trc [e−HlocTcjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)]detF.

The peculiar structure of the local Hamiltonian enforced that every creation op-
erator had to be followed by an annihilation operator in order for the trace not to
be zero, which led us to formulate the algorithm in terms of creation-annihilation
pairs called “segments”. If this constraint can be violated– e.g. because the local
Hamiltonian does not commute with the local particle numberoperator, we need
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to simulate Eqn. (7.1) directly. In the Heisenberg formalism, with explicit time
ordering, we obtain

Z =
∞

∑
k=0
∫

β

0
dτ1∫

β

τ1

dτ2⋯∫
β

τk−1

dτk[Tre−τ1Hloco1e−(τ2−τ1)Hloco2e−(τ3−τ2)Hloco3 (7.2)

⋯ok−1e−(τk−1−τk)Hlocoke−(β−τk)Hloc]detF(o1,⋯,ok),
whereo j is one of thel operators

c1,c
†
1,⋯,cl ,c

†
l (7.3)

that build the Fock space of the local HamiltonianHloc and obey the fermionic
commutation rules{ci,c

†
j} = δi j ,{ci ,cj} = 0 = {c†

i ,c
†
j}.

0 β

Hloc

Figure 7.1: A typical term in the expansion of 7.2: three “flavors” (orbitals, cluster sites,
. . . ) of fermionic creation and annihilation operators (denoted by filled and empty tri-
angles, squares, and circles) are placed at times between 0 and β. We need to compute
the trace of the operator product and multiply it to the hybridization line determinant
Eqn. (7.2) to obtain the weight of this configuration. Note that other than in the segment
case, two operators of the same type may follow each other. The same number of creation
and annihilation operators need to occur for the trace to be non-zero. Figure according to
[35].

7.1.1 Configuration Space

The configuration space we need to sample for the general hybridization solver
is much larger than the one of the segment solver: In order forthe trace to eval-
uate to a finite value, the only constraint from Eqn (7.1) is that there must be as
many creation operators as annihilation operators of the same type present in the
expansion; they do not need to appear in alternating order.

We denote by the indexjk the type of the operator (7.3) on the impurity Hamil-
tonian and define the configuration space to be

C = {{},{(τ1, τ
′
1, j1)},{(τ1, τ

′
1, j1), (τ2, τ

′
2, j2)}, (7.4)

⋯,{(τ1, τ
′
1, j1),⋯, (τk, τ

′
k, jk)},⋯}.

The triplets denote the time of the creator, time of the annihilator, and orbital or
cluster site of these operators. An additional constraint is given by the properties
of the local Hilbert space: As we work with fermionic system,we cannot have
more electrons present than we have orbitals available for them. This puts an
upper bound on the number of consecutive creation- and annihilation operators.
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0 β

Hloc

Figure 7.2: One possible hybridization line configuration:F-lines go from annihilation
operators to creation operators of the same type (“diagonal” hybridizations). We sample
all possible configurations ofF-lines at once by taking the product of the determinants of
theF-matrices.

Symmetries of the local Hamiltonian, like momentum conservation on a cluster
or rotational symmetries in a multi-orbital problem, yieldadditional constraints
by limiting the number of states available in each symmetry sector. As these
constraints significantly reduce the size of the configuration space that has to be
sampled, they are implemented such that configurations thatyield zero weight due
to these restrictions are instantly rejected and the sampling is constrained to parts
of the phase space that have nonzero weight [124].

7.1.2 Computation of the Hybridization Determinant

The computation part of the hybridization matrix is completely identical to the part
described in section 6.1.1: every creator is connected by a hybridization line to an
annihilator. The weight is given by the determinant of the matrix F that contains
these hybridization lines (Fig. 6.3). If the bath does not mix different orbitalsl i
andl j, i.e. Fli l j(τi−τ j) = δli l j Fli(τi−τ j), we can write theF-matrix Eqn. (6.18) as a
block-diagonal matrix and its determinant as a product of determinants of smaller
size,

detF = det

⎛⎜⎜⎜⎝
F1 0 0 0
0 F2 0 0
0 0 ⋱ 0
0 0 0 F j

⎞⎟⎟⎟⎠ =∏j

detF j. (7.5)

Unlike in the segment algorithm, the main computational task is the evaluation
of the trace of operators in Eqn. (7.2). It is there where mosttime is spent, and
simplifications that make this computation feasible are described in the following
section.

7.1.3 Computation of the Trace

As derived in Eqn. (7.2), we need to compute the trace of a product of operators
and exponentials of the local Hamiltonian. Once we choose a basis, this corre-
sponds to taking the trace of a product ofk (large) matrices that have the linear
size of the local Hilbert space at expansion orderk. Matrix-matrix multiplications
scale roughly as the third power of the matrix size. It is therefore vital to reduce
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occupation number basis

Hloc

N1

N2

N3

N4

[Hloc,Sz] = 0 = [Hloc,N]

Hloc

further symmetries

Hloc

Figure 7.3: Sketch of a rotation/ block-diagonalization of the local Hamiltonian. The
Hamiltonian in the occupation number basis is sparse but notblocked. A first permutation
operation builds blocks according to the occupation numberand spin of the local Hamilto-
nian. A second (rotation) matrix further reduces block sizeby considering rotational and
translational invariance of the impurity Hamiltonian. Colored blocks represent non-zero
entries of the Hamiltonian.

the size of the matrices as well as the number of matrix-matrix multiplications that
have to be performed.

Computing the exponential of a matrix is an expensive operation. However,
as it is always the same matrix that occurs in the exponent, weperform the entire
calculation in the eigenbasis of the local Hamiltonian. In order to do this, we need
to be able to diagonalize this Hamiltonian, and this will impose a limit on the size
of local Hamiltonians that we can treat without approximations.

We then observe that the local HamiltonianHloc has symmetries. While these
symmetries are model dependent, usually the total particlenumberNtot, the total
Spin z-componentSz and rotational or translational symmetries of the impurity
Hamiltonian are conserved:

[Hloc,Ntot] = 0 = [Hloc,S
z
tot]. (7.6)

This implies that we can transform to a basis where the local Hamiltonian has a
block-diagonal form, and that we can diagonalize each of these blocks separately.
This procedure is sketched in Fig. (7.3).

The advantage of changing to a block-diagonal form and diagonalizing the
local Hamiltonian therein is that operatorsci,c

†
j are also in block-matrix form.

The operatorc†
i↑, for example, raises both the total particle number and the total

Sz-component by one and therefore consists of off-diagonal blocks connecting the(Sz,n) - symmetry sector with the(Sz+ 1,n+ 1) - sector.
A typical example is the four-site Hubbard plaquette with next-nearest neigh-

bor (t′−) hopping. The local Hamiltonian has a size of 256× 256 elements, as we
have four sites, each of which can assume one of the four states ∣0⟩, ∣ ↑⟩, ∣ ↓⟩, ∣ ↑↓⟩.
However,H commutes withn↑,n↓ and has a four-fold rotational symmetry (or
a couple of inversion and mirror symmetries). This allows usto split up the
256× 256 matrix into 84 small blocks that have at most 16× 16 elements. As
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e−Hlocτ1Tr[ c†
↑ e−Hlocτ2 c↓ e−Hlocτ3⋯ ]

c†
↑

c↓
n↑=1
n↓=1
{
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n↓=0
{
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Figure 7.4: Sketch of one of the optimizations in the code: Four symmetrysectors are

drawn, for whichSz andN are different. After the trace ofc†
↑

andc↓ is taken only one
of the symmetry sectors still contributes. In the implementation, we first identify which
symmetry sectors contribute, and then compute the matrix product and trace only for these
sectors. Additional symmetries vastly simplify the computation.

the most expensive part of the code is the computation of matrix products, which
scales asO(∑block n3

block) or O(n3
max block) instead ofO(n3

loc. Ham), the advantage of
using symmetries is obvious [36].

7.2 Measurements

The measurement of the Green’s function is done in the same way as in the seg-
ment picture 6.3, where we took a partition function configuration, removed a
hybridization line, and thereby obtained an estimate for the Green’s function.

Care has to be taken when the expansion order is very small, i.e. when one sec-
tor is almost completely empty or almost completely filled, and therefore virtually
no hybridization processes with the bath occur. In this casethere are almost no
operators present and the method of sampling the Green’s function at the position
of operators as described above yields bad statistics.

We then need to employ the second measurement process described in 6.3 and
obtain Green’s function configurations by inserting operators, not removing them.
From a partition function configuration{(τ1, τ

′
1, j1),⋯, (τk, τ

′
k, jk)} we obtain a

Green’s function configuration

Gpq(τG,
s , τe

G) = Zbath∑
k
∭ dτ1⋯dτ′k ∑

j1,⋯ jk

∑
j′1,⋯ j′k

(7.7)

× Trc [e−HlocTcjk(τk)c†
j′k
(τ′k)⋯c†

p(τs
G)⋯cq(τe

G)⋯cj1(τ1)c†
j′1
(τ′1)]detF

by inserting the two operatorsc†
p(τs

G),cq(τe
G) into the operator chain. For the
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measurement in formula Eqn. (3.12) we need to employ the reweighing formula

pG

pZ
=

Trc [e−HlocTcjk(τk)c†
j′k
(τ′k)⋯c†

p(τs
G)⋯cq(τe

G)⋯cj1(τ1)c†
j′1
(τ′1)]

[e−HlocTcjk(τk)c†
j′k
(τ′k)⋯cj1(τ1)c†

j′1
(τ′1)] , (7.8)

which involves recomputing the entire operator string. However, if only very few
operators are present, this is straightforward and not computationally expensive.

If the observableA can be expressed in terms of the basis of the local Hamil-
tonian, likeni ,Sz

i ,ni↑ni↓ or Hloc, we evaluate it by computing

⟨A⟩ = 1
Z

TrρA, (7.9)

i.e. we compute the matrix product above and multiply the operator matrix to it,
then take the trace. Time dependent correlation functions,like ⟨Sz(0)Sz(τ)⟩ or
more general multi-operator correlation functions like⟨c†

i (τ1)cj(τ2)c†
k(τ3)cl(τ4)⟩

are evaluated by inserting the operators into the matrix product at the timeτ j and
then taking the trace, analogously to Eqn. (7.8).

7.3 Implementation Notes

The Hybridization expansion algorithm is perhaps the most difficult of all
continuous-time algorithms to implement, as besides the hybridization expansion
part also the parts that build the Hamiltonian matrix, block-diagonalize it and then
compute products and traces have to be written and maintained.

In our case we chose to base the impurity solver on the ALPS [128] exact-
diagonalization library, where tools to build and diagonalize the Hamiltonians are
already built and tested, and various symmetry operations implemented. It is the
ALPS library that provides us with the local basis, the Hamiltonian matrix, and
creation- and annihilation operators in an occupation number basis.

The ALPS library cannot yet handle terms dependent on four operators in dif-
ferent orbitals, like general pair-hopping or exchange (correlated hopping) terms.
Therefore we added an additional routine that reads in the local Hamiltonian ma-
trix for a given basis.

The local Hamiltonian is mapped onto a graph that contains the fermionic
impurity sites as vertices and interactions as vertex or edge terms. This allows for
a very generic adaptation of the code to almost any impurity problem: Clusters,
multiple orbitals problems, or combinations thereof are generated by specifying
lattice and model in a parameter file. Symmetries – both localoperators asNtot or
Sz

tot and spatial/ translation symmetries can be specified in the parameter fileand
are interpreted at run time to generate the block-diagonal form of the Hamiltonian.

The computationally intensive part is the computation of the trace, namely the
operationAi j = BikckDk j, with ck the (diagonalized) exponentiale−τHloc andD a
dense but small matrix that is part of the block-matrix of theoperator in the trace.
This is done using a fast matrix multiplication routine for small to intermediate
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size matrices, implemented in BLAS. The exponential factors are computed using
vector exponential functions.

The effort can be further reduced if we limit ourselves to eigenvalues of the
local Hamiltonian that are not particularly large. The exponential factore−Hlocτ

causes large eigenvalues to be suppressed exponentially. If some eigenvalues are
substantially larger than others, we can truncate the spectrum and only compute
with the smaller eigenvalues of the Hamiltonian.

A far cruder approximation that yields even higher performance gains is
achieved by limiting ourselves to a subset of all particle number, momentum, or
spin sectors. We manually truncate the local Hamiltonian and the trace, such that
high-energy (-momentum, -spin, whatever is physically known to have little influ-
ence) sectors are removed. Of course this reduces the effort dramatically: not only
can we limit ourselves to a small subset of sectors, we can also ignore transitions
out of that set into other states and back into it again.

A systematic improvement on such a limitation that takes care of the influence
of highly excited sectors in a systematic manner has been attempted by A. Millis
[129].

We have examined two implementations of the truncation: thefirst one takes
the eigenvalues of the system, sorts them according to theirsize, and removes any
eigenstates that have less than a given energy. The second one performs the ther-
malization of the system in the full basis. Then the sectors that do not contribute
are identified and removed before the sampling process starts. While the second
version has the advantage of taking into account dynamic effects, it is much more
expensive, as the full system has to be simulated for at leasta number of steps.

The truncation of the basis can also be done dynamically at runtime: We order
the eigenvalues in ascending order. Once we know the exponential vectorc =
e−Hlocτ, we can truncate the matrix product

Ai j = BikckDk j (7.10)

at the indexk0 for which ck = 0,k > k0. This new “dynamic truncation” shows
promising results and allows to systematically reduce truncation errors.

