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Abstract

The numerical investigation of strongly correlated eleetsystems is a funda-
mental goal of modern condensed-matter systems. Unfddlynatandard meth-
ods to solve the many-body system have their limitationsigt-forward exact
the problem is only possible for a small number of sites, asdfiort grows ex-
ponentially in the number of sites|[1]. Standard lattice Mo@Garlo methods fall,
as the sign problem 2] 3] makes low temperatures and largfersyg inaccessi-
ble. Other methods like the density-matrix renormalizatooup theoryl[4], are
limited to the ground state of (quasi) one-dimensionalesyst

A useful and numerically feasible approach to treat ferngiaystems in the
thermodynamic limit is the so-called dynamical mean fielebity or DMFT. De-
velopment of this field started with the demonstration byllsfeHartmann and
by Metzner and Vollhardt ]5,16] that the diagrammatics ofi¢at models of in-
teracting fermions simplifies dramatically in an approfaiya chosen infinite di-
mensional (or infinite coordination) limit. This insight edeveloped by Georges,
Kotliar and co-workers]7,18] who showed that if the moment@pendence of
the electronic self-energy may be neglectBdpw) — X(w)), as occurs in the
infinite coordination number limit, then the solution of tladétice model may be
obtained from the solution of a quantum impurity model pluseH-consistency
condition.

In this thesis, we explain recent algorithmic improvemantshe field of
fermionic lattice Monte Carlo solvers and their applicatid hese novel solvers,
known as continuous-time solvers, are able to solve the iitypproblems or-
ders of magnitude mordiiiently than previous attempts [9] and therefore open
new horizons to the field. All impurity solvers describeddiethave been imple-
mented and tested thoroughly as part of this thesis, and Ignetam has been
newly developed [10].

We then apply these algorithms to physical problems: The-$da DCA
method of including intersite correlations in the dynarhioean field theory is
used to investigate the metal-insulator transition in thiblbard model. At half
filling a gap-opening transition is found to occur as theratdon strength is in-
creased beyond a critical value. The gapped behavior faurlkde 4-site DCA
approximation is shown to be associated with the onset ohgtantiferromag-
netic and singlet correlations and the transition is foumdbé¢ potential energy
driven. It is thus more accurately described as a Slatergghenon (induced by
strong short ranged order) than as a Mott phenomenon. Dopengapped phase
leads to a non-Fermi-liquid state with a Fermi surface onlyhie nodal regions
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and a pseudogap in the antinodal regions at lower dopigg315 and to a Fermi
liquid phase at higher dopings.

A single-site dynamical mean field study of a three band muaaksl the ro-
tationally invariant interactions appropriate to the levels of a transition metal
oxide reveals a quantum phase transition between a paratnagretallic phase
and an incoherent metallic phase with frozen moments. Thi fvémsitions oc-
curring at electron densities=2,3 per site take place inside the frozen moment
phase. The critical line separating the two phases is cteized by a self energy
with the frequency dependenkéw) ~ /w and a broad quantum critical regime.
The findings are discussed in the context of the power lawrgbden the optical
conductivity of SrRuQ.

Finally, a simulation on Cerium using the realistic bandsture and interac-
tion matrix is used to revisit the properties of the andvy - phase of Cerium.
Using LDA+DMFT-techniques we obtain spectra for the two phases anerobs
the development of a Kondo resonance as well as crystal fuittirsg effects.

This thesis on continuous-time algorithms is arranged i parts: the first
part presents algorithms and their implementation as veeraintroduction to
the quantum mechanical framework needed to derive thems@atend part uses
these algorithms and applies them to problems in condenagémphysics.

The part on the continuous-time methods sets out with a giser of the
dynamical mean field theory and partition function expansioWe present the
Monte Carlo method and show how it can be applied to the sagppficonvergent
series with an infinite number of terms.

In the main part of the thesis, three “impurity solver” contbus-time algo-
rithms are presented. We set out with the description of theak coupling”
continuous-time algorithm by Rubtset al. that expands a Hamiltonian or action
in the interaction. We then present our recently developadittuous-time auxil-
iary field (CT-AUX) - algorithm that decouples the interactiusing an auxiliary
Ising field. Finally, we derive the hybridization expanselgorithm that is based
on an expansion in the hybridization between an impurityigsmenvironment.

The application part consists of several independent pastsfirst present a
comparison of the performance of continuous-time algor¢h Then we show
their application to a small cluster (2 2 plaquette) and a 3-orbital model, and
finally we present some applications to “real materials'thin the framework of
LDA +DMFT the hybridization solver is used to compute the spéttraction of
Cerium in thea andy - phases.



Zusammenfassung

Die Erforschung von Systemen stark korrelierter Elektroisé ein fundamenta-
les Problem der modernen Festkorperphysik. Standaramethzur Losung des
Vielteilchenproblems sind stark limitiert: exakte Diagdisierung ist nur fur klei-
ne Systeme moglich, da der numerische Aufwand exponkmtieler Zahl der
berticksichtigten Teilchen wachst. Standard Gitter - Moarlo - Methoden ver-
sagen, weil das Vorzeichenproblem tiefe Temperaturen woskg Systeme un-
zuganglich macht. Andere Methoden, wie die DMRG, sind inw&ndungsbe-
reich eingeschrankt auf den Grundzustand (quasi-) eiadsionaler Systeme.

Eine Naherung, die fur fermionische Systeme im thermadyischen Li-
mes berechnen kann, ist die sogenannte dynamische Motfdtdtheorie, oder
“DMFT”. Ursprunglich von Muller-Hartmann sowie spateyn Metzner und \Voll-
hardt entwickelt, beruht sie auf der Tatsache, dass dierBimagpatik nichtwech-
selwirkender Fermionen sich im Limes unendlicher Koortloreszahl markant
vereinfacht. Diese Erkenntnis wurde darauf von Georgesljafoet al. verwen-
det, um das Gitterproblem in diesem Limit unendlicher Disien oder lokaler
Selbstenergie auf ein Storstellenproblem und eine Salhsistenzgleichung ab-
zubilden.

In dieser Dissertation beschreiben wir algorithmischeatsklungen im Ge-
biet der fermionischen Gitter-Monte Carlo-AlgorithmenduAnwendungen da-
von. Diese neuen Algorithmen kdonnen das Storstellednprolum Grossenord-
nungen schneller als alte Algorithmen l6sen. Alle St&llshprogramme, die hier
beschrieben sind, wurden im Rahmen der Dissertation ingaiert und getestet,
und ein neuer Algorithmus wurde neu von uns entwickelt.

Wir wenden diese Algorithmen dann auf physikalische Proela@n. In der
vier-site DCA untersuchen wir den Metall-Isolatdbergang im Hubbard - Mo-
dell. Wir finden eine Lucke, wenn die Wechselwirkunsdstaiiber einen Kkriti-
schen Wert erhoht wird. Wir zeigen, dass dieses Verhaltérdem Einsetzen
starker antiferromagnetischer Korrelationen zusamaiknfiidd von der potenti-
ellen Energie getrieben wird. Deshalb wird dlsergang eher durch ein “Slater” -
Phanomen (d.h. durch kurzreichweitiges Verhalten beischrieben als durch
“Mott” - Verhalten. Wenn wir die gapped Phase dotieren, kemawir einen non-
Fermi-Liquid - Zustand, in dem die Fermiflache nur in den aded Regionen
liegt, und dessen antinodalen Regionen eine Pseudogap.Hatehen wir die
Dotierung weiter, erhalten wir wieder das Fermi-Liquid +Nalten.

Eine 1-Site Studie des Dreibandmodelles mit Wechselwglenn die rotatii-
onsinvariant im Spin- und Orbitalraum sind, zeigt einen @aaphaseniibergang
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zwischen einer paramagnetischen metallischen Phase oethenkoharenten
Metall mit “frozen moments”. Der Mottdbergang fiir Elektronendichten von 2
oder 3 Elektronen pro Site findet innerhalb dieser “frozemmant” - Phase statt.
Die kritische Linie, die die beiden Phasen trennt, kann l@ioe Selbstenergie-
Abhangigkeit vorE(w) o« /w in einem grossen Bereich des Quanten-kritischen
Gebietes beschrieben werden. Wir diskutieren diese Ernlssgtim Bezug auf das
Verhalten der optical conductivity vdarRuQ.

Schliesslich integrieren wir eine realistische Banddtrukind Wechselwir-
kungsmatrix, um die Eigenschaften vaenundy - Cerium zu rechnen. Mit der
LDA +DMFT-Methoden berechnen wir das Spektrum der beiden PHaesiemo-
hen und tiefen Temperaturen und finden die Kondoresonanie $tistallfeld -
Effekte.

Diese Dissertation Uber fermionische Algorithmen ohnéddiskretisierung
gliedert sich in zwei Hauptteile: einen Methodenteil, dier Algorithmen und ih-
re Implementierung vorstellt, und einen Resultateteit,dBgen Anwendung auf
verschiedene Probleme der Festkorperphysik und die dgvednnen Erkennt-
nisse erklart.

Der Methodenteil beginnt mit einer Einfuhrung in die DMFmdiin die Rei-
henentwicklung einer Wirkung. Wir erklaren die Monte @arMethode und zei
gen, wie sie auf das Sampling von konvergenten Reihen mitdliod vielen Ter-
men angewendet werden kann.

Im Hauptteil der Dissertation werden drei continuous-ti#dgorithmen de-
tailliert hergeleitet: zuerst der sogenannte “weak caowjli- Algorithmus, der
eine Storungsreihe in der Wechselwirkung entwickelt uegdhélb bei schwa-
cher Kopplung besonderdfizient ist. Als zweites der von uns entwickelte
“continuous-time auxiliary field” - Algorithmus, der die Re ebenfalls in der
Wechselwirkung entwickelt und zur Entkopplung ein zuséhtes Ising-Hilfsfeld
benutzt. Und schliesslich der dazu komplementare Hykigdingalgorithmus,
der die Entwicklung im “Hupfen” von Elektronen durchfihr

Der Anwendungsteil besteht aus einzelnen unabhangigénTdie die An-
wendung der neuen Algorithmen auf physikalische Probleeingen. Einer Ver-
gleichsrechnung der verschiedenen Algorithmen folgt Eiluster-DMFT-Studie
und eine Anwendung fur realistische Modelle von Mateeialinnerhalb der
“LDA +DMFT” - Methode, sowie eine Anwendung, die die volle Wechasel
kungsmatrix in einem Dreiorbitalmodell berticksichtigt.



Chapter 1

Introduction

The fundamental goal of condensed matter physics is therstasheling of ma-
terial properties and phases of solids and liquids. Sineeirtheption of the
field, enormously important discoveries with far-reachcmnsequences have
been made — from the discovery of superconductivity by Kéngdr Onnes in
1911, to applications of early quantum mechanics, the thefometals by Fermi,
the discovery of high temperature superconductivity, dredrecent Nobel prizes
in 2003 and 2007 that were awarded for research in this fidldhi&s activity has
led condensed matter physics to become one of the largets fretontemporary
physics, full of exciting open questions and opportunities

For almost all materials in nature, a description within fiteenework of (ef-
fective) single particle quantum mechanics isfisient. The major challenge,
however, arises from the infinite complexity that a systenmahy stronglyin-
teracting particles exhibits. While many single- and fevd¥ problems can be
tackled either exactly or within well-controlled approxte methods, the behav-
ior of systems of a large number of correlated particles iganeral much more
complicated, and its understanding requires elaboratrigeor computational
tools.

Nature has provided us with two distinct classes of pagickermions and
bosons. Particles with half-integer spins, like electrdr@dong into the first cate-
gory, while some atoms liklHe are bosonic. The fundamentatfidirence between
the two is that the wave function of particles is even underakchange of two
bosons, but odd under the exchange of fermions. The presémegions of the
wave function with opposite sign for fermions causes manymatational algo-
rithms that are successful for bosons to fail for fermionisug; while bosons are
computationally tractable and systems of many stronglgratting bosons can
be solved up to almost arbitrary precision on today’s comsteven for tens of
thousands of particles, the simulation of strongly intéracfermionic systems is
still an open problem of great importance.

The electronic structure problem — the theory that dessritmsv electrons in
a material interact with each other — is an important exarapteich a fermionic
problem. If we consider ions and electrons of a typical makewrhere the nuclei
are much heavier than the electrons, we can assume the gbositons to be
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fixed and employ the so-called Born-Oppenheimer approxamdb obtain the
Hamiltonian of the electronic structure problem

H= ZN:(_hZV2+V(r ))+e22 1

i\ 2m I = Iri -yl
whereV(r;) describes the potential of the ions at the electron positigrande
andm are charge and mass of the electrons.

The general solution of the Schrodinger equatibh = EVY for this Hamilto-
nian is an open problem of enormous interest.

Over the years many successful approximations to EqQ. liave been devel-
oped, the most notable ones being the Fermi liquid theorytl@docal density
approximation to the density functional theoryI[L1] 12, ¥¢hich the 1998 No-
bel prize in chemistry was awarded to Kohn. Density funalaheory is an
exact theory based on two theorems by Hohenberg and Kohrchvatate that
the ground state energy of a system in an external potestsfunctional of that
potential and the ground state density with a universaltfanal, and that this
ground state density minimizes the functional. Thus irstafadirectly solving
the many-body Schrodinger equatibi’ = EY for Eqn. [1.1), the solution of a
mapping of the system onto a three-dimensional densityficent. The univer-
sal functional, however, is unknown and needs to be apprtedd One popular
and very successful approach that works for most matesatise so-called lo-
cal density approximation or LDA, where the functional igtten as a sum of
Coulomb, Hartree, and exchange terms and the exchangedditted to the one
of an electron gas.

In materials where correlations of electrons are weak, ilefusictional the-
ory and the local density approximation are very successfdimanage to predict
experimental properties like the band structure of reaknms to high accuracy.
Various improvements to it, like the local spin density apqmation or the gen-
eralized gradient approximation have been developed [13].

All these approaches however share the weakness that tiieoele correla-
tions are assumed to be small. For many interesting matéehiel approximation
is not valid — in fact it is the strong correlations that makesse systems exhibit
interesting properties and phases. Typical materialsisfigid of strongly corre-
lated electron systems [[14] include the cuprates, rardregstems, actinides, and
transition metal oxides. The features exhibited by matenath strong correla-
tion efects include metal-insulator transitions, magnetismupesconductivity.

Physicists early on have been searching for model systeatsath simpler
and easier to understand than the properties of real miatdyi still capture the
essential properties and phases. One of the possible Staptins is the mapping
of the continuum probleni(1l.1) onto a lattice model that &iaof a truncated
number of basis states and a Hamiltonian that has electygpiftgand interaction
terms. In second quantized form:

(1.1)

1
H=-> tialais+5 3 Viud, g auwa (1.2)
]

ijkloo’
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Besides the limitation to a truncated basis set, we candutiimit the interaction
termsV we allow in Egn.[[I.R). One popular choice that is often cdead is the
so-called Hubbard model[l15], where only the largest cbations of [I.R) are
kept. Vjjq is restricted to the on-site Coulomb repulsij = U andt;; to purely

nearest neighbor hopping:

H == 3 t(cCjr + C,Gir) + U Y- niyy. (1.3)
(ij).o i

At largeU and low temperatures, away from half filling, we obtain thenodel
[16,[17] by preventing double occupancy and thereby lirgithe number of avail-
able states per site to three. In the half-filled insulatiages Eqn.[T13) simplifies
to the quantum Heisenberg model.

Even the solution of such a simplified model presents a serballenge,
apart from the one-dimensional case where an exact solexisis [18/ 1B]. The
solution therefore has to resort to approximate analytcalumerical methods.
Limiting ourselves to a lattice with finite extent we can agiplly build the Hamil-
tonian matrix for a small number of sites and diagonalizeia@omputer, obtain-
ing eigenvalues and eigenstates. This method, known ast‘di@gonalization”
or ED [20], is exact but limited to few sites, as the size of thibert space (and
therefore the size of the matrix to be diagonalized) growmarntially with the
number of sites. For one-dimensional systems like chaimadaters, the density
matrix renormalization group theory 21,122, (4] 23] proddmn dficient vari-
ational method for the solution. While extensions to twoensional systems
have been proposed [24,125] 26] 27, 28], it is not clear at themt how well
they work [29]. Other approaches, like the mapping of the Hamian onto a
stochastic dterential equatiori [30, 31] and its integration or the stiigrward
Monte Carlo integration of the partition function expamsiaf the lattice model
are still being developed [32,133].

It is therefore important to have approximate methods treatible to capture
the interesting correlation physics of the model, whilenlgeinalytically or numer-
ically tractable. The dynamical mean field theory descriimechapte 2, where
([T32) is mapped onto a quantum impurity problem that is nica#ly solvable, is
believed to be such a method. Its important property is thadomes exact both
for very weak and very strong interaction, is exact in inérdtmensions, and able
to provide solutions in the intermediate regime.

In this thesis, we explain recent algorithmic improvemantshe field of
fermionic Monte Carlo solvers and their application. Theeeel solvers, known
as continuous-time solvers, are able to solve the impurdklpms orders of mag-
nitude more #iciently than previous attempis [9] and therefore open nevzbns
to the field. All impurity solvers described herein have beaplemented and
tested thoroughly as part of this thesis, and one additialgadrithm has been
newly developed [10].

The thesis starts out with a general introduction to the DM&iTthe reader
who is not familiar with the subject. Then partition funetiexpansions, the basis
for the diagrammatic quantum Monte Carlo impurity solverg explained. Af-
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terward we introduce three impurity solver algorithms: Weak coupling solver
[34], the continuous-time auxiliary field solvér]10], arebthybridization expan-
sion solverl([35].

The second part of this thesis contains applications of ritqgurity solvers.
First a performance comparisan [9], then applications &ojpéttes [36], real ma-
terials [37], and larger clusters. Some numerical tricks explained in the ap-
pendix.



Chapter 2

Dynamical Mean Field Theory

Almost all
CPU time

Noninteracting
Density of States:

Theory, LDA, ... D M FT
Selfconsistency

Maximum Entropy
Method

Interacting Density of
States

Figure 2.1:lllustration of the DMFT self consistency loop

This thesis describes continuous-time lattice and impwativer algorithms
for fermions, which can in principle be studied without thmpkcation to the dy-
namical mean field theory, or DMFT. However, almost all resptesented here
have been obtained by applying a DMFT self-consistency. Wéeefore give a
short introduction to the subject and refer the interestadier to an introductory
article [38], an extensive review on the subject [8], as walious lecture notes
and reviews on electronic structufe [89] 40, 41] and clustdFT [42] applica-
tions. We follow [8/9] for most of the description.
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2.1 Single Site DMFT

The numerical investigation of strongly correlated electsystems is a funda-
mental goal of modern condensed-matter systems. Unfdelynatandard meth-
ods to solve the many-body system have limitations, as iestin chaptef]l:
straight-forward exact diagonalization of the problemn$y@ossible for a small
number of sites, as thdfert grows exponentially in the number of sites [1]. Stan-
dard lattice Monte Carlo methods fail, as the sign probleyiE[2nakes low tem-
peratures and large systems inaccessible. Other metlikelthé density-matrix
renormalization group theor¥l[4], are limited to the growgtdte of (quasi) one-
dimensional systems.

A useful and numerically feasible approach to treat fernti@ystems in the
thermodynamic limit is the so-called dynamical mean fielebity or DMFT. De-
velopment of this field started with the demonstration byllsfeHartmann and
by Metzner and Vollhardt [5,16] that the diagrammatics ofi¢at models of in-
teracting fermions simplifies dramatically in an approfaiya chosen infinite di-
mensional (or infinite coordination) limit. This insight edeveloped by Georges,
Kotliar and co-workers]7,18] who showed that if the moment@pendence of
the electronic self-energy may be neglec® w) — X(w)), as occurs in the in-
finite coordination number limit, the solution of the lagtimodel may be obtained
from the solution of a quantum impurity model plus a selfsistency condition.

2.2 Single Impurity Anderson Model (SIAM) —
Hamiltonian

To describe theféect that local moments exhibit in diluted solutions of ergni
and nickel in a nonmagnetic metal, Anderson [43] proposel@szribe them with
an “impurity model”: a model that is able to describe bothalored electrons
on the iron or nickel atoms and free charge carriers. We altovelectrons to
propagate either in the bands of the nonmagnetic metal,siajoon the impurity
sites, and to hop from the impurity to the bath and back. Whendlectrons
are located on the impurity, we obtain a Coulomb repuldionThis dfect is a
many-body &ect, and the model will exhibit correlatiotfitects at largeéJ.

We will present the single impurity Anderson_[43] model nipg$ollowing
[44]. The extensions to the multi-orbital and cluster msadlsectiofi 2} arld 2.5
are straightforward.

The system consists of two parts: an impurity part (desigonedescribe the
impurity atoms of the system), and a “bath” part that dessih collection of
uncorrelated states. The impurity is described by the opese,,c! while the
bath states are denoted here by operadgysal,, with an additional momentum
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index p. The Hamiltonian of the single impurity Anderson model igayi by

H :Hﬂ + HU + Hbath+ Hmix, (21)

H, =—p[n+ng], (2.2)

HU :U (nml— nT;nl), (23)

Himix => (Vgclap, +he.), (2.4)
po

Hbath = > e(p)a), ap- (2.5)
po

The operators; = CICT andn; = CIC¢ act on the impurity site described by the four
impurity stateg0|, (1 |, (} |, (1} |- The term

Hioc = H, + Hy (2.6)

describes the influence of the chemical potentiahd the on-site interactiod

on the impurity site. The impurity is coupled to a bath witkpBrsione(p) by

a hybridization termivVg. The bath itself is described Byhan, and the mixing
between bath and site byx.

2.2.1 Impurity Solvers

We can also describe the impurity model{2.1) by an actioh wiime-dependent
bare Green'’s functiofi®(iwy ), that represents the retardatidteet from the bath
states that can be integrated out (see se€fidn 2.8, wherealbi@ation is per-
formed explicitly). This quantum impurity model is in the st@eneral case de-
fined as

Sar=- [ dede’ Sl (n)G5™(r - )i (1) @7)
ij
+ YU [ " dee! (1)L (7)6u (7)C30 (2),

ijkl

where the indices can depict bothffdrent sites on a lattice or multiple orbital
indices. It simplifies to the single impurity Anderson Mod8lAM) in the action
formulation

Sa=-3 ][ drdrel()Gsk(r - e, (1) +U [ dmi(on(@). (@8

for a single impurity site with four staté§), (1 |, ({ |, (1} |- A “impurity solver” is
a numerical program or analytic scheme that is able to olt&iobservables of
interest, like the Green’s function,

G(r-1') = ~(T.c(r)c'(7'))s, (2.9)

from the dfective action Eqn[{Z18). In the non-interacting clise 0, the Green’s
functionG(r - 7’) is G%(iwy). Efficient impurity solvers are presented in section
[Z.8, and novel continuous-time algorithms that can be ag@s quantum impu-
rity solvers are derived in chaptéis 4 throligh 7 of this thesi
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2.2.2 Self Consistency Equations

DMFT is based on a mapping of the lattice probléml(1.2) on¢arfpurity prob-
lem (Z.1) and a self-consistency equation. While there ewveral ways to derive
these equations — the historically first one obtained byldéiHlartmann and Met-
zner and Vollhardt[[5]16] — we will derive the DMFT equationsré using the
so-called “cavity” method, following18]. We pick one sité a lattice, call it
impurity, and treat it isolated from the remaining sites. &v/temains on the lat-
tice is a hole, or cavity. After integrating out all degreésreedom of the lattice
Hamiltonian that are not on this one site we are left with thpurity action[(2.J7).

We derive the DMFT equations here for the Hubbard model HQ&).( In
Grassmann variablesc* the partition functionZ for the Hubbard Hamiltonian
on a lattice is given by

z- f [1Dc:, D, S, (2.10)
i

B
Shub = fo dr (Z Cit,(a.,- —,u)Ci(, - Z tijCiter(r +U Z niTnil) . (211)
io ij,00 i
Denoting one particular site with the index 0 we find tiffeetive single site prob-
lem by “tracing out”, i.e. integrating over all other sites:

i —Sef[Ch,Cor] — E + . @~ SHub

7 [SG-Cor] = > iql'o,[apc,(,pc.(,e . (2.12)
This single site action will still give us access to impurityservables (functions
of ¢,,c), but will not have the degrees of freedom nor the compleaftyhe
full problem. In order to obtain an expression By, we split the action{Z.11)
into three parts:S™™ contains the operators on the lattice without the impurity,
So contains the action on the impurity, ai® contains the action linking the
impurity to all remaining sites:

Shub = S+ Sg + AS, (2.13)
B
grem _ f dT( Z Cit,(a.,- —,u)Ci(, - Z tijCit;-err +U Z niTnil) y (214)
0 i+0,0 i,j#0,00 i#0
B
So= [ dr ¥ G3,(c - )cor + Unoyne, (2.15)
B
AS =~ [ dr ¥ to(GiCor + G5, o). (2.16)
io

Integrating out the variables (with 7; = tjoCo, the source coupled to’ and
G the cavity Green'’s function, i.e. the connected Green'stion of the cavity
HamiltonianH™™ belonging toS™™) we obtain:

Seﬂ‘zi >, fnﬁ(Til)“'Ui(Tin)ﬂjl(le)"‘njn(Tjn)Gi(f?..jn(Til’"‘,Tjn) (2.17)

n=Lig--in1in

+ Sy + const
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This result is not useful in general, as the cavity Greenrscfion G(© is not
readily available. However, in the limit of large dimensighe hoppingi; has

to be rescaled a o< 1/+/di-il [6] to have interaction and kinetic terms of the
same order and obtain a non-trivial model. We can use thigioal to simplify
Eqgn. [Z1F) in this limit of infinite dimensions: The scaliof tj; ensures that
GO o (%)“—”, and therefore the leading term is of order 1, while all highe
order terms decay at least as fast &k As n-th order terms of (217) are of order
(1/d)", only the leadingh = 1 term remains fod - oo, and [Z.1F) simplifies to

Seit = — f drdr'cs, (—a, + - ZtOitojG(O)) Cor + / drUng (7)ng, (7). (2.18)
ij

Setting

GO(iwn) ™t = iwn + = Y toito Gy (iwn), (2.19)
i

we obtain equatiori{2.7) for thdfective action of the single impurity Anderson
model Eqn.[(Z18):

Se = —[/Oﬁ deT,;CSO'(T)go(T—T,)_lcOO'(T) + ABdTUnOT(T)nOl(T), (2.20)

Note that the cavity Green’s functida® enteringg? is still not known, and we
still have to relate it to the original lattice Green’s fulect. For some simple
cases, like the Bethe lattice (or Cayley trée] [45]), ther@n analytic expression:

ggethe(iwn)_l =lwn+u- tZGBethe(i(l)n)- (2.21)

In this case the simplification is possible because the Battiee has no loops,
and the removal of a site restricts the summation in Hqn2di = j. As the
removal of a site does not change the Green’s funcﬁiﬁ?*?,: Gi.

For a general lattice the relation 6(9 andG is obtained by expandinG
in the hoppingd;;, and considering the infinite dimensional limit. This yiglan
expression originally derived by Hubbard:

GipGoj
Gy =G - —'CZ %, (2.22)
00
which, when inserted into EqQr. {Z]19) yields
. . GipGoj
G¥(icn) " = iwon + 1= Y totoy (B -~ ). (2.23)
i 00

To proceed, we Fourier transform hopping and Green’s fandgi;(r - 7’) =
—(cig(r)cJT”(r’)) to frequency and momentum space. The density of siafe$



18 2. Dynamical Mean Field Theory

and the dispersion(k) have to be computed from the hopping elemejptand
are related by

D(e) = > (e - e(K)), (2.24)
keBZ
6(k) = Ztije_R(ri_rj). (2.25)
i
The tight binding band structure on a square lattice withremteneighbor hopping

t and next-nearest neighbor hoppihghat we will use in chaptefs 5 afil 9 yields
a dispersior(k) of

e(K) = —2t [cogKky) + cog(k,)] - 4t" cog k) cogky). (2.26)

The momentum dependent Green’s funci@(k, iwy,) for & = iwn + u — Z(iwy) is
given by

G(k,iwn) = - = __t

. = , 2.27
iwon+u—g-2(lwn)  &-¢g (2.27)

employing the DMFT-approximation that the self eneBfk,iw,) = Z(iwy) is
momentum independent. The transformation to momentumespaEqn. [Z.2PR)
shows that

€ & i 1
G (iwy) = k_ K , (2.28)
! " Rgajzf_eR RezB:zf_eR /Rezsjzf_eR
which we can also express as an integration over the derfstates:
. d D D D
GO (iwn) = [ = (E)E [/ de (E)E] /f de (6 , (2.29)
and simplify to
1 ~
G (iwn) = & - —gp7 =€ - D(®), (2.30)
é-€
where
< D(e)
B(¢) = /deé:_e. (2.31)
Therefore Eqn[{Z.19) simplifies to
GOiwn) ™t =iwn +p —iwn -+ +1/D(iwn +p - Z(iwn)) (2.32)

=% +1/D(iwn+p - Z(iwn)).
Using the Dyson equation

Y(iw) = Giwn) ™ - Giwy) ™ (2.33)



2.3 Self Consistency Loop

we see thaD(iw, + 1 - Z(iws)) is @ momentum-averaged Green’s function that
we can express directly by momentum averaging or integrati@r the density
of states:

G(iwn) = Diwn + - %) = f: der— E)(:z i (2.34)
_ 1 (2.35)

kepz 1Wn + 1 — f(R) - Z:(iwn).