It is important to note that the numerical effort in the general matrix formu-
lation of the hybridization algorithm scales exponentially with the number of im-
purity sites or orbitals considered. This is because the size of the Hilbert space
grows exponentially with the number of orbitals, and we needto diagonalize the
impurity Hamiltonian on that space. However, for a given problem the hybridiza-
tion part of the algorithm scales with the inverse temperatureβ to the third power,
and the trace-part islinear in the inverse temperature per trace, or quadratic per
sweep. Thus, as long as we are in a regime that is dominated by the computation
of the trace (which is usually the case), the algorithm scales quadratic inβ.

7.4 Tree Algorithm

As the main effort of the algorithm is the computation of the trace, which islinear
in the numbers of hybridization operators present in the configuration, we need to



7.4 Tree Algorithm 95

look for ways to accelerate this computation. In the segmentalgorithm, the effort
of computing the new segment overlap wasO(logk), where the log stems from
the cost of finding the segment in a segment list. As this search operation is rela-
tively cheap, the trace computation is negligible and the operations are completely
dominated by the computation of the hybridization part.

Computing the complete trace in the general case will alwaysbe at leastO(k),
as we need to access each operator at least once. However,recomputingthe trace
after an operator insertion or removal update offers the possibility of simplifica-
tions. A first idea can reduce the effort to O(√k): we take the operator trace and
create around

√⟨k⟩ intervals between zero andβ. We then store the matrix prod-
uct of all the operators within this interval, where each such an interval contains
approximately

√⟨k⟩ operators. If we insert two operators, we will change the
matrix product of one or two intervals - which need to be recomputed at the cost
of
√

k operations. The whole recompute operation is therefore ofO(√k), and a
sweep ofO(k3/2). This algorithm is illustrated in Figure 7.5.

0 β

Hloc

bin 1 bin 2 bin 3 bin 4

Figure 7.5: Binning algorithm: binning of the operators into four bins,each having ap-
proximately four elements, reduces the effort of computing the trace after inserting or
removing an operator toO(√⟨k⟩).

A better, but slightly more complicated algorithm uses the properties of self-
balancing binary trees. In our case, we implemented a tree algorithm based on
so-called AVL [130, 131, 132] trees. These trees have the property that they have
a depth ofO(logk), and that the maximum depth is no larger than the minimum
depth plus two. Denoting dense matrices from the hybridization operators with
capital letters and the exponential vectorsp(τi+1 − τi) = e∆τH0 = pi,i+1 with lower
case letters, we can write the trace in Eqn. (7.2) as

Tr [pi
0AAi j p

j
ABB jk pk

BCCkl pl
CD⋯Zpipi

Zβ] . (7.11)

We then arrange all the operators in (7.11) in a binary tree. It is easy to see that
for every exponentialp(τ → τi+1) = eH0(τi−τi+1) that is between the first and last
operator we can assign one of the branches of the tree. These “propagators” from
timeτi to timeτi+1, where a right branch contains the propagator from the node to
the smallest time of the right subtree, and a left branch contains the propagation
from the largest time of the left subtree to the node (Fig. 7.6). The main idea of
the algorithm is that each node stores the matrix product of the left subtree times
the propagator to the left, the operator, and the propagatorto the right times the
matrix product of the right subtree. This storage is ofO(k) in memory.

It is now obvious that few changes need to be done when a new operator (pair)
is inserted into the tree: First we have to locate the proper place of the operator
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Figure 7.6:Binary Tree
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in the tree, which is an O(logk) search operation, and insert the operator. Then
we need to change the two propagators that lead to this node and away from this
node. And finally we need to recompute all the matrix productsthat have been
changed.

Let us first look at the insertion. Finding out the right placefor an insertion is
easy: we compare the times of the operators, and follow the tree downwards on
the left or right branch until we find an empty spot. This is where we insert the
new operator.

In order to make sure that the tree stays balanced, we need to perform so-called
tree rotations (see computer science literature like [132]for details): if we find a
subtree that has more than two entries more on one branch thanon the other, we
rotate it. Let us consider the five operatorsA,B,C,P,Q, with τa < τp < τb < τq < τc,
with root P, leavesA,B, andC, and an intermediate nodeQ. The place where
operators are stored in the tree is dependent on the history of insertion and removal
operations, and multiple trees yield the same matrix product. In Figure 7.7 we
illustrate two possible trees for which the order is the same, but the root node has
changed. A tree rotation is the operation that changes the right tree into the left one
and vice versa. By performing such a tree rotation we can raise the depth of the
tree on one side, while lowering it on the other side. An AVL tree insertion move
now proceeds to “rebalance” an imbalanced tree by computingthe difference of
the number of nodes on the right side and on the left side, and performing a right
or left rotation move such that it stays smaller than or equalto one.

Obviously the matrix products stored for the nodesA,B andC need not be
changed when such a move is performed. The matrix product atQ will be the
one that was previously stored atP (namelyAPBQC, the product of the operators
of the entire tree), and it is only the product atP that needs to be recomputed.
Thus, while proceeding up the tree, we need to computeO(logk)matrix products
of the typeMi j = AikbkCk j. Removal updates proceed by “rotating” the node to
be removed to the bottom using right and left rotations, and then recomputing
the matrix product. These rotation operations are the only ones that have to be
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Figure 7.7:Tree Rotation
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implemented and where matrix products are computed.
At the end of an insertion or removal update, the matrix product at the root is

read out, multiplied by the propagation from zero to the firstnode and from the
last node toβ, and the trace is taken.

The tree algorithm for the hybridization solver, while not entirely trivial to im-
plement, allows the computation of matrix products inO(logk) steps instead the
naiveO(k) or the straightforwardO(√k) steps. It thereby reduces the computa-
tional overhead associated with the matrix hybridization solver significantly and
allows access to lower temperatures. Eventually, though, the exponential scaling
of the local Hilbert space or theβ3 scaling of the hybridization part will dominate
the calculation. A typical arrangement of operators and propagators within the
tree algorithm is illustrated in figure 7.8.

0 β

Hloc

Figure 7.8: Tree algorithm: sorting the operators in a tree yields an overall O(log(⟨k⟩))
effort for the matrix product. The tree shows one possible arrangement of the operators
in a binary tree structure - the actual arrangement depends on the order of insertion and
removal operations.



Chapter 8

Performance Comparison

E. Gull , P. Werner, A.J. Millis, M. Troyer,
Phys. Rev. B 76, 235123 (2007)

This chapter forms the start of the results section that shows some of the problems
to which we applied the new algorithms. After implementing the weak coupling
and the hybridization algorithms, we compared their performance to the old, well-
established Hirsch - Fye [72] algorithm. The chapter mostlyfollows the original
publication, reference [9].

8.1 Matrix Size
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Figure 8.1: Scaling of the matrix size with inverse temperature and interaction strength.
Right panel: temperature dependence forU/t = 4. In the case of Hirsch-Fye, the resolu-
tion N = βU has been chosen as a compromise between reasonable accuracyand accept-
able speed, while the average matrix size is plotted for the continuous-time solvers. Left
panel: dependence onU/t for fixedβt = 30. The solutions forU ≤ 4.5 are metallic, while
those forU ≥ 5.0 are insulating. The much smaller matrix size in the relevant region of
strong interactions is the reason for the higher efficiency of the hybridization expansion
method.

For all three algorithms, the computational effort scales as the cube of the ma-
trix size, which for the Hirsch-Fye solver is determined by the time discretization

http://dx.doi.org/10.1103/PhysRevB.76.235123
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∆τ = β/N and in the case of the continuous-time solvers is determinedby the
perturbation orderk, which is peaked roughly at the mean value determined by
the probability distributionp(k). In Fig. 8.1, we plot these matrix sizes as a func-
tion of inverse temperatureβ for fixed U/t = 4 and as a function ofU/t for fixed
βt = 30. All our simulation results are for a semi-circular density of states with
band-width 4t.

It is obvious from the upper panel of Fig. 8.1 that the matrix size in all three
algorithms scales linearly withβ. The Hirsch-Fye data are forN = βU, which
is apparently a common choice, although Figs. 8.2 and 8.4 show that it leads to
considerable systematic errors. Thus, the grid size shouldin fact be chosen much
larger (N ≳ 5βU).

While the matrix size in the weak coupling approach is approximately propor-
tional toU/t, as in Hirsch-Fye, theU-dependence of the hybridization expansion
algorithm is very different: a decrease in average matrix size with increasingU/t
leads to much smaller matrices in the physically interesting region 4≲ U/t ≲ 6,
where the Mott transition occurs. The results in Fig. 8.1 andthe cubic dependence
of the computational effort on matrix size essentially explain why the continuous-
time solvers are much more powerful than Hirsch-Fye and why the hybridization
expansion is best suited to study strongly correlated systems.

There is of course a prefactor to the cubic scaling, which depends on the com-
putational overhead of the different algorithms and on the details of the implemen-
tation. Blümer [73] has demonstrated substantial optimizations of the Hirsch-Fye
code and has in particular shown that extrapolating resultsat non-zero time step
∆τ to the∆τ = 0 limit considerably improves the accuracy. Of the continuous
time codes investigated here, only the weak coupling results have been optimized.
We estimate that similar modifications in the code for the hybridization expansion
algorithm would provide a speed-up of at least a factor of 10.However, the re-
sults presented here indicate large enough difference between the methods that the
effects of optimization can be ignored.

8.2 Accuracy for Constant CPU Time

The three quantum Monte Carlo algorithms considered in thisstudy work in very
different ways. Not only are the configuration spaces and hence the update pro-
cedures entirely different, but also the measurements of the Green’s functions and
other observables.

In order to study the performance of the different impurity solvers, we there-
fore decided to measure the accuracy to which physical quantities can be deter-
mined for fixed CPU time (in this study 7h on a single Opteron 244 per iteration).
This is the question which is relevant to people interested in implementing ei-
ther of the methods and avoids the tricky (if not impossible)task of separating
the different factors which contribute to the uncertainty in the measured results.
Because the variance of the observables measured in successive iterations of the
self-consistency loop turned out to be considerably largerthan the statistical error
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bars in each step, we determined the mean values and error bars using 20 DMFT
iterations starting from a converged solution.

The Hirsch-Fye solver suffers in addition to these statistical errors from sys-
tematic errors due to time discretization. These systematic errors are typically
quite substantial and much larger than the statistical errors. In order to extract
meaningful results from Hirsch-Fye simulations it is essential to do a careful (and
time-consuming)∆τ → 0 analysis [73]. The continuous-time methods are obvi-
ously free from such systematic errors if a sufficient number of time- or frequency
points is used in the measurement of the Green’s function.

8.2.1 Kinetic and Potential Energy

0.0005 0.00075

0.51

0.515

0 0.002 0.004
1/(β2

t
2
)

0.46

0.48

0.5

0.52

-E
ki

n
/t

Weak in ω
Weak in τ
Hyb
HF, ∆τ t = 0.2
HF, ∆τ t = 0.15
HF, ∆τ t = 0.1
HF, extrapol

0 0.002 0.004
1/(β2

t
2
)

0.3

0.32

0.34

E
po

t/t

Weak Coupling Expansion
Hybridization Expansion

Figure 8.2: Left panel: kinetic energyEkin = 2t2 ∫ β0 dτG(τ)G(−τ) obtained using the
three QMC impurity solvers forU/t = 4.0 andβt = 10,15, . . . ,50. The Hirsch-Fye simu-
lations for∆τ = 1/U (as in Fig. 8.1) yield systematically higher energies. The inset shows
results obtained with the continuous-time solvers forβt = 35,40,45 and 50. Right panel:
potential energyU⟨n↑n↓⟩ for the same interaction strength.

The kinetic energy,

Ekin = 2t2∫
β

0
dτG(τ)G(−τ), (8.1)

shown in Fig. 8.2, was obtained from the imaginary time Green’s function by
numerical integration. To this end we Fourier transformed the imaginary time
Green’s function and summed the frequency components including the analyti-
cally known tails. This turns out to be more accurate than thedirect evaluation
of equation (8.1) by trapezoidal or Simpson rule. It is also more accurate than
the procedure proposed in Ref. [124] for the temperature andinteraction range
studied.

We computed results for fixedU/t = 4 and temperaturesβt = 10,15, . . . ,50.
In this parameter range the solution is metallic and we expect Ekin/t ∝ (T/t)2 at
low temperature. The dominant contribution toEkin comes from imaginary time
points close toτ = 0, β. The accuracy of the kinetic energy therefore illustrates
how well the steep initial drop ofG(τ) can be resolved.
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The results from the continuous-time solvers agree within error bars, but due
to the larger matrix size, the weak coupling algorithm can perform fewer updates
for fixed CPU time and therefore the error bars are substantially larger (see inset
of Fig. 8.2).

The Hirsch-Fye results are strongly dependent on the numberof time slices
used. Because of the cubic scaling of the computational effort with the number
of time slices, at most a few hundred time points can be taken into account. This
number is not sufficient to resolve the steep drop of the Green’s function at low
temperature, and therefore the kinetic energy converges tovalues which are sys-
tematically too high. Extrapolation (e.g. ref. [8], [73]) can be used to obtain
values for∆τ = 0 and reduce these errors. However, various simulations at dif-
ferent∆τ have to be performed in order to obtain an accurate estimate.For the
kinetic energy we performed this extrapolation forβt = 15,20,25. The error for
β t = 20 at∆τ = 0 after extrapolation is 10 times larger than the one we could
obtain for the weak coupling algorithm, which is again around ten times larger
than the one for the hybridization algorithm.

We emphasize that for this particular case all three methodsare sufficiently ac-
curate that physically meaningful conclusions can be drawn; the differences, how-
ever, have clear implications for the extension of the method to more demanding
regimes.

In the lower panel of Fig. 8.2 we show the potential energyU⟨n↑n↓⟩ for
U/t = 4, computed with the two continuous-time methods. In the hybridization
expansion algorithm, the double occupancy can be measured from the overlap
of the up- and down-segments. In the weak-coupling case, we used the relation
U/2⟨(n↑ +α)(n↓ − 1−α)+ (n↑ − 1−α)(n↓ +α)⟩ = ⟨k⟩/β (where⟨k⟩ is the average
perturbation order), and an extrapolation toα → 0. Both results agree within er-
ror bars and the hybridization expansion approach again yields the more accurate
results.

8.2.2 Green’s Function and Self Energy

The high precision of the hybridization expansion results for the kinetic energy
indicate that this algorithm can accurately determine the shape of the Green’s
function nearτ = 0 andβ. We now turn to the lowest Matsubara frequency com-
ponent of the Green’s function, which is determined by the overall shape. We plot
in Fig. 8.3G(iω0) for different values ofβ. The upper panel shows the results
obtained for the different continuous-time solvers and measurement procedures.
They all agree within error bars. In the lower panel we plot the values of the error-
bars. In the case of the weak-coupling expansion, both the measurement inτ and
the measurement inω produce about the same accuracy, which deteriorates as the
temperature is lowered, due to the increasing matrix size. The error-bars from the
hybridization expansion solver are much smaller and in the measured tempera-
ture range remain about constant. Because the matrices at these values ofU and
β are very small, and the number of measurement points in Eq. (6.33) depends
on the matrix size, the increase in computer time for updating larger matrices is
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Figure 8.3: Lowest Matsubara frequency value forG for U/t = 4.0, using measurements
in both imaginary time and frequency space in the weak coupling case. The upper panel
shows the Green’s function and the lower panel the relative error on the measurement.
Unlike in the Hirsch Fye algorithm there are essentially no systematic errors in the con-
tinuous time algorithms. In the case of the hybridization expansion algorithm, results for
measurements inτ andω are plotted. Both measurements yield a similar accuracy at low
frequency. The hybridization expansion algorithm gives very accurate results and the er-
ror bars show no dependence onβ. This indicates that in the measured temperature range,
two competing effects essentially cancel: the efficiency of the matrix updates which de-
creases at lower temperatures and the efficiency of the measurement procedure (6.33),
which yields better results for larger matrix sizes.

compensated by a more efficient measurement.
For the self-energy,

Σ(iωn) = G0(iωn)−1 −G(iωn)−1, (8.2)

the Matsubara Green’s functions have to be inverted and subtracted. This pro-
cedure amplifies the errors of the self-energy especially inthe tail region where
G0(iωn) andG(iωn) have similar values. Fig. 8.4 showsImΣ(iω0)/ω0 for U/t = 4
and several values ofβ. This quantity is related to the quasi-particle weight
Z ≈ 1/(1− ImΣ(iω0)/ω0). Again, the Hirsch-Fye results show large systematic
errors due to the time discretization and cannot be carried to low temperatures.
The results from the continuous-time solvers agree within error-bars, but the size
of the error bars is very different. The hybridization expansion approach yields
very accurate results for low Matsubara frequencies in general.

The advantage of measuring in Matsubara frequencies as opposed to imagi-
nary time in the weak coupling algorithm becomes apparent for largeωn. Only
the difference ofG to the bare Green’s functionG0 has to be measured in this al-
gorithm. These differences decrease with 1/ωn for increasingωn and the estimate
from Eq. (4.30) is extremely accurate at high frequencies, so that the tail of the
self energy can be computed accurately. The measurements inimaginary time
however have to be binned and Fourier transformed. While thehigh frequency
tail can be enforced using correct boundary conditions for the cubic splines, there
is a region of frequencies which starts much below the Nyquist frequency, where
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Figure 8.4: Self-energyImΣ(iω0)/ω0 as a function ofβ for U/t = 4.0. The Hirsch-Fye
results exhibit large discretization errors, while the continuous-time methods agree within
error bars. The hybridization expansion method is particularly suitable for measuring
quantities which depend on low-frequency components, suchas the quasi-particle weight.

this introduces considerable errors (Fig. 8.5). For 10≲ ωn/t ≲ 40 and 500 imag-
inary time slices the values ofΣ(iωn) show large errors before converging to the
high-frequency tail enforced by the Fourier transformation procedure. The upper
panel of Fig. 8.6 shows the difference between the two measurement approaches
more clearly.

The hybridization expansion algorithm starts from the atomic limit and thus
does not get the high-frequency tail automatically right. Both a measurement inτ
andω leads to relatively large errors at high frequencies. This noise again sets in
at frequencies much below the Nyquist frequency, as illustrated by the results for
500 and 1000 bins in the lower panel of Fig. 8.6. This noise is the consequence of
the statistical errors in the Green’s function and can hencebe reduced by running
the simulation for a longer time (see Fig. 8.5). However, Fig. 8.6 also shows that
even for the shorter runs, the data remain accurate up to sufficiently largeωn that a
smooth patching onto the analytically known high-frequency tail appears feasible.
Furthermore, since the hybridization expansion results inthis section have all been
obtained without any patching or smoothing and nicely agreewith those from the
weak-coupling solver, it seems that this uncertainty in thehigh-frequency tail is
not a serious issue.

8.3 Away from Half Filling

We have tested both continuous time algorithms away from half filling, in a region
where the half-filled model at zero temperature has a gap (U/t = 6, βt = 10) and
in a region without gap (U/t = 3, βt = 10, U/t = 2, βt = 20). A comparison of
the Green’s functions and self-energies has shown that bothalgorithms produce
the same result within numerical precision and are much faster than Hirsch-Fye.
Both continuous time algorithms have no sign problem away from half filling
([79], [34]) and again the time needed to obtain a given accuracy is mostly de-
termined by the size of the matrix. In the case of the weak coupling algorithm it
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Figure 8.5: Left panel: low frequency region of the self-energyΣ(iω) for U/t = 4.0, βt =
45. Noise in the higher frequencies is clearly visible for the values measured inτ, while
the values measured inω in the weak coupling algorithm converge smoothly to the high
frequency tail. Right panel: high frequency region of the self-energyΣ(iω) for U/t =
4.0, βt = 45. Noise in the higher frequencies is clearly visible for the values measured in
τ, while the values measured inω in the weak coupling algorithm converge smoothly to
the high frequency tail, limω→0Σ(iωn) = U2(1− n)n/(iωn).

decreases continuously away from half filling, while in the case of the hybridiza-
tion expansion the perturbation order first increases with doping if the half-filled
model has a gap, and then decreases (see Fig. 8.7). For all regions of parameter
space tested, the hybridization expansion approach yieldsthe smaller matrix sizes
and is therefore substantially faster. The matrix sizes become comparable only in
the limit of filled or empty bands.

For the hybridization expansion algorithm, we have also computed the matrix
size forU/t = 6 and much lower temperaturesβt = 100, 200 and 400. These
results showed that the perturbation order for a given filling remains proportional
to β, so that the shape of the curve remains the same as shown forβt = 10 in
Fig. 8.7. In particular this means that the formation of the “Kondo resonance”
(which contains the physics of coherent low energy quasi-particles) in the slightly
doped system at low temperatures does not lead to any dramatic change in the
perturbation order.

8.4 Scaling Considerations

Scaling/ Algorithm CT-AUX /Weak Hyb Seg Hyb General
diagonal orbitals Nβ3U3 Nβ3 eN(aβ2 + bβ3,a≫ b)

cluster, generalUi jkl N3β3U3 - eN(aβ2 + bβ3,a≫ b)
CT-algorithm scaling table. This table summarizes the scaling of the

continuous-time algorithms. At weak interactions, the weak coupling and CT-
AUX solvers that expand around the non-interacting limit are advantageous.
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These algorithms are however hampered by theU3 scaling at stronger interac-
tions. In the hybridization algorithm, the scaling withU is less obvious , as shown
in chapter above, but solutions close to the atomic limit around which the algo-
rithm expands, are easier to obtain. Where it can be used, thesegment algorithm
is always faster than the general hybridization algorithm,due to the smaller con-
figuration space that needs to be sampled. When compared to the weak coupling
algorithms, the general hybridization algorithm is advantageous if the number of
orbitals or cluster sites is not too large. For large clusters, where the hybridiza-
tion algorithm is hampered by the exponential scaling of theHilbert space, only
the weak coupling algorithms with their(NβU)3 - scaling are possible. The scal-
ing of the Hirsch-Fye algorithm is the same as the one of the weak coupling and
CT-AUX algorithms, albeit with larger prefactors [9].



Chapter 9

Local Order and the gapped phase
of the Hubbard model

E. Gull , P. Werner, M. Troyer, A. J. Millis,
EPL 84 No 3 (November 2008) 37009.

The following paper shows the application of the CT-AUX algorithm in its
cluster formulation and the hybridization matrix algorithm to a small plaquette of
four sites. It has been produced in collaboration with Philipp Werner and Andrew
Millis and is published in Europhysics letters.

Understanding the “Mott” or correlation-driven metal insulator transition is
one of the fundamental questions in electronic condensed matter physics [133,
14]. Interest increased following P. W. Anderson’s proposal that the copper oxide
based high temperature superconductors are doped “Mott insulators” [16]. 1

Clear theoretical pictures exist in the limits of strong andweak coupling. In
strong coupling, insulating behavior results from the “jamming” effect [133] in
which the presence of one electron in a unit cell blocks a second electron from
entering; we term this the Mott mechanism. At weak coupling,insulating behav-
ior arises because long-ranged [135] or local [136, 137] order opens a gap; we
term this the Slater mechanism. (Anderson [138] has argued that in 2d the strong
coupling regime provides the appropriate description of the low energy behavior
for all interaction strengths, but this view is controversial and does not address
the question of interest here, namely the physical origin ofthe novel low energy
physics.) Many materials [14] including, perhaps, high temperature superconduc-
tors [139] seem to be in the intermediate coupling regime in which theoretical
understanding is incomplete.

The development of dynamical mean field theory, first in its single-site form
[8] and subsequently in its cluster extensions [46, 48, 42, 49, 51] offers a mathe-
matically well-defined approach to study metal-insulator transitions. The method,

1 It is sometimes useful to distinguish “Mott” materials in which the important interaction scale
is set directly by an interorbital Coulomb repulsion from “charge transfer” materials in which the
interaction scale is set indirectly via the energy requiredto promote a particle to another set of
orbitals [134]. For present purposes the difference is not important; the term Mott insulator will
be used for both cases.

http://dx.doi.org/10.1209/0295-5075/84/37009
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while approximate, is non-perturbative and provides access to the intermediate
coupling regime. In this paper we exploit new algorithmic developments [35, 10]
to obtain detailed solutions to the dynamical mean field equations for the one or-
bital Hubbard model in two spatial dimensions. This, the paradigmatic model for
the correlation-driven metal-insulator transition, is defined by the Hamiltonian

H =∑
p,α
εpc†

p,αcp,α +U∑
i

ni,↑ni,↓ (9.1)

with local repulsionU > 0. We use the electron dispersionεp = −2t(cospx +
cospy). The dynamical mean field approximation to this model has been previ-
ously considered [8, 42, 140, 141, 142, 143, 144]; we commenton the differences
to our findings below and in the conclusions.

The dynamical mean field method approximates the electron self energy
Σ(p, ω) by

Σ(p, ω) = ∑
a=1...N

φa(p)Σa(ω). (9.2)

TheN functionsΣa(ω) are the self energies of anN-site quantum impurity model
whose form is specified by a self-consistency condition. Different implementa-
tions of dynamical mean field theory correspond to different choices of basis func-
tionsφa and different self-consistency conditions [49, 50, 51]. In this paper we
will use primarily the “DCA” ansatz [46] although we have also used the CDMFT
method [48, 144] to verify our results and make comparison toother work. In the
DCA method one tiles the Brillouin zone intoN regions, and choosesφa(p) = 1
if p is contained in regiona andφa(p) = 0 otherwise. The “cluster momentum”
sectorsa correspond roughly to averages of the corresponding lattice quantities
over the momentum regions in whichφa(p) ≠ 0.

We present results forN = 1 (single-site DMFT) andN = 4. Because we are
interested in the effects of short ranged order, the restriction to small clusters is not
a crucial limitation: while the precise parameter values atwhich the transition to
insulating behavior occurs depend on cluster size, the basic relation we establish
between correlations and the insulating behavior does not,and the 4-site cluster is
computationally manageable so a wide range of information can be extracted.

In the N = 4 case the impurity model is a 4-site cluster in which the cluster
electron creation operatorsd† may be labeled either by a site indexj = 1,2,3,4 or
by a cluster momentum variableA = S,Px,Py,D with S representing an average
over the range(−π/2 < px < π/2;−π/2 < py < π/2), Px over the range(π/2 < px <
3π/2;−π/2 < py < π/2), andD over the range(π/2 < px < 3π/2;π/2 < py < 3π/2).
The cluster states are coupled to a bath of noninteracting electrons labeled by the
same quantum numbers. The Hamiltonian is

HQI = Hcl + ∑
A,σ,α

(Vα
Ad†

A,σcαA,σ +H.c.) +Hbath, (9.3)

Hcl = ∑
A,σ

εA (d†
A,σdA,σ +H.c.) +U∑

j

n j,↑n j↓. (9.4)

We solve the impurity models on the imaginary frequency axisusing two new
continuous-time methods [35, 10]. Because we are studying atwo dimensional
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Figure 9.1: On-site Green function at timeτ = β/2 computed using single-site and 4-site
DCA methods. All computations are performed in the paramagnetic phase at half filling.

model at temperatureT > 0 we restrict attention to phases without long ranged
order. TheεA, Vα

A andHbath are determined by a self consistency condition [8, 51].