2.3 Self Consistency Loop

Equations[(ZI8) [{219)[{ZB3), arld(2.35) form a set of iifies that can be em-
ployed to obtain a self-consistent solution of theeetive action Eqn.[{217), as
illustrated in FigCR. We start with an initial guess for theaé Green'’s function of
the efective actionG°(iwn). The Green'’s function for the non-interacting prob-
lem is one possible starting point. In this case the selfgnisrzero, and we can
employ Eqn.[(Z.35) or Eqri{Z1B4) faiw,) = 0 to obtain an initial solution. This
initial Green’s function is metallic.

Instead of starting from the non-interacting solution wa start from the
Green’s function for the atomic limit. In this case there ashybridization, and
the initial GO is insulating. The two start solutions are complementargdoh
other and can be employed to detect coexistence regionstafiimand insulating
phases.

To determine the region of stability of phases with brokamswtrieﬂ — for
example antiferromagnetic order — we can bias the initi@e@is function with a
small field and see if the converged solution falls into theetry broken phase.
Otherwise, if both the start solution and the Hamiltonianeftective action) con-
serve the symmetry, the impurity solver should produce ansgtric solution,
and convergence to the symmetry broken phase will be dependenumerical
rounddt errors or lack of ergodicity.

Having obtained such an initial starting solution, we needdlve the impu-
rity problem, i.e. obtairG(iw,) out of theG®(iw,) (sectionZZl1). While some
solvers, most notably the CT-AUX (chapfdr 5) and weak caugplichaptef14)
solvers can ficiently obtain solutions directly in the Matsubara freqeyeno-
main, most finite temperature solvers obtain their soluiothe imaginary time
domain. These results then have to be Fourier transformi@idhwvis not straight-
forward due to the antiperiodicity of the Green’s functiaed appendikIB for
technical details). All of these solvers are formulatedsGP (7) in the imaginary
time domain, thus before the solver is started@h@w,) also needs to be Fourier
transformed.

The impurity solver step at iteratiop consists of performing the following

the current chapter deals only with the paramagnetic ploadered phases are described e.g.
in [8l[42]
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operations:

Fourier Solver Fourier

G(iwn) — G3(1) == Gpu1(1) —— Gpya(iwn). (2.36)

After obtaining a Green'’s function as the output of the inifjsolver and Fourier
transforming, we compute the self energy using the Dysoataoju

Z:p+1(iwn) = gg(iwn)_l - GpJfl(iCUn)_1 (2.37)

and then employ th&summation Eqn.[{Z.35) or density of states integration
Egn. [Z.3%) to obtain a new Green’s function (this Greeniscfion is usually
called the “lattice” Green’s function, while the solutiohtbe impurity problem

is called the “impurity” Green’s function):

1

Glatp1= ), - —, 2.38
lat,p+1 kgzlwn_'_ll_e(k) —2p+l(|a)n) ( )

which yields
Gpea(iwn)™ = 2ty (iwn) + Gragpea (iwn) ™ (2.39)

The sequence

. Dyson . Self Consistency . Dyson .

closes the self consistency loop illustrated in [Elg. 2. Tékcensistency is re-
markably stable: starting from an initial guess that hag@pgmately the right

short-time behavior the loop converges after a few iteratim a self-consistent
solution. Far away from phase transitions this convergencather quick and is
achieved within about 10 iterations. In the vicinity of pbdsansitions the con-
vergence slows down considerably, but is usually achiev#dmat most 30 iter-

ations. We did not observe cases in which this self consigtdid not converge
or oscillate between various (meta-) stable solutions.

2.4 Multiple Orbital Extensions

We performed the derivation of the dynamical mean field thequations starting
from the Hubbard model. If the same derivation is performigting from a

multiple orbital problem that is — in the most general casavergby equation
([@T32), we arrive at theftective action for the multiple orbital problem:

Sar=- [[ (@G- )ei(x) (2.41)

+ Z %/OﬂdTCiT(,(T)CLT,(T)Cla'(T)Cjtr(T)-

ijkloo’

The indices, j,k,| denote orbitals on a local impurity (an “atom”), and the in-
teractions are given by the matrik;q. The self-consistency condition is more
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complicated and will be explained for the example of Cerinnshaptef10. The
underlying approximation is still the same as in the sing&ecase: the self-energy
is assumed to be local or momentum-independent. Howevenoweallow for
X(iwp) to be diterent for diferent orbitals. Various simplifications 0 (2141) are
possible and will be discussed in chajidr 10.

In addition, we can orthogonalize our orbitals in the preseof symmetries
such that the hybridization does not mixtdrent orbitals. Within the quantum
Monte Carlo impurity solvers, this reduced complexity fets the algorithms
from obtaining a sign problem in some cases and thereforeslalver tempera-
tures accessible.

Multi-orbital problems with the full interaction part d£@) are still challeng-
ing to simulate, and only the algorithmic advances preskmi¢his thesis made
some of these simulations possible. Chapiér 11 shows tHeagn of a three-
orbital model with the full (rotationally invariant) Handinian of Eqn. [Z.41).
ChapteID, on the other hand, shows results for a fourtdgitabmodel (full
f-shell) with just density-density interactions and a diagl bath.

2.5 Cluster Extensions

The DMFT in its single site version makes the approximatiwat the impurity
consists of only one site, and that the self eneifp, iwn) = Z(iwy,) is completely
local or constant in momentum space. It is natural to ask fathis condition
can be relaxed, by either relaxing the condition that theuintp be just one site,
or taking into account some additional momentum structtileeimpurity. These
extensions are known as cluster DMETI[42].

Cluster schemes are not unique, and various cluster DMFansek have been
proposed: Ref.[]8] mentions some ideas, and Refs [46], [4d][48] first sys-
tematically developed cluster DMFT extensions. A schemeldg@ed by Licht-
ensteinet al. and Kotliaret al. based on real-space clusters is generally known
as CDMFT or “Cellular Dynamical Mean Field Theory”, while@her scheme
developed by Hettler, Jarrekgt al. that describes momentum-space clusters is
known as DCA or “Dynamical Cluster Approximation”. Both srhes are in
wide use and — at least for large clusters — we could find norddga of using
one over the other. They can both be viewed as a special ingpliation of a
more general framework, where the corresponding impuribgers do not need
to represent a physical sub-cluster[49,50, 51].

Maier et al. have described the cluster extensions in their excellesi¢we
on the subject, Ref.[]42]. We follow this paper and Ref. | [S&fehand refer
the interested reader to these two papers for a more detatledluction to the
subject.

For a cluster of\. sites, we approximate the self energyNycosdficients and
absorb their momentum dependencdNjrbasis functiong,(k) on the Brillouin
zone. The particular choice @f,(k) determines the cluster scheme, or the way
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(m,7) (m,7)
]

(—=m,—m) (7, —7)

Figure 2.2: Real-space cluster and momentum space cluster with faeg siich (pla-

quette). Within CDMFT, the cluster is embedded in real spat®the lattice. DCA, on

the other hand, treats the cluster in momentum space, bysitigpthe self energy to be
constant on the shad&] P, andD-patches of the Brillouin zone.

the impurity model and the lattice model are related to edlobro
- - NC -
Z(k, Ia)n) i Zapprox(k, Ia)n) = Z ¢J(k)2] (I(,l)n) (2.42)
j=1

The DMFT approximation consists of identifying the lattsef energy with the

approximated impurity self energy. An extrapolatiorNo— oo should recover

the full momentum dependence of the original lattice mo@&lviously, forN, = 1

the only sensible approach is the choggép) = const, which is the momentum-

independent (local) self energy approximation of the dyisahmean field theory.
The (matrix) impurity problem that has to be solved is givgn b

s P&
Seﬁ=—ffo dT%CiL(T)Qﬁ,a(T—T')_lea(T')+f0 dT;U”n(T)”N(T)’
(2.43)

where the cluster indicasj correspond to dierent “cluster” sites on the cluster
impurity model. In the following we explain the two importaand frequently
used cluster schemes, the DCA and the CDMFT, following [42].

2.5.1 CDMFT

The CDMFT is based on the embedding of a real-space cludtethe infinite
lattice, as depicted in the left panel of Fig.12.5. This rgaédce cluster is then
treated as the impurity. We start by taking a large subseh®firfinite lattice
with N sites. We then tile this lattice into cluster tilesNf sites, each with origin
Xj. Each cluster poink can then be described as- X + X, whereX denotes a
vector within a cluster an#l one connecting cluster origins. One such tile of a
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simple 2x 2 - cluster is depicted in Fig._2.5. In reciprocal space, wsedbe each
reciprocal vectok of the N sites by a vector to one of thHé. reciprocal cluster
points and a vector within a Brillouin zone patdéh= k +K. The reciprocal cluster
points of a(2 x 2) - cluster are drawn in the right part of FIg. P.5.

To find the cluster degrees of freedom, we split both the happand the self
energy into an intra-cluster part and an inter-cluster. part

t()?i _ij) = tcégi,gj + 5t()~<i —Xj), (244)
Z(f(i —f(j,iwn) = Ec(iwn)éii,ij +6Z()~(i —f(j,iwn). (245)

All bold quantities denote matrices of sidg x N, in the cluster sites. We then
expand the Green’s function bothdhandéXx

G(Xi = Xj,iwn) = g(iwn)ds 5, (2.46)
+ g(la)n) Z [5t()’2i - ;(|) + 62(% - 5‘(|, iwn)G()~(| - f(j’ ia)n)] ,
|

whereg is the Green’s function restricted to the cluster, defined as

9= [(iwn+p) —te—Ec(iwn)] . (2.47)
In momentum space, this equation simplifies to
G(k,iwn) = g(iwn) + g(iwn) [6t(K) + 6X(k,iwn) ] G (K, iwn). (2.48)

The DMFT approximation consists of choosing the self enélggal”. In the
cluster case, the self energy is chosen to be local withiclteger X = 0), and
we arrive at

G(K,iwn) = g(iwn) + g(iwn)ot(K)G (K, iwn) = [0 (iwn) - 6t(K) 2] (2.49)

We can then “coarse grain” or momentum-average this quyatditobtain the
Green'’s function restricted to the cluster,

Gliwn) - NW 5 G (K, iwn). (2.50)
k

The function corresponding tf(iwy) in the single-site case is the so-called clus-
ter excluded Green’s functioﬁi‘j’(iwn), the bare propagator 6

S -1
G°(iwn) =[G (iwn) + Ze(iwn)] . (2.51)
Using these equations, we construct a self consistencyrszhe
. computegﬁ(iwn) using [Z.51), the Dyson equation.

e solve the cluster impurity modelZJ43, obtaipfrom the solver or from the
Green'’s function, using agaib(Z]51).

e obtain the coarse-grained Green’s funct@rby summing up the lattice
Green's function[{Z.30).

e compute the newgy (iw,) from (Z51) and iterate.
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2.5.2 DCA

The DCA corresponds to choosing the self energy constantftereht momen-
tum zone patches of the Brillouin zone. These patches are chosen in such a way
that they are centered around the reciprocal lattice poirdsreal-space cluster:

cons Z
¢,.(p):{ PO ese (2552)

To derive the DCA, we compute the hopping integral in Fousjegice from the
dispersiore(k) = e(K +k):

t(K)x, x; = _ngm XDe(k) = Zé(K+k)(X| XDe(K +K). (2.53)

In order to get a translationally invariant cluster, we oestthe translational sym-
metry by integrating over aK - points:

[tDCA]Xi,Xj = i ZéK(Xi—Xj)e(R + K) (254)
c K
Splitting this hopping into intra- and intercluster cohtriions, we obtain
1 K (XX )=
[tc,DCA]Xi,Xj = W ZéK(x'_xJ)E(K), (255)
c K
[oteoca(R)xx, = Ni 3 @K XD5t(K + ), (2.56)
c K
where
€(K) = %Ze(K +k), (2.57)
K
St(K +k) = e(K +k) -(K). (2.58)

Due to the translational invariance of the hopping integtde cluster self energy
Y. becomes diagonal iK-space, and
~ 1
G(K +Kk,iwy) = , —, 2.59
( ) = K i)~ ot(K + ) (2.:59)
whereg denotes the Green’s function decoupled from the host

(K, iwn) ™ =iwn+p - €(K) - Z(K, iwp). (2.60)

We then construct a momentum-averaged Green’s functioimpating

G(K,iwp) = ZG(K + K, iwn). (2.61)

The self consistency scheme proceeds as in the case of thé-TMt the coarse
grained Green'’s function and the lattice Green’s functi@encmmputed according
to (2.59) andl(Z.81). For a two-dimensional plaquette, tbenentum space struc-
ture is illustrated in Fig.215.
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2.6 Alternative Methods for the Solution of the Im-
purity Model

The (continuous-time) quantum Monte Carlo solvers deedrib the next chap-
ters of this thesis are just one possible approach to thei@olaf the impurity
models[[ZB),[[(2.41), of(Z#3). Their major advantage oteer impurity solvers
is that they are numerically exact, easily adopted to mleltgpbital systems or
clusters, and fast enough to reach low temperatures. Thair disadvantage is
that they work on the imaginary time or Matsubara axis. Reajudency data
like spectra or optical conductivities have to be extrasiacanalytical continua-
tion [52,[53/54]. Over the years, various other impuritywso$ that have dierent
strengths and regions of applicability have been develojpegkneral, two classes
of impurity solvers can be distinguished: analytical methand numerical meth-
ods. The analytical methods have the great advantage thaath free of numer-
ical noise and inaccuracies and that operations like Fotreiasforms or analytic
continuations can be performed without loss of accuracyvé¥er, because of the
inherently non-perturbative nature of many strongly datesl systems, approxi-
mate analytic methods are very limited in their applicaéypiid the interesting parts
of phase space. Examples for such methods include renaatiah group theory
[55], bosonization[]56] or slave boson methads [57, 58]. Il mat mention these
methods any further and concentrate in the following on migakalgorithms.

2.6.1 Numerical Renormalization Group (NRG) Solvers

The numerical renormalization group method is a systenvedig to treat ener-
gies over many orders of magnitude. It has been developetthdéoKondo [59]
problem, where the physics is governed by energies of theraflthe Kondo
temperaturel, which is much smaller than the typical energi¢sandt occur-
ring in the action. An introduction to the NRG as it is appliedthe dynamical
mean field theory is given in a recent review by Bulla, Costg &ruschke [60].
The method is based on the renormalization group theorynalig developed
by Wilson [55] and applied to the single impurity Andersondabby Krishna-
murthyet al. [61]]. The application to the dynamical mean field theory hesrb
pioneered by Sakait al. [62] and Bullaet al. [63,/6Z,65] for both zero and finite
temperature. Various extensions, e.g. to the multi-banobided modell[66] have
been developed.

The NRG is based on a division of the energy support of the bpdttral
function into a set ofogarithmically spaced intervals. The continuous spectrum
is then reduced to a discrete set of states, which are mappedsemi-infinite
chain. The solution to the impurity model is obtained by tléugon of this
mapped model, usually via iterative diagonalizatior (], 6

As a real-frequency method, NRG can avoid thgidlilties that come from
analytic continuation and is able to produce results oneéhéfrequency domain,
with a resolution proportional to the frequency. Howevle tnethod becomes
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extremely cumbersome for more than one impurity or channdltherefore is

inefficient when applied to multiple orbitals or clusters. LoweBults are in gen-
eral easier to obtain than high-T results, as higher exoitatand therefore more
states contribute to the latter.

2.6.2 Exact Diagonalization (ED) Solvers

The exact diagonalization methdd [69] is a numerically éxaethod that gives
full access to all eigenvalues and eigenstates of the systBemajor limitation
of other methods like the Hirsch Fye QMC algorithm (see sef#i6.%) is that low
temperatures are not easily accessible. ED providediameat method early on
to overcome this problem by truncating the number of battestand solving the
impurity problem by diagonalizing the Hamiltonian in a famibasis for a small
number of bath states. As in the case of lattice exact didgatian methods,
the practical limitation of the method is given by the expatred growth of the
Hilbert space — here in the number of bath states considéfédle systems at
finite temperatures could be solved for up to 6 bath statestive sparse solvers
allowed access to the ground state with up to 10 bath states.aVailability of
eigenvalues allows for direct access to the real frequepegtaum and makes
analytic continuation unnecessary. However, larger syster multiple orbitals
are not accessible, and the energy resolution of the reguifpectrum is very
coarse. Details are available e.g. in REF. [8].

2.6.3 DMRG

The Density Matrix Renormalization Group theary [4] is thethrod of choice for
the solution of one-dimensional systems like chains oréasldin the context of
the dynamical mean field theory, the application of the DMRSS heen pioneered
by Garciaet al. [70] and Nishimotcet al[[71]. As a real frequency, ground state
method, spectra are obtained directly as a function of #aqies and do not need
to be analytically continued.

These early implementations of the DMFT within the DMRG hueareseem
to be plagued by stability problems, and the results puetislp to now for the
single site case show clear indications of numerical atsfat is not clear yet how
accurate the method works, and more research is neededwatshusefulness as
an impurity solver.

2.6.4 Discrete Time QMC Solver — The Hirsch-Fye Algorithm

The algorithm of Hirsch and Fy&[V2,173] — developed long be@OMFT as an
algorithm to solve the Anderson impurity model — was the figgantum Monte
Carlo algorithm applied to the DMFT impurity problem andtifl 81 wide use. In-
stead of a perturbative partition function expansion, litised on a Trotter-Suzuki
decomposition of thefective action and a discrete Hubbard - Stratonovich trans-
formation [74,75] and therefore requires a discretizabbmmaginary time into
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N so-called “time slicesAr = B/N:

N
Z=TrePH =Tr[Je*™ ~Tr [e‘ATHOe‘ATHl]N . (2.62)
I=1

In each time slice, the four-fermion interaction tekn = U(n;n; — 1/2(n; +
n,)) is decoupled using a discrete Hubbard-Stratonovich toameftion,

1
g-ATU(mn-1/2(ng+n,)) _ = gts(m+ny) 2.63
L 263

S=+1

where coshl = e*Y/2, Using this identity, we can express the interaction as the
sum of an exponential of single-particle operators, at ths of introducing aux-
iliary Ising fieldss = +1 over which we need to sum. The identity Eqn. (2.63) is
easily checked for the four possible states

(O entzeemio = (1| 1) =1 =3 (@) (264)
/2 —1/2
(T |e—ArU(nTn¢—1/2(nT+n¢))| T> - (l | . | l> :eArU/Z :eﬂ%. (2.65)

The Trotter-Suzuki[76, 77] decomposition EJn.(2.62) emibe algorithm to
have a systematic discretization erroi@(fAr)? (see Fig[5ll and Ref.][8]). With
this decomposition, the partition function is expressethasum over Ising spins
of a trace of a product of exponentials of quadratic opesatehich according to
[[78] can be expressed as the determinant of a matrix, yigldimexpression for
the partition function of the form

Z =Y det| Dgy (S, - 58) Dot (S, ) | (2.66)
{s}

Here,Dg, ~(S1, .., Sv) denotes thé&l x N matrix of the bare Green'’s function of the
effective actionG%(iwy) for a particular configuration of the auxiliary Ising spin
variabless,, ..., sy [8]. The derivation of this expression employs the same math
ematics as the continuous-time auxiliary field algorithmt thill be described in
detail in chaptefl5, even though the auxiliary field decontmosEqn. [Z6B) is
different from Eqn.[(5]2).

The Monte Carlo sampling of this expression proceeds byl lopdates in
these spin configuratior(s,, ..., Sy). Each successful update requires the calcula-
tion of the new matriceBg, - in Eq. (Z66), at a computational cost@fN?).

The problem with this approach is the rapid (and, for metaighly non-
uniform) time-dependence of the Green functions at low &napire and strong
interactions. The initial drop of the Green function is egigdly ~ eY7/2, from
which it follows that a fine grid spaciniy ~ U is required for sfficient reso-
lution. In the Hirsch-Fye community\ = BU is apparently a common choice,
although we will see in chaptét 5 ahH 8 that this number is toallsand leads
to significant systematic errors. As noted in REf.1[35] a hetsan of at least
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N = 58U is typically needed to get systematic errors below thesttedil errors
of a reasonably accurate simulation. To ascertain contrei the extrapolation
errors, multiple simulations and the extrapolatioof— 0 have to be performed.

At half filling, the determinants of the matric€;. ; andDg. | are identical
and it then follows immediately from Eq_(Z166) that the ldhisFye algorithm
under these conditions does noffeu from a sign problem. In fact, a closer
analysis reveals that the sign problem is absent for anycetafiu [[79].

A systematic extrapolation inT seems to alleviate the problem of using too
few time slices at least for relatively high temperaturelse Tmproved algorithm
[80,[81] resorts to solving the same problem for variousréiszations. However,
itis not clear if this method remains competitive with comtbus-time algorithms,
where the matrices are smaller and no extrapolations ndael performed.

2.7 Interaction Representation

In order to generate a framework in which we can treat allioowus-time algo-
rithms on equal footing, we introduce the interaction reprgation. For this, we
split the HamiltonianH into two parts: Hg andV. The dtference between the
various algorithms stems from the particular choicéigfandV.

Time dependent operators in the interaction representati® defined as

O(1) = €MoOeg ™o, (2.67)
Furthermore, we introduce the operator
A(B) = eHoeg#PH, (2.68)
Z=Tr[ePMA(B)]. (2.69)
This operator has the property that

dA

G = VPAE) (2:70)

A(B) = T.e o av(), (2.71)

whereT, is the imaginary time ordering operator.

Inserting Eqn.[(Z41) into EqQri{Z169), we obtain an expogsthat contains
the partition function as a time-ordered exponential/¢f). Expanding this ex-
ponential in a power series, we obtain

Z=Tr|e#hT e i avo] (2.72)

ke B
-3 f dry-- / dr, Tr [eHognto(—v)...e (o Ly )eko] - (2.73)
k20 Tkt

Note that the trace in the expressions above goes both avenpurity space and
all the bath states.
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2.8 Action Formulation

We still need to show how we can arrive from the Anderson intpumodel in
the Hamiltonian formulation of Eqn.[{2.1) at a time-departdgfective action
Eqgn. [238). As the bath operatas,, af,,p do not directly contribute to any of the
observables defined on the impurity it is possible to integitzem out and instead
only use the operators,, ¢, of the impurity.

The local HamiltoniarH,. stays invariant, as it only involves impurity opera-
tors. The bath Hamiltonian is traced out and remains as aleuant prefactor of
the partition function. The mixing Hamiltonian,,ix causes retardatiorffects in
the system: electrons can hop from the impurity site to thie &iad return at some
later time. This is the reason why the propagat®of the action[[ZI8) becomes
time-dependent.

We start by introducing coherent staigsin Fock space and Grassmann vari-
ablesc,, following Refs [82] 8B, 84]:

) = exp[ 3 ¢QCT] |0), (2.74)
Cal®) = Pal®). (2.75)

These states fulfill the relation
J Tds;ds.e =% lg)(g] =1 (2.76)

The trace of an operatdt may be written as
TrA= S (nlAn) = [ [] dedgae Zetits(-g|Ag) 2.77)
n a
Defining the notatiorf],, d¢;d¢, = d¢*dé we obtain

2=Tre?™ = (ol i) = [ TTdgid,e =% (-gle9) 2.78)

im [ 1 Hd¢md¢ e Trt diin(—gole i Mgu_a) (el " go)  (2.79)

lim / Hd¢md¢ e Tt didn( gy |1——H|¢M 1) (¢1I1——H|¢o) (2.80)

,\llanoo / H d&;]d&me_ Zr’\f;ll &?n‘?—;me_ Zm;1 [¢;1¢Wl+m H(¢r§‘v¢m—l)] (281)
m=1
_ f D Dpe S 9], (2.82)
with

S- f dr(6* 0. + H(6*, 8)). (2.83)
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The notatiorD¢ denotes that we take the continuum limit. Inserting the Htami
nianH = H, + Hy + Hmix + Hoam Of Eqn. [Z1) into Eqn{Z83), we obtain

S= / dr[¢*(0: — )¢ + Hu(¢",¢) + Hmix(¢*, @) + Hoa(d*,0)].  (2.84)

This is the action for the full Hamiltonian that includes vanhpurity and bath
operators. However, these bath operators do not enter dhg observables of the
impurity problem, and we would therefore like to remove thigam our action
and instead treat arffective action that does not contain them explicitly.

We start by stating the Gaussian integral for Grassmanahias in its most
general case:

/ [ 1 de; ;e Zi 4 AidirZi Yoinder = detAexp[J* A1) (2.85)
j

Realizing that the bath operators in EqR._(2.84) are of tiipe,t with A =
5ij (0: — €), J = Vigg, we obtain (dropping the irrelevant contribution from the
bath determinant):

S = S + Soan (2.86)
z- f D5 DoeSe, (2.87)

Ser = f dr[asa(aT+u)¢o+¢sIZVﬁ[(«?T—e)‘l]lmvmqbwHu]. (2.88)

As the bath is diagonal, this expression simplifies to

Serr = f dr lcbé(é‘f + W)o + b5 > VI[ (0 + &) i Vigo + HU] . (2.89)
|
This expression looks like thefective action[(Z18) for

~G%(iwn) ™t = —lwp—p+ Y. P

T iwn—€

(2.90)

Thus, starting from a Hamiltonian with a bath specified bytthe parameter¥y,
andg we could obtain an expression that has the form of thecéve action for
the single impurity Anderson model. The Hamiltonian foratidn and the action
formulation are equivalent, and we can use whichever weepraf this spirit, we
present the weak coupling algorithm in théeetive action formulation, and both
the CT-AUX and the hybridization solvers in the Hamiltonfarmulation.

2.9 Continuous-Time QMC Algorithms

In the weak coupling - algorithm derived in detail in chajlethe operatoH, of
sectior 2ZF is chosen to be

Ho = H“ + Hmix + Hbatha (291)
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and the operatdv contains only the four-fermion interaction teridg:

V=Hy=U (nTnl L ; ”l) (2.92)

The trace over the four-fermion operators is taken by delangithe interaction
using Wick’s theorem.

In the CT-AUX algorithm of chaptdrl5, the choice Hf andV is the same.
Before the trace is computed, the interaction vertices aceupled using an aux-
iliary field decomposition. These algorithms are therefmst suited to situations
close to the noninteracting case, where the interaction ¥rwof Eqn. [Z92) is
small. The hybridization algorithm of chaptéis 6 ahd 7, andther hand, uses

Ho = Hioc + Hoath = H, + Hu + Hparh (2.93)
V = Hm|x (2.94)

The perturbation series expansion is only done in the higaidbn part of the
Hamiltonian, while impurity states are treated directlyHp. Hpah is — as the
algorithm is best formulated in the action formalism — thoat and yields a time-
dependent hybridization functidfh(7). This algorithm is therefore best suited for
problems close to the atomic limit, where the hybridizaimweak, but turns out
to be superior to the algorithms using Eqn.(2.92) for manygehsy even at) « t
(see chaptdi 8).



Chapter 3

Monte Carlo sampling of partition
functions

The term “guantum Monte Carlo” describes at least threeanptilifferent classes
of algorithms, whose only shared property is that they esnplstochastic algo-
rithm and are applied to the solution of quantum mechanioalblpms: Algo-
rithms like variational Monte Carld [85, 86] orfélision Monte Carlo[87] sample
wave functions of interacting many-body systems. PathghaleMonte Carlo
[88] algorithms stochastically sample the action of a mhagly problem. The
stochastic series expansion (SSE) [89, 90] algorithm agatigéhms like the loop
[91,192,93] and worm [24, 95] algorithm are examples of sugbrithms. Apart
from condensed matter, these algorithms are in wide us&ticd®QCD. So-called
auxiliary field algorithms[[ /8, 42] discretize the action atiine grid and refor-
mulate the partition function integral as a discrete sunr avkigh-dimensional
configuration space, which is then sampled by Monte Carlo.

The continuous-time quantum impurity algorithms are vasaf path integral
methods. The series in which the expansion is performeceigéimeral series of
equation[(Z43). This chapter will first give a brief intradion to Monte Carlo and
then show how the infinite but converging series of sedfidrcan be sampled on
a computer without systematic ctitor truncation errors. For the most part of the
standard Monte Carlo text we follow the Monte Carlo introtiturein [96,[97]. For
the reader unfamiliar with this topic, the excellent books landau and Binder
[98] and Krauth[[99] give an extensive introduction to thejsat.

3.1 Monte Carlo Integration

In many physical systems, especially thermodynamical esyst high-
dimensional integrals or sums over all configurations ofstesy have to be per-
formed. The quintessential examples are the partition afmkassical magnets
like the two-dimensional Ising ferromagn2t [100] or theusimin of the equations
of state of simple classical fluids, like the Lennard-Jonas {LO1].

For the Ising system on a finite two-dimensional squareckatvith N sites,
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the partition function of a finite system in the canonicaleanble is defined as

Z=> efth, (3.1)

xeC

with

H, (X) :J(Z;Si(x)sj(x). (3.2)
i

The Ising configurationx — elements of the configuration spa€e- consist
of N “Ising spins”, each assuming either the value plus or minos: ax =
{£1,+1,--,+1}. The sum Eqn.[{311) involves\zerms, and the straight-forward
summation of all configurations rapidly becomes imprattica

In the continuous case of a classical Lennard-Jones flleghdrtition function

Z- / dxetu, (3.3)

ULJ:—46((%)12—(%)6) (3.4)

of a system withL particles entails an integral over the (physical) confiara
space’ that contains all positionsr; of atoms in the fluid. For each added atom,
the integral in[[31B) obtains three more dimensions, and-diBiensional integral
has to be solved to obtain the solution to Eqn.(3.3).