The N = 1 case has been extensively studied [8]. AtN = 1, intersite cor-
relations are entirely neglected; the only physics is the strong correlation “local
blocking” effect envisaged by Mott. If attention is restricted to the paramagnetic
phase, to temperatureT = 0, and densityn = 1 per site one finds that the ground
state is metallic forU < Uc2 ≈ 12t [139] and insulating forU > Uc2. The insulating
phase is paramagnetic and characterized by an entropy of ln 2per site correspond-
ing to the spin degeneracy of the localized electrons. ForUc1 ≈ 9t < U < Uc2 the
insulating phase, although not the ground state, is metastable and the extensive
entropy of the insulating state leads to a transition to the insulating state as the
temperature is raised [8].

The antiferromagnetic solution of the single-site DMFT equations has also
been extensively studied. The model considered here has a nested Fermi surface
at carrier concentrationn = 1, so atn = 1 the ground state is an insulating antifer-
romagnet at all interaction strengthsU. The Néel temperature peaks atU ≈ 0.8Uc2

[139]. This correlation strength also marks a change in the character of the transi-
tion: for U ≲ 0.8Uc2 the expectation value of the interaction termUn↑n↓ decreases
as the magnetic order increases. The transition is thus potential energy driven and
is identified with Slater physics. However forU ≳ 0.8Uc2 the expectation value
of the interaction term increases as the system enters the antiferromagnetic phase;
the transition in this case is thus kinetic energy driven andis identified with Mott
physics.

We now present results for theN = 4 model in comparison to those obtained
in the single-site approximation. Figure 9.1 presents the imaginary time Green
functionG(R, τ) at the particular valuesR = 0 andτ = 1/2T ≡ β/2, computed at
densityn = 1 per site for different temperaturesT and interactionsU using 1 and
4 site DCA.G(0, β/2) is directly measured in our simulations and is related to the
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on-site electron spectral functionA0(ω) by

G(0,1/(2T)) = ∫ dω
π

A0(ω)
2 coshω

2T

≈ TA0(ω = 0). (9.5)

The last approximate equality applies for sufficiently smallT and shows that the
behavior ofG(0, β/2) provides information on the existence of a gap in the sys-
tem. ForN = 1 andU ≲ 10t G(0, β/2) increases asT decreases, indicating the
development of a coherent Fermi liquid state. In the 4-site DCA results a transi-
tion is evident asU is increased throughU∗ ≈ 4.2t: for U < U∗ A(0) increases
slowly asT is decreased, as in the single site model, but forU > U∗, A(0) de-
creases, signaling the opening of a gap. The very rapid change acrossU = U∗ is
consistent with a first order transition, as found in the careful CDMFT analysis of
Parket al. [144]. The criticalU is seen to be essentially independent of temper-
ature indicating that the entropies of the metallic and non-metallic states are very
similar. The end-point of the first order transition is at about T = 0.25t which is
approximately the Néel temperature of the single-site method, atU = 4t [110].

Figure 9.2 shows as the solid line the local electron spectral function com-
puted by maximum entropy analytical continuation of our QMCdata forU = 6t
andn = 1. Analytical continuation is well known to be an ill-posed problem, with
very small differences in imaginary time data leading in some cases to very large
differences in the inferred real axis quantities. A measure of the uncertainties in
the present calculation comes from the difference between the spectra in the pos-
itive energy and negative energy regions, which should be equal by particle-hole
symmetry. We further note that the gap is consistent with thebehavior shown
in Fig. 9.1. The local spectral function exhibits a characteristic two-peak struc-
ture found also in CDMFT calculations [144]. The dotted linegives the spectral
function for thePx-sector, corresponding to an average of the physical spectral
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Figure 9.3: Temperature dependence of double occupancy⟨n↑n↓⟩ computed using the
1-site and 4-site DCA methods as a function of temperature for the half filled Hubbard
model atU = 5t (left panel) andU = 10t (right panel). The 1-site calculations are done
for both paramagnetic and antiferromagnetic phases whereas the 4-site calculation is done
for the paramagnetic phase only.

function over the region(π/2 < px < 3π/2), (−π/2 < py < π/2); this is seen to be
the origin of the gap-edge structure.

We present in Fig. 9.3 the temperature dependence of the double-occupancy
D = ⟨n↑n↓⟩ computed using the 1-site and 4-site DCA for a relatively weak and a
relatively strong correlation strength. In the single-site approximation antiferro-
magnetic correlations are absent in the paramagnetic phaseand become manifest
below the Néel temperature; the difference between paramagnetic and antiferro-
magnetic phases therefore gives insight into the physics associated with the an-
tiferromagnetic correlations. For the weaker interactionstrengthU = 5t, the de-
velopment of Fermi liquid coherence asT is decreased in the paramagnetic phase
means that the wave function adjusts to optimize the kineticenergy, thereby push-
ing the interaction term farther from its extremum and increasingD. At this U
the magnetic transition is signaled by a rapiddecreasein D , indicating that the
opening of the gap enables a reduction of interaction energy, as expected if Slater
physics dominates. For the largerU = 10t in the single site approximation we see
that D is temperature-independent in the paramagnetic phase because for thisU
and temperature the model is in the Mott insulating state (a first order transition
to a metallic state would occur at a lowerT). The antiferromagnetic transition is
signaled by an increase inD because in the Mott state the transition to antiferro-
magnetism is kinetic energy driven.

Turning now to the 4-site calculation we see atU = 5t a decreasein D sets
in below aboutT∗ = 0.23t ≈ 0.8T1-site

N . T∗ is also the temperature below which
G(0, β/2) begins to drop sharply. This indicates that the opening of the gap is re-
lated to a reduction of interaction energy, implying a “Slater” rather than a “Mott”
origin for the phenomenon. ForU = 10t we see a gradual increase inD asT is
decreased, reflecting the Mott physics effect of kinetic energy gain with increasing
local antiferromagnetic correlations.

To further understand the physics of the transition we examine which eigen-
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states∣ncl⟩ of Hcl are represented with high probability in the actual state ofthe
system. We definePncl = ⟨ncl∣ρ̂cl∣ncl⟩ with ρ̂cl the cluster reduced density ma-
trix obtained by tracing the partition function over the bath states. One par-
ticularly interesting state is the “plaquette singlet” state which we denote as∣(12)(34) + (41)(23)⟩ with (ab) representing a singlet bond between sitesa and
b. The left panel of Fig. 9.4 shows the probability that this state is represented in
the thermal ensemble corresponding to mean densityn = 1 for different interac-
tion strengthsU; the transition atU ≈ 4.2t manifests itself as a dramatic change
(within our accuracy, the jump associated with a first order transition). We have
performed CDMFT calculations to verify that that the same state and same physics
control the transition studied in Refs. [142, 144].

The plaquette singlet state has strong intersite correlations of bothd-wave
and antiferromagnetic nature. It is natural to expect thesecorrelations to open
a gap in the electronic spectrum. To investigate this possibility we computed
the DCA momentum averages of the lattice Green function using densityn = 1,
and antiferromagnetic and singlet pairing gaps of magnitude ∆ = 1.3t to obtain
mean field estimates of the impurity model spectral functions. The dotted and
dash-dotted lines in Fig. 9.2 show the antiferromagnetic results. (Use of ad-wave
pairing gap would yield very similar results, except that instead of a clean gap at
0 one finds a “soft” gap with a linearly vanishing density of states). The evident
similarity to the calculations reinforces the argument that it is the local correlations
which are responsible for the gapped behavior.

We finally consider the effect of doping. The model we study is particle-hole
symmetric. For definiteness we present results for electrondoping. In a Fermi
liquid, the imaginary part of the real-axis self energy is ImΣ(p, ω → 0) ∝ ω2.
The spectral representationΣ(iωn) = ∫ dx

π
ImΣ(p, x)/(iωn − x) then implies that

at smallωn, ImΣ(p, iωn) ∝ ωn. We find that in theS = (0,0) andD = (π, π)
momentum sectors, this relation is obeyed at all dopings. The behavior in the
P = (0, π), (π,0)-sector is different, as is shown in Fig. 9.5. The dashed line shows
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the self energy for the half-filled model. Theω−1
n divergence, arising from the

insulating gap, is evident. For large enough doping (x ≳ 0.15) the expected Fermi
liquid behavior is observed (and indeed forx > 0.2 the self energy is essentially
the same in all sectors); however for smaller dopings, up tox ≈ 0.15, ImΣP does
not extrapolate to 0 asωn → 0, indicating a non-Fermi-liquid behavior in this
momentum sector.

To explore further the non-Fermi-liquid behavior we present in Fig. 9.6 the
density of states in theP = (0, π), (π,0)-sector, obtained by analytical continua-
tion of our quantum Monte Carlo data. Comparison to Fig. 9.2 shows that as the
chemical potential is increased the Fermi level moves into the upper of the two
bands. In addition, for the lower dopings a small ‘pseudogap’ (suppression of
density of states) appears near the Fermi level while forx = 0.15 the value of the
spectral function at the Fermi level approaches that of the noninteracting model,
indicating the restoration of Fermi liquid behavior. We have verified that these
features are robust, and in particular that the suppressionof the density of states
near the Fermi level is required to obtain the measured values of G(τ ∼ β/2).
Comparison of data obtained for inverse temperatureβt = 30 andβt = 100 (not
shown) with the data obtained forβt = 60 shown in Fig. 9.6 is consistent with the
pseudogap being the asymptotic low-T behavior, not an intermediateT artifact.

Examination of theD = (π, π)-sector density of states and self energy shows
that forx = 0.04 andx = 0.08 there is no Fermi surface crossing in theD = (π, π)-
sector, so within the 4-site DCA approximation there is no Fermi surface at all. At
these chemical potentials most doping is provided by incoherent, pseudogapped
quasiparticles in theP = (0, π), (π,0)-sector. Asx is increased beyond∼ 0.1 a
Fermi crossing appears, first in theD sector and then forx/ ≳ 0.15 in theP sector,
signaling the restoration of Fermi liquid behavior. The results may be interpreted
as “Fermi arcs” or as hole pockets bounded by the edges of theD = (π, π)-sector:
the momentum resolution of the 4-site DCA is insufficient to distinguish the two.
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As the doping is further increased the “Fermi arc” regions rapidly grow and the
pseudogap fills in, leading to a restoration of a conventional Fermi surface for
x > 0.15.

The lower panel of Fig. 9.4 shows that this non-Fermi-liquidbehavior can be
related to the prominence of the plaquette singlet and the plaquette triplet states.
The contribution of the plaquette triplet state peaks atx ≈ 0.15, while the contribu-
tion of the 6-electron singlet state remains small, indicating a prominent role for
antiferromagnetic (rather thand-wave singlet) correlations at this doping. How-
ever, the increasing prominence of the 6-electron singlet state as doping is in-
creased strongly suggests that the larger doping Fermi-liquid-like state will be
susceptible to a pairing instability. Similar results werefound in CDMFT calcula-
tions by Kyung and collaborators [137], who attributed themto antiferromagnetic
correlations, by Zhang and Imada [142] and by Haule and Kotliar [124].

In summary, we have shown that the insulating behavior (at doping x = 0) and
non-Fermi liquid behavior (at doping 0< x < 0.15) found at relatively smallU in
cluster dynamical mean field calculations [140, 141, 142, 144, 137, 145] may be
understood as a consequence of a potential-energy-driven transition to a state with
definite, strong spatial correlations, mainly of the plaquette singlet type. Doping
this state leads to a low energy pseudogap for momenta in theP = (0, π), (π,0)
sector. Superconducting correlations (marked by the prominence of the 6 electron
states) do not become important until beyond the critical concentration at which
Fermi liquid behavior is restored. Our results are consistent with the finding of
Parket. al. [144] that theU-driven transition is first order (although unlike those
authors we have not performed a detailed study of the coexistence region). We in-
terpret the transition as being driven by Slater (spatial ordering) physics, whereas
Parket. al. interpret their results as arising from a strong coupling, Mott phe-
nomenon. Moukouri and Jarrel [145] argue that Slater physics is not important
because in a 2d model with Heisenberg symmetry long range order does not set in
until T = 0; We believe, however, that the results for double occupancy shown in
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Fig. 9.3 and the dominance of particular states in the sectorstatistics plot Fig. 9.4
provide strong evidence that the physics is indeed dominated by local order, con-
sistent with Slater-type physics. The importance of spatial correlations for the
spectral function and non-Fermi-liquid behavior was previously stressed by Jar-
rell and co-workers [141] and Zhang and Imada [142]. We also suggest that the
short ranged order is responsible for the features noted by Chakraborty and co-
workers in the optical conductivity and spectral function [143]. Calculations in
progress will extend the results presented here to larger clusters.



Chapter 10

LDA + DMFT – Beyond Model
Hamiltonians

Up to this chapter, we have mostly considered model Hamiltonians like the Hub-
bard model in Eqn. (1.3). However, the algorithms describedin the previous
chapters are in principle able to handle the more general many-body system (1.2)
within the approximation of a momentum-independent self energy. The restric-
tion to one single site with only three orbitals but considering the full interaction
matrix that will be treated in chapter 11 will show the computational limitation
of this Ansatz: While the impurity solver is able to handle three- and five-orbital
models (with 64 or 1024 states, respectively), the treatment of a full f-orbital with
214 states at arbitrary filling factors without further simplifications is far beyond
the scope of today’s algorithms and computers, and further approximations, like
the exclusion of highly excited states and the truncation ofthe basis, have to be
made.