The standard integration routines like the rectangulapdroidal, or Simp-
son rules scale unfavourably with the number of dimensievisle the error in
Simpson’s rule scales &(N-4) in the number of integration points (function
evaluations) and therefore requires substantially fewsartp than the rectangular
or trapezoidal rules, each added dimension needs a nevetizstion mesh and
thereby multiplies the number of integration pointsNbyFor a two-dimensional
integral, the error scales thus only@éN-2), and for an eight-dimensional inte-
gral it become®©(N-1/2) (O(N-49) in general).

Fortunately there exists an integration method that ispeddent of the di-
mensionality of the integral: Monte Carlo - integrationieslon sampling ran-
domly chosen elements of the integration domain or conftguaspace. If we
uniformly select elements of the configuration spaag we obtain

N
é[ f(x)dx:l\llimo%i;f(m), (3.5)

whereQ is the volume ofC. According to the central limit theorem, such a pro-
cess converges to the limiting distribution with an errargortional toﬁ, inde-
pendent of the dimensionality of Eqil_{B.5). This is the omasghy in dimensions
larger than eight Monte Carlo integration is preferabletegration by Simpson’s
rule.
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3.1.1 Importance Sampling

Straight-forward generation of random elements of thatgatfunction space is
not the ideal method to perform a Monte Carlo integrationisTan easily be
illustrated in the case of the Ising model, where the systeim an ordered phase
at low T and typical low energy configurations have large domainepassed to
randomly generated configurations that are typically disogd. At low temper-
atures, such higher energy configurations are supprespedextially, and most
randomly generated configurations therefore contributg hitle to Z.

Instead, if we were able to generate configurations thariboié more to the
integral with higher probability, we could increase thagency of our sampling.
This is known as “importance sampling”.

The error of the Monte Carlo simulation of EqR_{3.5) is givmn

—2_—2
A:wf%ﬂzxy%j%. (3.6)

As functions in phase space are often strongly peaked (e.ghei low energy
range for low temperatures in EqiL_(3.1)), this variance lmecome very large.
We can however generate configurations that are not diggédbwith an uniform
distribution, but with a general probability distributipx) on the phase spa€g
where

fcp(x)dx: 1. (3.7)
Eqn. [35) then becomes
L) dx= fim L3~ %)
=5 f O Podx=Im § 21505 38)

where the pointx; are generated such that they are distributed accordingeto th
probability distributionp(x). The integration error EQri.(3.6) is

A:ﬂf¥¥ﬁ. (3.9)

It is thus advantageous to generate configurations of thégtwation space&
distributed with a distribution that is similar to the saegbfunctionf.

In statistical mechanics, like for the Ising or Lennard-€®gystems mentioned
in Egn. [33B) and{311), it is natural to generate configoratithat are distributed
according to the ensemiyé x) that is simulated, i.e. according to the weight that
they contribute t& = [ p(x)dx The configuration space average of an observable
Ain p(x), defined by

:%/CA(x)p(x)dx (3.10)
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then becomes

_ Je AX)p(x)dx
<A>,D - fcp(X)dX .

If configurationsx; are generated according to dtdrent distributiorp, the ex-
pectation valugA), in the ensemblp has to be “reweighed”:

(3.11)

(%)
1 p(¥) o X} AR

3.2 Markov process and Metropolis Algorithm

As stated in EqQn[L{3]19), it is best to generate configuratwitis the weight that
they contribute taZ. What still remains to be seen is how configurations dis-
tributed according to such non-trivial distributions cam dgenerated on a com-
puter.

As a solution we can employ a so-called Markov process. A \agkocess
is a random process whose future values are only determinételmost recent
values. Starting from some elemegte C, we generate a Markov chain

Xo = X = Xg = X > Xee1o: (3.13)

of configurations in phase space, and we define a matrix dfitran probabilities
between statex andy in C asW,,. Normalization (conservation of probabili-
ties) demand$’, W,y = 1. Having a probability distributiorp on C, we need to
find the elements ofV,, such that we asymptotically generate stategith the
right probability distributionp. It is suficient for W to fulfill the following two
conditions:

e Ergodicity: It has to be possible to reach any configuratifnom any other
configurationy in a finite number of Markov steps.

e Detailed Balance: The probability distributigaix) and the transition ma-
trix W,y fulfill the equation

Wy By
N 3.14
Wor P (3.14)

This condition is stficient but not necessary — in principle we only need to
fulfill the equilibrium condition}, pxWy = py.

A patrticularly useful algorithm that satisfies detaileddvae is the Metropolis
[102] algorithm: We split the transition matrix into two psira proposal part and
an acceptance part:

ny = Wpfop(x - y)Wacc(X e Y)- (3.15)
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The detailed balance condition then reads

Wprop(x - y)Wacc(X - y) _ p(y)
Wprop(y - X)Wacc(y - X) p(X)

(3.16)

or

Wacd X = Y) _ P(Y)Worop(Y = X)
Wac(y = X) p(X)Wprop(X ~Y) ,

(3.17)

which we can satisfy with Metropolis’ algorithm: we propdsechange the cur-
rent configuratiorx to a new configuratioly (e.g. by performing a single spin
flip in the Ising model or shifting an atom in the fluid), and eptthe change
according to

Waed X = ) = min (1 P(Y)Worop(y > X) ) .

" P(X)Worop(X = Y)

Straightforward insertion of EqH._(3118) into Eqn. (3. 1Wdws that the Metropo-
lis algorithm satisfies the detailed balance condition. ifiagor advantage of the
Metropolis algorithm is that only probability density @i are needed, not nor-
malized probability densities. Therefore any overall nalimation codicients
(here the unknown partition functiaf) cancel.

In the simplest case, the proposal probabliy,, for a move and its reverse
move are equal. In the Ising model, for example, the propoasaiability for a
spinflip at sitej is 1/N (namely the probability of picking the particular site out
of N other sites) — and the proposal probability of the move fppfhg it back is
exactly the same. Therefore the proposal probabilitied neeoccur explicitly in
the acceptance ratio, and are usually dropped:

(3.18)

p(X)
The general scheme of Monte Carlo algorithms is illustrateeig.[3.3.

WAS(x > X') = min (1, p(X) ) . (3.19)

3.3 Continuous-Time Partition Function Expan-
sions — the Sampling of Infinite Series

To illustrate the Monte-Carlo sampling of continuous-tipgetition function ex-
pansions, we start with a typical series of integrals of tigpe: the partition
function

b B
Z= kZ:(:)f[O dry---drep(ty, -+, 7). (3.20)

This partition function consists of a sum of expansion asdesm zero to infin-
ity, integrals from zero t@ overk variablesr,, ---, 7« and codicientsp(ry, -+, 7k)-
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Eqn. [Z.7B) described in the last chapter is of this type. giebability density
p(t1,-+, 7¢)d71---d7y IS dependent on the details of the algorithm under considera
tion. Additional integration variables or summations €lihe sum over auxiliary
spins in the CT-AUX algorithm or over in Rubtsov’s weak coupling scheme)
may need to be added.

We need to sample terms (“configurations”) of this integrahvthe weight
that they contribute to the partition function. Let us staytwriting down the
lowest orders of the integral explicitly.

At order 0O, there is no free parameter and the integral is lgihp At first
order, we need to compute

Zy = \/o‘ﬁ dTlp(Tl). (3.21)

Each term of the integrand is described uniquely by the titne) }, and we can
sample Eqn[{3:20) up to first order with Monte Carlo: genegatiniformly dis-
tributed random numbets; in the interval(0, ) we obtain

1 N
= N Z p(11). (3.22)

Analogously, the second order is described by the &at 7,) } and — generating
uniformly distributed value pairgry, 77) in the interval(0, 3) — we obtain

N
Zy = lim i Z p(Tl,Tz). (323)
N-oo N i1

In theory, we could sample the integral up to some finite ofggg and then
truncate. However, Prokof’ev, Svistunov, and Tupitsynveéd in 1996 how to
sample series of the type of EqR.{3.20) exactly, without¢ation errors.

The basic principle is that instead of sampling each ordearsgely and trun-
cating, we sample all orders at once, and we employ Metrgpalgorithm to
transition from one order to the next. We write the algorithach that there is
no truncation at any order, and it irely the fact that the weight of very large
orders is exponentially suppressed (e.g. by the faétorf the expansion of an
exponential) that guarantees that the sampling processraieun df to infinite
order. Theonly error of these calculations is the statistical Monte Cartore
which scales as/t/N with the number of Monte Carlo samples.

In analogy to the Ising and Lennard-Jones systems we selyalgfining the
configuration spacé. Combining all possible order§,is the set

C={{}AntA{rnme}.Arnnds ) (3.24)

where ther; are continuous variables. Without loss of generality weiaesthat
the configurations are time-ordered, i.e. that 7, < --- < 7. Each configuration
contributes some value to the whole partition function, assuming that all the
expansion ca@écients above are positive (otherwise we will have a sign lerab
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Figure 3.1:Pictorial representation of configuratiofir1, 72, ---7j) } € C that occur within
the continuous-time algorithms. Diagrams for orders zérough three. The circles
represent imaginary times at which the interactions ta&eel

see sectiofi34) and the partition function has a finite valeecan normalize
each value({(r1),---, (1) }) with the partition functiorZ to obtain a normalized
probability distributionp({r4,---,7¢})/Z on the phase spaac& Note that, due
to the infinitesimal probability of selecting ong in the interval from 0 tgg,
p({ry,-,7¢})dry---dry/Z is ak-dimensional probability density over which we
need to integrate. The overall normalization consiastthe partition function —
is of course unknown during the simulation.

While the configurations i had some intuitive physical meaning in the case
of the classical model systems, their interpretation is tds/ious in the quantum
case, as they are just expansionficents of an infinite series. It is however
possible to represent these fiiments by pictures (see Fig#.2, FIg.16.2, and
Fig.[Z1) and talk of the sampling of diagrams consistingseftices”, “segments”
or “auxiliary spins”.

We sample configurations contributing to the value of thegralZ by using
a Markov chain Monte Carlo process as detailed in figrel 3tartisg from
some initial configuration, e.g. the zeroth order configargtwe proceed from a
current configurationx to a new onex’ and in this way walk through phase space:
Xo = X = Xp = 0 = X = Xer+

Updatesxy, — Xq.1 that are typically implemented in diagrammatic Monte
Carlo codes involve the raising of the order, i.e. the inserbf an additiona(r;)
-vertex, the lowering of the order (removal of an imaginanyet vertex(z;)), or
a local change at the same ordey) — (7%), like a spinflip or the change ofa
Insertion and removal updates are illustrated in se€fidn 3.

We can guarantee that this sampling process samples catiang according
to their contribution to the partition function if we can shthat

e We canreach any configuration from any other configurati@fimte num-
ber of steps (ergodicity).

Clearly we can reach a configuration = ((77),-- (1)) from x =
((r1),- (1«)) by simply removing all(r;) - vertices and then inserting
all (r}) - vertices, so this condition is trivially fulfilldh

Whether such a series of updates is likely to occur duringpdy simulation time is another
matter — additional updates may be required to speed uprinigegs, especially in the presence of
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Figure 3.2: An insertion update and its corresponding removal updatiinvithe
continuous-time algorithms.

e The probabilityW,, of transitioning from configuratiox with probability
density p, to configurationy with weight p, satisfies the detailed balance
condition or the balance condition

> WiyPx = Py (3.25)

We fulfill the detailed balance condition Eqi.(3.25 by perimg our updates
using the Metropolis algorithm.

An insertion move that raises the order by one has to be baddmca removal
move (Fig.[3.R). Assuming we have a configuration {(71),--, ()} and try
to insert a time vertexry, 1) to obtain a configuratiog = {(71), -, (7k), (Tks1) }»
we have to guarantee the detailed balance according to[Edd)( The transition
probability densityW,, of going from statex to statey is

Wy = Worop(X = Y) Wacd( X = Y), (3.26)
Wyx = Wprop(y d X)Wacc(y i X). (3.27)

The proposal probability densit,op(x — y) of inserting a time vertery,1) is
given by the probability of picking the imaginary time lowat 7y, ;:

d
V\/prop(X —y)= FT (3.28)

The proposal probability of removing a vertex, on the othamd is just the one
of selecting that particular vertex out of tke 1 available vertices:

Wprop(y - X) = (3.29)

k+1

Therefore we have to choose the acceptance probabiltiggx — y) and
Wae(Y = X) such that

W_xy _ %k"' 1 Wae(X — Y) _ &Wacc(x_> y) _ p(y) 1/(k+1)
Wix B 1 Waey > X)  PxWacy—>X) p(X) dr/B

ordered phases

(3.30)
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Applying Metropolis’ algorithm Egqn[{3.19) to fulfill detiid balance we ob-
tain

. POY)Worop(Y = X)) 1 B py)
Wige = mln(l, p(X)W:)roz(X = y)) = mln(l, WEW) (3.31)

Most importantly, even though the configuration rapigpy is infinitesimally
smalll, the transition rate from configurationto y stays finite, as the extra in-
finitesimal element op(y) is canceled by thdr of Eqn. [3:28B).

In the following we will construct partition function expsions for various al-
gorithms and insertionremoval updates of segments, vertices, or auxiliary gpin
time pairs. The scheme is always the same: we write down henskon, find the
acceptance rejection probabilities, and generate configurations efhrtition
function according to the weight that they contributeZtoWhile sampling such
configurations, we measure observables as described ir(EGH).

This general sampling procedure is illustrated in Eigl 3.3.

3.4 The Sign Problem

Until now we have tacitly assumed that the expansiorfoments of our partition
function expansion are always positive or zero. This, aedfélet that they stay
finite, allows us to interpret the Weigh@ for configurations< e C as a normal-
ized probability density on the configuration space andnattte sampling with a
Monte Carlo process. If the expansion flagentsp(x) become negative, the
can no longer be regarded as a probability distributiofi.dihis however only the
interpretation ofp(x) as a probability distribution that fails — both the definitio
of the series and of the observalfle (8.11) are still meaningf

The Monte Carlo process is based on sampling probabilityiloigions — if p
loses that meaning, it cannot be sampled. The identity

_ [ POYACYAX _ [ p(9Isgn(p(x))A(X)dx

We="r 000 = [ 1p(0lsan(p(x) (3.32)
i Ip(X)Isgr(p(X))A(X)dX/f sgn(p(x))|pP(x)|dx
TP Tdx IECEE

however allows us to express the observalii, as an observable in a purely
positive and normalizable ensemble: We meagig, in the ensemblep(x)|
and divide the result by the average sigan(p(x)))x. With this technique we
can sample any expansion with arbitrary expansioffifadents and sign statistics
in Monte Carlo.

The sampling process illustrated in EJn._(3.32) works weflriactice as long
as the average sign is not close to zero, i.e. the expansafiicoents mostly have
the same sign. Otherwise, the expectation value of the digrabon(sgnp(x))) p

2after all, the probability densitiegy is in a k-dimensional angy, in a (k+1) - dimensional
space.
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becomes small, while the sampling errors decrea of the number of sam-
ples N taken, and the division il {3.B2) leads to an amplificatiorewwbrs. In
general it is not possible to find an expansion with large ,sagrd sampling a
series with vanishing sign becomes exponentially hiard [3].

We can see this by considering the free endrgy= -TlogZ, andF, =
-TlogZ, for both the partition function of the “signed” quantipyand the “un-
signed” quantityp|. Assuming that the free energy density stays invariant when
lowering temperature, we obtain for the free energy denkity F/V and the
differenceA f between the free energy fprand|p|

(sgn = Zz = exp(-BVAT), (3.33)

and therefore an exponential dependence both on tempei@tdrconfiguration
space volume. In addition to that, there is an overlap proble cannot guar-
antee that the configurations with a large contributiofpt@re the ones having
large contributions tg, and the reweighing formula Eqii_(3112) shows that the
variance of[[3:32) will be large if the overlap is small.

The relative error of the sign appearing in the denominatd8&3) is given

by

var(sgn)

1 1
M /(Sgr]): m<sgn): M

and therefore the error of-(3132) grows exponentially witimfiguration space
volume and inverse temperature. This exponential growtbnsmonly known as
the sign problem.

We can identifyp as the distribution for the fermionic arjgd| the one for
the bosonic system. Eqi{3133) abd (B.32) then show thatreveaampling the
distribution of the positive, bosonic partition functiorhike we are interested in
observables in the fermionic ensemble.

A proof by Yooet al. [[/9] derived for the CT-AUX algorithm in sectidn®.4
shows that the sign problem in the single site case for thecHiFye algorithm
does not occur. The proof consists of replacing the bathavitémi-infinite chain
and showing that there is no sign problem in this geometris pitoof is also valid
for the hybridization, CT-AUX and weak coupling algorithmpeesented in this
thesis. However, multiple orbital problems with generaéractions and cluster
problems may obtain a sign problem.

exp(BVAT), (3.34)
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Figure 3.3: Monte Carlo Algorithm Flow Diagram
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Chapter 4

Weak Coupling algorithm

The original idea for an expansion of th@extive action of the Anderson impurity
model goes back to a paper by Rubtsov and collaborators, [I334]. This
algorithm is based on methods originally introduced by Bfv and coworkers
[105] for bosonic models. Using a weak coupling expansiaefpartition func-
tion Z = Tre S« the dfective actionS; is expanded and sampled using Monte
Carlo. Rubtsov for the first time realized that repulsive blafd models could
be simulated without a sign problem originating from thesrattionU if one
performed an additional transformation on the interactesm.

4.1 Single Impurity Anderson Model — Partition
Function Expansion
We illustrate Rubtsov’s weak coupling algorithm for thEeetive action Eqn[{218)

of the single band Anderson impurity model[43], where a bahdonduction
electrons interacts with an impurity,

B
Ser = — Z /0 drd7’c! (7)Got(r - 7') e, () (4.1)
B B
+,u/0 dr(n(7) + (7)) + /0 un,(r)n, (7).
A generalization to multiple orbitals, multiple sites, andre general interactions
will follow in sections[Z. TP anf41.3.
We describe the sampling of EqA.{4.1) in the weak couplirgpesion along
the lines of chaptdn 3. The partition functidrof (1) is given by
Z =TrT.e S, (4.2)

To start, we split the action into two parts: a two-operatondmteracting part
containing hopping and chemical potential absorbggPirand an interacting part
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containing the four-operator interaction (Hubb&arjiterms:
Z / drdr’cl (1)Go(r - 7). () ,u/ dr(n(7) +ni(1)), (4.3)
Su = /0 Uny(1)n, (7). (4.4)

We then perform a weak coupling expansion of the partitiorcfion, expand-
ing Z around the non- mteractlﬂgmlt as described e.g. in[83]:

Z =TrT,e SotSu) = Z(e7Su), (4.5)

where the averagg)o = %TrTT - S0 goes over the non-interacting ensem8le
and contains the time ordering.
Formally, we can therefore write this partition function as

_— (4.6)
_ % foﬁ dry(n(T1)Ny(71))o

’ L;_'z /oﬂdTlde(nr(Tl)”i(Tl)”T(TZ)nl(TZ»O

- L;,_!s/foﬁdTldTZdT?»(nT(Tl)ni(Tl)nT(Tz)ni(Tz)nT(Ts)ni(Ts))o

+ ...

On the right side there is a series of integrals of productsxpkctation values
in the non-interactingensemble. In this noninteracting ensemg@)g we have a
Wick’s theorem, which we can employ to decouple the prodofctiensity opera-
tors. As we can expresgc(ri)c(rj)")o = Go(7i —7j) we can convert the sum over
the contractions in Wick’s theorern_[106] into a determinah& matrix of bare
Green’s functiongjy:

(Ten (zi)ny (i) m ()N (7)) M ()N, (Ti)-+-)o = ) contract = H|go(7| )|
4.7)

4.1.1 Ensuring Positivity of the Weights

The expansion of the partition functidn_(B.6)#&us from an obvious problem: the
sign of the expansion céiicient changes with every order. Therefore the average
sign will be very small, and sampling this series iffidult. An alternating series

is a typical case in which we obtain the sign problem desdribesection"3 1.

INoninteracting here means witho8t,, i.e. the bare fective action. Within the DMFT,
the influence of U on sites other than the current impurity sthidden within the bare Green’s
function for the &ective actionGy, andSy does not correspond to the noninteracting solution of
the lattice problem corresponding to the impurity problem.
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(1) ci(r)

| X » % |

0 CI(T]_) c,(11) B

Figure 4.1: Hubbard interaction vertices for the weak coupling aldnonitin the single
impurity Anderson model. Blue circles denote the intemctiertices. Eackin:(7)n; (1)

- vertex has four operators. These operators are connegtgd blines, as depicted in
the upper panel. The summation over all possie line configurations is done via the
determinant in Wick’s theorem, and a Monte Carlo configoratn C is defined as in the
lower panel.

Rubtsov [108B] found a “trick” to solve this problem: by simfj terms from the
noninteractingSy to the interactingSy he could completely suppress the sign
problem of Eqn.[(4]6), at the cost of introducing an addaioconstantr and
summing over it.

If we define our chemical potential such that half filling esponds ta = 0,
we can rewrite EqQn[{4.1) (up to an irrelevant constant) as

Z/ drdr’ CT(T go (T T) (r(T) (4.8)
—52 [ dr(ny(r) - a9) (n() - ) (4.9)

The parameter§ andas, = 1/2 + 0-s§ control the strength of the auxiliary Ising
field s that he introduced to suppress the sign problem from theactien for
small positives. @ The partition function expansion Eqfi_{4.6) becomes

zZ _ U)k

k=0 [/ dTl diaZs(I;I i (rl(Tl)_asﬂrl]m[n"k(ﬂrk)_a/kaD
i )k // dry-dre 3 ] detDy (4.10)

S-S O

Wick’s theorem leads to a product of two determinants (omesfxh spin) as in

2The term “auxiliary field” is not mentioned in the original Bisov papers, but only i [107].
Rubtsovet al. mention that thers must be “symmetrized” by interchanging with «, which
corresponds to the summation over an auxiliary field.
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Eqn. [4T):
detDy = (T.[Ny, (1) = @50 ][N (k) = A5 ]) (4.11)
G2(0) — s,  GO(r1-T2) Go(11 - 7x)
Go(r2-11)  G2(0) - sy, :

gg(Tk._Tl) gg(rk;rk_l) gg(O)'—am

With the introduction of this auxiliary Ising spisiwe can guarantee that the sign
from the interaction is positive, in analogy 10 [79]. Howeve addition to sum-
ming over all orders and integrating from zero to beta fohegmerator, we obtain
an additional sum over the..

4.1.2 Multiple Orbital Problems

The Hamiltonian for single site, multiple orbital problenmcludes additional
terms in the interaction: in addition to the repulsion onghee site, we can con-
sider density-density interactions betweefiatent orbitals, or even more general
terms like exchange or pair hopping. The most general iatierafor n, spin-
orbitals is

S p t t
W = Z MO dTidedT|dTmUij|m (Ci Cj — aij )(C| Cn— a|m), (4.12)
ijim=1
of which the single site Hubbard model is a special casefet 2 with Ujji, =

Sijomdjiin 5 - Our weak coupling series expansion EqR.{#.10) has to erpeed
in multiple dimensions, from which we obtain an additionaisover all orbitals:

Z:Z IO >, f/f dr, dr;, i, (4.13)
k=Oigjalamy  ikjidlmy

0ip
( )Ulj|m1 Uijlrn( 11y -l
0 Pk (T Tiss T |

The Green’s function matrix

lymy.-
Dlémlv-ﬁ:ji(ﬂrilﬂ-il’“'T|k’ka) (4.14)

gi?jl(Til—le)—CZiljl ngl(nl—rml)
= gloljl(Tll - le) gl(iml(Tll - Tml) - qymy

can be written as a block-matrix if the various orbitals do mix, and we can
prove (seell79]) that for density-density interactionshiis tase no sign problem
appears. However, in general any orbital interacts witha@thgr orbital via the
bath, and there is no reason for the determinam & have the same sign for all
configurations. The choice af- terms has an influence on the sign statistics, and
they need to be adjusted for each problem such that the agpasssign - free

or at least has an average sign that is as large as possiblethitois best done

is still an open question, and an ansatz has been presenteddxyrelovet al. in

Ref. [108].
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4.1.3 Cluster Calculations

In the case of the Hubbard model on a cluster, the Hamiltosian

H=-t> (clcj+hec)+U> ngm,. (4.15)
(i) j

The only diterence to the single orbital case is that the operator a&sjair addi-

tional site index. We can completely absorb all quadratjgiog terms in th&°,

and perform the weak coupling expansion in

Su = ) (M —ay)(my - a@y). (4.16)

Thea - terms are best chosen like in the single site case: 1 - a, with @; <0
or a; > 1 and a symmetrization during the simulation. This guaesitbat the
expansion in the interaction does not generate a sign prodeaegfj’(Ti -7j)is
site-dependent, but spin up and spin down part separate.awtherefore write
the partition function as
Z [ore]
=% ¥

k=0 sy, -, =1

(“U)*
K

detD; detD,, (4.17)

where(D,, )i; = ginO_(Ti—Tj)—éija’i(,-. It follows immediately that the expansion does
not sufer from a sign problem for the half-filling case, where theedatinants of
the up- and down matrices are identical. However, away frathfliling a sign
problem occurs in general, see e.g. Hig.1(5.4).

Itis the cluster scheme (elg147], DCA1109] 42] or CDMETI[¥&hd the clus-
ter self consistency that define the precise form of the ibpte Green'’s function.
The impurity solver part is independent of the particulasich of self consistency
condition.

4.2 Updates

As in the CT-AUX algorithm, we obtain a series of integralseapansion coef-
ficients that can be expressed as a product of a numerical faictl a product of
determinants of rather large matrices.

00 _ k
%:éﬂoﬁdTl”‘di 2 ( 5) 1:[detD‘T({al’Tl},"'{akaTk})- (4.18)

ay-ak

We can therefore employ the mathematics of chdgter 3 to sathid series in
Monte Carlo, in analogy to Eqri.{3]20). In order to do this,gemerate random
configurations of the sum ové&r thek-dimensional integral over;, the possible
interactions strengths in the multiple orbital case andides sites in the cluster
case, as well as the for each interaction.

The configuration space of this partition function is giverthe set

C={{},{(@1,7,U1)}, {(@1,71,U1), (@2, 72,Uz) }, -, { (@1, 71,U1), -}, -},
(4.19)

where thelJ; denote one of the, different types of interaction terms.
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Figure 4.2: Updates in the partition function space: starting from gunfation (a): In-
sertion of a vertex (b), removal of a vertex (c), and the gifiti vertex in imaginary time

(d).
4.2.1 Insertion and Removal Updates

Using the insertion and removal updates detailed in seliome obtain for the
acceptance ratio for an insertion update of ag 1, 7x.1, Uk,1) - vertex:

Woo o Uiy detDy,a ({ (a1, 71, U1), -+, (@ke, Tie, Uken) }
7 k+1  detD({(a1,71,U1), -, (@ ko Uk) }

(4.20)

For the single impurity Anderson model, using the fact that @an write the
matrix D in two blocks (one for each spin) and take the determinardradgly,
this amounts to

_ U detD,; ({(1,71), (et Tea) } dEtDy,y ({ (@1, 1), -+ (@it Thon) }
T k+1 detDy({(@1,71), (K, 7k) } detD[({(e1,71), (7))
(4.21)

The acceptance probability for a removal move fram 1 to k vertices is the

inverse of the insertion probability derived above. Thege moves are already
suficient to be ergodic, as we can reach any elemed@tfadm any other element
by for example going to zeroth order by removing all vertj@sd then inserting
all new ones.

4.2.2 Shift Updates

Alternatively we can introduce (self-balancing) shift apes that shift a vertex
from timer to timet’, the acceptance probability of which is given by the deter-
minant ratio

W,cc = Min (1 detD”eW) .

4.22
’ detD0|d ( )

These acceptance probabilities are identical to the onepdites that change
to «; or interchange sites or orbitals: as long as the interaciengthdJ, are
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not changed and the number of vertices is invariant, all ttEges occur in the
Green'’s function matriPD.

In practice, handling the matri® numerically is impractical. Instead, we
employ the fast-update formulas of apperdlx A to computeartherse matrix of
D, which in Rubtsov’s papers is calléd = D-1. By inserting or removing a vertex
into the series, we change one row and one column of the niataxd computing
the determinant ratios between the old and the Bematrix is particularly easy

if the inverseM-matrix is known, see Eqn[{AJL0): Determinant ratios for an

insertion update require a matrix-vector multiplicatiordaareO(N?), while the
ones for a removal update are constant in time.

4.3 Measurements

The Green'’s function of thefiective actiorSey is defined as

1
Gijo(Tp—7q) = —<TrCi(r(rp)C,Tg(Tq)) ﬁTrT CIO'(TD)CJO-(TQ) Ser
(4.23)

( U)k// dry---dry( Cm-(Tp)CJO_(Tq)Cl(Tl) Czk(Tzk)>
(4.24)

We generate diagrams of the partition function with the Wweibgat they contribute
to Z, not diagrams of the Green’s function. We therefore neednpley formula
@B12) to obtain an estimator for the Green’s function anugote the ratio

_ (Cia(Tp)C}L(r(Tq)Cl(Tl)‘"Cgk(TZK))O
(cl(r1)c1(r1)Ch(T2) - Ch(T2) Yo

This is just a determinant ratio, similarly to what needs ¢éocomputed in the
updates (see append} A), and is obtained from the m&fik containing an
additional row and column:

(4.25)

DPI - Dgo,a gQ(T(Ti - TCI) .
Go.r gO,O'(TP - Tj) gO,O'(TP - TQ)

The relative weight of the Green’s function is given by theedminant ratio
detDg /detDg,,, which is computed using formulBE{ALOM(= D):

(4.26)

detDy! = detho[go(Tp - 1q)
= Go(rp = 71)(Dgh)isGo(T; ~ 7a) | (4.27)
ij
Hence the formula for measuring the Green’s function besdi@4y:

qu(Tp’Tq) = ggq(Tp‘Tq) - ( Zggi(Tp—Ti)Ming%(Tj —Tq)>, (4.28)
ij
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whereM = Dég and angular brackets denote the Monte Carlo average. Fourie
transforming this formula yields a measurement formula atddbara frequen-
cies,

Gpq(iwn) = Goqiwn) - <,8‘1Zggi(iwn)g?q(iwn)Mijei‘””(“‘”)>, (4.29)
]
G(iwn) = Go(iwn) _ﬁ_lgo(iwn)2< Z Mijéwn(Ti_T1)>‘ (4.30)
]

Both measurements can be performed directly during an epefahe parti-
tion function, thereby reducing the computation@be for measuring the Green’s
function at each step fro®(NM?) to O(NM), whereN is the number of time
slices or Matsubara frequencies didhe average matrix size [34].

The Matsubara Green'’s function is required for the computatf the self-
energy and the Hilbert transform, so measuring the Greemistions directly
in frequency space allows one to avoid the Fourier transéition of the Monte
Carlo-averaged Green'’s function from imaginary time to $détara frequencies in
the self consistency. In addition to that, in the weak cowygpblgorithm the mea-
surement in Matsubara frequencies appears as a correotibie {known) bare
Green'’s functionGy(iw,) which is suppressed by a factor E% For high fre-
guencies, the errors converge very quickly and it is theegbossible to measure
the high frequency behavior in a short time, before focusimgpwer Matsubara
frequencies for the rest of the simulation. This reducesctmaputational fort
significantly.

4.4 Implementation Notes

What follows are some remarks on how to best implement thekweapling
algorithm. These remarks are of a rather technical natutteoaty important for
the implementation of the weak coupling - algorithm.

4.4.1 Factorization of the Measurement

In principle we can update the Green'’s function belonging &et of times and
alphas directly during an accepted update. As the updabetmverseM-matrix
is a rank-one update, we can factorize the Green’s functmlaie. We start by
writing the inverse oD, M, after a move from ordek to orderk + 1 as

(P Q

M = (fz g) (4.31)
with P, Q, R andS as in appendikA. The Green’s function in Matsubara frequen-
ciesis

ggi(iwn)g%(iwn)

G';,gl(iwn) = gq(iwn) - Z
ij

genti M etenti, (4.32)
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Plugging inP = P-1 + QS-1R and noting thaP-! is the known matrix before the
update move from ordéerto k + 1, we obtain

+ 1 : icn (Ti—T;j — wn(ti-1
Gt (iwn) = GY B;é "(TGYPIGY, - ﬁ;é ()G (QSR);;GY,
1 K 0 0
BZ don(ti—Ta1) G Q| 0 1)~ Zéwn(TkJrl r,)ka 1R|qu
1 ~
_ Béwn(rku—Tku)G%’kﬂS C£+1,q (4.33)

L

J

H

k L _ ~
— Z ‘UH(TI Tk+1)GO QI (ki1)q _ B Z elwn(Tk+l_TJ)G8’k+1Ri Gjoq
[ J

Zgon(Tke1-Tke1) GO k+1S (ﬁﬂ q (4.34)

i

hph

It is therefore possible to obtain a new Green'’s functiomftbe old one in only
O(K) steps.

Experience has shown that there is an accumulation of rdtiedors, espe-
cially in the cluster case, for this method of computing threé€n’s function. As
it takes a sweep, dD(k) steps, to generate an independent configuration, there is
no overall benefit in computing the “factorized” version bétGreen'’s function
as opposed to a diredD(k?), measurement. This measurement method should
therefore be avoided.

4.4.2 Frequency versus Imaginary Time Measurement

There are advantages and disadvantages both to measuting frequency as
well as in the imaginary time domain. The measurement inrneginary time
domain has a crucial drawback: the introduction of diszegibn errors. As the
cost of measurements is proportional to the number of ingagitime points at
which formula[4.2B) is evaluated, a fine grid of time poirgsdmes prohibitively
expensive, and one of the major advantages of the new digwit the elimina-
tion of discretization errors — is lost in this process. Thdsscretization errors
however are of a dierent type than the ones in Hirsch Fye and similar discrete
time algorithms: while the entire simulation in Hirsch-FHgeperformed in dis-
crete time, here it is only the measurement of the Green'stimm that has this
discretization problem.

The measurement in the Matsubara frequency domain, on liee loand, has
the advantage that it does not introduce any discretizatimrs. As the Matsub-
ara frequencies, are already discrete, we simply measure all frequencies ap t
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maximum cutf wmax. TO Obtain the number of frequency points needed we can
use the high frequency expansion of the self energy or therGdéunction: we
automatically adjust the cuffofrequency such that the systematic error from the
cutaf is negligible compared to the statistical errors. A syst@maay of ob-
taining these high frequency expansionfticents has been developed by Armin
Comanac and is described in his PhD thesis|[110] and — for éni@ problem

— illustrated in appendixIB.

The insertion of two imaginary time pointsandz’ into the configuration has
an additional degree of arbitrariness: the observableagegs(r — 7’) is trans-
lationally invariant, while the configuration at hand is hahd we can choose
any imaginary time point between 0 ang for the first operator in Eqn[{4.28)
that we insert. The measurement process will, of coursenteably restore the
symmetry. In order to obtain the complete information of atipalar partition
function configuration, we need to perform the measuremie@tfor all possible
(continuous)-points. Of course these measurements are highly cordelabel a
sensible compromise are K)(measurements for a configuration wiklvertices.
Such a measurement would completely dominate the simnlatid is therefore
impractical.

4.4.3 Self Energy Binning Measurement

If the imaginary time measurement is fast or does not scatle the number of
available discretization points, the algorithm is not tiei by the number of time
slices measured and the advantage of having a “continumes ti algorithm is
maintained. This is the reason why the “self-energy binmmggasurement”, orig-
inally developed in the context of the CT-AUX algorithm, &ster. The measure-
ment formula is rewritten as

G(1) =G°(7) - (; GO(1_7p)MpgG°(1q)) (4.36)
-0 - [ dr@ (- )(So(r-tIMpG®(ry))  (437)
pq
B
- G%(r) - fo dr,6%(1,)(S (7). (4.38)

In the Monte Carlo process, we only measure the qua8ly which we bin
into fine bins. This binning process is independent of the bemof time slices
on which we measur6&, and only requires the evaluation BfG at runtime. In
practice we can employ the translational invariance inthedomain to obtain
multiple estimates of the Green’s function in the same steg,perform a matrix-
matrix multiplication of the matrixM and a matrixGy; = G(74 - 7j) to obtain
estimates fofs.

The cost of such a calculation scales with the siz&/lpfnot the number of
imaginary time measurement points. In practice, it turnistowe significantly
faster than the other methods and is therefore the metholoaées for the mea-
surement in the weak coupling algorithms.
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The Matsubara Green’s function can also be extracted dirfoim the ex-
pectation value 08:

. . . B .
Giwn) = G%(iwn) - G°(iwn) /0 dr,897(S (1)), (4.39)

4.4.4 Discretization of the Exponential Factors

The exponential factors egpiw,7) are an expensive part of the simulation in the
case of a frequency measurement. Recomputing exponeetiais with special-
ized vectorized functions that are available e.g. as pahteApple veclib, AMD
ACML or Intel MKL libraries, is time consuming and takes mo$the computing
time of the simulation for large simulations. An obvious pliification, originally
proposed in this context by A. Macridin, consists of cregfarvery fine imaginary
time grid (of, in our case, usually 10’000 time slices). A¢ tétart of the simula-
tion, exgiwn7) is computed for all, needed and ali on that grid, and the values
are stored. This may consume some memory, but it eliminagesxpensive cal-
culation ofe«n at runtime. We did not observe any inaccuracies introduged b
the discretization.

445 DCA Momentum Measurements

In DCA, only diagonal entries of the Green’s function in kasp are non-zero.
For a cluster withn, sites, this means that onty independent Green'’s functions
have to be measured insteadngffor the real space Green'’s function. Even if
we allow for antiferromagnetism on the cluster (and themdayble the unit cell),
we only need to measui®(n;) elements of the Green’s function. Measuring
the k-dependent Green’s function requires an additionatiEotransform factor
exp(ikr) to be multiplied to the Green'’s function at runtime, but tisistill less
expensive than directly measuring the full real space Gsdenction. Therefore,

if the system is translationally invariant, this invariarghould already be taken
into account during the measurement.

4.5 Green’s Function (“Worm”) —Sampling

When using the weak coupling solver, we generate diagramsrdigurations ac-
cording to the the weight that they contribute to the pantitiunction. We then
generate a diagram of the Green'’s function by inserting treatton and anni-
hilation operators into the configuration that has been ige¢eeé for the partition
function. As we have seen in EqRL{8.9), we can reduce the Issgrgrrors by
sampling a distribution that is close to the one of the olsdeswe are inter-
ested in —in the sense that the variance ¥/4p) is small — such that the sampled
distributionp and the function to be measurédre at least large in the same area.
A priori, it is not clear that the configurations with largeiglat of the Green'’s
function are the ones that are created by inserting two nteracting bare Green’s
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function lines into the configurations that are importamttfee partition function.

It could be that the two distributions — the one for the Greduahction and the

one for the partition function — have small overlap, whichtunn would mean

that the measurement of the Green'’s function — while of emoosrect — becomes
inefficient and the observables have a large variance.

Instead, it is much more elegant to generate diagrams of teen function
directly according to their contribution to the Green’s dtian. This method,
originally developed in the bosonic context by Prokof’ev amollaborators([94],
and later applied to the attractivé)-Hubbard model[111] is known by the name
“worm algorithm”, referring to the two dangling Green’s fttion lines that build
the head and tail of the worm. While in principle superiorhie haive partition
function sampling, the method has some important drawbablkes applied to the
weak coupling algorithm that are illustrated in the follogi

4.5.1 Derivation of the Worm Algorithm

We limit the explanation of the worm algorithm to the clustase of sectioh 2.5.
The extension to the multiorbital case is performed stithogvardly by adding
another orbital index. We expand the diagrams for the pamtiunction in the
usual weak coupling series:

2- g W'y

and consider the series for the Green'’s func@®n s, (i, 7m) for operators; and
¢l at timest;, T, and on sites;, s, with spino:

o5, (Ti2 Tm) = Z(—U)k/k!Z/dxl...fdxk
( S(J'(TI )CSm(T(Tm)Csl o1 (T1)Csp.0 (T1) 7). (4.41)

Instead of just sampling diagrams for the partition functiwe sample both dia-
grams of the partition function and of the Green’s functipace. The configura-
tion space is enlarged by configurations that have two moeeadrs:cs, ., CL
present and represent the Green’s function space:

/Xm /d& Slo'l(Tl Csltrl(Tl) ) (4.40)

C ={CzCs}, (4.42)

and the partition function of the combined system is the dileeooriginal system
and the Green’s function, with an arbitrary factothat controls the relative time
that is spent in each sector,

Ziot=Z+nG. (4.43)

The weight of a configuration of the Green’s function inclsitiee two new op-
erators. Within the “worm” algorithm community, the two neperatorss, ., -
are called “Ira” and “Masha”. They form the head and tail & ttvorm” diagrams
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Figure 4.3: Worm Algorithm: configuration of worms

(diagrams of the Green’s function). In order to perform agodic sampling of
the extended configuration space, we need to adjust ouregpdat in addition
to the partition function moves include updates that contecpartition function
to the Green'’s function space, i.e. we need to include updhtd insert a worm
or remove it. While in principle enough to guarantee ergityglisve can add fur-
ther updates that stay in the Green’s function space andyehtue order or the
configuration there. These updates are explained in theswlg section.

4.5.2 Worm Updates
Worm Insertion

Consider two configuratiod € Cz andG ¢ Cg that have the Hubbard interaction
vertices at the same place and onlffeli by two added operatoc§ Cm Of G. Their
weight is given by the cdicients of Eqn.[[4.41) an@{440): a partition function
space configuration with k vertices at timgs:--, 7« has the weight
—U)k

pu(k) = (el (1) (1) s, (4.49)
while a Green'’s function configuration with the same vedibat two additional
operators at,, 7; obtains the weight

(U)X
K!

Py(K) = (€L (70) Coper (Tm) €L, (71) €y, (72)+). (4.45)
For the transition from one state to the other we need tofgdtie detailed
balance condition — now on the extended configuration sparsegiven by

PW(Z > G) = psW(G — Z). (4.46)

For the partition function and Green’s function sectors Wwéam (up to an ar-
bitrary factorn that determines how much time we spend in Green’s fungtion
partition function sector) that the probability of goingifin the partition function
sector to the Green’s function sector by introducing tworafmes Ira, Masha at
timest;, T, IS

(4.47)

PSP
. C' CnC,Co--C
Wacc(zﬁe) = mln(l,n< i ~mb1~2 2k>).

(CICZ"'C2k>
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Thus all we have to do is compute the determinant ratio of timéiguration with
and without Ira and Masha. The formulas are exactly the santieeaones of the
vertex insertion, without the factors afandU /k.

Worm Removal

The corresponding removal probability that balances thisemeeds to cancel
then factor of [Z.47).

1 (¢l cmclco-Ca

. 1 (clcy-c
Wacd G = Z) = min (1, 1_(GCCa) )) (4.48)
This factorp allows us to control how much time we spend in the Green’stfanc
sector and how much time we spend in the partition functi@toselt seems that
n is best chosen of the order @f In that way, acceptance probabilities for a worm
insertion and for a worm removal are both non-vanishing.

Worm Shift

Worm shift updates are illustrated in Fig. 4.4, (b) and (c§ take Ira and Masha
and propose to shift either Ira or Masha (or both of them) f(oirs ), (tm, Sn) toa
different site, time or spifr{, 5), (7}, Sh)- The weight of the initial configuration,
up to the overall normalizatiod, is

(-1)"
X

Pc = U T [{Cs0r (1) Conorm (Tm) (M (1) = 22) (N (710) — ), (4.49)

and likewise the one of the final configuration:

k
P = U [T et () () (i (72) ~ 1) () ~ ). (4.50)

This move is self balanced. As the proposal probability fehidt update and its
reverse update are the same and therefore cancel in thieddtalance equation,
the acceptance probability becomes

T T
C,C,yC,Co---C:
(Gy G €12 2k>). (4.51)

W. C_’CT — C-/,CJr = min 1,
o (i, Cm) = (G m’)) ( (C;rCmCICz'“CZk>

Worm shifts are an easy way to obtain measurements. As eacheamfiguration

yields just one estimate for a Green’s funct(«»ﬁcm), cheap worm shifts allow us

to improve measurement statistics by measuring a serigsaf), (c/c,,), (c'cz),
In our implementation, most of the moves in the worm spae of this

nature. They are relatively fast and easily improve the megsents statistics.
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Figure 4.4:Worm moves: starting from a): b) Insertion of the worm. c)tshii the worm
head. d) shift of the worm head and vertex removal. e) shithefworm and vertex
insertion. f) removal of the worm with insertion of a vertexdareturn to the partition
function space.

Vertex Insertion with Worm

It is important to have a method by which we can change theresipa order of
the algorithm while staying in the Green'’s function spacéisTassures that the
underlying partition function configuration is changed battit corresponds to
Green’s function configurations that have high contrilngio As in the case of
the partition function algorithm, we obtain the weightsfrthe expansioi{4.41),
and construct the acceptance ratios according to Metspoli

(4.52)

. T coe
Wacczmin(l U_ (GCmCr---Cax) )

K+ 1(GcherCon)

The numerical implementation is a bit tricky, as the inverssrices are stored
just for the partition function part of the determinant, asdescribed in the im-
plementation section'4.%.4. This move is balanced by arrseveertex removal
move.

4.5.3 Measurements
Imaginary Time

The imaginary time measurement in worm space is trivial: Wavkthe position
of the two Green’s function operators and we are creatindgigarations of the
Green’s function according to the probability with whiclkeytcontribute to it, thus
we simply record a histogram of worm positions with the appiate sign, and
increase it by one in the bin that belongste . Measurements are most easily
done in real space, not cluster momenta, as this avoidsi@adalitexponential
factors. The averaging of these data can be done during tmeFtransform.
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Avoiding Binning Errors

The imaginary time measurement above yields estimatebdéoBteen’s function
on a continuous grid. These estimates then have to be binHewever, we
can directly measure the Green'’s function on a fixed gridoBe& measurement
we propose a “shift” update to shift the worm onto the imagirtame location
where it should be measured. Shift update proposals arecladlave need to
do is compute the Green'’s functions at the new position fosih\daand perform
a matrix vector multiplication and a vector inner producte Wave implemented
this method, but not (yet) systematically explored it.

Matsubara Frequency

While it is of course possible to Fourier transform the déltaction of the worm
distance measured above, this is venyfliceent. The reason for this is that we
have to deal wittO(N) measurements instead of a single one. A fine grid of mea-
surement points is therefore much mofigogent than the frequency measurement.

4.5.4 Implementation Notes

For the vertex insertion and removal moves it is best to steénverse matrix of
the Green’s functions for the vertices only. The worms amdGlneen’s functions
G(tira — 7j), G(7i — Tmasha) are not inverted. This makes it very easy to change
from the patrtition function to the Green'’s function spaaeg as there is always
just one worm present the formulae for handling this extra aad column of D
are still relatively simple.

GO(tp —7q) — @ppg  G%(Tp ~ Tmashg
D = 453
( go(Tira - Tq) go(Tira - Tmasha) ( )
Let us partition this matrix according to Appendix A:
~ o~y -1
_(PQ_(PQ
o (2959 s

And compute its determinant as in Egn._A.10:
detD - det(; (S?) _ det(P)det(S - RP1Q) (4.55)

We choose to store the inverse matfix = M, the matrix for the partition func-
tion configuration, as well as the matrices (or vect@sR, S andS. The deter-
minant ratio of adding a worm is then given by:

det(P) 1 ~

detD) detS-RP1Q)

=S, (4.56)

1
gO(Tira - Tmasha) - qu gO(Tira - Tp) Mpng(Tq - Tmasha)
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Thus for inserting a worm we have to compute a matrix-vectodpct and
an inner product of two vectors, analogous to adding a netexele store the
value ofS (note: S andS have dimension 1 for a single worm) such that for the
reverse worm removal the probabili®is already known.

For the worm shift update we need to compute the determiradiat of two
matrices:

det(P Q)
detDog R S/ de(P)detS-RP!Q)
detDpew det(P Q’) - det(P) det(S’ - RP1Q)’

(4.57)
R &
As S = 1/det(S - RP-1Q) is already stored we need to compute the determinant

ratio for the new position of either Ira or Masha (or both):

-1 Q-1
detD0|d _ S _ S . (458)
detDpew  de(S'-RP1Q) S -RPIQ

Thus, again, the numerics for a shift update reduces to axmagctor multipli-
cation and an inner product. As this move is self balanced eagimo separate
inverse move.

Direct vertex removal and vertex insertion moves are momepicated. The
basic idea when adding a new vertex is that S is nowxa22matrix with one
column containing the Green’s function of the new vertex, dther the one of
the worm. We compute the new weight of the entire matrix anddiit by the
weight of the worm that was already present. The formula¢ter®nes of a two-
vertex insertion move, and in the end analogous to the cenatibn of the worm
removal - vertex insertion - worm insertion moves.

455 Normalization

In order to get the normalization factors properly we havgddack and forth
between partition function space and Green’s function epdde ratio of time
we spend in these sectors (modified by#Hactor in Eqn.[4.417)) will give us the
correct normalization.

Also, observables other than the Green's function are etsige measured
in the partition function space. Changing between worm aamtitipn function
space frequently assures that observables measured ispeths obtain decent
statistics.

4.5.6 Reweighing

Having the worm €fers the interesting possibility to do reweighing in ordegéd

better data for analytic continuation. This is promisingexsally in the insulat-
ing phase, where the steep exponential decay of the Graam$idn is hard to
resolve with a delta function binning measurement. The ighweg can be done
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with a flat histogram method described in secfiand 4.6, or bypsr assuming a
form of the gap (e.g. an exponential decay) and reweighin thie inverse of
this function. Also possible are bins of unequal size, or sneaments without
discretization errors: before a measurement the worm isechdw the nearest
(few) measurement point(s).

45.7 Results

The worm method is based on an entirelffelient measurements procedure, and
therefore diferent auto-correlation times andf@rent variances can be expected.
As we sample the diagrams for the Green’s function that weirdezested in
directly instead of sampling the diagrams for the partifiomction, the variance is
expected to decrease. Because we have nthogeat moves, the auto-correlation
time also might decrease. However, instead of measuringoatbnestimate of
the Green’s function we will measure a series of delta femstj and these are less
close to the actual Green'’s function. On the other hand, nneasents in partition
function space are much more time-consuming than measatsnmethe worm
function space where we just have to record a “delta” at thiet place.

For all the problems we examined, the worm algorithm did estift in much
better statistics than the partition function algorithnoger examination of the
sampling process showed that the partition function allgorj too, had little sam-
pling problems and the overlap between the Green’s funeti@hpartition func-
tion space was large. However, where reweighing is neces$sarbtain decent
statistics, the worm algorithm might yet show advantages the traditional par-
tition function implementation. In the end, the lack of intaayy time translation
invariance has to be seffdoy improved statistics and decreased autocorrelation
times. We did not perform a detailed analysis of the insu)atbere the Hubbard
vertices are expected to freeze in a partition function rtlgm and dynamics
might be much slower.

4.6 Wang Landau Sampling

In the usual sampling process of the partition function wealkpling algorithm, as
well as in the other algorithms described in chapier 5[andesample diagrams
of the expansion (elements of the configuration space) Withateight that they
contribute to the partition function. We then measure thee@is function and

other observables in this ensemble. Sedfioh 3.2 illustitdi@t in order to sample
the right equilibrium distribution, an algorithm does natlpneed to have the
transition probabilities between states chosen in the rmgly, but it also has to
be “ergodic”, i.e. in principle able to reach every configima from every other

configuration in a finite number of steps. For a system witiovarwell-separated
parts of phase space that contribute to the integral, thiang, especially if they
are not known a priori.
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Figure 4.5: A worm algorithm example: Weak Coupling, Weak Coupling anori, and
Hirsch Fye data for a 2 2 cluster away from half fillingr{ = 0.9). Green’s function in
imaginary time and real space (onsite, nearest neighbonexignearest neighbor). The
points are Hirsch Fye points and the lines are continuous tines for both worm and
partition function method. Both methods give identicalutesswithin error bars.

Figure[4.6 illustrates a typical situation: for a paramdgtiee average mag-
netization is zero, and the expansion converges to a typidar. Sampling such
a distribution is straightforward. For an antiferromagnetstem, two discon-
nected parts of phase space contribute to the partitioibtmmne with majority
spin up, and the other with majority spin down. The usual @llgm will only
sample one of them and not be ergodic. In the intermediats ths algorithm
will slowly oscillate between the upper and the lower minifhile it still covers
the whole phase space, the sampling becomes slow and aelation times (and
Monte Carlo errors) become large.

We are however free to sample any ensemble we want — as long psrorm
the proper reweighind(3112). While the samples generatigtitrhave a larger
variance[[3B), we can try to find an ensemble in which autetation times are
significantly smaller. This is the idea behind the Wang-landlgorithm pre-
sented here.

4.6.1 The Classical Wang - Landau Algorithm

In classical systems, similar issues exist. When simujasecond order phase
transitions, for example, the autocorrelation times atdhtcal point diverge.
Coexistence regions at first-order phase transitions sbokdisconnected parts
of phase pace — e.g. solid and liquid ones — that are equatliyiboting to the
partition function. While cluster update schemes existedaflong time for the
second order case to counteract the “critical slowing downth in the classical
[112,[113] and quantum case [93], methods that can suctlgssiercome first
order phase transitions are harder to find.

A first step was taken in 1991 by Berg and Neuhaus, when theyduated



62 4. Weak Coupling algorithm

Exganson Ondrk

Figure 4.6: Sketch of the configurations contributing to the partitiondtion of a Hub-
bard model in the antiferromagnetic phase, started fronranpagnetic solution: projec-
tion of the configuration space onto the two axes “expansiderd and “magnetization”.
Darker shading represents more likely configurations. @arditions with zero magne-
tization contribute in the paramagnetic phase. For anantimagnetic system with a
paramagnetic start solution, two disconnected parts cdgoepace contribute.

“multicanonical sampling”[114] to overcome the phase $iian of the 10 states
Potts model, which exhibits a first order phase transitianorider to accurately
simulate the coexistence region they changed their engenfigy increased sam-
pling in regions between the two coexisting phases, i.e.cémfigurations that
build interfaces. These configurations are then no longaprassed by an expo-
nential weight factor, and tunneling between the two phasesmes easier. Their
algorithm requires priori knowledge about the structure of phase space and the
location of the barrier (phase transition).

Wang and Landau [115, 116] designed a general sampling sctieanhis de-
signed to find and overcome barriers and phase transitiai®uwtiprior knowl-
edge of where they are. They chose to project their configurapace onto an
additional “reaction coordinate”. This reaction coordeahould allow for the
system to be tuned continuously from one phase to the othes. eXxample for
the Potts system is that at low energies the system is in arexgphase, and at
higher energies in a disordered phase. In between the systdergoes a phase
transition.

If we knew the density of states of the system as a functiohefé¢action co-
ordinate p(E) if the energy is the reaction coordinate), and if we were dangp
states of the configuration space not with a physical enssrbht in an ensem-
ble proportional to 1o(E), each energy would be sampled equally often, and the
system would constantly change between configurationsnaefergy (i.e. or-
dered ones), and such at high energy. The histodrg®) of the energy would
be completely flat. Closer analysis shows that this algeritln be improved by
minimizing the round-trip time between low and high enertatess [117, 118].

Observables that are a function only of the reaction coatditan then be
obtained by integrating over the density of states aftesitmellation. Observables
that depend on other variables are sampled once the dehsites is converged
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by reweighing.

Knowing the density of states requires a solution of the rhodee algorithm
therefore proceeds by assuming an initial guess for it amd iteratively changing
the density of states until it is converged. To do this it esgplthe fact that
the histogram of states in the converged ensemble is flatevery point of the
reaction coordinate gets visited equally often.

We start the algorithm with an initial guess for the densitgtates - for ex-
ample one, an initial multiplication factor (usua#y, and a histogram that is zero
everywhere. We then walk through phase space, measuringigtegram for
each configuration and checking if it is flat. At the same timry time a state
is visited, the density of states at this reaction coordirfahergy) is multiplied
by a constant amount. As this makes the D&BE) at this state higher, it will be
visited less frequently, as it is weighted witfplE).

After a number of steps the histogram accumulated is flat,vemdncrease
our accuracy by changing the multiplication factor to a demalalue. This is in
principle done up to arbitrary precision.

This algorithm has been very successful in capturing thesigkyof first order
phase transition and is widely used in the context of mokacsimulations.

4.6.2 Quantum Wang Landau

The idea of Wang Landau sampling in the context of a seriearesipn [118] is

to create a “flat histogram” up to a given order and therebyptod the algorithm

to generate diagrams both at the physically interestingroathd at orders that
are very close to zero, i.e. the bare Green’s function orintaracting partition

function. Originally the application to the weak couplingpurity solver goes
back to an unpublished idea by Rubtsov.

Deliberately generating configurations that have littleghieto the partition
function may seem irfécient, as the whole point of importance sampling-3.1.1
is to generate the diagrams with the importance they car&ito the partition
function. However, when going back to the noninteractingecat Oth order of the
series, all vertices and therefore all correlations areokesd, and when the series
is rebuilt it will likely end up in a diferent part of phase space — for example in
a different global symmetry sector. On the other hand, if the sésienly built
once from zeroth order, the system might fall into one synmyrector and spend
its entire time trapped there. This is, for example, obviauke case of antiferro-
magnetic order (see sketchl4.6), where both configuratidhsnaajority spin up
or majority spin down are reached equally likely from the imberacting solution,
but getting out of one antiferromagnetic state at strongrattions requires re-
moval of almost all vertices or enough knowledge about tmersgtry to propose
the right global move - in this case the exchange of up- anchdgpin matrices.