The segment solver of chapter 6, on the other hand, is able to treat the physics
of all fourteen correlated orbitals if the interactions areapproximated by density-
density interactions. It is this approximation that makes it possible to treat these
systems at all, although it is presently unclear how much thephysics is of the
materials is changed by the neglect of exchange and pair-correlation terms.

In this chapter, while limiting ourselves to density-density interactions, we
show how the band structure of real materials can be taken into account and the
DMFT combined with the local density approximation. The technique, the so-
called LDA+DMFT method [146, 147], allows us to treat one part of the system –
namely the weakly interacting part – within the local density approximation, and
another part – liked- or f -shells that are expected to exhibit correlation effects –
within the DMFT. A detailed review on the subject has been published by Kotliar
et al. [39].

The favorable scaling of the new impurity solvers with temperature [9] allows
us to access more orbitals, lower temperatures and strongerinteractions than be-
fore. Our intention was to write a framework for LDA+DMFT-calculations that
is as general as possible and able to solve any system with density-density inter-
actions within the DMFT. We chose the metal Cerium at high temperatures as an
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application, for which the physics is well understood and various LDA+U [148]
and LDA+DMFT calculations – also combined with the Hirsch Fye QMC algo-
rithm – have been performed previously [149, 150, 151]. Thiscalculation – a
collaboration with V. Anisimov, A. Lukoyanov, A. Shorikov,S. Streltsov, and P.
Werner, is still work in progress.

10.1 LDA – Success and Limitation

The density functional theory [11, 12] is in principle exact. However, in prac-
tice the unknown exchange correlation functional has to be approximated by a
functional that is computationally tractable, like the local density approximation
(LDA) or improvements to it. The local spin density approximation (LSDA) and
the generalized gradient approximation GGA [152] are such improved methods.
DFT-LDA is relatively accurate for ground state propertiesof many materials.
While there are known failures in semiconductors (the so-called “band gap” prob-
lem), most weakly correlated materials with covalent, ionic or metallic bonds
reach an energy accuracy of around 0.2 eV and around 2-3 percent error in the
geometry. Unlike for the full many body problem, the treatment of several hun-
dred atoms is possible. State of the art open source programslike abinit or the
Stuttgart TB-LMTO are available free of charge on the Internet [153, 154].

One improvement on the LDA tries to reimplement correlations by taking into
account the full momentum dependence of the self energy in a perturbative ex-
pansion up to first order. This perturbative method is known as GW [155] (forG,
the Green’s function, andW, a function of the dielectric constants – the two parts
that constitute the self energy). GW is able to solve the bandgap problem, and
can obtain excited states in systems where correlations areweak.

It is the strongly correlated systems where both the naive LDA and its pertur-
bative improvement like the GW method fail. The idea to combine LDA with
many body theory methods like the DMFT-approximation of a local but non-
perturbative self energy is therefore obvious. Anisimovet al. [156] first proposed
a scheme that combines the local density approximation witha static repulsionU,
the so-called LDA+U method. This method imposes a static repulsion on some
orbitals that are considered to be correlated and thereby splits them into lower and
upper “Hubbard” bands. It his therefore able to capture orbital order. However,
this method suffers from serious drawbacks and for example predicts magnetic
ordering in cases where it is not observed, e.g. in Pu [157, 158]. Advances with
multiple orbital impurity solvers later made it possible toimprove on this approx-
imation and take the full quantum dynamics on a local site into account – the
LDA+DMFT Ansatz.

10.2 LDA+DMFT – the Method

We start the LDA+DMFT simulation by solving the electronic structure problem
(1.2) in LDA and assigning the correlated electron density that we obtain to or-
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bitals. Some of these orbitals are then considered “correlated”, while others are
left as as uncorrelated states. Depending on the physics of the problem, the “cor-
related” states consist of the more localized shells that are partially filled: usually
the f -shell of rare earth materials or thed-states in oxides. This separation of
course needs a basis set defining the “orbitals” of the correlated material, and
is neither unique nor independent of the underlying implementation of the LDA
calculation. A many-body Hamiltonian is then constructed as

H = HKS +HI −HDC, (10.1)

where HKS defines the Kohn-Sham Hamiltonian,HI describes the interaction
Hamiltonian of the correlated orbitals, andHDC identifies double counting terms.
The double counting term, explained in section 10.4, subtracts the contribution
of the correlated orbitals that is already contained inHKS. The HamiltonianHI

contains in principle all the interactions between theNc correlated orbitals,

Hfull
I = 1

2

Nc

∑
i jklσσ′

Ui jkl c
†
iσc†

kσ′clσ′cjσ. (10.2)

Due to the difficulty of solving the problem for the full interaction matrixof all
correlated states, we instead treat

HI = 1
2
∑

i jσσ′
Uσσ′

i j niσn jσ′ . (10.3)

This approximation is best justified starting from the impurity Hamiltonian (11.1):

Hloc = −∑
α,σ

µnα,σ +∑
α

Unα,↑nα,↓ (10.4)

+ ∑
α>β,σ

U′nα,σnβ,−σ + (U′ − J)nα,σnβ,σ

−∑
α≠β

J(ψ†
α,↓ψ

†
β,↑ψβ,↓ψα,↑ + ψ†

β,↑ψ
†
β,↓ψα,↑ψα,↓ + h.c.).

This Hamiltonian, with the parametersU, U′ andJ whereU′ = U − 2J, has been
constructed such that it is rotationally invariant both in orbital and spin space. If
we assume that the Hund’s couplingJ is small compared to the on-site repulsion
U, we can either set it to zero entirely or just set the exchangeand pair-hopping
terms on the third line of (10.4) to zero. For the first choice we obtainU = U′

and equal repulsion between all orbitals, in the second casetwo electrons on the
same orbital repel each other with interactionU, in different orbitals with different
spin withU − 2J, and in different orbitals with the same spins asU − 3J. How-
ever, the breaking of the spin rotation symmetry has seriousconsequences for the
physics (see chapter 11, or ref. [159, 160] for previous attempts to simulate such
a model) and asJ is not orders of magnitude smaller thanU in usual materials,
the approximation is questionable.
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It is the action for this interaction Hamiltonian that is then solved in the DMFT.
The self energy for the total system,Σ is assumed to be of a matrix form,

Σ = (0 0
0 Σc

) , (10.5)

whereΣc is the self energy of the correlated orbitals computed fromHI . The self
energy for uncorrelated orbitals or mixing correlated and uncorrelated orbitals is
assumed to be zero.

We obtain a self energy and – using the Dyson equation – a correlated electron
density from the solution of the impurity model. This allowsus to recompute the
total electron density – which we should feed back into the DFT step to obtain self
consistency of the DFT functional [161, 162]. This full selfconsistency over the
charge density is usually not taken into account, even though schemes for it have
been developed and implemented [163, 164, 165].

10.3 Self Consistency Loop

We employ the segment hybridization solver of chapter 6 to solve the impurity
problem, and we assume that the hybridization is diagonal for each orbital. The
major additional complication is the implementation of theself consistency and a
robust and physically reasonable double counting scheme that shifts the chemical
potential of the correlated bands with respect to the remainder of the bands.

The self consistency for LDA+DMFT and the hybridization solver is slightly
different from the one explained in section 2.2.2. We first run theimpurity solver
with some input hybridization functionF (usually non-interacting) for the impu-
rity model. As a first output we obtain an impurity Green’s function in imaginary
time. The self consistency scheme works as follows: Using this Green’s function
and the input hybridization of the last iteration we run the self consistency pro-
gram. In a first step, both the impurityF andGimp are Fourier transformed to the
frequency domain. Then we compute the impurity self energy

Σimp(iωn) = −Fimp(−iωn) + iωn + µ −G−1
imp(iωn) (10.6)

(with µ the impurity model chemical potential, see Eqn. (10.16) ). We claim that
the impurity self energy and the lattice self energy are the same (this is the DMFT
approximation), and form the lattice Green’s functionGlat from the impurity self
energy. Here is the point where we can also add a double counting correction term
hDC as described in section 10.4 to the HamiltonianHKS:

Glat(iωn) = ∑
k∈BZ

(iωn + µ −HKS − Σ(iωn) −HDC)−1 (10.7)

And thereby obtain a new hybridization function F:

F(−iωn) = iωn + µ − Σ −G−1
lat . (10.8)

After Fourier transforming this to the imaginary time domain we obtain the new
hybridization function for the next iteration of the solver, which then produces a
newGimp.
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10.4 Double Counting Corrections

The double counting correctionHDC that is subtracted from the LDA Hamiltonian
HKS needs to be introduced because some interactions are already included within
the LDA. Unfortunately this term is not clearly defined, since the electron density
within the LDA is given by the total density of all electrons,not by the density of
the correlated orbitals.

Various schemes for the double counting correctionHDC exist, all having some
physical motivation. In practice, this double counting problem and the correction
for it are uncontrolled and a major source of uncertainties.Systematic approaches
to avoiding the double counting problem are still being developed.

We have implemented three different schemes that are currently in use, and
employed the “Hartree term” one for all our calculations.

10.4.1 Double Counting Correction in the Hamiltonian

This is the most simple version: We compute the Hamiltonian in LDA using the
exchange correlation functional for the non-interacting electron gas. Then we
guess a shift of the correlated bands, and we implement this shift HDC directly into
the Hamiltonian. In that way, the shift of the correlated bands is independent of
many-body properties and the solver and self-consistency are simpler. The guess
of the double counting is adjusted (after the simulation hasconverged) such that
the result either agrees with experiments or is consistent with one of the methods
described below.

If the double counting shift is dependent on many body properties like the
number of electrons in the correlated bands (as it should be), we need to take it
into account during the self consistency.

10.4.2 Hartree Term

One possible ansatz by Lichtensteinet al. is detailed in Ref. [166]. Another
ansatz is the subtraction of the Coulomb term [146, 41]. We compute the average
electronic density in the correlated bands, and then subtract from all the orbitals

ECoulomb= Uav

2
nc(nc − 1) (10.9)

whereUav is the averaged screened on-site Coulomb repulsion andnc the average
electron density in the correlated bands. If we want to include new one-electron
eigenvaluesǫc for the correlated bands where the contribution of the interacting
orbitals is removed, we need to compute

ǫc = d
dnc
(ELDA − ECoulomb). (10.10)

These new eigenvalues cause the shift of the new Hamiltonianof HDC, given by

HDC = U (nc − 1
2
) . (10.11)
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As the DMFT self consistency is changing the occupancy of thecorrelated orbitals
during convergence, the double counting term needs to be adjusted, as well as
the chemical potential. The simultaneous convergence of chemical potential, self
energy, and double counting term slows the convergence to usually around 10 -
20 iterations. In our simulations we always usedHDC = U (nc − 1

2) for our double
counting term.

10.5 Hybridization

One of the major technical difficulties is the high frequency behavior of the self
energy, which enters the high frequency or short time behavior of the Green’s
and hybridization functions. Knowing the lattice Green’s function and the self
energy (which is chosen to be the same for the impurity model and the lattice), we
need to compute a bare Green’s function or a hybridization function according to
Eqn. (2.33):

G−1
0 (iωn) = Σ(iωn) +G−1

lat(iωn). (10.12)

In order to define a sensible hybridization function

F(iωn) = iωn + µ − G−1
0 (iωn) (10.13)

= iωn + µ − Σ(iωn) −G−1
lat(iωn)

we need to make sure that the leading terms ofF at high frequencies are pro-
portional to 1

iωn
. Indeed, we define our impurity model in such a way that the

hybridization function has this leading behavior. Therefore we must adjust our
impurity model chemical potentialµ that is used in the solver such that we sub-
tract constant terms of the self energy. This is not apparentin the formalism for
the weak coupling schemes like HF, CT-AUX or Rubtsov, where the impurity
chemical potential does not appear in the impurity solver, but is hidden in theG0.

We know the leading behavior of the inverse of the Green’s function:

G−1 = iωn + µ − ⟨ǫ⟩ − Σ(iωn) −HDC. (10.14)

Thus we can compute the high frequency behavior of the hybridization:

F(iωn) =n→−∞ µ − Σ(i∞) − µ + ⟨ǫ⟩ + Σ(i∞) +HDC (10.15)

The new solver chemical potentialµ is therefore given by

µ = µ − ⟨ǫ⟩ −HDC. (10.16)

When computing the self energy using the Green’s function and the hybridization
function after an iteration has been completed, the sameµ needs to be subtracted
again. Appendix B describes this procedure and the evaluation of higher order
terms of the self energy in detail.
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10.6 Approximations

We have performed several approximations on various levelsof this calculation.
We will recapitulate them here and justify them as far as possible.

• The DMFT: By using the DMFT to solve the original lattice model we have
assumed that the self energy is local, or momentum-independent. As shown
in the early days of DMFT, the approximation becomes exact inthe limit
of infinite coordination number. The usual justification forusing the ap-
proximation is that the coordination number of a typical three-dimensional
system is large and therefore the approximation not as bad asin the case
of a two-dimensional lattice. A more rigorous argument could be provided
by the comparison to cluster calculations that reintroducesome momentum
dependence. These simulations are – at least at the moment – not within
reach of our computer systems.