In our implementation of the “quantum” Wang-Landau aldaritwe generate
a flat histogram in the expansion orderi.e. the additional parametaf x) with
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which we reweigh the weight of the configurations

ﬁ,k< Kmax
1, K > Kmax

wherep(k) is the probability of being at ordér p(k) fulfills the role of the “den-
sity of state” on which the ensemble is projectkds the “reaction coordinate”.
The probabilityp(k) is unknown at the start of the simulation. Therefore we spend
a short time of the simulation (usually no more than a coupseoonds) to find a
guess for it. As the ensembi¢x) does not influence the expectation value of the
observables, it is not important to have a very accuratenes#i of it, as long as it
is good enough to ensure ergodicity.

Fig. [4.1 shows the sketch of the histogram of the expansidaraf Wang-
Landau sampling is performed up to the maximal order, or ughéoorder that
contributes half of the maximum. In practice, flat-histagreampling turned out

A(X) = A({r1, 72, 7k}) = AUK) = { (4.59)
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Figure 4.7: Sketch of the histogram of the expansion order of flat histagsampling x-
axis: expansion ordek. y-axis: histogramh(k). Left panel: no flat histogram sampling.
Middle panel: flat histogram sampling up to half of the maximaorder. Right panel: flat
histogram sampling up to the maximum contributing order.

to be very #icient at obtaining symmetrized, paramagnetic Green’'stions.
The fact that most configurations sampled have low order antribute next to
nothing to the observables is compensated by the fact thgtatre very quickly
sampled due to th©(k?) scaling of the matrix operations. Nevertheless, global
update moves are mordieient if the symmetry is known exactly. We therefore
did not use Wang-Landau sampling in any of our productioresod



Chapter 5

Continuous-Time Auxiliary Field
Algorithm

E. Gull, P. Werner, O. Parcollet, M. Troyer,
EPL 82, 57003 (2003)

A first continuous-time auxiliary field method was developgdRomboutset
al. in 1998 [120/121], and applied to the nuclear Hamiltoniad amall Hub-
bard lattices. We rederived the solver for a time-dependg@attive action and
reformulated it as an impurity solver [10] for cluster impwurproblems. This
CT-AUX algorithm is based on an auxiliary field decompogsitmf the interac-
tion and a partition function expansion, formulated in thantiitonian formalism.
The following derivation in the Hamiltonian formalism ofd®n[ZT is close to
the well-known Hirsch-Fye algorithm (see section 2.6.4 Redl [72]), such that
some concepts and proofs can be borrowed from Hirsch-Fgraditre.

In the second part we will reformulate the algorithm in thguiealent) action
formalism to obtain a more natural derivation of the impusblver algorithm.
Applications of the CT-AUX - algorithm will be shown in chagpfd.

5.1 Lattice Version — Hamiltonian Formulation

For the derivation in this chapter we mostly follow the onigli CT-AUX paper
[10]. We limit ourselves to the single site algorithm for mo$ the chapter, as
the generalization to clusters and multiorbital modeldrgightforward. We start
with the Hubbard Hamiltonian on a lattice, shifted such tttamical potential
u = 0 denotes half filling:

H=-t>(ccj+hc)+UY] (niTnii _ D er n”) —u Y (my ). (5.1)
(i.1) i i
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Figure 5.1: Imaginary part of the self-energy for the DMFT solution oé thingle-site
Hubbard model. CT-AUX, Hirsch-Fye using 32, 64, and 128 kanyi spins (time slices),
ED with 6 bath sites, g8 = 32,U = 3. Hirsch-Fye and ED results were taken from Fig.
15 of Ref. [8]. For CT-AUX, the average number of auxiliaryrepwas(n) = 42.5.

for a repulsive on-site U. Note that we can write [1120,]1121]

U i i 1
1- A (- M%) =S T etsin ). 62
coshy) =1+ g—f (5.3)

As the fermion operatons;;, n;, can only assume values of zero or one, this aux-
iliary field decomposition is easily verified for the four gdsle local states. The
variablesis an auxiliary Ising spin, an some arbitrary positive real constant.

The partition function iZ = Tre#(Ho+Hu) \We are free to add and subtract a
constant to the Hamiltonian:

it +my) K
Hu=UZi:(niTni¢—nT;nl)—E, (5.4)
Ho = —tZ(ciTc,- +h.c)+ % -y (nip +niy). (5.5)

(i.J) i

And, applying Egn.[[5]2) td{5.4) and switching to the intti@n representation
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Figure 5.2: Left panel: Average perturbation order for the continutose auxiliary-
field algorithm, forK = 1, and the weak coupling algorithm with = 0.01. Single-site
Hubbard model, half-filling, semi-circular density of &stof bandwidth 4 atgt = 30.
Inset: Expansion order (matrix size) as a functiorkofSingle site Hubbard model, half
filling, semicircular density of states of bandwidth 4/t = 4, andgt = 10. Right panel:
Expansion order as a function @for the four-site cluster with nearest-neighbor hopping,

U =2,u = -03757t = 0.25. For the Hirsch-Fye, a reasonable compromise between

accuracy and speed would require at lddst SBUng time slices, which leads to larger
matrices whose determinants need to be updated.

as in sectiof.Z]7, we obtain with= Hy

Z=Tre#H (5.6)

= e TrePTrT, expfolj dr (% ~-uU (nm(r)nil(T) - MZW(T))) :

Dropping the irrelevant constant facter and applying the auxiliary field de-
composition Eqn[{5]2), we obtain

Z = TrePHoT, expfoﬁ dT% > exp(ys(niy(7) —my(7))). (5.7)

s=+1

The summands of this integral are always positive, as wesn@sng exponential
functions of real numbers. This is how we avoid the negatiga problem for
fermions stemming from the interaction. We may howevekrgtil a negative sign
problem from theH, - part, i.e. the hopping in the multi-orbital or multi-sitase.

We proceed by expanding the exponential of the interactitima series while
taking care of the time ordering explicitly in the integaatibounds:

oo B B K k
- ~BHo -
Z-Tre kz(j)fo dr, fr_ldfk(zg) % (5.8)

[eTkHO (Z eVS«(nr—m)) ...@ (T2=11)Ho (Z e)’sl(nT—ni)) e—TlHO] )

S S1
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This partition function is of the form

z-3Y T del fk di( )zk({sK,Tk}), (5.9)

k031 §==+1

Zk({S,Ti})ETrgeXp( AtiHo) exp(sy(n — ny)), (5.10)

with At = 7j,1 — 7 fori < kandAr, = 8 — 1 + 71.

Eqn. [RID) is very similar to the equations for the BSS [78lhe Hirsch -
Fye [72] algorithm, see e.g. the calculationlinh [8]: we needdmpute the trace of
a product of exponentials of one-particle operators. Thdone by reformulating
the trace of the operators as a determinant of a fermionicixnas$ originally
introduced by Hirsch,[1122] (see aldd [8], appendix B1). far trace of three
exponentials of single particle operators and their thoesficient matrice®\, B,C
it is easy to verify that

Try o {e i 6 Aici g i 4 Bicigm £ 6 Cici ) = det(1+e”eBe®), (5.11)
and it can be proven that this statement holds for arbiyrerdny matrices. We can

explicitly construct a block-matriXO that contains exponentials of the previous
matrices and has the same determinant:

1 0 0 Bk({SK,Tk})
—Bl({sl,‘['l}) 1 0
0- 0 B({sm2}) 1 o |,
0 0 1 0
0 0 o =Bea({Se1, Tie1)) 1
(5.12)

whereB; = e“AtiHoesyo1 in our algorithm. Following the derivation in Refl1[8],
equations (117) — (131), albeit with unevenly spaced tinees] we obtain an
expression for the Dyson equation that relates the weigltehoninteracting
system to the one of a system with auxiliary spins present:

@ = [T detN*({s.7}). (5.13)

o=1
NA({s.m)) = e -G(ew - 1), (5.14)
& = diag@ V™, @ V%), (5.15)

with the notationg-1)! = 1, (-1)} = -1 and(Géf,‘})i,j = Qoo (7i — 1) fori # |,
(Géf,‘})i,i = 0o, (0*). As we handle a variable number of time slices at constantly
shifting imaginary time locations, it is advantageous torfolate the algorithm as

a function of the matriXN with G = NGy instead ofG as in the Hirsch-Fye algo-
rithm. With the help of the Dyson equatidn{5l14) we expréssweight of any
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Figure 5.3: Pictorial representation of configuratiof$s;j, ;)} € C that occur within
the CT-AUX algorithm. Diagrams for orders zero through ¢hrén this algorithm, an
auxiliary spins; (represented here by the red and blue vertices and theidiveuft the
arrows) needs to be sampled in addition to the imaginary lowationr; of a vertex.

given (auxiliary spin, time) - configuration in terms of thed¢ G, Green'’s func-
tion, the constany defined in Eqn.[(5]3), and the determinant of a rather large
matrix. The contribution of such a configuration to the whodetition function

is given by Egn.[([5.3). We will show in appendix A how to cortgpsuch deter-
minants éiciently, and chaptdil 3 has already shown how we can sampikaayix
spins, times, and cluster site locations starting from Hgui2).

5.2 Updates

In the CT-AUX-algorithm, the partition functiof (3.9) casts of a sum over the
expansion order k up to infinity, another discrete sum oveailiany fields s, and
a k-dimensional continuous time-ordered integral from zexg.t This partition
function is therefore of the typ€{Z173), and we can empleysaimpling scheme
of chapteB to obtain expectation values of observables.

In addition to the vertices of last chapter, we also need topéa auxiliary
spinss; that are associated to each imaginary time vertex. Thusanfiguration
space’ is given by the set

C={{}.{(s 7))} {(s1,71), (S2:72) }, -+, {(S1, 71), - (S 7w) }o ) (5.16)

where thes; are “auxiliary” Ising spins, i.e. take valued, and ther; are contin-
uous variables. Without loss of generality we assume theattmfigurations are
time-ordered, i.e. that; < 75 < -+ < 7.

Note that this representation ididirent from the one that Rombouts originally
proposed in Ref[[121]: there, the configuration space stgsf a number dflax
fixed “slots” at which interaction operators can be insentéd an operator chain
(a so-called fixed length algorithm). This representateedk to an additional
combinatorial factor in the acceptance probabilities &L
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Figure 5.4: Aninsertion update and its corresponding removal updatgmtihe CT-AUX
algorithm.

5.2.1 Spinflip Updates

Let us first consider an update at constant order, e.g. aigpinfl

((81,72), - (85, 71)5 -+ (S0 7)) = ((S1,71), -+ (=8}, 7))+ (S 7)) (5.17)

The probability density ratios of andx’ are easily computed from Eqi. (51 13):
p(x) detN*({s.7})detN;*({s.7{})

p()  GetN:({5.7)) detN, *((5.7.)) (549
and the acceptance rate, according to Hgn.13.19), is
o PO detN{l({ﬁ,Ti’})dethl({S,Ti’}))
Wace= m'”(l’ p() ) - m'”( et ({57} deN, (s.rp) ) O

5.2.2 Insertion and Removal Updates

An insertion move, on the other hand, has to be balanced bynava move

(Fig.[3:2). The procedure is similar to the one detaildd ith8 proposal probabil-
ity only being modified by the probability of picking a spnout of two possible
choices:

ldr
Wprop(x — y) = EF. (5.20)
The proposal probability of removing a spin stays invariant
1
Whrop(Y = X) = PR (5.21)

Applying Metropolis’ algorithm Eqn[{3:18) to fulfill detkd balance we ob-
tain

Wiee = min (1 P(Y) Worop(y ~ x)) ~min ( L L detNi(y)detN,(y)

" P(X)Worop(X = Y) "k + 1detN;(x) detN, (x) ) - (5:22)
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5.3 Measurements

5.3.1 Measurement of the Green’s Function

The main observable of interest in the simulations is thee@ge function
G, (7,7"). First, let us note that we are free to add two additional “imdaracting”
spinss= ¢ = 0 to (5.I0) at any arbitrary timeand+’ (we denote the correspond-
ing matrices of size + 2 with a tilde).ZG, (r,7’") is then given by an expression
similar to Egs. [5.110), with an insertion of.(7) andc!(7’) at the correspond-
ing times. We can again use the standard Hirsch-Fye fornoulthé discretized
Green function (Eq. (118) of Ref.][8]) to obtain

G, (1, 7") =%Z(%)n gi:l foﬂdTl... ﬁdTn

n>0 Tn-1
I<i<n

x Zy({s, 7 })GE™ (,7), (5.23)
with G857 = N, ({s,7})GL. Sinces= s = 0, a block calculation yields
G (1,7) = G2z, 7)

3 Rl DN (s )] ). (6.24)
kl=1

This formula is very similar to the one of the weak couplingasierement, with

M = Mg = [(€%" = DN, ({s,7})]u- (5.25)

Similar to there, we proceed by Fourier transforming witspect tor andr’ and
thereby reinstating the translational invariance alomgiaginary time axis:

Giwn) = G°(iwn) - 9"0;«)2

Y @ MpqeenTa. (5.26)
pq

In the Hirsch-Fye algorithm, where time slices are equatigced, we can
relate the MatrixO of (E12) and its invers®©-! directly to the Green’s func-
tion G, which corresponds to thiel-matrix (5.2%) in our simulation. For the CT-
AUX algorithm the times at which the auxiliary spins are gdare not equidis-
tant but correlated, and therefore we need to measure trenGreinction using
Egn. [52%) or Eqn[(5.26).

Closer analysis of Eqri.{5.P4) shows that it is possible taydéhe multiplica-
tion with oneGP to the evaluation step, and we just need to accumulate thewval
of a matrixS(r).

Gy (1) = GO(7) + fo * 4760« - 7)(si (7). (5.27)
SIETHE) = 3 6( - ) Y MET GO (), (5.28)
k=1 =1

ME™ = (€ ~ DNy ({8,111 (5.29)
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where we have used translational invariancezsetdl, and denoted the Monte
Carlo average with angular brackets (our conventiog(is) > O for 0 < 7 <
B). Hence, we measure only the quant{§:>" (%)), which we bin into fine
bins. After the simulation is completed, the Green'’s funrtiis constructed using
Eq. &27).

Note that the Dyson equation
G (iwn) = gg(iwn) + gg(iwn)za(iwn)G(r(iwn) (5.30)

implies that this procedure amounts to accumulaip®,. Besides the higher
efficiency with respect to the direct accumulation of the Gre&mction, an im-
portant advantage of such a measurement is the reductioghirfiequency noise
by the multiplication withG® ~ 1/w, (see also Ref[]60] for similar ideas in the
NRG-DMFT context).

A special case of the Green'’s function are the densities.ddlvantageous and
relatively cheap to measure these directlyG4{s = 0). Accurate values for the
density are important for many reasons: they enter the Eotransforms in the
form of high frequency tails, they are needed to adjust thbajlnet charge to zero
in the LDA+DMFT context, and they are also used to compute the magtietiza
and double occupancy

S;=(m-ny) (5.31)
D= (nTm) (532)
SZ=((m -ny)?). (5.33)

and higher order correlators thereof with Wick’s theorem.

5.3.2 Four Point Functions

Four point correlation functions can also be computed innailar way as in
Hirsch-Fye using the fact that for a fixed auxiliary spin cgafation the problem
is Gaussian and Wick’s theorem can therefore be used tagettreEq. (5.24).
Thus the problem reduces to the accumulation of the detamhof a 2< 2 matrix

( (G5 + B M o) - (G + G )
(032 + M ™ g2) (0% + oM™ g)

with M5 defined in Eq.[(529). If only a few correlation functions anea-
sured, Eq.[{5.34) is best evaluated directly during the Etman. If many or all
correlation functions have to be measuredatime points and the sizey of
M is comparatively small, it is advantageous to accumulatg amﬁﬁ’“}) and
(Mi{js’“} Mif"”}) and reconstruct the correlation function at the end of tmemeo

tation. While binning the latter expression@n3) in memory, it is onlyO(n3))
computationally (using time translation invariance).

) (5.34)

LIn practice, always choosing = 0 is not the best choice. Instead, we choO$ék)) random
timest’ for each measurement to obtain several estimateS foom the same configuration.



5.3 Measurements 73

0.2

0.8 —
g e+ <57> of auxiliary spins
307
= | 0.22 g
] A
= 0.6 c
X | 2
© ¥ 0.21- :
w= 0.5- v
o
N/\ [
N
o 0.4- o i
Voo 0.2
0.3 | L | L L L 1 L L | L | L | L L]
: 10 20 30 40 50 0 50 100 150 200
K K

Figure 5.5: Left panel: Susceptibilit;(S%aux) of the auxiliary spins as a function of the
parameteiK. HigherK leads to a decreasing magnetization for the auxiliary spints
makes it easier to flip spins. Right panel: Sign problem asation of the expansion
parameteK. IncreasingK increases the expansion order as in EQn.{5.35), but rdises t
average sign.

5.3.3 Role of the Expansion ParameteK — Potential Energy

The average perturbation ordér.,,y) iS related to the parametét, potential
energy and filling by

{Netau) = K= pU{miN, = (y +n,)/2). (5.35)

This expression is obtained by applying the opera(6R|U/K to InZ both in its
original form [5.6) and to[(5]9), including the facter dropped after Eq[{5.6)
(see also Ref[]121]). In the case of the weak-coupling &lyor[34], (Nuwc)e—o =
-pU{n;n,—(n; +n;)/2), wherea is the small parameter which must be introduced
to reduce the sign problem. Hence, the perturbation ordéhencontinuous-
time auxiliary-field method grows linearly witK (see inset of Fig[_5l1) and

(nctaux> K—=0 = < nWC)a—>O-

Figure[51 shows the perturbation orders for the two metlasda function
of U. For these small values &f anda, the perturbation orders are essentially
identical. Both weak-coupling methods scale roughly Irheaith U, with a
kink visible at the Mott critical value. It also follows frofaqg. (535%) that the
perturbation order is essentially linear in the inversederatures.

Similar to the weak-coupling expansion parametg34], the parameteK
can be freely adjusted. While a largé€ryields a larger expansion order, it also
reduces the value of (see Eq.[[5]2)). This makes it easier to flip auxiliary spins.
Therefore the auxiliary spins have less tendency to padarlargerK. In prac-
tice, howeverK-values of order 1 turned out to be adequate. Although wedoun
that the sign problem improves slightly with largerthis small gain is more than
compensated by the increase in computational cost at leahees ofK.
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5.4 Sign Problem

The decoupling of the interaction with the auxiliary fieldusas the prefactor of
the determinant to be positive for all configurations. Thiy @otential source for
a minus sign problem is the determinant of the matixObviously there is no
sign at half filling for a particle-hole symmetric problemhere delN; = detN,,
but the situation away from half filling is not obvious. As inet case of the
Hirsch Fye algorithm, the proof by Yoet al. [[/9], based on a mapping of the
Hamiltonian onto a linear chain, shows that a sign probleused by a negative
determinant cannot occur in the single orbital case.

It is sufficient for a proof of the positivity of the matrix element todione
basis of the fermionic Hilbert space in which all matrix earts ofe-"Hvang!sh are
positive. In order to find such a basis, we map the Hamiltokige Hpam + Hmix
onto a one-dimensional model equivalent to an open fermichmain — a procedure
that in practice could be achieved by employing the Lancigpsraghm.

Recall that

00 B B K k 1
2 Jlare [ an(55) T exp(-amHo) explsy(m ).
(5.36)

and that, if we separate into up and down patrtition functions

z-3 ¥ foﬁdTl“'ﬁldi(%)k (5.37)

k=05, -s==+1

x Zy (K A{(s1.71), (S 1) HZy (KA (81, 71), -+ (S T) })-
The termsZ, (K, {(s1,71)-+ (S 7x) } ) are defined by

1
Z, (K {(S1,71)s 4 (S Tk) }) = TrH exp(—AtiHg, ) exp(syon, ). (5.38)
i=k
We then convert the Hamiltoniafl,, into the one of an open fermionic chain, i.e.
a tridiagonal form:

N
Hor = = > hjo + AN, (5.39)
j

whereh, = a;f fi, + B fi,1, + B fjﬂl(,f,-(,. The operatoN, = ¥, ff; is the
total particle number operator. The parameteran be tuned in such a way that
all the aj on the diagonal of the spin chain are positive, and with a gdrans-
formationg; — |B;/€¥ we obtain a tridiagonal matrix with only positive entries.
Therefore all elements of ekprHp) = exp(-7(Ho, — AN) exp(-tAN) are posi-
tive, as are those of the decoupled interaction expsjn, ), and there is no sign
problem for the single orbital problem.

The same proof is easily extended to a multiple orbital dedigferent orbitals
do not hybridize. However, in the more general case of aastemixing orbitals
the mapping to the chain fails, and a sign problem is to bearpe
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Figure 5.6: Left panel: Sign problem for the CT-AUX algorithm: Upper suand dashed
lines show the sign as a function gif for the 8-site cluster withy = 2,4 = -0.3757t =
0.25. Lower axis and solid lines show the sign as a functiot) ¢ff for the frustrated
plaquette at fixegt = 10,t’'/t = 0.9. Right panel: Real-space Green’s functions (onsite,
nearest-neighbor and next-nearest neighbor) for thedbeicluster with nearest-neighbor
hoppingt, U/t = 4, at a filling of 09 andpt = 2.5. Hirsch-Fye results with 40 time slices
are represented by the symbols, the weak coupling and CT-#adits by lines (on top
of each other).

We have studied two ffierent cases with a sign problem: first of all, we have
decided to go to larger clusters and away from half filling eveha serious sign
problem eventually appears. Also, we have studied therfigst plaquette on the
cluster: this model is known to exhibit a serious sign probla the Hirsch-Fye
algorithm.

While we have no general comparison of the sign problem, wédcgee that
all weak -coupling algorithms for the cases examined hadanee sign problem:
CT-AUX, weak coupling and Hirsch Fye showed néfelience within error bars.

5.5 Impurity Version — Action Formulation

In the equivalent action formulation in Grassmannian notatthe model is de-
scribed by

Seft = —[[ drdr’c’(1)G(r,7') " te(r') (5.40)
v [ dr [ my (o), (7) - n(@) + (@) ;”l(T))] K
= So + Su. (541)

This formulation makes it easier to derive an expressiothfeiGreen’s function:
The Green’s function is computed by taking the derivativehwespect to the
timest, 7/,

(T.o(7)cl(r)) = 202 L 4 L% (549
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The first term yields &°(r—1'). When we use the expansion for the second term,
we obtain

1 kdet(G,le" - ¥ +1)
Zy 6QO(T ')~ 1k051 sk[/ dra- di( ) detG,? - 643

With G = G,'e¥ - €” + 1 and an expansion by minors, @8t') = det(G,'e" -
€' + 1) = G%r - 7’)_1(minor,.G™1) + ¢, wherec is independent oG, (7 - 7'),
we obtain

(T.c(t')e(r)) = QO(T -7") (5.44)
detG!
ZU k & S([/ dTl di( ) detG 1( /T (GO)T’,T)
= <GT’,T>' (545)

This averagé-) denotes the Monte Carlo average over partition functiorfigon
rations.



Chapter 6

Hybridization algorithm

A complementary approach to the weak coupling and CT-AUXesl described
in chapterd¥ anfll5 has been developed by Wereieal. They expanded the
impurity effective action in the hybridization around the local limisiead of
expanding in the interaction around the free, nonintemgatase. The advantage
of this approach, as detailed [ri [9], is that the averagemsipa order for a typical
problem at the Mott transition is much smaller than in the kva@upling methods
and therefore lower temperatures are accessible. In tigimpiper, Ref[]123],
they presented the algorithm applied to the single impukitgerson model. A
generalization to multiple sites and more general inteyastor orbitals[[35] with
application to the Kondo model and the two-orbital modelrséalowed, and
this algorithm was later applied by various groups to reaiemals [124], cluster
problems[[125], cold atom§ [1R6], the Holstein Hubbard md@27], or multi-
orbital problems([37]. We follow [44] for most of the desdign.

Our starting point is again the Hamiltoni&h= Hoc + Hmix + Hpatn Of Section
[Z2 for the impurity model. The Fock space for the impuritysmnned by the
I operatorsc} that create electrons on the impurity, and the one of the bgath
operatorsaE. We split the Hamiltonian Eqnl{2.1) according[ial2.9 intmeal
termHp = Hioc + Hpath @and an interaction terd = Hy,ix. The partition functiorz
is then computed according 10 (2173) as

Z = Tre™ = Tr[e#HT g i drtims() | (6.1)

ke B
= Z / dry-- / dr Tr [e—ﬂHoeTkHo(_HmiX)...e—(Tz—Tl)Ho(_Hmix)e—TlHo] (6.2)
k=0 Tkt

6.1 Partition Function Expansion

Formula [&.l) explains the expansion of the partition fiorcinto a series in the
interaction representation, where the “free” case of thiesés given by the local
Hamiltonian (that contains the physical interaction) aral‘interaction terms” by
the hybridization Hamiltoniaki ;. _

The operatoV = Huy = £, (Vicla, + Viaic)) = Hgyb + Hhyb has two terms:
one that controls the hopping of electrons into the bath ar&dtbat contains the
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reverse process. As the operatorsanda), occur only in H,ﬁyb, each such term
has to be balanced byt,, - term to yield a nonzero trace. Therefore only even
powers of the expansion with alternatikgy, anngyID contribute a nonzero trace:

Z= i /[ dr,dridrdr, Tr [e_ﬂHOTTthb(Tn)Hl,ryb(‘['a)“-thb(Tl)thb(Ta)] )
° 6.3)
InsertingHnmix explicitly yields
z=y ff drp-dr, 3O Y VAVE vV (6.4)
K JLeik Jfee il PPk pleep,
x Tr[ €M), (r)a), (1), () C], (1i0)-+-¢;, (11)a, (r1)ag (1)), (7))
and separating the bath and impurity operators we obtain

z=3 [ dued X5 5T VEVEVEVE (69)

J1, 0k JS_’J’k P1. Pk pi’p’k
< Tre[ T ¢, (), (7)1 ()c, (74)]
x Tra [ €T g, (1)@, (7)-ay, (71)ap (71)].

We would like to integrate out the bath operata@s(r), as they are non-
interacting. Let us first compute the bath partition funatio

Zoan= TrePoan = TTTT(1+ e#®), (6.6)
7 p

and the contribution of a first-order term:

1 Z VO'VO'*Tra [e_,BHbatheTHbathaT e_(T_T,)Hbatha e_T,Hbath:I (67)
Zoatn 5" " P P P

1 /
_ V|2 g (en
Zp:| 7| 1+ehe
1

Z Z VS’VS’*Tra [e_,BHbatheTHbathape_(T_T,)Hbatha"r_)e_T,Hbath] (68)
bath p
- Z |V(r|2;e—(ﬂ—‘r)ep e—‘r’ep

5 P14+ epe

Defining the anti-periodic hybridization functidf,

\/Eym eaoB1) >0
_ pp ,
Fim() = zp: eh 1 { -eT,  7<0” (6-9)
we obtain the determinant
1 _ . . j’* . j’*
Tr[ e, 5° 3 VEVE ViV (6.10)

bath PL.+Px pg_’p’k

Xa;r)k(Tk)apk/ (T’k)"'a;ryl(Tl)api(Tll)] = detF,



6.1 Partition Function Expansion

for an arbitrary product of operators or expansion orderdnodpling with Wick’s
theorem, wher&, = Fjj,.(ti — 7m). The hybridization functioff (7; — ;) is anti
periodic and related to the bare Green'’s function of tieaive actionG® by
Fij(-iwn) = (iwn +@)6ij — G (iwn) L.

In practice, it will be more convenient to handle the inverséhis matrixF,
which we denote by = F-1. In total, the partition function expansion for the
hybridization algorithm therefore amounts to

zzzbathg /f drpdr, % 6.11)

i Bl

< Tre[€ T (r)c, (1)), (1)) (1) | detF,

In the case of the single impurity Anderson model, where wee ltevo creation
operators:I, CI, and a bath that does not mix spins, we can separate the aentrib
tions from each spin completely and obtain

Z=Zon> S I] ] dri-dries (6.12)

kT ki (o
< e |:e_H|OCTT [Tci, (7 )CL;, (7, )"'Cilv(Tlg)C}ryg (tvs)
o

x H detF,..

It is easiest to illustrate the partition function expanspart of the algorithm for
the case where we have just one single orbital in which @lastare created by
c, and which has two “impurity” statg€), (1|. There, equatiorf{6.11) simplifies
to

Z = Zoathy | ff dry---drjTre [€ e T o7y )c' (1) -c(r1)ct (1) | detF.  (6.13)
k

6.1.1 Noninteracting Case

Let us first examine the possible terms for the non-intemgctingle-orbital case
(one spin species only) in the expansion of EQn._{6.13) artidisuitable con-
figuration space and representation for them in analogy @ EgI6). For this
purpose we sdtloc = 0.

We illustrate the expansion by explicitly writing down thenlest few orders
(see also Fid._Gl1):

Zo = Trl=(01/0) + (1|1[1) = 2, (6.14)
y ff drade, T, (7)) () F (7 — 11). (6.15)

At zeroth order[(6.114) there atevo possible states for the system, namely the
orbital can be either completely full or completely empty.both cases there is
no hybridization operator present.
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Figure 6.1: Configurations for the lowest expansion orders in the segadgorithm.

At first order [&.15) there is an electron “hopping” from atbaite onto the
orbital at timer,, staying there for some time, and then hopping into the bath at
time 7} < 8. Alternatively, the electron can be present already at @ere, hop
out of the orbital at timer,, then hop in again at;, and remain on the same site
until 8. The two terms are given by the tracelln (6.15).

Higher order terms involve multiple hybridization process However, each
creator has to be followed by an annihilator, and we have as/roeeation as
annihilation operators. We can therefore describe theresipa terms by elements
of the configuration space

C = {{empty}, {full }, {(73,77)}, {(71,71), (2, 73) }. - (6.16)

{71, 79), (73, 73), - (T 1) b+

with 75 < 77 < 75 < --- < tg and either O< t < t7 or t¢ < t7 < 3, as depicted for
the lowest two orders in Fig.8.1 Each term in the expandgiofdj6is uniquely
described by such a configuration. The property that eadchtioreoperator is
followed by an annihilation operator makes it natural tomefisegments”: inter-
vals in imaginary time in which the impurity site is occupieglan electron. We
graphically represent an element®by drawing a fat line between the electron
creation and its corresponding annihilation operdion)(6.2

c’ C ch _c c’ C
Hoe |— @ ° o— _ ® o |
LT 73 ot T w5 |
0 B

Figure 6.2: Hybridization algorithm: segment configuration. A typicainfiguration of
an orbital for the hybridization expansion algorithm in tegment picture containing
three segments with creation and annihilation operatadtseatbeginning and end.

There are several terms in the expansiorofl (6.1) that rasthie same con-
figuration of segment lines: The configuratiér: {(73,7%), (3,75), (73, 75) } de-
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Figure 6.3: Hybridization algorithm: hybridization lines for a segnierPossible hy-
bridization lines of a particular segment configuration.

picted in Fig[G.P for example is generated by the terms diaviig.[6.3:

! (13)o(x5)F (15 - 19)¢ (13
! (13)o(x5)F (1§ - )0 (x5
¢ (13)e(x)F (15 - )0 (73
I (13)0(x5)F (75 - )0 (x5
¢ (13)e(x)F (15 - )0 (73
¢ (13)e(x5)F (15 - 19)¢ (13

c(5)F (1§ - 13)c'(73
c(T5)F (15 -73)c'(73
c(5)F (15 - 5)c'(73
c(T)F (5 -7)c' (72
c(T5)F (15 -73)c'(73
c(T)F (5 -7)c' (w3

Fi=c(7§
Fo=c(7§
Fs=c(7}
Fq=c(7§
Fs=c(7}
Fe=c(7§

F(rf-13
F(r§-13
F(r$-15
F(r$-15
F(rf-13

F(rf-13

, (6.17)
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UsingF (7 - 7’) = -F (7' — 7 + B) we can add up all hybridization terms in the
previous equation at once. After applying the trace (whgctrivial in the nonin-
teracting case) we obtain

F(ig-1) F(r5-1) F(3-1)
Fc=) Fj=det{ F(r5-7}) F(r5-735) F(5-13) (6.18)
| F(r§-7) F(5-713) F(55-73)

Being able to integrate out the bath degrees of freedom aavdtils treat all pos-
sible configurations of hybridization lines for a configuwatof segments at once
is similar to employing Wick’s theorem to obtain productsohinteracting;® -
lines in the weak coupling algorithms and is essential tachtize sign problem
in the sampling process: some of the terms in EQN.16.18) hawesitive sign,
others a negative sign. It would therefore béidilt to sample these diagrams
separately.

6.1.2 Interactions — Density - Density Case

In this section, we consider interactions betwkerbitals, electrons in which are
created by the operatoc%, for which the local Hamiltoniat,,c commutes with
the occupation number operator of the orbital. “Segmemtistccupied orbitals,
are therefore still a good concept, and we can represenssilple configurations
by | segment configurations of orbitals.
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Figure 6.4: Hybridization algorithm: segment overlap. Shaded are thesflapping”
regions where the impurity is doubly occupied. The lengtthefshaded area enters into
an overall weighting factor for the potential energy (Hutabd). Similarly, the length of
the black lines (occupied segments) enters the weightictgrféor the chemical potential
according to Eqn[{6.21).

The trace over the local Hamiltoniath,. of such a configuration is given by

Eqgn. [611)
Wi = Tre [eT 6, (), ()3, (r)cl (7). (6.19)

As the local Hamiltonian is diagonal in the occupation nunii@sis and only one
state contributes to the trace, the exponential of the Ideahiltonian is easy to
compute: itis justa numbér For the SIAM [41) with Hubbard repulsidn, the
local Hamiltonian in the occupation number basis is

0O 0 O 0
o -« 0 o0
H|0C_ O 0 _,U O s (620)

0 0 0 U-2u

which for a combined length of segmertsin orbital j and an overlaf®;; be-
tween orbitals and j leads to an overall weight factor

Wig = €4(Z1° L) g S5 Wion). (6.21)

The final algorithm for density-density interactions cetsbf three parts: the
generation of segment configurations, i.e. elements of dméiguration space
&18), the computation of the hybridization matrix det@vamt according to
Eqgn. [EI8) and{6.11), and the computation of segmenthesngd orbital overlap
in Egn. [621). The sampling process and tffeeent computation of weights is
described in the next section.

6.2 Updates

In order to evaluate the integral in Eqh.(8.11) and the wiefigttor Eqn. [6.211),
we propose to generate segment configuratioris 0fl(6.16) ioreéMCarlo process,

lthis is the diference to the “Matrix algorithm” described in the next cleapt
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compute the corresponding hybridization matrix determisds.18) and the local
weight [6.21), and accept the change using{3.18) suchitbatanfigurations are
generated according to their contribution to the partifiorction. This stochastic
process is carried out in complete analogy to the one dextiibchaptef]3. The
two basic updates required to be ergodic are the insertidrtta removal of a
segment. Further updates include the shifting of a segmiemteof its endpoints
and the swapping of the segments of two orbitals.

remove

< > \_/
Imax

insert

Figure 6.5: An insertion update and its corresponding removal updathinvihe hy-
bridization algorithm.

Starting from a configuration of segmenis= {(73,75), (73,75), - (73, 7%) }
we attempt to insert a new segmept starting atr® to obtain a configuratiod,, , .
This move is rejected if® lies on one of the segments. Otherwise, we can choose
a random time in the intervaf, 75 of lengthl . (Fig.[65), wherers is given by
the start of the next segmentap and compute the weight. For the reverse move,
The proposal probability of removing this segment is the @inghoosing it from
the set ok + 1 segments i, .

Therefore the proposal probabilities are

, dr?2
Whrop(Ck = Ciy1) = m (6.22)
1
Worop(Cier1 = &) = (7 (6.23)
And the weight ratios
pcIk+1 _ detF(C/k+l)\MOC(C,k+l) dT2k+2/52k+2 (624)

Po,  detF(c)Woc(ck) — dr/g
Which, in complete analogy to Eqi._(5122), yields

P(Y)Woron(y ~ x))  min ( L 1 Im—ax(detF’)V\ll’oc)
" P(X)Worop(X — ) "k+1 B (detF)Woe )
(6.25)

Wee( X = y) = min (1

the prime denoting configuratign
An important update that is completely equivalent to theiitisn of a segment
is the insertion of an “antisegment”, i.e. instead of inegra creator-annihilator
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Figure 6.6: Updates of the hybridization algorithm as described in éxé& tStarting from
a): Removal of a segment (b), shift of an endpoint of a segrf@ninsertion of an anti-
segment (d), removal of an anti-segment (e). Removal oh@&na@nti-segment such that
the remaining segment “wraps” arougdf).

pair we insert an annihilator-creator pair. The acceptaatie formulae are the
same as Eqnl{6.P5). Besides smaller autocorrelation tinese moves cause the
two zero-order contributions “full occupation” and “no segnt” of Eqn. [6.14)
(Fig.[61) to be treated on equal footing.

Further moves, like the shift of an (anti-) segment or thdtisigi of one or
both end points do not change the order of the expansion, dipttb reduce
autocorrelation times. The acceptance ratios for thelsgtncing shift moves
are

Waed X = Y) = min(l P(Y) Worop(Y ~ X)) . (1 %

’ p(X)Wprop(X - y) ’ (detF )\Nloc

Global updates, like for example the interchange of all ssgsof two or-
bitals, may be required to assure that the algorithm is eécgod. that it does not
get trapped in a part of phase space. This can be used, fopéxaim obtain a
paramagnetic solution in a state that would otherwise seebe tantiferromag-
netic because of long autocorrelation times. Such updatpsre the configura-
tion to be recomputed from scratch, and are in general ofr @die®).

) . (6.26)

6.3 Measurements

In our simulation we generate configurations of segmentk thié weight that
they contribute to the partition function as described in chaptEl 3. In order
to obtain expectation values of an observaBleve can either simulate the se-
ries of that observable (which, for the Green’s functionulgocorrespond to the
Worm algorithm), or obtain estimates of that observabledwyeighing according
to Egn. [3IR).

The single most important observable for quantum Monte cCaripu-
rity solvers is the finite temperature imaginary time GreefuinctionG(7) =



6.3 Measurements 85

—({c(7)c'(0)), which is returned as a result from the solver.
The series for this observable is

G(T,T’):—zbathzkj f/ drpdrf, 3% (6.27)

Jaeedi i di

x Tre [ MeeT o(7)C! (/)G () ()€ (r1)cl (74) | det,

and in complete analogy to the partition function configioreg we can identify
Green'’s function configurations as segment configuratiatis two additionalc
andc' operators. We have two possible ways to proceed to obtaistanator for
the Green'’s function. The first consists of trying to insketoperators(r), c (')
into a configuration of the partition function, and then tongute the ratio of the
local weights. Alternatively, we can obtain an estimatocgt) by identifying
two operators in a partition function segment configuratitat are an imaginary
time distance apart, and removing the hybridization lines between thercor:
figuration for the partition function at ordgiis thereby turned into a configuration
of the Green'’s function at ordér- 1. This procedure is drawn in Fig.6.7.

If the weight associated with a partition function configioa was

p({(5.75). (75, 7)}) = Tre [eeeT 6, (m)c] ()3, (12)c] (1) detF
(6.28)

the local weighWW,,. of Egn. [6.I9) given by the trace factor of the Green’s func-
tion configuration generated by this method stays invaridite hybridization
determinanf, computed according to Eqrii._{6127), however, correspondseto
determinant of hybridization functions that do not involhe Green’s function
operators(73) andc'(78), i.e. to the determinant of a matrix with one row and
one column removed.

po({(T5,7), (15 1.75.1)}. 78.78) (6.29)
= Tre [T ey (7)€, (rhoq)(r8)-c! (18)--; (ra)c], (1) ] detF&y,

For measuring the Green'’s function, we employ forniulal3A@® therefore need
to accumulate

Po _Po({(h 7). ~(iy 1)) 1eote) detFE o
Z p({(5. 7). (5. 7D)}) detFy |
Fff‘e-" denoting the hybridization function matrix with the operaat 73 andrg
removed.

The fast-update formulas of appendix A describe how sucheaméant ratio
is computed:

G5 75) = 5My = 5(F ;. 631)
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Figure 6.7: Hybridization algorithm: Green’s function configuratioA typical config-
uration for a Green’s function, created by taking the partifunction configuration of
orderk = 3 Fig.[6.2 and identifying a creation and an annihilationrafm as the Green’s
function operators to obtain a Green’s function configoraorresponding to a partition
function configuration at one order lower. Red: creation lalne: annihilation operators
of the patrtition function. Light purple: Green’s functioperators.

We can bin this into fine bins to obtain the Green’s functicimesstor

G(1) = % (Zk: M;A(7, 77 - 15) ), (6.32)
i]
N S(r—-1), T>1
A(r, ") _{—5(T—T’+ﬂ), o (6.33)

For a configuratiorty = {(73,7%), (73.75), -~ (73, 75) } we can therefore obtain
a total of k? estimates for the Green’s function — or one for every creatio
annihilation operator pair or every single element oftke k) - matrixM = F-1.

Efficient estimators exist for the density, the double occupand the poten-
tial energy (and similarly for all observables that commwiith the local Hamil-
tonian):

Ep= ZUij(ninj), (634)
i>]

Di = (mynyy). (6.35)

The occupatiom; of the j-th orbital is estimated by the length (Eqn.[621) of

all the segmentsy; = %. A site is doubly occupied if the two orbitals overlap, and

therefore(D;) = %(OM). The system has a magnetizationSyf = ((li; - 1i;))/B.

As the overlap and length functions are used at every Monte €&p, where they

enter the local weight, these observables are readilyablaibnd very accurate.
The average expansion order of the algorithm is an estinfiatdhe kinetic

energy, similar tdE in the case of the CT-AUX algorithm:

En = /—§<k>. (6.36)

6.4 Implementation Notes

For each configuration, in C we need to store the following elements: the seg-
ment length and overlap, the inverse hybridization mattix F-1, and the con-
figuration itself. It is sfficient to compute the change in length and overlap at
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each step to obtain the weight ratio, and we only need thefdtlap and length
information for the measurements. We store the configurattoa self-balancing
tree of segments, i.e. atree of pairs of times that contastirt- and end times of
each segment. K is diagonal, i.e. does not mixfierent orbitals, the determinant
can be written as a determinant of block-matrices with on&irper orbital,

detF! = detM = [ | detM;. (6.37)
j

This significantly reduces thetert of taking the determinant. The operations that
need to be performed are:

e Check if we can insert an additional segmgantisegment at a new time
(search operatior{O(logk)))

e Locate the nearest segment stahdpoint at a time (increment, constant in
time).

e Insert a new segment (insertion, kg
e Remove a segment (removal operation,kpg

The updates implemented in our code include the inseftremoval updates for
the segments, as well as shift updates, and expefXik® global updates, like
the exchange of all segments between two orbitals.

In the code, we use the fast-update formulas that are exgglamappendix
[Alto efficiently compute the determinant ratios of Eqn.(6.25). Tlnstead of
storing the F-matri; = F;(r, — 74) we computationally handI®,q = (F1)pq.
This has the advantage that determinant ratios can be cechpasily Q(k?) for
an insertionQO(k) for a shift move, constant in time for a removal move) and that
updates are — as in all the other QMC impurity solver algarigh- ofO(k®) for a
new independent configuration.



Chapter 7

Hybridization Algorithm — General
Interactions

This chapter generalizes the partition function expansibthe last chapter to
impurity Hamiltonians that have a more complex structure.b& specific: we
want to be able to compute the expansion EQn.{6.11) for Hamiéns that have
interactions that are more general than density-densi¢yantions, for example
multiple orbital Hamiltonians with general, rotationaihywariant Hund’s coupling
or cluster Hamiltonians, where the cluster contains thalloo-cluster hopping.
The general framework has been developed by Werner andshtll[35], and
applications to real materials (LDADMFT) and small clusters have later been
pioneered by Haule and collaborators e.g.[in[124]. Thisurip solver algo-
rithm, while in principle just an extension to the algoritlfithe previous section,
is perhaps the mostfliicult one of the continuous-time impurity solver algorithms
to implement. A rather extensive part of this chapter isdéfege dedicated to the
efficient implementation of this solver.

7.1 Partition Function Expansion

We refer to the previous chapter, where we wrote the pantftioction as a series
of integrals of a determinant of hybridization lines timesexpectation value of
time-ordered operatorE{6]11):

Z-Zoany, [[[ dridr ¥ ¥ (7.1)
k

ik B

x Tre [€ T ¢, ()] ()i, (1)), (1) | det.

The peculiar structure of the local Hamiltonian enforceat tevery creation op-
erator had to be followed by an annihilation operator in ofdethe trace not to
be zero, which led us to formulate the algorithm in terms ehtion-annihilation
pairs called “segments”. If this constraint can be violatezlg. because the local
Hamiltonian does not commute with the local particle nundgsgrator, we need
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to simulate Eqn.[{(7]11) directly. In the Heisenberg fornmalisvith explicit time
ordering, we obtain

© B B B
Z= Z / dT]_ / dTZ"' / di[Tre—TlHlocole—(Tz—Tl)Hlocoze—(T3—72)Hloc03 (72)
k=0-0 T Tk-1
...Ok_le_(Tk—l—Tk)Hlocoke—(ﬁ_Tk)Hloc] detF (01’ e, Ok)’
whereo; is one of thd operators
¢, Cl -0, ¢ (7.3)

that build the Fock space of the local Hamiltonidg, and obey the fermionic

commutation rulegc. ¢/} = 6. {c..¢;} = 0= {c.cl}.

Hoe | —OE- 40— OMO—O—<0— 40
0 B

Figure 7.1: A typical term in the expansion 6f1.2: three “flavors” (odté, cluster sites,
...) of fermionic creation and annihilation operators (@ted by filled and empty tri-
angles, squares, and circles) are placed at times betweet £ &Ve need to compute
the trace of the operator product and multiply it to the hgization line determinant
Eqn. [Z2) to obtain the weight of this configuration. Notatthther than in the segment
case, two operators of the same type may follow each othersame number of creation
and annihilation operators need to occur for the trace toomezero. Figure according to
[35].

7.1.1 Configuration Space

The configuration space we need to sample for the generaidigdition solver
is much larger than the one of the segment solver: In ordethitrace to eval-
uate to a finite value, the only constraint from EGnX7.1) &t thhere must be as
many creation operators as annihilation operators of threedgpe present in the
expansion; they do not need to appear in alternating order.

We denote by the indej the type of the operatdr{4.3) on the impurity Hamil-
tonian and define the configuration space to be

€= {0 {(rn 7l i) {(re 7 10). (7275 2)), (7.4)
SR (CRTI RIS RS

The triplets denote the time of the creator, time of the aitatibr, and orbital or
cluster site of these operators. An additional constraigiven by the properties
of the local Hilbert space: As we work with fermionic systewg cannot have
more electrons present than we have orbitals availablenfent This puts an
upper bound on the number of consecutive creation- and getioin operators.
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—_—
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Figure 7.2: One possible hybridization line configuratioR=lines go from annihilation
operators to creation operators of the same type (“diagdydlridizations). We sample
all possible configurations @i-lines at once by taking the product of the determinants of
the F-matrices.

Symmetries of the local Hamiltonian, like momentum conagon on a cluster
or rotational symmetries in a multi-orbital problem, yieldditional constraints
by limiting the number of states available in each symmeésta. As these
constraints significantly reduce the size of the configaratipace that has to be
sampled, they are implemented such that configurationyigldtzero weight due
to these restrictions are instantly rejected and the sagpiconstrained to parts
of the phase space that have nonzero welghtl[124].

7.1.2 Computation of the Hybridization Determinant

The computation part of the hybridization matrix is comelgidentical to the part
described in sectidn8.1.1: every creator is connected lyppadization line to an
annihilator. The weight is given by the determinant of theérraF that contains
these hybridization lines (Fig—8.3). If the bath does nat diiferent orbitald;
andlj, i.e. Fy, (ti-7;) = 6, Fy,(7i—7;), we can write thé=-matrix Eqn.[6.1B) as a
block-diagonal matrix and its determinant as a product téreinants of smaller
size,

7

L 0 0 0

detF =det| ¢ F2 O 8 [ detF; (7.5)
]

F.

oNoNe

0
0

o .

J

Unlike in the segment algorithm, the main computationak tasthe evaluation
of the trace of operators in EqiL{FV.2). It is there where ntiost is spent, and
simplifications that make this computation feasible arediesd in the following
section.

7.1.3 Computation of the Trace

As derived in Egn.[(7]2), we need to compute the trace of aymtoof operators
and exponentials of the local Hamiltonian. Once we choosas#shthis corre-
sponds to taking the trace of a productkoflarge) matrices that have the linear
size of the local Hilbert space at expansion okldvlatrix-matrix multiplications
scale roughly as the third power of the matrix size. It is ¢lfiere vital to reduce
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occupation number basigHiqc, S;] = 0= [Hioc, N]  further symmetries

Hloc Hloc

Figure 7.3: Sketch of a rotatiori block-diagonalization of the local Hamiltonian. The
Hamiltonian in the occupation number basis is sparse builooked. A first permutation
operation builds blocks according to the occupation nurahdrspin of the local Hamilto-
nian. A second (rotation) matrix further reduces block sigeonsidering rotational and
translational invariance of the impurity Hamiltonian. Ga@d blocks represent non-zero
entries of the Hamiltonian.

the size of the matrices as well as the number of matrix-mattiltiplications that
have to be performed.

Computing the exponential of a matrix is an expensive oparatHowever,
as it is always the same matrix that occurs in the exponenpeserm the entire
calculation in the eigenbasis of the local Hamiltonian. Hdew to do this, we need
to be able to diagonalize this Hamiltonian, and this will msp a limit on the size
of local Hamiltonians that we can treat without approxiroas.

We then observe that the local Hamiltonidp. has symmetries. While these
symmetries are model dependent, usually the total pariineberN, the total
Spin z-componen§, and rotational or translational symmetries of the impurity
Hamiltonian are conserved:

[Hloc, Ntot] =0= [H|OC’ Stzot]- (7-6)

This implies that we can transform to a basis where the loeahiHonian has a
block-diagonal form, and that we can diagonalize each dfeltidocks separately.
This procedure is sketched in Fig.{7.3).

The advantage of changing to a block-diagonal form and dialggng the
local Hamiltonian therein is that operatou:isc}r are also in block-matrix form.

The operatociTT, for example, raises both the total particle number and tted to
S,-component by one and therefore consiststbiitagonal blocks connecting the
(Sz n) - symmetry sector with théS, + 1,n + 1) - sector.

A typical example is the four-site Hubbard plaquette witktrgearest neigh-
bor (t'-) hopping. The local Hamiltonian has a size of 256856 elements, as we
have four sites, each of which can assume one of the fous#datet), | |),| 14).
However,H commutes withn;,n, and has a four-fold rotational symmetry (or
a couple of inversion and mirror symmetries). This allowstaisplit up the
256 x 256 matrix into 84 small blocks that have at mostxL66 elements. As
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Figure 7.4: Sketch of one of the optimizations in the code: Four symmsdgtors are
drawn, for whichS; andN are dtterent. After the trace ocEI andc, is taken only one
of the symmetry sectors still contributes. In the impleraéon, we first identify which
symmetry sectors contribute, and then compute the mawolyat and trace only for these
sectors. Additional symmetries vastly simplify the congtiain.

the most expensive part of the code is the computation ofixqatoducts, which
scales a®(Ypiock Mioek) OF O(M . bioe) iNStead ofo(nd . ,....), the advantage of
using symmetries is obvious [36].

7.2 Measurements

The measurement of the Green’s function is done in the samgeasvan the seg-
ment picturd 613, where we took a partition function configian, removed a
hybridization line, and thereby obtained an estimate ferGneen’s function.

Care has to be taken when the expansion order is very smallylen one sec-
tor is almost completely empty or almost completely fillenl] #herefore virtually
no hybridization processes with the bath occur. In this ¢hsee are almost no
operators present and the method of sampling the Greerctidarat the position
of operators as described above yields bad statistics.

We then need to employ the second measurement processeesab.B and
obtain Green’s function configurations by inserting opaistnot removing them.
From a partition function configuratiof\(r1, 77, j1), - (7, Ty, jk) } We obtain a
Green’s function configuration

G 5,78 = Zpa dry---dr 7.7
pd(76,°,73) bthzk:// T1 Tka_ Z (7.7)

ik il

< Tre [T G, ()], (0 € (7€) C(78)-+<, (1)) (1) | detF

by inserting the two operators)(72),cq(7%) into the operator chain. For the
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measurement in formula EqiL_(3112) we need to employ theighivey formula

po _Tre[e T () chre) ) cu(racy)]
Pz , |

[e—HlocT Cjk (Tk)C;r{( (T,k) . 'le (Tl)C;rg_ (T;.):I

which involves recomputing the entire operator string. ldeer, if only very few
operators are present, this is straightforward and not coatipnally expensive.

If the observablé\ can be expressed in terms of the basis of the local Hamil-
tonian, liken;, S7, ni;n;, or Hie, we evaluate it by computing

(A) = 5TroA (7.9)
i.e. we compute the matrix product above and multiply theraijoe matrix to it,
then take the trace. Time dependent correlation functilikes(S,(0)S,(7)) or
more general multi-operator correlation functions k& t1)c;(t2)cl (t3)ci(74))
are evaluated by inserting the operators into the matrigycbat the timer; and
then taking the trace, analogously to Eqn.1(7.8).

7.3 Implementation Notes

The Hybridization expansion algorithm is perhaps the masicdlt of all
continuous-time algorithms to implement, as besides thweitiization expansion
part also the parts that build the Hamiltonian matrix, blolckgonalize it and then
compute products and traces have to be written and maidtaine

In our case we chose to base the impurity solver on the ALLP8][@Ract-
diagonalization library, where tools to build and diagarethe Hamiltonians are
already built and tested, and various symmetry operatiopéemented. It is the
ALPS library that provides us with the local basis, the Haomian matrix, and
creation- and annihilation operators in an occupation rembhBsis.

The ALPS library cannot yet handle terms dependent on foeraiprs in dif-
ferent orbitals, like general pair-hopping or exchanger@ated hopping) terms.
Therefore we added an additional routine that reads in tted ldamiltonian ma-
trix for a given basis.

The local Hamiltonian is mapped onto a graph that contaiesfénmionic
impurity sites as vertices and interactions as vertex oeeeigns. This allows for
a very generic adaptation of the code to almost any impuritplem: Clusters,
multiple orbitals problems, or combinations thereof araeggated by specifying
lattice and model in a parameter file. Symmetries — both loparators adl; or
St and spatial translation symmetries can be specified in the parametexrfde
are interpreted at run time to generate the block-diagamal bf the Hamiltonian.

The computationally intensive part is the computation efttlace, namely the
operationAjj = ByccDyj, with ¢, the (diagonalized) exponentiat™ec andD a
dense but small matrix that is part of the block-matrix of tiperator in the trace.
This is done using a fast matrix multiplication routine fonall to intermediate
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size matrices, implemented in BLAS. The exponential factwe computed using
vector exponential functions.

The dfort can be further reduced if we limit ourselves to eigengalof the
local Hamiltonian that are not particularly large. The expotial factoreHicr
causes large eigenvalues to be suppressed exponentiaibme eigenvalues are
substantially larger than others, we can truncate the spacind only compute
with the smaller eigenvalues of the Hamiltonian.

A far cruder approximation that yields even higher perfanoea gains is
achieved by limiting ourselves to a subset of all particlenbar, momentum, or
spin sectors. We manually truncate the local Hamiltoniahthe trace, such that
high-energy (-momentum, -spin, whatever is physicallykndo have little influ-
ence) sectors are removed. Of course this reducestorédramatically: not only
can we limit ourselves to a small subset of sectors, we canigi®re transitions
out of that set into other states and back into it again.

A systematic improvement on such a limitation that takee cathe influence
of highly excited sectors in a systematic manner has beempted by A. Millis
[129).

We have examined two implementations of the truncationfiteeone takes
the eigenvalues of the system, sorts them according togtzeiy and removes any
eigenstates that have less than a given energy. The secenmkdorms the ther-
malization of the system in the full basis. Then the sectwoas do not contribute
are identified and removed before the sampling process staftile the second
version has the advantage of taking into account dynaffects, it is much more
expensive, as the full system has to be simulated for at éeagimber of steps.

The truncation of the basis can also be done dynamicallyraitne: \We order
the eigenvalues in ascending order. Once we know the expiahgactorc =
g Hc, we can truncate the matrix product

Aj = BixCkDyj (7.10)

at the indexky for which ¢, = 0,k > ko. This new “dynamic truncation” shows
promising results and allows to systematically reducedation errors.

It is important to note that the numericaf@t in the general matrix formu-
lation of the hybridization algorithm scales exponenyiaith the number of im-
purity sites or orbitals considered. This is because the agizhe Hilbert space
grows exponentially with the number of orbitals, and we neediagonalize the
impurity Hamiltonian on that space. However, for a givenigbeon the hybridiza-
tion part of the algorithm scales with the inverse tempeegguo the third power,
and the trace-part inear in the inverse temperature per trace, or quadratic per
sweep. Thus, as long as we are in a regime that is dominatdtelyotnputation
of the trace (which is usually the case), the algorithm scqleadratic irB.

7.4 Tree Algorithm

As the main &ort of the algorithm is the computation of the trace, whichnsar
in the numbers of hybridization operators present in théigaration, we need to
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look for ways to accelerate this computation. In the segralgarithm, the &ort
of computing the new segment overlap wadogk), where the log stems from
the cost of finding the segment in a segment list. As this beaperation is rela-
tively cheap, the trace computation is negligible and thexafpons are completely
dominated by the computation of the hybridization part.

Computing the complete trace in the general case will ahbayst leasO(k),
as we need to access each operator at least once. Hoveamnputingthe trace
after an operator insertion or removal updatiers the possibility of simplifica-
tions. A first idea can reduce th&art to O( /k): we take the operator trace and
create arounel/@ intervals between zero amd We then store the matrix prod-
uct of all the operators within this interval, where eachhsan interval contains
approximately\/m operators. If we insert two operators, we will change the
matrix product of one or two intervals - which need to be repatad at the cost
of vk operations. The whole recompute operation is therefo@(afk), and a
sweep ofO(k%2). This algorithm is illustrated in FiguieT.5.

Hoo | — O 01— 0MO—O0—<0—ll—0- 0
% §

binl1 bin2 bin3 bin 4

Figure 7.5: Binning algorithm: binning of the operators into four birgch having ap-
proximately four elements, reduces thoet of computing the trace after inserting or
removing an operator t0(/(k)).