• The best choice of correlated orbitals: We decided to selecta number of or-
bitals and treat them as “correlated” orbitals, as opposed to the un-correlated
other orbitals. This arbitrariness can be resolved by looking at the band
structure within the local density approximation: thes and p (spd) bands
are much broader than thed ( f ) bands that are chosen to be correlated. The
ultimate test, of course, would involve treating them too ina method that
allows for correlation.

• The choice of double counting terms: The choice of the correction for the
wrongly assumed weak correlation within the LDA is not at allclear. While
some schemes have been proposed, they are neither unique northoroughly
derivable. The effect of these terms is a major uncertainty.

• The choice of interactions: We have chosen to limit ourselves to pure
density-density interactions. This can include Coulomb and Ising-like
Hund’s coupling terms, but we do not conserve the full rotational symmetry
in spin space. It is clear that this simplification will change the physics, and
the approximation is uncontrolled. Studies of systems withfewer orbitals
show that the effect is not negligible. For Cerium - a system with no more
than one electron in its conduction band, we can do this calculation with the
full interaction matrix, using the matrix code of chapter 7.Simulations of
this system are in preparation.

• Diagonal hybridization function: The choice of a diagonal hybridization
function (or the neglect of off-diagonal terms of the self energy) is a purely
technical one, and for the temperatures we considered up to now it would in
principle be possible to treat the full hybridization matrix. We can justify the
current approximation by looking at the off-diagonal entries of the Green’s
function or the self energy and noticing that they are small,but the self
consistency condition might enhance them. Future work willshow how
well this approximation works.
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10.7 Sources of Errors

Apart from the approximations performed, various other sources of errors exist
that are sometimes hard to control. We try to list them here and classify their
importance.

• Monte Carlo statistical errors: These are the statistical errors of the impu-
rity solvers. They are very well under control and can be checked by error
estimates and extension of the runtime of the code. These errors are quali-
tatively very different from the errors of other impurity solvers in common
use: whileNCA, IPT, Hubbard− I and similar solvers use additional ap-
proximations for the solution of the impurity problem, the only source of
errors from the solution of the impurity problem are statistical Monte Carlo
errors.

• Numerical discretization errors: These stem from the fact that even within
the continuous-time solvers, the imaginary time bare Green’s function has
to be discretized and the measured Green’s function – if measured in imag-
inary time – binned. The magnitude of these errors is howevernegligible,
and Fourier transform errors are well under control with thetechniques de-
scribed in appendix B.

• Analytical continuation: For comparison with real frequency algorithms or
experiments, imaginary time data has to be “analytically continued” [52,
53, 54] to the real frequency axis. This process involves theinversion of
an ill-conditioned matrix and is not at all stable, as statistical errors of the
Green’s function in imaginary time get amplified exponentially. Errors from
this process are hard to control and require careful analysis of covariance
information. The real frequency continuation data of MonteCarlo methods
should therefore be viewed as a guide to the eye rather than solid numerics,
and conclusions should be drawn directly from the imaginarytime data.

10.8 Cerium Model and Hamiltonian

To test our impurity solver and our LDA+DMFT framework, we applied it to one
of the standard problems: Cerium. Cerium has an atomic configuration of

[Xe]4 f 15d16s2. (10.17)

In particular the 5s,5p and 4d bands are completely filled. In our calculations
we only consider the 4f ,5d,6s and 6p - bands, of which we have 14,10,2, and 6
each. Correlated bands that have to be treated within DMFT are the 14 4f - bands,
the partially emptys, p, andd - bands are uncorrelated and used only within the
self consistency. The remainder are completely filled core states that do not enter
the self consistency. Therefore we need to compute the self consistency for a
matrix of 32× 32 orbitals. The interaction matrixUi j has interactions between
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Figure 10.1: Spectrum of Ce in theα andγ phases, atβ = 15 andβ = 5 (units are eV/
inverse eV). Visible is a small quasiparticle peak forγ-Ce as opposed to a large one forα-
Ce at the same temperature, and crystal field splitting effects that develop at temperatures
belowβ = 5.

all interacting bands and spins, and we choose the parameterJ = 0, and therefore
Ui j = (1− δi j)U. The Hubbard repulsionU is chosen to be 6 electron volts.

10.8.1 The Physics of Cerium

Cerium, element number 58, is a typical example of a materialthat exhibits a
volume collapse transition: at the phase transition, as a function of pressure and
temperature, the material changes its volume by around 15 percent (see phase di-
agram Fig. 10.2). Various other materials, likePr or Gd, show similar effects
[148, 39]. This transition is believed to be almost isostructural, i.e. both struc-
tures are face centered cubic, with perhaps little changes [168, 169]. The two
phases, however, exhibit completely different magnetic properties: theα - phase
is nonmagnetic, while theγ-phase is paramagnetic with well-defined spins.

Originally, two scenarios for theα − γ - transition have been proposed [39]:
Johanssonet al. [170] proposed a Mott transition scenario in which the transition
is connected to a localization/delocalization transition of thef -electrons. While
the electrons in theα - phase are delocalized, they are localized in theγ-phase.
The authors investigated this theory in early LDA-calculations [171].

A second scenario, by Allen and Martin [172] and Lavagna [173], is known as
the so-called “Kondo collapse” model. In this model, it is the degree of hybridiza-
tion of thespd to the f - electrons that changes when going from theα to theγ
- phase, and therefore the Kondo scale. As opposed to Johansson’s theory, these
spd- electrons are crucially involved in the transition.

Optical properties ofCe have also been investigated by Hauleet al. [174],
where strong evidence in favor of the Kondo collapse model isshown – also sup-
ported by new, highly accurate experiments by van der Ebet al. [175].

To distinguish the two scenarios, it is important that a model Hamiltonian for
the calculation of realistic properties of Cerium includesthesespd - orbitals in
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Figure 10.2:Phase diagram of Cerium, according to [167] as reproduced in[39].

addition to thef bands. First calculations of this type have been performed in
references [151, 150, 149], with NCA and Hirsch Fye impuritysolvers. NCA, the
non-crossing approximation (see e.g. [176]), is computationally much cheaper
than the QMC techniques, but neglects some classes of diagrams (the so-called
“crossing” ones). The Hirsch Fye algorithm, as explained insection 2.6.4, is
plagued by extrapolation errors. Our simulations are therefore the first ones that
solve the impurity problem at low temperatures without systematic errors.

10.8.2 Cerium Results

Our results (see Fig. 10.1) show the typical three-peak structure for theα-cerium,
consisting of lower and upper Hubbard band as well as a Kondo peak that in-
creases when the temperature is lowered. The results for theγ -phase show a
much smaller hump at the Fermi energy, but a good indication of the lower and
upper Hubbard bands.

Also visible are crystal field splitting effects: the crystal field splitting, ac-
cording to our LDA calculations, is around 700K, and therefore visible at “low”,
but not at high temperature. The location of the upper and lower Hubbard bands
is approximately constant, and agrees with experiments. Further calculations at
lower temperatures are currently running.



Chapter 11

Spin freezing transition in a
3-orbital model

P. Werner,E. Gull , M. Troyer, A.J. Millis,
Phys. Rev. Lett. 101, 166405 (2008)

The following section shows a further application of the hybridization ma-
trix impurity solver. This paper was written in collaboration with Philipp Werner,
who ran the calculations, and Andrew Millis, and was published in Physical Re-
view Letters under the title “Spin freezing transition in a 3-orbital model: non-
Fermi-liquid self energy and possible implications for theoptical conductivity of
SrRuO3”. My contribution to this project was mainly the design and implementa-
tion of the matrix impurity solver for general interactions.

The ‘Mott’ metal-insulator transition plays a central rolein the modern con-
ception of strongly correlated materials [14, 177]. Much ofour understanding
of this transition comes from studies of the one-band Hubbard model. Here, the
transition is generically masked by antiferromagnetism, but if this is suppressed
(physically, by introducing lattice frustration or mathematically, by examining an
appropriately restricted class of theories such as the paramagnetic-phase single
site dynamical mean field approximation [8]) a transition from a paramagnetic
metal to a paramagnetic insulator is revealed. The properties of the paramagnetic
metal phase near the transition play a central role in our understanding of the
physics of correlated electron compounds.

While one band models are relevant to many materials including the high tem-
perature superconductors and some organic compounds, manysystems of interest
involve multiple correlated orbitals for which the physicsis richer and less fully
understood. Multiorbital models have been studied in Refs.[178, 179, 180, 181,
182, 183, 184]. New physics related to the appearance of magnetic moments has
been considered in the context of the orbitally selective Mott transition which may
occur if the orbital degeneracy is lifted [185, 186, 187, 188, 189], but for orbitally
degenerate models it seems accepted that the essential concepts of a paramagnetic
metal to paramagnetic insulator transition and a strongly correlated paramagnetic
metal phase can be carried over from studies of the one-band situation.

http://link.aps.org/abstract/PRL/v101/e166405
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In this paper we use the single-site dynamical mean field approximation to
demonstrate the existence of a quantum phase transition between a paramagnetic
Fermi liquid and an incoherent metallic phase characterized by frozen local mo-
ments. For densities per siten = 2,3 the Mott transition occurs within or at the
boundary of the frozen moment phase and as Costi and Liebsch have noted in
the context of an orbitally selective Mott system, the presence of frozen moments
may be expected to influence the Mott transition [189]. The new phase appears for
multiple orbitals, a different number of electrons than orbitals and a rotationally
invariant on-site exchangeU/3 > J > 0. While this situation is relevant to many
compounds, it has only recently become amenable to systematic study following
the development of flexible and efficient Monte Carlo methods [123, 35].

The transition into the frozen moment phase produces a non-Fermi liquid self
energy which varies as

√
ω, and the quantum critical regime of the phase tran-

sition is sufficiently large that the non-Fermi liquid behavior is observable over
a wide range of temperature, interaction strength, spin polarization and carrier
concentration. The non-Fermi-liquid self energy we find bears an intriguing re-
semblance to the self energy inferred from optical conductivity measurements
on SrRuO3 [190, 191, 192], although there is noa priori reason to believe that
SrRuO3 is close to the local moment transition we have uncovered.

We study a model inspired by titanate, vanadate and ruthenate transition
metal oxide compounds, in which the relevant electrons reside in t2g-symmetry
d-orbitals. In the commonly occurring pseudocubic structure the t2g levels are
three-fold degenerate, and the formal valence is such that the levels contain 1
electron (Ti compounds), 2 electrons (some V compounds) or 4electrons/ 2
holes (Ru compounds). The electronic Hamiltonian isH = Hband+ ∑i H

i
loc, with

Hband=∑α,p ε
α
pa

α†
p,σaαp,σ and the local Hamiltonian on each sitei given by

Hloc = −∑
α,σ

µnα,σ +∑
α

Unα,↑nα,↓ (11.1)

+ ∑
α>β,σ

U′nα,σnβ,−σ + (U′ − J)nα,σnβ,σ

−∑
α≠β

J(ψ†
α,↓ψ

†
β,↑ψβ,↓ψα,↑ + ψ†

β,↑ψ
†
β,↓ψα,↑ψα,↓ + h.c.).

Here,α = 1,2,3 is the orbital index,σ =↑, ↓ the spin index,µ is the chemical
potential,U (U′) the intra-orbital (inter-orbital) Coulomb interaction,and J the
coefficient of the Hund coupling. We adopt the conventional choiceof parameters,
U′ = U − 2J.

To study the model we use the single-site dynamical mean fieldapproxima-
tion [8] which ignores the momentum dependence of the self-energy and reduces
the original lattice problem to the self-consistent solution of a quantum impu-
rity model given by the HamiltonianHQI = Hloc + Hhyb + Hbath with Hhyb de-
scribing the exchange of electrons between impurity and bath. Our data were
computed for a semi-circular density of states with band-width 4t (so the model
is particle-hole symmetric about the densityn = 3), using the hybridization ex-
pansion QMC solver of Ref. [123, 35]. We investigate the electron self en-
ergy Σ(ω) and the imaginary-time impurity-model spin-spin and orbital-orbital
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correlators⟨O(τ)O(0)⟩ with O representing either the electron spin density
Sz = 1

3∑α
1
2(d†

α,↑dα,↑ − d†
α,↓dα,↓) or the orbital density ˆnα = ∑σ d†

α,σdα,σ. Atten-
tion is restricted to solutions which preserve spin and orbital rotational symmetry
at the level of the impurity model.

Figure 11.1 presents our calculated phase diagram in the space of densityn
and interaction strengthU for the ratioJ/U = 1/6. The Mott insulating phases of
the model are shown as heavy solid lines. The light line with circles or diamonds
is our new result: a phase boundary separating a smalln small U Fermi liquid
phase from a frozen moment phase at largern and largerU. Other values of
0 < J/U < 1/3 give similar results. ForJ = 0 the new phase does not exist while
for J > U/3 the termU′ − J = U − 3J becomes negative and the physics of the
model changes.

We may define the phase boundary using the impurity model spin-spin cor-
relation functionCS S(τ) = ⟨Sz(τ)Sz(0)⟩, shown in the upper panel of Fig. 11.2
for U/t = 8 and several values ofn. In a Fermi liquid at low temperatureT,
CS S(τ) ∼ (T/sin(πτT))2 for imaginary timesτ sufficiently far from eitherτ = 0
or τ = 1/T. Our results are consistent with this form in the Fermi liquid phase,
but in the non-Fermi-liquid phaseCS S is seen to approach a constant at long
times indicating the presence of frozen moments. We also plot in Fig. 11.2 the
corresponding orbital correlation function, which is seento decay rapidly with
time on both sides of the phase transition. For a more quantitative analysis we
studied the temperature dependence ofC1/2 ≡ CS S(τ = 1

2T ). In a Fermi liquid,
C1/2 ∼ T2 while in the frozen moment phaseC1/2 becomes temperature indepen-
dent at sufficiently low T. Within our numerical accuracy, we find that at the
transition point,C1/2 ∼ T. The lower panel of Fig. 11.2 shows how the ratio
C1/2(T = 0.02t)/C1/2(T = 0.01t) changes from the value 4 expected in the Fermi
liquid phase to the value 1 expected in the frozen moment phase.