A better, but slightly more complicated algorithm uses thapprties of self-
balancing binary trees. In our case, we implemented a tgg@itim based on
so-called AVL [130/ 131, 132] trees. These trees have thpgrtp that they have
a depth ofO(logk), and that the maximum depth is no larger than the minimum
depth plus two. Denoting dense matrices from the hybrigimabperators with
capital letters and the exponential vectp(s;,; — 7;) = e*™o = p;;,1 with lower
case letters, we can write the trace in EQn.(7.2) as

Tr [piOAAij plj;-\BBjk PCu pICD"‘Zpi p‘z;;] . (7.11)

We then arrange all the operators[in{7.11) in a binary trees dasy to see that
for every exponentiap(r — 7i,1) = €%(@-711) that is between the first and last
operator we can assign one of the branches of the tree. Theggabators” from
time ; to timer;,1, where a right branch contains the propagator from the nmde t
the smallest time of the right subtree, and a left branchatogatthe propagation
from the largest time of the left subtree to the node (Eig).7Téhe main idea of
the algorithm is that each node stores the matrix produdiefdft subtree times
the propagator to the left, the operator, and the propagatire right times the
matrix product of the right subtree. This storage i©g¢k) in memory.

Itis now obvious that few changes need to be done when a nenatopépair)
is inserted into the tree: First we have to locate the profserepof the operator
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Figure 7.6:Binary Tree

in the tree, which is an O(ldg search operation, and insert the operator. Then
we need to change the two propagators that lead to this natlaveaty from this
node. And finally we need to recompute all the matrix prodtités have been
changed.

Let us first look at the insertion. Finding out the right plédoean insertion is
easy:. we compare the times of the operators, and follow #eedownwards on
the left or right branch until we find an empty spot. This is véhe/e insert the
new operator.

In order to make sure that the tree stays balanced, we needtom so-called
tree rotations (see computer science literature likel[I82¢letails): if we find a
subtree that has more than two entries more on one branclothtére other, we
rotate it. Let us consider the five operaté$,C, P, Q, with 7, < 7, < 1p < 7 < 7,
with root P, leavesA, B, andC, and an intermediate nod@. The place where
operators are stored in the tree is dependent on the hidtoryestion and removal
operations, and multiple trees yield the same matrix prodirc Figure[Z.¥ we
illustrate two possible trees for which the order is the sdmeéthe root node has
changed. Atree rotation is the operation that changesdhetree into the left one
and vice versa. By performing such a tree rotation we car this depth of the
tree on one side, while lowering it on the other side. An AViketinsertion move
now proceeds to “rebalance” an imbalanced tree by compthiegliference of
the number of nodes on the right side and on the left side, arfdnning a right
or left rotation move such that it stays smaller than or etuahe.

Obviously the matrix products stored for the node® andC need not be
changed when such a move is performed. The matrix produ@t\aill be the
one that was previously storedR{namelyAPBQGC the product of the operators
of the entire tree), and it is only the productRthat needs to be recomputed.
Thus, while proceeding up the tree, we need to com@(tegk) matrix products
of the typeM;; = AxbkCy;. Removal updates proceed by “rotating” the node to
be removed to the bottom using right and left rotations, dresh trecomputing
the matrix product. These rotation operations are the ongsdhat have to be
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Figure 7.7: Tree Rotation

right rotation

implemented and where matrix products are computed.

At the end of an insertion or removal update, the matrix pcbdtithe root is
read out, multiplied by the propagation from zero to the fistle and from the
last node tg, and the trace is taken.

The tree algorithm for the hybridization solver, while natieely trivial to im-
plement, allows the computation of matrix product€iflogk) steps instead the
naiveO(K) or the straightforwar®( \/k) steps. It thereby reduces the computa-
tional overhead associated with the matrix hybridizatiolver significantly and
allows access to lower temperatures. Eventually, thoughekponential scaling
of the local Hilbert space or th#® scaling of the hybridization part will dominate
the calculation. A typical arrangement of operators angagators within the
tree algorithm is illustrated in figufeT.8.

Hioc SO 7'—.7
0 B

Figure 7.8: Tree algorithm: sorting the operators in a tree yields amalv®(log((k)))
effort for the matrix product. The tree shows one possible gaarent of the operators
in a binary tree structure - the actual arrangement depemdsseoorder of insertion and
removal operations.



Chapter 8

Performance Comparison

E. Gull, P. Werner, A.J. Millis, M. Troyer,
Phys. Rev. B 76, 235123 (2007)

This chapter forms the start of the results section that slemme of the problems
to which we applied the new algorithms. After implementihg tveak coupling
and the hybridization algorithms, we compared their pengomce to the old, well-
established Hirsch - Fyé [F2] algorithm. The chapter mostipws the original
publication, reference[9].

8.1 Matrix Size
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Figure 8.1: Scaling of the matrix size with inverse temperature and-aut@n strength.
Right panel: temperature dependenceUgt = 4. In the case of Hirsch-Fye, the resolu-
tion N = BU has been chosen as a compromise between reasonable a@natamcept-
able speed, while the average matrix size is plotted for tmirmuous-time solvers. Left
panel: dependence dy/t for fixed gt = 30. The solutions fot) < 4.5 are metallic, while
those forU > 5.0 are insulating. The much smaller matrix size in the relevegion of
strong interactions is the reason for the high&icency of the hybridization expansion
method.

For all three algorithms, the computation&bet scales as the cube of the ma-
trix size, which for the Hirsch-Fye solver is determined bg time discretization
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At = B/N and in the case of the continuous-time solvers is determixyethe
perturbation ordek, which is peaked roughly at the mean value determined by
the probability distributiorp(k). In Fig.[81, we plot these matrix sizes as a func-
tion of inverse temperatuggfor fixed U/t = 4 and as a function dfl /t for fixed

Bt = 30. All our simulation results are for a semi-circular déynsif states with
band-width 4.

It is obvious from the upper panel of Fig.B.1 that the matizesn all three
algorithms scales linearly with. The Hirsch-Fye data are foM = gU, which
is apparently a common choice, although Figsl 8.2[and 8.4 shat it leads to
considerable systematic errors. Thus, the grid size shodétt be chosen much
larger (N > 58U).

While the matrix size in the weak coupling approach is apipnexely propor-
tional toU/t, as in Hirsch-Fye, th&)-dependence of the hybridization expansion
algorithm is very diferent: a decrease in average matrix size with incredsitg
leads to much smaller matrices in the physically intergstegion 45 U/t < 6,
where the Mott transition occurs. The results in Eigl 8.1 tweccubic dependence
of the computationalféort on matrix size essentially explain why the continuous-
time solvers are much more powerful than Hirsch-Fye and \ubyhtybridization
expansion is best suited to study strongly correlated syste

There is of course a prefactor to the cubic scaling, whicleddp on the com-
putational overhead of theftirent algorithms and on the details of the implemen-
tation. Blumer[[78] has demonstrated substantial optiiins of the Hirsch-Fye
code and has in particular shown that extrapolating resitilt®n-zero time step
At to the Ar = 0 limit considerably improves the accuracy. Of the contumsio
time codes investigated here, only the weak coupling rebalte been optimized.
We estimate that similar modifications in the code for thertdjbation expansion
algorithm would provide a speed-up of at least a factor of HOwever, the re-
sults presented here indicate large enoudfiedince between the methods that the
effects of optimization can be ignored.

8.2 Accuracy for Constant CPU Time

The three quantum Monte Carlo algorithms considered instioidy work in very
different ways. Not only are the configuration spaces and heeceptthate pro-
cedures entirely dierent, but also the measurements of the Green'’s functiahs an
other observables.

In order to study the performance of thetdrent impurity solvers, we there-
fore decided to measure the accuracy to which physical gigantan be deter-
mined for fixed CPU time (in this study 7h on a single Optero# @dr iteration).
This is the question which is relevant to people interesteahiplementing ei-
ther of the methods and avoids the tricky (if not impossiléek of separating
the diferent factors which contribute to the uncertainty in the sneed results.
Because the variance of the observables measured in swecéssations of the
self-consistency loop turned out to be considerably latiggn the statistical error
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bars in each step, we determined the mean values and ersousiag 20 DMFT
iterations starting from a converged solution.

The Hirsch-Fye solver sters in addition to these statistical errors from sys-
tematic errors due to time discretization. These systensators are typically
guite substantial and much larger than the statisticakrrrén order to extract
meaningful results from Hirsch-Fye simulations it is esseio do a careful (and
time-consuming\r — 0 analysis([7B]. The continuous-time methods are obvi-
ously free from such systematic errors if dfszient number of time- or frequency
points is used in the measurement of the Green’s function.

8.2.1 Kinetic and Potential Energy
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Figure 8.2: Left panel: kinetic energin = 2t /0/3 drG(7)G(-7) obtained using the
three QMC impurity solvers fod /t = 4.0 andgt = 10,15,...,50. The Hirsch-Fye simu-
lations forAr = 1/U (as in Fig[81) yield systematically higher energies. Tiset shows
results obtained with the continuous-time solversgiot 35,40,45 and 50. Right panel:
potential energy (n;n,) for the same interaction strength.

The kinetic energy,
B
Ekin = 2t2 \/0‘ dTG(T)G(_T)a (81)

shown in Fig[8PR, was obtained from the imaginary time Geeé@mction by
numerical integration. To this end we Fourier transformeel imaginary time
Green’s function and summed the frequency componentsdimguhe analyti-
cally known tails. This turns out to be more accurate thandihect evaluation
of equation[[(811) by trapezoidal or Simpson rule. It is alsorenaccurate than
the procedure proposed in Ref._[124] for the temperatureirtedaction range
studied.

We computed results for fixed /t = 4 and temperaturgd = 10,15,...,50.
In this parameter range the solution is metallic and we exigge/t o< (T/t)? at
low temperature. The dominant contributionEg, comes from imaginary time
points close tar = 0,8. The accuracy of the kinetic energy therefore illustrates
how well the steep initial drop d&(7) can be resolved.
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The results from the continuous-time solvers agree withioréars, but due
to the larger matrix size, the weak coupling algorithm carigeen fewer updates
for fixed CPU time and therefore the error bars are substhniaager (see inset
of Fig.[82).

The Hirsch-Fye results are strongly dependent on the nuoiltme slices
used. Because of the cubic scaling of the computatiofi@itenvith the number
of time slices, at most a few hundred time points can be takienaccount. This
number is not sfiicient to resolve the steep drop of the Green’s function at low
temperature, and therefore the kinetic energy convergesltes which are sys-
tematically too high. Extrapolation (e.g. ref.] [8[._[73]Jam be used to obtain
values forAr = 0 and reduce these errors. However, various simulationg-at d
ferentAr have to be performed in order to obtain an accurate estinfatethe
kinetic energy we performed this extrapolation fior= 15,20,25. The error for
Bt= 20 atAr = O after extrapolation is 10 times larger than the one we could
obtain for the weak coupling algorithm, which is again arten times larger
than the one for the hybridization algorithm.

We emphasize that for this particular case all three metaaalstiiciently ac-
curate that physically meaningful conclusions can be draémendiferences, how-
ever, have clear implications for the extension of the metieomore demanding
regimes.

In the lower panel of FigC8l2 we show the potential enekgyn;n,) for
U/t = 4, computed with the two continuous-time methods. In theriaytation
expansion algorithm, the double occupancy can be meastwadthe overlap
of the up- and down-segments. In the weak-coupling case,sed the relation
U/2((; +a)(n -1-a)+ (N -1-a)(n, +a)) = (k)/B (Where(k) is the average
perturbation order), and an extrapolatiornte> 0. Both results agree within er-
ror bars and the hybridization expansion approach agaldsytee more accurate
results.

8.2.2 Green’s Function and Self Energy

The high precision of the hybridization expansion resuitsthe kinetic energy
indicate that this algorithm can accurately determine tiegpe of the Green’s
function nearr = 0 andB. We now turn to the lowest Matsubara frequency com-
ponent of the Green'’s function, which is determined by theralvshape. We plot

in Fig.[B3G(iwp) for different values of. The upper panel shows the results
obtained for the dferent continuous-time solvers and measurement procedures
They all agree within error bars. In the lower panel we pletthlues of the error-
bars. In the case of the weak-coupling expansion, both tlesarement in- and

the measurement ia produce about the same accuracy, which deteriorates as the
temperature is lowered, due to the increasing matrix sike.eFror-bars from the
hybridization expansion solver are much smaller and in teasured tempera-
ture range remain about constant. Because the matricessat vialues of) and

B are very small, and the number of measurement points in[E83)@lepends

on the matrix size, the increase in computer time for updaanger matrices is
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Figure 8.3: Lowest Matsubara frequency value farfor U/t = 4.0, using measurements
in both imaginary time and frequency space in the weak cogpase. The upper panel
shows the Green’s function and the lower panel the relatix@ @n the measurement.
Unlike in the Hirsch Fye algorithm there are essentially ystamatic errors in the con-
tinuous time algorithms. In the case of the hybridizatiopamsion algorithm, results for
measurements inandw are plotted. Both measurements yield a similar accuraayvat |
frequency. The hybridization expansion algorithm givess/\acurate results and the er-
ror bars show no dependencegrhis indicates that in the measured temperature range,
two competing &ects essentially cancel: théieiency of the matrix updates which de-
creases at lower temperatures and tfigiency of the measurement procedure {6.33),
which yields better results for larger matrix sizes.

compensated by a moréieient measurement.
For the self-energy,

I(iwn) = go(ia)n)_l—G(ia)n)_l, (8.2)

the Matsubara Green’s functions have to be inverted andaibtl. This pro-
cedure amplifies the errors of the self-energy especialthentail region where
Go(iwn) andG(iwy) have similar values. Fig. 8.4 sho®aX(iwg)/we forU/t = 4
and several values @. This quantity is related to the quasi-particle weight
Z~1/(1-3mE(iwg)/wo). Again, the Hirsch-Fye results show large systematic
errors due to the time discretization and cannot be caraddw temperatures.
The results from the continuous-time solvers agree withiorébars, but the size
of the error bars is very fferent. The hybridization expansion approach yields
very accurate results for low Matsubara frequencies inigene

The advantage of measuring in Matsubara frequencies asego imagi-
nary time in the weak coupling algorithm becomes apparantafge w,. Only
the diference ofG to the bare Green’s functiofy has to be measured in this al-
gorithm. These dferences decrease witlid, for increasingw, and the estimate
from Eq. [430) is extremely accurate at high frequencieghat the tail of the
self energy can be computed accurately. The measurememtgginary time
however have to be binned and Fourier transformed. Whilehitle frequency
tail can be enforced using correct boundary conditionsHercubic splines, there
is a region of frequencies which starts much below the Nydreguency, where
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Figure 8.4: Self-energySmX(iwo)/wp as a function of3 for U/t = 4.0. The Hirsch-Fye
results exhibit large discretization errors, while thetowrous-time methods agree within
error bars. The hybridization expansion method is paditylsuitable for measuring
guantities which depend on low-frequency components, aa¢he quasi-particle weight.

this introduces considerable errors (Higl 8.5). Fox10,/t < 40 and 500 imag-
inary time slices the values &f(iw,) show large errors before converging to the
high-frequency tail enforced by the Fourier transformagoocedure. The upper
panel of Fig[8b shows thefiérence between the two measurement approaches
more clearly.

The hybridization expansion algorithm starts from the atolimit and thus
does not get the high-frequency tail automatically righdtiBa measurement in
andw leads to relatively large errors at high frequencies. Thiseagain sets in
at frequencies much below the Nyquist frequency, as istt by the results for
500 and 1000 bins in the lower panel of Hig.]18.6. This noiskéscbnsequence of
the statistical errors in the Green’s function and can héeceduced by running
the simulation for a longer time (see Hg.18.5). However, also shows that
even for the shorter runs, the data remain accurate ugfioisatly largew, that a
smooth patching onto the analytically known high-frequetad appears feasible.
Furthermore, since the hybridization expansion resulisissection have all been
obtained without any patching or smoothing and nicely agri¢ie those from the
weak-coupling solver, it seems that this uncertainty inhigh-frequency tail is
not a serious issue.

8.3 Away from Half Filling

We have tested both continuous time algorithms away froffrfiiadg, in a region
where the half-filled model at zero temperature has a gep € 6,4t = 10) and
in a region without gapy/t = 3,8t = 10, U/t = 2,5t = 20). A comparison of
the Green’s functions and self-energies has shown thatdlgthithms produce
the same result within numerical precision and are muclerfakan Hirsch-Fye.
Both continuous time algorithms have no sign problem awaynfhalf filling
([79], [34]) and again the time needed to obtain a given amurs mostly de-
termined by the size of the matrix. In the case of the weak loogilgorithm it
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Figure 8.5: Left panel: low frequency region of the self-enem@fiw) for U/t = 4.0,8t =

45. Noise in the higher frequencies is clearly visible for th&uea measured in, while

the values measured inin the weak coupling algorithm converge smoothly to the high
frequency tail. Right panel: high frequency region of th#-eeergy X(iw) for U/t =
4.0,8t = 45. Noise in the higher frequencies is clearly visible for théuea measured in
7, while the values measured inin the weak coupling algorithm converge smoothly to
the high frequency tail, lig.oZ(iwn) = U%(1 - n)n/(iwy).

decreases continuously away from half filling, while in tlase of the hybridiza-
tion expansion the perturbation order first increases wahiry if the half-filled
model has a gap, and then decreases (se€Flg. 8.7). Foriatisegf parameter
space tested, the hybridization expansion approach yieédsmaller matrix sizes
and is therefore substantially faster. The matrix sizesiyeccomparable only in
the limit of filled or empty bands.

For the hybridization expansion algorithm, we have alsoated the matrix
size forU/t = 6 and much lower temperaturgs = 100, 200 and 400. These
results showed that the perturbation order for a given @iliemains proportional
to B, so that the shape of the curve remains the same as shovsh f04.0 in
Fig.[B1. In particular this means that the formation of th@rido resonance”
(which contains the physics of coherent low energy quasigbes) in the slightly
doped system at low temperatures does not lead to any daotetnge in the
perturbation order.

8.4 Scaling Considerations

Scaling/ Algorithm | CT-AUX / Weak Hyb Seg Hyb General
diagonal orbitals NBeU3 Nj3e eN(aB% + bps,a> b)
cluster, generdljq N3p3U3 - eN(aB? + bBe,a> b)

CT-algorithm scaling table. This table summarizes the isgabf the
continuous-time algorithms. At weak interactions, the kveaupling and CT-
AUX solvers that expand around the non-interacting limi advantageous.
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Figure 8.6: Intermediate frequency region of the self-eneffyw) for U/t = 4.0,4t = 45.
Noise in the higher frequencies is clearly visible for théuea measured i, while
the values measured inin the weak coupling algorithm converge smoothly to the high
frequency tail.
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Figure 8.7: Matrix sizes away from half filling: the matrix size decremder the weak
coupling algorithm, while the one for the hybridization exgion algorithm increases as
one dopes a Mott-insulating state.

These algorithms are however hampered byUWRescaling at stronger interac-
tions. In the hybridization algorithm, the scaling withis less obvious , as shown
in chapter above, but solutions close to the atomic limiuatbwhich the algo-
rithm expands, are easier to obtain. Where it can be usedgetjraent algorithm
is always faster than the general hybridization algoritdoe to the smaller con-
figuration space that needs to be sampled. When compared etk coupling
algorithms, the general hybridization algorithm is adegeous if the number of
orbitals or cluster sites is not too large. For large clissterthere the hybridiza-
tion algorithm is hampered by the exponential scaling ofHiilbert space, only
the weak coupling algorithms with thegiNgU )2 - scaling are possible. The scal-
ing of the Hirsch-Fye algorithm is the same as the one of thekveeupling and
CT-AUX algorithms, albeit with larger prefactois [9].



Chapter 9

Local Order and the gapped phase
of the Hubbard model

E. Gull, P. Werner, M. Troyer, A. J. Millis,
EPL 84 No 3 (November 2008) 37009.

The following paper shows the application of the CT-AUX aitfum in its
cluster formulation and the hybridization matrix algonitiio a small plaquette of
four sites. It has been produced in collaboration with BpiMVerner and Andrew
Millis and is published in Europhysics letters.

Understanding the “Mott” or correlation-driven metal ifegior transition is
one of the fundamental questions in electronic condensdtemzhysics([133,
14]. Interest increased following P. W. Anderson’s proptsat the copper oxide
based high temperature superconductors are doped “Mathioss” Llei].ﬁ

Clear theoretical pictures exist in the limits of strong avehk coupling. In
strong coupling, insulating behavior results from the “famg” effect [133] in
which the presence of one electron in a unit cell blocks arsg@bectron from
entering; we term this the Mott mechanism. At weak couplingulating behav-
ior arises because long-ranged [135] or local [136]) 137¢00pens a gap; we
term this the Slater mechanism. (Anderson [138] has arduegdr 2d the strong
coupling regime provides the appropriate description efltw energy behavior
for all interaction strengths, but this view is controvatsaand does not address
the question of interest here, namely the physical origithefnovel low energy
physics.) Many material§ [14] including, perhaps, highpenature superconduc-
tors [139] seem to be in the intermediate coupling regime liictv theoretical
understanding is incomplete.

The development of dynamical mean field theory, first in itgk-site form
[8] and subsequently in its cluster extensidnsg [46 /48| 8254] dfers a mathe-
matically well-defined approach to study metal-insulatansitions. The method,

! Itis sometimes useful to distinguish “Mott” materials inisfithe important interaction scale
is set directly by an interorbital Coulomb repulsion fronhérge transfer” materials in which the
interaction scale is set indirectly via the energy requiceg@gromote a particle to another set of
orbitals [134]. For present purposes thfatience is not important; the term Mott insulator will
be used for both cases.
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while approximate, is non-perturbative and provides a¢eghe intermediate
coupling regime. In this paper we exploit new algorithmigelepments([35,10]
to obtain detailed solutions to the dynamical mean field g#guoa for the one or-
bital Hubbard model in two spatial dimensions. This, theadagmatic model for
the correlation-driven metal-insulator transition, igided by the Hamiltonian

H=3 enChCpa+Ud MmNy (9.1)
p,a i
with local repulsionU > 0. We use the electron dispersiep = —2t(cospx +
cospy). The dynamical mean field approximation to this model has tpgevi-
ously considered [8, 42,140, 141,142,143 1144]; we commetite diferences
to our findings below and in the conclusions.

The dynamical mean field method approximates the electrfinesergy
Z(p,w) by

S(pw)= ), ¢a(p)Za(w). (9.2)

a=1..N
TheN functionsZ,(w) are the self energies of &hsite quantum impurity model
whose form is specified by a self-consistency conditiontffddént implementa-
tions of dynamical mean field theory correspond téedent choices of basis func-
tions ¢, and diferent self-consistency conditionis [49] 50] 51]. In thisgrape
will use primarily the “DCA’ ansatz [46] although we havealssed the CDMFT
method [48[144] to verify our results and make comparisasther work. In the
DCA method one tiles the Brillouin zone intd regions, and chooses(p) = 1
if pis contained in regiom andg¢,(p) = 0 otherwise. The “cluster momentum”
sectorsa correspond roughly to averages of the corresponding datfi@antities
over the momentum regions in whigh(p) # 0.

We present results fdd = 1 (single-site DMFT) andN = 4. Because we are
interested in theféects of short ranged order, the restriction to small clestenot
a crucial limitation: while the precise parameter valuewlich the transition to
insulating behavior occurs depend on cluster size, thes bakition we establish
between correlations and the insulating behavior doesandtthe 4-site cluster is
computationally manageable so a wide range of informatambe extracted.

In the N = 4 case the impurity model is a 4-site cluster in which thetelus
electron creation operatod$ may be labeled either by a site indgx 1,2,3,4 or
by a cluster momentum variabke= S, Py, Py, D with S representing an average
over the rangé€-n/2 < px < 7/2;-n/2 < py < 1/2), Px over the rangén/2 < py <
3n/2;-n/2 < py < n/2), andD over the rangén/2 < px < 3r/2;7/2 < py < 31/2).
The cluster states are coupled to a bath of noninteracteajrehs labeled by the
same guantum numbers. The Hamiltonian is

Ho = Ha+ Y (Vadi, ci, +H.c) + Hoan (9.3)
Ao,a
Ha = Y ea(dl,da,+H.c)+U> npny,. (9.4)
Ao i

We solve the impurity models on the imaginary frequency asimg two new
continuous-time method5 |B35,110]. Because we are studyimgpalimensional



108 9. Local Order and the gapped phase of the Hubbard model

0.7 Bt =2, 1 site
0.6 o-aft=3 i
L ooft=4 1
0.5+ AABt=6 _
< Of <<4ft=8 1
&3,0.4r Bt =2, 4 site
o [ =aft=3 1
. 0.3— Py Bt =4 T
[ AABt=6
0.2- ««ft=8 ]
0.1 B
0 s )
0 12 16

Figure 9.1: On-site Green function at time= 8/2 computed using single-site and 4-site
DCA methods. All computations are performed in the pararetigphase at half filling.

model at temperaturé > 0 we restrict attention to phases without long ranged
order. Thesa, Vi andHpam are determined by a self consistency condition [8, 51].

The N = 1 case has been extensively studied [8]. MAt 1, intersite cor-
relations are entirely neglected; the only physics is thenst correlation “local
blocking” effect envisaged by Mott. If attention is restricted to the pagnetic
phase, to temperatufie = 0, and densityr = 1 per site one finds that the ground
state is metallic folJ < Uy, » 12t [13€] and insulating fotJ > Ue,. The insulating
phase is paramagnetic and characterized by an entropy gengte correspond-
ing to the spin degeneracy of the localized electrons.Wgrs 9t < U < U, the
insulating phase, although not the ground state, is métastéand the extensive
entropy of the insulating state leads to a transition to tisellating state as the
temperature is raisedl[8].

The antiferromagnetic solution of the single-site DMFT @&fipns has also
been extensively studied. The model considered here hastediéermi surface
at carrier concentration= 1, so atn = 1 the ground state is an insulating antifer-
romagnet at all interaction strengtlls The Néel temperature peakd.ht: 0.8U,
[139]. This correlation strength also marks a change in tiagacter of the transi-
tion: for U < 0.8U, the expectation value of the interaction tedn;n, decreases
as the magnetic order increases. The transition is thuspattenergy driven and
is identified with Slater physics. However for > 0.8U., the expectation value
of the interaction term increases as the system enters tifiereomagnetic phase;
the transition in this case is thus kinetic energy driveniandentified with Mott
physics.

We now present results for tié = 4 model in comparison to those obtained
in the single-site approximation. Figureld.1 presents thaginary time Green
functionG(R, 7) at the particular valueR = 0 andr = 1/2T = /2, computed at
densityn = 1 per site for diferent temperatureb and interaction$) using 1 and
4 site DCA.G(0,/2) is directly measured in our simulations and is related to the
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Figure 9.2: Solid line: on-site spectral function computed by maximurtr@py analytical
continuation of QMC data fod = 6t and dopingx = 0. Dashed line: spectral function in
the P = (0,n), (r,0)-momentum sector. Dotted and dash-dotted lirfes: (0, ), (7, 0)
and local spectral functions obtained by performing the D@@&mentum averages of the
standard SDW mean field expressions for the Green functitth,gapA = 1.3t.

on-site electron spectral functid%(w) by

do Ag(w) ~
‘7 2coshg ~ Tho(w=0). (9:5)

G(0,1/(2T)) = f

The last approximate equality applies foffstiently smallT and shows that the
behavior ofG(0,3/2) provides information on the existence of a gap in the sys-
tem. ForN = 1 andU < 10t G(0,5/2) increases a3 decreases, indicating the
development of a coherent Fermi liquid state. In the 4-si@Desults a transi-
tion is evident adJ is increased through* ~ 4.2t: for U < U* A(0) increases
slowly asT is decreased, as in the single site model, butfas U*, A(0) de-
creases, signaling the opening of a gap. The very rapid eéhacgss) = U~ is
consistent with a first order transition, as found in the tdl€DMFT analysis of
Parket al. [144]. The criticalU is seen to be essentially independent of temper-
ature indicating that the entropies of the metallic and naatallic states are very
similar. The end-point of the first order transition is at abd = 0.25t which is
approximately the Néel temperature of the single-sitehmetatU = 4t [110].
Figure[3.2 shows as the solid line the local electron speefitrection com-
puted by maximum entropy analytical continuation of our QEi&ta forU = 6t
andn = 1. Analytical continuation is well known to be an ill-poseaplem, with
very small diferences in imaginary time data leading in some cases to &ag¥ |
differences in the inferred real axis quantities. A measureefititertainties in
the present calculation comes from th&elience between the spectra in the pos-
itive energy and negative energy regions, which should lo@leay particle-hole
symmetry. We further note that the gap is consistent withbbleavior shown
in Fig.[@1. The local spectral function exhibits a charaste two-peak struc-
ture found also in CDMFT calculations [144]. The dotted Igiees the spectral
function for thePy-sector, corresponding to an average of the physical spectr



110 9. Local Order and the gapped phase of the Hubbard model

0.14

0.05

T T T
(g e plaquette @ plaquette | |
= | .y B 1site AFM | > m 1 site AFM
2 [ B 1 site PM 2 0.04- E 1 site PM |
g .. "] - g I‘-ll | ’
g o1z [ ", 3 o7 e o I.‘.“
o O 003 = ® 9
) - L)
‘g e ‘é muspss amu IE 0 n =&
o oo © © a L i
o o 00 ©® ° 0.02
[ ]
d | | |
L L L L 0.01 L | L | | L
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
T T

Figure 9.3: Temperature dependence of double occupamey,) computed using the
1-site and 4-site DCA methods as a function of temperatur¢hf® half filled Hubbard
model atU = 5t (left panel) andJ = 1Ot (right panel). The 1-site calculations are done
for both paramagnetic and antiferromagnetic phases whéneal-site calculation is done
for the paramagnetic phase only.

function over the regiolir/2 < py < 37/2), (-n/2 < py < ©/2); this is seen to be
the origin of the gap-edge structure.