The phase transition has consequences for the electron selfenergyΣ(ω). In a
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Figure 11.2:Left panel: imaginary time dependence of the spin-spin correlation function
⟨Sz(0)Sz(τ)⟩ (positive correlation function) and orbital correlation function⟨n0(0)n1(τ)⟩
(negative correlation function) forU = 8t and carrier concentrationsn indicated. Right
panel: variation with doping of the temperature dependenceof the spin-spin correlation
at τ = β/2. The error bars are large at smallern because the midpoint spin-spin correlator
is very small. The black line indicates then-value of the phase transition deduced from
the analysis of the self energy.

Fermi liquid at lowT the imaginary part of the real axis scattering rateΣ
′′(ω) ∼

max(ω2,T2) so the imaginary part of the Matsubara axis self energyΣ(iωn) ∼ iωn

at smallωn. Frozen moments may be expected to scatter electrons so thatthe real
axis self energy isΣ′′(ω) ∼ Γ, implying on the Matsubara axis ImΣ(iωn → 0) =
iΓsgn(ωn). At the critical point we expect a power law behaviorΣ′′(ω) ∼ ωα; if
α < 1 thenΣ(iωn → 0) ∼ (iωn)α. Figure 11.3 shows that the imaginary part of our
computed Matsubara-axis self energy is consistent with this behavior, vanishing
linearly in the Fermi liquid phase, exhibiting an interceptin the frozen moment
phase and an exponentα ≈ 1/2 at the critical densitync. The behavior of the
self energy in the region not too far from the transition is described by a quantum
critical crossover function. Our resolution is not sufficient to identify this function
precisely. We have fit the self energy to the form−ImΣ(ωn)/t = C + A(ωn/t)α,
recognizing that the varying value ofα represents the different regimes of the
crossover function. In Fig. 11.3 we plot the exponentα and interceptC extracted
from the fit as the transition line is crossed by varying interaction strength at fixed
densityn = 2. Plots of this sort enable a simpler and more accurate location of
the transition line than an analysis ofCS S(τ) and were used to compute the phase
boundary shown in Fig. 11.1.

Figure 11.3 indicates that an approximately square root behavior of the self
energy persists over a wide range of frequencies and carrierconcentrations near
the critical line. To further investigate the effect of frozen spins onΣwe have stud-
ied the magnetic field dependence of the self energy. As the spins are polarized by
the field, the intercept decreases and the apparent power lawchanges towards the
Fermi liquid exponent ofα = 1. Near the critical point (see Fig. 11.4)α changes
relatively slowly and an approximately square root behavior remains visible even
for relative magnetizations of the order of 50%.
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We speculate that the
√
ω self energy found here is related to the still-

mysterious optical conductivityσ(Ω) of SrRuO3 and CaRuO3 [190, 191, 192].
These materials are pseudocubic perovskites with two holesin the t2g d shell and
their behavior should be roughly modeled by our 3-orbital calculation at carrier
densityn = 2. In these materialsσ(Ω) varies approximately as 1/√Ω at higher
frequencies, but rolls over (in a way which depends on temperature and on mate-
rial) to an approximately constant behavior. In the momentum-independent self
energy approximation, vertex corrections may be neglectedand if the self energy
is small compared to the bare electron bandwidth the real part of the optical con-
ductivity may be written (f is the Fermi function)

σ(Ω) ≈ 1
Ω
∫ dω

π

f (ω +Ω) − f (ω)
Ω − Σ(ω +Ω) + Σ∗(ω) , (11.2)

so that a square-root self energy implies that the conductivity varies as 1/√Ω for
frequencies such thatΣ(Ω) > Ω. Our finding, that the phase boundary runs close
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to n = 2 for a range of interaction strengths suggests that an extreme degree of fine
tuning is not necessary to produce a square root self energy.It is important to note
that in SrRuO3 the square root behavior persists well into the ferromagetically
ordered phase at low temperature whereas in CaRuO3 the conductivity develops a
nonmonotonic structure at lowΩ and higherT.

In conclusion, we have shown that in a model with several electrons in a three-
fold degenerate level – relevant to transition metal oxideswith partly filledd-shells
– an apparent spin freezing transition occurs. The orbital degree of freedom is im-
portant to stabilize the metallic phase at relevant interaction strengths (the two
orbital model with two electrons andJ/U = 1/6 is insulating forU ≳ 3.7t [188]).
Trying to suppress theL = 1 orbital angular momentum states by applying a crys-
tal field rapidly leads to an insulator. While it is possible that the effects could
be due to a rapid decrease of the spin coherence scale to values below the range
accessible to us, the square root self energy andT-linear spin-spin correlation
function are strong evidence for an actualT = 0 transition.

The frozen moment phase results from a calculation in which spin rotation
symmetry was enforced and may thus be preempted by a state with broken spin
rotation symmetry (the exact nature of the broken symmetry state will depend
upon the underlying lattice). Near densityn = 2, neither ferro nor antiferromag-
netic phases are stable for the semicircular density of states used here. It is likely
that the true ground state is either an incommensurate magnet or phase separated.
However, we emphasize that in contrast to the situation in one-band models, a
transition remains even if long range order is suppressed inthe calculation.

Our results have many implications. The magnetic phase diagram of multior-
bital models must be explored. The theory of the multi-electron Mott transition
must be reexamined, as our results suggest that even for models with high de-
grees of spin and orbital symmetry a paramagnetic metal-paramagnetic insulator
transition generically does not exist (at least for more than one electron per site).
More generally the implications of the rich structure of theSlater-Kanamori in-
teractions for the properties of the strongly correlated metal phase deserve further
investigation.

The spin-freezing transition itself is of theoretical interest. We find that the
density of states at the Fermi level remains non-vanishing through the transition,
suggesting that the transition exists at the level of the impurity model and therefore
should be related to a known or yet-to be classified impurity model transition. To
obtain insight into this issue we have studied the degree to which the different
eigenstates ofHloc are represented in the partition function. We find that forJ > 0
at couplings (U ≳ 4t) only a few states are relevant. For densityn not too far from
n = 2 the dominant states are a nine-fold degenerate manifold oftwo electron
states withS = 1 andL = 1, so at this filling the low energy physics is that of
a generalized Kondo model in which anS = 1, L = 1 object is coupled to three
(spin-degenerate) channels of electrons. The largeU-density driven transition
is marked by a change in the dominant state fromS = 1/2, L = 1 to the state
described above, with an enlarged manifold of states at the critical point, whereas
the interaction-driven transition atn = 2 is marked by a change in the weight of
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the two subleading statesS = 1/2, L = 1 andS = 3/2, L = 0, suggesting a change
in the magnitudes of coupling strengths. Determining how these impurity-model
phenomena give rise to the observed behavior is an importantopen question.



Appendix A

Inverse Matrix Formulas

A.1 Inversion by Partitioning

The major computational task in all continuous-time quantum Monte Carlo impu-
rity solver algorithms is the computation of ratios of determinants of matrices,

r = detDk+1

detDk
, (A.1)

with matrices that have one row and one column (sometimes tworows and two
columns, rarely more than that) changed, added, or removed.

The determinant of ak× k - matrix is usually defined as

detD = ∑
σ∈Sk

sign(σ)D1σ(1)D2σ(2)⋯Dkσ(k), (A.2)

whereSk is the permutation group. This definition is useless for computational
purposes, as the number of terms in the permutation group scales exponentially
with k. For the direct computation of the determinant of large matrices, it is there-
fore best to first perform a factorization like theLU or QR factorization, where
the matrixA is be written as the product of a matrix of which the determinant is
known, and another matrix where the determinant is easy to compute, e.g. the the
diagonal of an upper/ lower triangular matrix. The cost of such an operation is
O(k3).

Determinant ratios of two matrices that differ only by one or two rows and
columns can be computed much more efficiently if the inverse of one of the matri-
ces is known. This is the reason for computing the inverse Green’s function matrix
in the weak coupling algorithm, the inverse hybridization function matrix in the
hybridization algorithm, and the matrixN in the CT-AUX algorithm. Numerical
Recipes [193] has a useful introduction to this topic in the section on inversion by
partitioning.

We illustrate the linear algebra at the example of the CT-AUXmatrix N
[10, 194, 44] introduced in chapter 5. Rubtsov’sM-matrix and the inverse hy-
bridization matrix are computed analogously. For the sake of simplicity we as-
sume that the rows and columns that have been changed are the last ones. As the
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determinants are invariant under the exchange of both a row and a column, we can
simply move both to the bottom/ right if this is not the case.

The CT-AUX matricesN are defined by

N = (eΓσ − G0
σ(eΓσ − I))−1. (A.3)

Inserting a spin into this matrix only adds one row or column,and we choose it to
be the last row and column.

(Nk+1)−1 = ((Nk)−1 Q
R S

) , (A.4)

Nk+1 = (P̃ Q̃
R̃ S̃

) . (A.5)

The matricesQ,R,S are(k×1), (1×k), and(1×1)matrices, respectively, which
contain the contribution of the added spin according to A.3.

We follow [193] to compute the determinant ratiodet(Nn+1
σ )−1

det(Nn
σ)−1 and the value of

the inverse matrices.
A straightforward calculation shows that the elements of the matrixN can be

expressed by the elements of the matrixN−1,R,S, andQ ∶
S̃ = (S − [R][N(k)Q])−1, (A.6)

Q̃ = −[N(k)Q]S̃, (A.7)

R̃= −S̃[RN(k)], (A.8)

P̃ = N(k) + [N(k)Q]S̃[RN(k)]. (A.9)

As long as the computation of̃S, namely the evaluation of the matrix inverse
in Eqn. (A.6), is of order 1, we can obtain a new matrix in theO(k2) steps that are
minimally required to access each element. This is the case becausẽS has a size
of (1× 1).

The determinant ratios that are needed to accept or reject a move in (4.20),
(5.22), (6.25), are given by

det(Nk+1
σ )−1

det(Nk
σ)−1

= 1

detS̃
= det(S −RN(k)Q). (A.10)

There is only the need to compute one matrix inverse, namely in equation A.6.
This inverse is easy to compute if onlyO(1) rows and columns are added simul-
taneously. Forl rows andl columns,S has size(l × l).

The computational effort for computing the insertion probabilityWaccof a spin
is O(k2), or a matrix-matrix multiplication followed by an inner product, as in
Eqn. (A.6). The removal probability is computed in justO(1), because there
we already knowS̃, as it is an element ofNk+1. If a move is accepted, a rank
one update has to be performed for Eqn. (A.9), which is also oforder O(k2).
As we need approximatelyk moves to decorrelate our system and obtain a new
configuration, the overall algorithm scales asO(k3), with k the typical expansion
order.
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A.2 Spinflips

The insertion and removal updates of auxiliary spins make the code ergodic. In
addition to these updates we can perform additional moves that are very similar to
the ones of the Hirsch - Fye algorithm, if we choose not to change the imaginary
time location of our auxiliary spins, but instead only flip them. These moves are
self-balanced, but they are not ergodic, as we need updates that change the order
of the expansion and shift them on the imaginary time axis, inorder to sample all
configurations of Eqn (5.8). In order to flip our spins, we haveto compute ratios
of determinants of matrices of the form

A = N−1 = (eΓσ − G0σ(eΓσ − 1)), (A.11)

N = (eΓσ − G0σ(eΓσ − 1))−1. (A.12)

Defining a vectorvj as

vj = eΓσ j (A.13)

and dropping all indices for physical spin we obtain for two auxiliary spin config-
urationss ands′ that differ only for thek-th auxiliary spinsk

Ai j = vjδi j − G0
il (vl − 1)δl j , (A.14)

A′i j = v′jδi j − G0
i j(v′j − 1). (A.15)

Thus we can writeA andA′ as matrices that only differ on thek-th column:

A→ A′ = A+ ∆v⊗ ek, (A.16)

A′i j = Ai j + (δi j − G0
i j)δ jk(v′k − vk), (A.17)

∆vi = (δik − G0
ik)(v′k − vk). (A.18)

The Sherman Morrison [195, 196] formula describes how a change in the di-
rect matrix of the form

A→ A′ = A+ u⊗ v (A.19)

results in a change in the inverse of a matrix:

N → N′ = N − (N ⋅ u)⊗ (v ⋅N)
1+ v ⋅N ⋅ u . (A.20)

Note that the change ofA in Eqn. (A.16) is exactly of that form.
In order to obtain acceptance ratios, we will need ratios of determinants. As

the change fromN to N′ is local in A, we will build a matrixZ with N′ = ZN,
whereN and N′ are only different by a spin flip. By examining the Sherman
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Morrison formula Eq. (A.20) and usingvj = ek = δ jk as well asui = ∆vi we see that

N′i j = Ni j − (Nil∆vl)(δmkNm j)
1+Nkl∆vl

(A.21)

= Ni j − Nil∆vlNk j

1+Nkl∆vl
(A.22)

= (δip − Nil∆vlδpk

1+Nkl∆vl
)Np j, (A.23)

Zip = δip − Nil∆vlδpk

1+Nkl∆vl
. (A.24)

This matrix has ones on the diagonal and is zero everywhere else but on thek-th
column. The determinant ratio is therefore given by

detN′

detN
= detZ = 1− Nkl∆vl

1+Nkl∆vl
. (A.25)

This is an overallO(N) effort - unlike theO(N2) naive effort.
We can arrive at a more efficient method by taking the Hirsch Fye Dyson

equation

G = (1+ (−G+ 1)(eV′−V − 1))G′ = A(G)G′ (A.26)

and inserting inG = NG0. Note that we have storedN−1, not N. Therefore we
need to obtainNG0 via

1 = NeV −NG0eV +NG0 (A.27)

NG0(eV − 1) = NeV − 1 (A.28)(NG0)ll = (Nll eV
l − 1)/(eV

l − 1), (A.29)

which we insert into Eqn. (A.26) above to obtain theO(1) acceptance rate:

r = 1+ (−(NG0)ll + 1)(eV′−V − 1) (A.30)



Appendix B

Fourier Transforms in
Continuous-Time DMFT
Algorithms

Numeric Fourier transforms of anti-periodic functions in the DMFT are an impor-
tant but difficult topic. For previous finite temperature solvers that hadaccess only
to a coarse imaginary time discretization like the Hirsch Fye - solver, an accurate
approximation to the Fourier transform was essential for precise results. In the
new continuous-time algorithms, many more frequencies areknown exactly and
therefore an accurate high frequency expansion is less critical. Nevertheless, a
proper high frequency behavior of the self energy and Green’s functions is desir-
able, and we therefore describe how best to do Fourier transforms based on high
frequency expansions, as developed e.g. by Armin Comanac [110] and Carsten
Knecht [197] for the Hirsch-Fye algorithm.

The main problem stems from the fact that the anti-periodic Green’s function
has a jump at zero, as well as higher order derivatives that have to be measured
accurately in order to give a reasonable intermediate and high frequency behavior
of the self energy.

The basic idea is that we fit the impurity Green’s function with a spline inter-
polation and choose the boundary conditions of the spline such that we obtain the
proper high frequency behavior.

B.1 Green’s Function in Frequency Space

We write down a high frequency expansion of the Matsubara Green function

G(iωn) = c1

iωn
+ c2(iωn)2 + c3(iωn)3 +O( 1

iω4
n

) (B.1)

The coefficients are defined by the Fourier transform ofG(τ):
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G(iωn) = ∫ β

0
dτG(τ)eiωnτ (B.2)

= −G(β) −G(0)
iωn

− −G
′(β) −G′(0)(iωn)2 + −G

′′(β) −G′′(0)(iωn)3 −⋯ (B.3)

The second line being a consequence of partial integration andωn = (2n+1)π
β

.

We can therefore identify

c1 = −G(β) −G(0) (B.4)

c2 =G′(β) +G′(0) (B.5)

c3 = −G′′(β) −G′′(0). (B.6)

B.2 Spline Interpolation

We would like to fit the measured Green’s function by cubic splines, which we
then Fourier transform. To this end, we introduce splines for anti-periodic func-
tions.

We define a local polynomial between two sitesyj ,yj+1

y = Ayj + Byj+1 +Cy′′j +Dy′′j+1, (B.7)

where

A = xj+1 − x

xj+1 − xj
(B.8)

B = x− xj

xj+1 − xj
(B.9)

C = 1
6
(A3 − A)(xj+1 − xj)2 (B.10)

D = 1
6
(B3 − B)(xj+1 − xj)2. (B.11)

The finite difference equation for the second derivatives yields the spline equa-
tions:

xj − xj−1

6
y′′j−1 + xj+1 − xj−1

3
y′′j + xj+1 − xj

6
y′′j+1 = yj+1 − y+ j

∆x
− yj − yj−1

∆x
(B.12)

∆x
6

y′′j−1 + 2∆x
3

y′′j + ∆x
6

y′′j+1 = 1(∆x)2(yj+1 − 2yj + yj−1). (B.13)

This determines the spline everywhere in the inside of the interval, but two
equations are missing as bothy′′0 andy′′β are unknown. However, we obtain another
equation usingy′′0 +y′′β = −c3 as in (B.6). The remaining equations follow from the
continuity of the first derivative, which is given by

dy
dx
= yj+1 − yj

∆x
− 3A2 − 1

6
(xj+1 − xj)y′′j + 3B2 − 1

6
(xj+1 − xj)y′′j+1. (B.14)
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We need to evaluate this both atxj and atxj+1:

dy
dx
∣
x=xj

= yj+1 − yj

∆x
− 2

6
∆xy′′j − 1

6
∆xy′′j+1 (B.15)

dy
dx
∣
x=xj+1

= yj+1 − yj

∆x
+ 2

6
∆xy′′j+1 + 1

6
∆xy′′j (B.16)

With this equation we obtain a condition for the boundaries 0andβ:

G′(0) +G′(β) = y1 − y0

∆x
− 2

6
∆xy′′0 + yn − yn−1

∆x
+ 2

6
∆xy′′n − 1

6
∆xy′′1 + 1

6
∆xy′′n−1

(B.17)

= 1
∆x
(y1 − y0 + yn − yn−1) + 2

6
∆x(−y′′0 + y′′n) + 1

6
∆x(−y′′1 + y′′n−1).

(B.18)

Usingc2 =G′(0) +G′(β) as in (B.5) we obtain the missing second equation.
This allows us to write down the spline equation as matrix equation in the form

Ax= y, where A denotes a spline matrix, y the right hand side and x thevector of
second derivatives:

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 1
∆x
6

2∆x
3

∆x
6 0 0

0 ∆x
6

2∆x
3

∆x
6 0

⋯ ⋯ ⋱ ⋱ ⋮
−2∆x

6 −∆x
6 0 ∆x

6
2∆x

6

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

y′′0
y′′1
y′′2⋮
y′′n

⎞⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎝

−c3
1
∆x(yj+1 − 2yj + yj−1)

⋮
⋮

−1
∆x(y1 − y0 + yn − yn−1) + c2

⎞⎟⎟⎟⎟⎟⎟⎠
(B.19)

or equivalently

⎛⎜⎜⎜⎜⎜⎜⎝

6
∆x 0 0 ⋯ 6

∆x
1 4 1 0 0
0 1 4 1 0
⋯ ⋯ ⋱ ⋱ ⋮
−2 −1 0 1 2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

y′′0
y′′1
y′′2⋮
y′′n

⎞⎟⎟⎟⎟⎟⎟⎠
= 6
∆x2

⎛⎜⎜⎜⎜⎜⎜⎝

−c3∆x(yj+1 − 2yj + yj−1)
⋮
⋮

−(y1 − y0 + yn − yn−1) + c2∆x

⎞⎟⎟⎟⎟⎟⎟⎠
(B.20)

Solving for the second derivativesy′′j yields the spline coefficients of Eqn (B.7).

B.3 Fourier Transform using the High Frequency
Tail

From (B.1) we know that

G(iωn) = c1

iωn
+ c2(iωn)2 + c3(iωn)3 −∫

β

0

G′′′(τ)eiωnτ

(iωn)3 (B.21)

= f (iωn) +Grest(iωn)
= ∫

β

0
dτeiωnτ( f (τ) +Grest(τ)).
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While we do not have direct access to the fourth derivative, we do know the
Fourier transformf (iωn) of the functionf (τ):

f (iωn) = c1

iωn
+ c2(iωn)2 + c3(iωn)3 (B.22)

f (τ) = −c1

2
+ c2

4
(−β + 2τ) + c3

4
(βτ − τ2). (B.23)

The remainderGrest(iωn) is well behaved (its real part goes to zero faster than
1

(iωn)2 , its imaginary part faster than 1
(ωn)3 ). Thus, if we know the coefficients

c1,c2,c3 we can numerically compute the Fourier transform to high accuracy.

B.4 Density-Density Multi-Orbital Problems

The Fourier transforms for the lattice and bare Green’s function according to this
scheme are detailed in [110]. We illustrate computation of the coefficients for the
Fourier transform for the multi-orbital problem with density-density interactions
here.

We consider the Hamiltonian

K = −∑
i j

(ti j + µδi j)c†
i cj +∑

i≠ j

Ui j nin j. (B.24)

Note the absence of a factor of 1/2 in this definition ofU. It is convenient to use
spin-orbital indicesi that include the spinσ instead of explicitly treating spin. The
derivatives of the Green’s function in formula (B.2) can be expressed as commu-
tators and anticommutators ofc,c† with the HamiltonianK:

Gi j(iωn) = ⟨{ci,c
†
j}⟩

iωn
− ⟨{[K,ci],c†

j}⟩(iωn)2 + ⟨{[K, [K,ci]],c†
j}⟩(iωn)3 . (B.25)

The first term yields

ckl
1 = δkl. (B.26)

For the second term, the commutators have to be computed. Using

[c†
i cj ,ck] = −δikcj , (B.27)[nin j,ck] = −δikckn j − niδ jkck (B.28)

they yield

−ckl
2 = tkl − µδkl − [∑

i

Ukiniδlk] −Uklckc
†
l +Ulkc†

l ck − [∑
i

Uikniδlk] , (B.29)

which in the diagonal casel = k simplifies to

−ckk
2 = tkk− µ − [∑

i

(Uki +Uik)ni] (B.30)

= ǫk − µ − [∑
i

(Uki +Uik)ni] (B.31)

(and is zero otherwise). Obviously, for the case of the single-impurity Anderson
model these expression simplify to the formulae in [110].



140 B. Fourier Transforms in Continuous-Time DMFT Algorith ms

B.4.1 Lattice Green’s Function and Self Energy Terms

The k-summed lattice Green’s function is defined as

Gi j,lat = 1
N

N

∑
k∈BZ

(iωn + µ − ǫk − hDC − Σ(iωn))−1
i j . (B.32)

Definingµ̄k = µ− ǫ(k)−hDC and using a self energy expansionΣ(iωn) = Σ0+ Σ1
iωn
+

O( 1
iω2

n
) we obtain for an expansion of the lattice Green’s function in1

iωn
:

Glat = 1
iωn
− 1

N
∑

k

µ̄k − Σ0

iω2
n

+ 1
N
∑

k

Σ1 + (µ̄k − Σ0)(µ̄k − Σ0)
iω3

n

+O( 1
iω4

n

), (B.33)

in matrix form.
Identifying the lattice Green’s function with the impurityGreen’s function, we

obtain

clat
2 = −(µ −∑

k

ǫk − hDC − Σ0) ≡ −µ̃ +∑
i

(Uki +Uik)ni , (B.34)

µ̃ = µ − ⟨ǫ⟩ − hDC. (B.35)

This determines the high frequency behavior of the self energy:

Σ0,kk =∑
j

2Uk jn j . (B.36)

Eqn. (B.36) simplifies to the correct value (the factor of 2 stemming from the
absence of a factor of12 in the definition ofU) in the AFM case detailed in [110].

Comparison with the next order yieldsΣ1, the next high frequency term. Care-
ful evaluation of the commutators along the same lines showsthat, for density-
density terms and equal orbitals

Σ1,ii(iωn) =∑
kl

UikUil(⟨nknl⟩ − ⟨nk⟩⟨nl⟩). (B.37)

B.4.2 Bare Green’s Function and Hybridization Function

The high frequency expansion of the bare Green’s functionG0(iωn) can be derived
directly, by using the expansion for the lattice Green’s function and setting the self
energy part to zero. Unlike for the case of the lattice Green’s function, we need
at least the third order to make the proper Fourier transformfor the hybridization
function

F(−iωn) = iωn + µ̃ − G0(iωn)−1. (B.38)

Using equation (B.33), we obtain

G0(iωn) = 1
iωn
+ 1

N
∑

k

µ̄(k)(iωn)2 + 1
N
∑
k

µ̄(k)µ̄(k)(iωn)3 +O( 1(iωn)4) (B.39)

= 1
iωn
+ µ − ⟨ǫ⟩ − hDC(iωn)2 + (µ − hDC)2 − 2(µ − hDC)⟨ǫ⟩ + ⟨ǫ2⟩(iωn)3 +O( 1(iωn)4).

(B.40)
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The series expansion of the inverse ofG0(iωn) then yields the high frequency
expansion of the hybridization function:

F(iωn) = ⟨ǫ⟩2 − ⟨ǫ2⟩
iωn

+O( 1
iω2
). (B.41)

B.4.3 Self Energy Calculation

In order to compute the self energy with the proper high frequency tails, we em-
ploy the Dyson equation (2.33) and the definition (B.38)

Σ(iωn) = G0(iωn)−1 −G−1 (B.42)

= iωn + µ̄ − F(−iωn) −G−1, (B.43)

and write down the high frequency coefficients of the hybridization function:

F(iωn) = (µ − ⟨ǫ⟩ − hDC)2 − ((µ − hDC)2 − 2(µ − hDC)⟨ǫ⟩ + ⟨ǫ2⟩)
iωn

+ Frest

= ⟨ǫ⟩2 − ⟨ǫ2⟩
iωn

+ Frest. (B.44)

Comparison of the first orders yields a quick consistency test:

Σ0 + Σ1

iωn
+ Σrest= iωn + µ̄ (B.45)

− ( F1

iωn
+ Frest) − (iωn − c2 + c2

2 − c3

iωn
+Grest(iωn)),

Σ0 = µ̄ − c2 =∑
i

(Uki +Uik)ni = Σ0, (B.46)

Σ1 = −F1 − c2
2 − c3 = Σ1, (B.47)

where the remaining terms ofΣ andF fall off at least as fast as 1
(iωn)2 .
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