We present in Fig_913 the temperature dependence of thdetoabupancy
D = (m;n;) computed using the 1-site and 4-site DCA for a relatively kvaad a
relatively strong correlation strength. In the singlesipproximation antiferro-
magnetic correlations are absent in the paramagnetic @masbecome manifest
below the Néel temperature; theffdrence between paramagnetic and antiferro-
magnetic phases therefore gives insight into the physwscésted with the an-
tiferromagnetic correlations. For the weaker interacstmengthU = 5t, the de-
velopment of Fermi liquid coherence &ss decreased in the paramagnetic phase
means that the wave function adjusts to optimize the kimgtergy, thereby push-
ing the interaction term farther from its extremum and iasiegD. At this U
the magnetic transition is signaled by a ragetreasen D , indicating that the
opening of the gap enables a reduction of interaction enasgxpected if Slater
physics dominates. For the lardgr= 10t in the single site approximation we see
that D is temperature-independent in the paramagnetic phasedeer thisU
and temperature the model is in the Mott insulating staterg¢adrder transition
to a metallic state would occur at a lowE). The antiferromagnetic transition is
signaled by an increase [ because in the Mott state the transition to antiferro-
magnetism is kinetic energy driven.

Turning now to the 4-site calculation we seelht 5t a decreasean D sets
in below aboufT* = 0.23t ~ 0.8T}S™ T+ is also the temperature below which
G(0,8/2) begins to drop sharply. This indicates that the opening®fgp is re-
lated to a reduction of interaction energy, implying a “8tarather than a “Mott”
origin for the phenomenon. F&f = 10t we see a gradual increaselnasT is
decreased, reflecting the Mott physi¢keet of kinetic energy gain with increasing
local antiferromagnetic correlations.

To further understand the physics of the transition we eramihich eigen-
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Figure 9.4: Probability that the local Hamiltonian is in a “plaquettaglet state” (a state
with plaguette momentum 0) at= 1, T = t/30, as a function o). The sector statistics
are measured in the hybridization algorithm. Right pangblion of the occupation
probabilities with doping at) = 5.2t and temperaturé = t/30.

stategng) of Hy are represented with high probability in the actual statthef
system. We defin®,, = (ng|oa|na) with py the cluster reduced density ma-
trix obtained by tracing the partition function over the tbatates. One par-
ticularly interesting state is the “plaquette singlet’tetavhich we denote as
|(12)(34) + (41)(23)) with (ab) representing a singlet bond between séesd

b. The left panel of Fig 814 shows the probability that thetstis represented in
the thermal ensemble corresponding to mean densityl for different interac-
tion strengthdJ; the transition at) ~ 4.2t manifests itself as a dramatic change
(within our accuracy, the jump associated with a first ordangition). We have
performed CDMFT calculations to verify that that the sanaesaind same physics
control the transition studied in Ref5. [142, 144].

The plaquette singlet state has strong intersite corosiatdf bothd-wave
and antiferromagnetic nature. It is natural to expect tleseelations to open
a gap in the electronic spectrum. To investigate this pdagilve computed
the DCA momentum averages of the lattice Green functiongudensityn = 1,
and antiferromagnetic and singlet pairing gaps of mageitud 1.3t to obtain
mean field estimates of the impurity model spectral funatiomhe dotted and
dash-dotted lines in Fig. 9.2 show the antiferromagnestalte. (Use of a-wave
pairing gap would yield very similar results, except thatead of a clean gap at
0 one finds a “soft” gap with a linearly vanishing density aites). The evident
similarity to the calculations reinforces the argument tha the local correlations
which are responsible for the gapped behavior.

We finally consider theféect of doping. The model we study is particle-hole
symmetric. For definiteness we present results for eledaoping. In a Fermi
liquid, the imaginary part of the real-axis self energy ilp,w — 0) o w2
The spectral representati@fion) = [ ZImEZ(p, x)/(iwn — X) then implies that
at smallwp, ImZ(p,iwy) < w,. We find that in theS = (0,0) andD = (x,7)
momentum sectors, this relation is obeyed at all dopingse Gd&havior in the
P =(0,n), (n,0)-sector is diferent, as is shown in Fig.9.5. The dashed line shows
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Figure 9.5:Imaginary part of Matsubara-axiz= (0, ), (x,0)
-sector self energy measured fdr= 5.2t at temperaturd = t/30 and chemical
potentialu (dopingx per site) indicated.

the self energy for the half-filled model. The! divergence, arising from the
insulating gap, is evident. For large enough dopixg 0.15) the expected Fermi
liquid behavior is observed (and indeed for 0.2 the self energy is essentially
the same in all sectors); however for smaller dopings, up4d.15, ImXp does
not extrapolate to 0 as, — 0, indicating a non-Fermi-liquid behavior in this
momentum sector.

To explore further the non-Fermi-liquid behavior we prasenFig. the
density of states in the = (0, ), (r,0)-sector, obtained by analytical continua-
tion of our quantum Monte Carlo data. Comparison to Eid. 8@ that as the
chemical potential is increased the Fermi level moves inéoupper of the two
bands. In addition, for the lower dopings a small ‘pseudogsyppression of
density of states) appears near the Fermi level whilexfo.15 the value of the
spectral function at the Fermi level approaches that of tmeneracting model,
indicating the restoration of Fermi liquid behavior. We baxerified that these
features are robust, and in particular that the suppressgitie density of states
near the Fermi level is required to obtain the measured sadi&S(r ~ B/2).
Comparison of data obtained for inverse temperagiire 30 andgt = 100 (not
shown) with the data obtained 6t = 60 shown in Fig[[916 is consistent with the
pseudogap being the asymptotic Idwbehavior, not an intermedialeartifact.

Examination of theD = (r, 7)-sector density of states and self energy shows
that forx = 0.04 andx = 0.08 there is no Fermi surface crossing in the (x, 7)-
sector, so within the 4-site DCA approximation there is norkesurface at all. At
these chemical potentials most doping is provided by incaite pseudogapped
quasiparticles in th& = (0,x), (7,0)-sector. Asx is increased beyond 0.1 a
Fermi crossing appears, first in tBesector and then fax/ > 0.15 in theP sector,
signaling the restoration of Fermi liquid behavior. Theutesmay be interpreted
as “Fermi arcs” or as hole pockets bounded by the edges & thér, r)-sector:
the momentum resolution of the 4-site DCA is iffszient to distinguish the two.
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Figure 9.6: Doping dependence @@ = (0,x), (r,0) -sector density of states obtained
by analytical continuation of quantum Monte Carlo datdJat 5.2t and temperature
T =1/60.

As the doping is further increased the “Fermi arc” regiorsdly grow and the
pseudogap fills in, leading to a restoration of a conventiéieami surface for
x> 0.15.

The lower panel of Fid. 914 shows that this non-Fermi-ligoéhavior can be
related to the prominence of the plaquette singlet and thgugitte triplet states.
The contribution of the plaquette triplet state peaks=a0.15, while the contribu-
tion of the 6-electron singlet state remains small, indingaa prominent role for
antiferromagnetic (rather thattwave singlet) correlations at this doping. How-
ever, the increasing prominence of the 6-electron sing&t sas doping is in-
creased strongly suggests that the larger doping Fermoidlilike state will be
susceptible to a pairing instability. Similar results wkrend in CDMFT calcula-
tions by Kyung and collaboratoris [1137], who attributed therantiferromagnetic
correlations, by Zhang and Imada142] and by Haule and &djfi24].

In summary, we have shown that the insulating behavior (pindpx = 0) and
non-Fermi liquid behavior (at doping€x < 0.15) found at relatively small in
cluster dynamical mean field calculations [140,1141) 142,187 [145] may be
understood as a consequence of a potential-energy-dravesition to a state with
definite, strong spatial correlations, mainly of the platpisinglet type. Doping
this state leads to a low energy pseudogap for momenta iR thé0, ), (x, 0)
sector. Superconducting correlations (marked by the prente of the 6 electron
states) do not become important until beyond the criticakceatration at which
Fermi liquid behavior is restored. Our results are constsiath the finding of
Parket. al. [144] that theU-driven transition is first order (although unlike those
authors we have not performed a detailed study of the ca@sdstregion). We in-
terpret the transition as being driven by Slater (spatidéong) physics, whereas
Parket. al. interpret their results as arising from a strong couplingttvphe-
nomenon. Moukouri and Jarrél [145] argue that Slater pByisiaiot important
because in a 2d model with Heisenberg symmetry long range daes not set in
until T = 0; We believe, however, that the results for double occupahown in
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Fig.[9.3 and the dominance of particular states in the setatistics plot Fig_9l4

provide strong evidence that the physics is indeed domirtagdocal order, con-

sistent with Slater-type physics. The importance of spabarelations for the

spectral function and non-Fermi-liquid behavior was poesly stressed by Jar-
rell and co-workers [141] and Zhang and Imada [142]. We algygest that the
short ranged order is responsible for the features notedhaki@borty and co-
workers in the optical conductivity and spectral functid4d]. Calculations in

progress will extend the results presented here to largstenis.



Chapter 10

LDA + DMFT — Beyond Model
Hamiltonians

Up to this chapter, we have mostly considered model Hamdtenlike the Hub-
bard model in Eqn.[{T13). However, the algorithms descrilbethe previous
chapters are in principle able to handle the more generay+hady system{1]2)
within the approximation of a momentum-independent se#frgn The restric-
tion to one single site with only three orbitals but considgithe full interaction
matrix that will be treated in chapterll1 will show the congiigtnal limitation
of this Ansatz: While the impurity solver is able to handlecr and five-orbital
models (with 64 or 1024 states, respectively), the treatmofes full f-orbital with
24 states at arbitrary filling factors without further simpiddtions is far beyond
the scope of today’s algorithms and computers, and furtbproximations, like
the exclusion of highly excited states and the truncatiothefbasis, have to be
made.

The segment solver of chapfér 6, on the other hand, is abledbthe physics
of all fourteen correlated orbitals if the interactions approximated by density-
density interactions. It is this approximation that makgsossible to treat these
systems at all, although it is presently unclear how muchptigsics is of the
materials is changed by the neglect of exchange and pailation terms.

In this chapter, while limiting ourselves to density-déysnteractions, we
show how the band structure of real materials can be takerarttount and the
DMFT combined with the local density approximation. Thehteique, the so-
called LDA+DMFT method[146] 147], allows us to treat one part of theeyst
namely the weakly interacting part — within the local denspproximation, and
another part — likel- or f-shells that are expected to exhibit correlatidieets —
within the DMFT. A detailed review on the subject has beenlighbd by Kotliar
et al. [39].

The favorable scaling of the new impurity solvers with tenapere [9] allows
us to access more orbitals, lower temperatures and stramgeactions than be-
fore. Our intention was to write a framework for LBAMFT-calculations that
is as general as possible and able to solve any system witlitglelensity inter-
actions within the DMFT. We chose the metal Cerium at highgeratures as an
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application, for which the physics is well understood andows LDA+U [148]
and LDA+DMFT calculations — also combined with the Hirsch Fye QMCoalg
rithm — have been performed previously [149, 1150,1151]. Talsulation — a
collaboration with V. Anisimov, A. Lukoyanov, A. Shoriko. Streltsov, and P.
Werner, is still work in progress.

10.1 LDA — Success and Limitation

The density functional theory [11,112] is in principle exa¢iowever, in prac-
tice the unknown exchange correlation functional has topaximated by a
functional that is computationally tractable, like thedbdensity approximation
(LDA) or improvements to it. The local spin density approation (LSDA) and
the generalized gradient approximation GGA [152] are sugbroved methods.
DFT-LDA is relatively accurate for ground state propertegdsmany materials.
While there are known failures in semiconductors (the skeddband gap” prob-
lem), most weakly correlated materials with covalent, éoar metallic bonds
reach an energy accuracy of arounéd 8V and around 2-3 percent error in the
geometry. Unlike for the full many body problem, the treatinef several hun-
dred atoms is possible. State of the art open source prodikenabinit or the
Stuttgart TB-LMTO are available free of charge on the Inge{d53,154].

One improvement on the LDA tries to reimplement correlatiby taking into
account the full momentum dependence of the self energy ertanbative ex-
pansion up to first order. This perturbative method is knos/G8/ [155] (forG,
the Green’s function, and/, a function of the dielectric constants — the two parts
that constitute the self energy). GW is able to solve the lgaapproblem, and
can obtain excited states in systems where correlationseak.

It is the strongly correlated systems where both the naiva BBd its pertur-
bative improvement like the GW method fail. The idea to camebiL.DA with
many body theory methods like the DMFT-approximation of ealobut non-
perturbative self energy is therefore obvious. Anisirsbeal. [156] first proposed
a scheme that combines the local density approximationanstiatic repulsiot,
the so-called LDAU method. This method imposes a static repulsion on some
orbitals that are considered to be correlated and therdhy g@m into lower and
upper “Hubbard” bands. It his therefore able to capturetattorder. However,
this method sfilers from serious drawbacks and for example predicts magneti
ordering in cases where it is not observed, e.g. in_Pul [153]. #&dvances with
multiple orbital impurity solvers later made it possiblangprove on this approx-
imation and take the full quantum dynamics on a local site axtcount — the
LDA+DMFT Ansatz.

10.2 LDA+DMFT —the Method

We start the LDA-DMFT simulation by solving the electronic structure prohle
([@T32) in LDA and assigning the correlated electron densigt tve obtain to or-
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bitals. Some of these orbitals are then considered “cae®lawhile others are
left as as uncorrelated states. Depending on the physite gfrbblem, the “cor-
related” states consist of the more localized shells trepartially filled: usually
the f-shell of rare earth materials or tliestates in oxides. This separation of
course needs a basis set defining the “orbitals” of the @iedlmaterial, and
is neither unique nor independent of the underlying impletagon of the LDA
calculation. A many-body Hamiltonian is then constructed a

H = HKS + H| — HDc, (101)

where Hks defines the Kohn-Sham Hamiltoniahl, describes the interaction
Hamiltonian of the correlated orbitals, ahlgc identifies double counting terms.
The double counting term, explained in section110.4, satsrthe contribution
of the correlated orbitals that is already containedHjs. The HamiltonianH,
contains in principle all the interactions between tyecorrelated orbitals,

1

N
> 2. Uik Gy CiysCio i (10.2)
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Due to the dfficulty of solving the problem for the full interaction matri all
correlated states, we instead treat

1 ,
H, = é Z Uﬁ—o— NigNjor. (103)

ijoo’
This approximation is best justified starting from the impudamiltonian [TT1):
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This Hamiltonian, with the parametells U’ andJ whereU’ = U - 2J, has been
constructed such that it is rotationally invariant both rbital and spin space. If
we assume that the Hund'’s couplidgs small compared to the on-site repulsion
U, we can either set it to zero entirely or just set the exchamgkpair-hopping
terms on the third line off{10.4) to zero. For the first choice ebtainU = U’
and equal repulsion between all orbitals, in the second waselectrons on the
same orbital repel each other with interactidnin different orbitals with dferent
spin withU - 2J, and in diferent orbitals with the same spins@s- 3J. How-
ever, the breaking of the spin rotation symmetry has segonsequences for the
physics (see chapterlll, or ref. [159,1160] for previouswgits to simulate such
a model) and agd is not orders of magnitude smaller thahin usual materials,
the approximation is questionable.
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It is the action for this interaction Hamiltonian that is tieolved in the DMFT.
The self energy for the total systeis assumed to be of a matrix form,

0 O
- (2) 109

whereX. is the self energy of the correlated orbitals computed fkhmThe self
energy for uncorrelated orbitals or mixing correlated andaurelated orbitals is
assumed to be zero.

We obtain a self energy and — using the Dyson equation — alatedeelectron
density from the solution of the impurity model. This allousto recompute the
total electron density —which we should feed back into th& Btep to obtain self
consistency of the DFT functional [1671, 162]. This full setinsistency over the
charge density is usually not taken into account, even th@agemes for it have
been developed and implemented [163, 164] 165].

10.3 Self Consistency Loop

We employ the segment hybridization solver of chapter 6 teesthe impurity
problem, and we assume that the hybridization is diagomatdch orbital. The
major additional complication is the implementation of edf consistency and a
robust and physically reasonable double counting scheatetiifts the chemical
potential of the correlated bands with respect to the redsaiof the bands.

The self consistency for LDADMFT and the hybridization solver is slightly
different from the one explained in sectlon2.2.2. We first rurirtipurity solver
with some input hybridization functioR (usually non-interacting) for the impu-
rity model. As a first output we obtain an impurity Green’sdtian in imaginary
time. The self consistency scheme works as follows: Usirgy@neen’s function
and the input hybridization of the last iteration we run tled sonsistency pro-
gram. In a first step, both the impurifyandG;,, are Fourier transformed to the
frequency domain. Then we compute the impurity self energy

Zimp(iwn) = =Fimp(=iwn) + iwn+ﬁ—Gi_rr}p(iwn) (10.6)

(with &z the impurity model chemical potential, see Eqn.{1D.16) & d&Mim that
the impurity self energy and the lattice self energy are #mes(this is the DMFT
approximation), and form the lattice Green’s functi®g, from the impurity self
energy. Here is the point where we can also add a double cguetrrection term
hpc as described in secti@n_1D.4 to the Hamiltontég:

Grat(iwn) = ) (iwn +p - Hks = Z(iwn) - Hpe) ™ (10.7)

keBZ

And thereby obtain a new hybridization function F:

F(-iwn) = iwn+ 11— - Gt (10.8)

After Fourier transforming this to the imaginary time domaie obtain the new
hybridization function for the next iteration of the solyerich then produces a
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10.4 Double Counting Corrections

The double counting correctidtipc that is subtracted from the LDA Hamiltonian
Hks needs to be introduced because some interactions areyaineutied within
the LDA. Unfortunately this term is not clearly defined, ®rbe electron density
within the LDA is given by the total density of all electrommt by the density of
the correlated orbitals.

Various schemes for the double counting correchigg exist, all having some
physical motivation. In practice, this double countingldeam and the correction
for it are uncontrolled and a major source of uncertaint®stematic approaches
to avoiding the double counting problem are still being dieved.

We have implemented threefiirent schemes that are currently in use, and
employed the “Hartree term” one for all our calculations.

10.4.1 Double Counting Correction in the Hamiltonian

This is the most simple version: We compute the HamiltonmabhDA using the
exchange correlation functional for the non-interactitecgon gas. Then we
guess a shift of the correlated bands, and we implementtitiid4,c directly into
the Hamiltonian. In that way, the shift of the correlated d&is independent of
many-body properties and the solver and self-consisteregimpler. The guess
of the double counting is adjusted (after the simulationdwm®/erged) such that
the result either agrees with experiments or is consistéhtame of the methods
described below.

If the double counting shift is dependent on many body prigeetike the
number of electrons in the correlated bands (as it shouldvibeneed to take it
into account during the self consistency.

10.4.2 Hartree Term

One possible ansatz by Lichtenstanal. is detailed in Ref.[[166]. Another
ansatz is the subtraction of the Coulomb term [146, 41]. Wepmde the average
electronic density in the correlated bands, and then sttiftiam all the orbitals

U
ECoqumb: %nc(nc - 1) (10.9)

whereU,, is the averaged screened on-site Coulomb repulsiomatine average
electron density in the correlated bands. If we want to idelnew one-electron
eigenvalueg; for the correlated bands where the contribution of the ating
orbitals is removed, we need to compute
d
€ = d—nc(ELDA - ECoulomb)- (10-10)
These new eigenvalues cause the shift of the new Hamiltaifibiac, given by

Hoc = U (nc—%). (10.11)
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As the DMFT self consistency is changing the occupancy oftineelated orbitals
during convergence, the double counting term needs to hestedj, as well as
the chemical potential. The simultaneous convergenceearhatal potential, self
energy, and double counting term slows the convergenceuallysaround 10 -

20 iterations. In our simulations we always ustst = U (n. - 1) for our double

counting term.

10.5 Hybridization

One of the major technical fliculties is the high frequency behavior of the self
energy, which enters the high frequency or short time behnas the Green’s
and hybridization functions. Knowing the lattice Greenmdtion and the self
energy (which is chosen to be the same for the impurity maukttiae lattice), we
need to compute a bare Green'’s function or a hybridizationtfan according to

Eqgn. [Z3B):
Gol(iwn) = Z(iwn) + Gt (iwn). (10.12)
In order to define a sensible hybridization function

F(iwn) = iwn+1 - Got(iwn) (10.13)
=iwn+1 - Z(iwn) - Gt (iwn)

we need to make sure that the leading term$ adt high frequencies are pro-
portional to— Indeed, we define our impurity model in such a way that the
hybrldlzatlon function has this leading behavior. Therefawe must adjust our
impurity model chemical potential that is used in the solver such that we sub-
tract constant terms of the self energy. This is not apparettte formalism for
the weak coupling schemes like HF, CT-AUX or Rubtsov, whére itnpurity
chemical potential does not appear in the impurity solvarjdhidden in th&j,.

We know the leading behavior of the inverse of the Green’stion:

Gl=iwn+u-(€)-Z(iwn) - Hpc. (10.14)
Thus we can compute the high frequency behavior of the higation:
Fiwn) =" - XZ(ioo) —pu + (€) + Z(ioo) + Hpc (10.15)
The new solver chemical potentjals therefore given by
1 =p—(€) - Hoc. (10.16)

When computing the self energy using the Green’s functiahthe hybridization
function after an iteration has been completed, the sameeds to be subtracted
again. AppendiXB describes this procedure and the evaluati higher order
terms of the self energy in detail.
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10.6 Approximations

We have performed several approximations on various |lefdlsis calculation.
We will recapitulate them here and justify them as far as iptess

e The DMFT: By using the DMFT to solve the original lattice mbde have
assumed that the self energy is local, or momentum-indegrgnds shown
in the early days of DMFT, the approximation becomes exathénlimit
of infinite coordination number. The usual justification feing the ap-
proximation is that the coordination number of a typicakvdimensional
system is large and therefore the approximation not as baad the case
of a two-dimensional lattice. A more rigorous argument ddag provided
by the comparison to cluster calculations that reintrodigzae momentum
dependence. These simulations are — at least at the momentwithin
reach of our computer systems.

e The best choice of correlated orbitals: We decided to selacimber of or-
bitals and treat them as “correlated” orbitals, as opposéuetun-correlated
other orbitals. This arbitrariness can be resolved by logkit the band
structure within the local density approximation: thandp (spd bands

are much broader than tlg f) bands that are chosen to be correlated. The

ultimate test, of course, would involve treating them to@imethod that
allows for correlation.

e The choice of double counting terms: The choice of the ctimedor the
wrongly assumed weak correlation within the LDA is not atcéar. While
some schemes have been proposed, they are neither unigtrarghly
derivable. The ffect of these terms is a major uncertainty.

e The choice of interactions: We have chosen to limit oursele pure
density-density interactions. This can include Coulombl #ing-like
Hund’s coupling terms, but we do not conserve the full rotadl symmetry
in spin space. Itis clear that this simplification will chathe physics, and
the approximation is uncontrolled. Studies of systems vatter orbitals

show that the fect is not negligible. For Cerium - a system with no more

than one electron in its conduction band, we can do this talon with the
full interaction matrix, using the matrix code of chadierSimulations of
this system are in preparation.

e Diagonal hybridization function: The choice of a diagongbhdization
function (or the neglect offé-diagonal terms of the self energy) is a purely
technical one, and for the temperatures we considered upaatrvould in
principle be possible to treat the full hybridization matiVe can justify the
current approximation by looking at thé&'aliagonal entries of the Green’s
function or the self energy and noticing that they are snialt, the self
consistency condition might enhance them. Future work s¥itbw how
well this approximation works.
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10.7 Sources of Errors

Apart from the approximations performed, various otherrsesi of errors exist
that are sometimes hard to control. We try to list them hexk @dassify their
importance.

e Monte Carlo statistical errors: These are the statistigake of the impu-
rity solvers. They are very well under control and can be kéédy error
estimates and extension of the runtime of the code. Thesesare quali-
tatively very diferent from the errors of other impurity solvers in common
use: whileNCA, IPT, Hubbard- | and similar solvers use additional ap-
proximations for the solution of the impurity problem, thelypsource of
errors from the solution of the impurity problem are statatMonte Carlo
errors.

e Numerical discretization errors: These stem from the faat even within
the continuous-time solvers, the imaginary time bare Gsefeinction has
to be discretized and the measured Green’s function — if amnedsn imag-
inary time — binned. The magnitude of these errors is howeegligible,
and Fourier transform errors are well under control withtéahniques de-
scribed in appendixIB.

¢ Analytical continuation: For comparison with real freqagmlgorithms or
experiments, imaginary time data has to be “analyticallyticmed” [52,
53,[54] to the real frequency axis. This process involvesiiiaersion of
an ill-conditioned matrix and is not at all stable, as stai#d errors of the
Green’s function in imaginary time get amplified expondhti&rrors from
this process are hard to control and require careful arsabfscovariance
information. The real frequency continuation data of Mobgglo methods
should therefore be viewed as a guide to the eye rather thi@msmwnerics,
and conclusions should be drawn directly from the imagitiang data.

10.8 Cerium Model and Hamiltonian

To test our impurity solver and our LDADMFT framework, we applied it to one
of the standard problems: Cerium. Cerium has an atomic amafiign of

[Xe]4f1506. (10.17)

In particular the 5,5p and 4 bands are completely filled. In our calculations
we only consider the #45d, 6s and & - bands, of which we have 140, 2, and 6
each. Correlated bands that have to be treated within DM&Thar14 4 - bands,
the partially emptys, p, andd - bands are uncorrelated and used only within the
self consistency. The remainder are completely filled ctates that do not enter
the self consistency. Therefore we need to compute the eaHistency for a
matrix of 32x 32 orbitals. The interaction matrid;; has interactions between
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Figure 10.1: Spectrum of Ce in the andy phases, g8 = 15 andB = 5 (units are eV
inverse eV). Visible is a small quasiparticle peakfeCe as opposed to a large one dor
Ce at the same temperature, and crystal field splittiferts that develop at temperatures
belowg = 5.

all interacting bands and spins, and we choose the parathetér and therefore
Uij = (1-6i;)U. The Hubbard repulsiob is chosen to be 6 electron volts.

10.8.1 The Physics of Cerium

Cerium, element number 58, is a typical example of a maténet exhibits a
volume collapse transition: at the phase transition, asatilon of pressure and
temperature, the material changes its volume by around ifeipie(see phase di-
agram Fig[I0]2). Various other materials, liRe or Gd, show similar &ects
[148,[39]. This transition is believed to be almost isodinual, i.e. both struc-
tures are face centered cubic, with perhaps little charib@&8,[169]. The two
phases, however, exhibit completelyfdrent magnetic properties: the- phase
is nonmagnetic, while the-phase is paramagnetic with well-defined spins.

Originally, two scenarios for the — v - transition have been proposed|[39]:
Johanssoet al. [170] proposed a Mott transition scenario in which the tridos
is connected to a localizatigdelocalization transition of thé-electrons. While
the electrons in the - phase are delocalized, they are localized inytiEhase.
The authors investigated this theory in early LDA-calcolas [177].

A second scenario, by Allen and Martin[172] and Lavagnallisknown as
the so-called “Kondo collapse” model. In this model, it is tkegree of hybridiza-
tion of thespdto the f - electrons that changes when going from ¢ht® they
- phase, and therefore the Kondo scale. As opposed to Jamesseory, these
spd- electrons are crucially involved in the transition.

Optical properties oCe have also been investigated by Haeteal. [174],
where strong evidence in favor of the Kondo collapse modshasvn — also sup-
ported by new, highly accurate experiments by van deeteh. [175].

To distinguish the two scenarios, it is important that a nhétieniltonian for
the calculation of realistic properties of Cerium includiegssespd - orbitals in
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Figure 10.2:Phase diagram of Cerium, accordinglto [167] as reproduc£Bin

addition to thef bands. First calculations of this type have been performed i
references [151, 150, T49], with NCA and Hirsch Fye impusitjvers. NCA, the
non-crossing approximation (see e.@._[176]), is compomatiiy much cheaper
than the QMC techniques, but neglects some classes of diagthe so-called
“crossing” ones). The Hirsch Fye algorithm, as explainedéation[2Z.6 4, is
plagued by extrapolation errors. Our simulations are fbeeehe first ones that
solve the impurity problem at low temperatures without egsitic errors.

10.8.2 Cerium Results

Our results (see Fig.—10.1) show the typical three-peakttre for then-cerium,
consisting of lower and upper Hubbard band as well as a Kormddk phat in-
creases when the temperature is lowered. The results foy thhase show a
much smaller hump at the Fermi energy, but a good indicatidheolower and
upper Hubbard bands.

Also visible are crystal field splittingfiects: the crystal field splitting, ac-
cording to our LDA calculations, is around 700K, and therefaisible at “low”,
but not at high temperature. The location of the upper aneétddubbard bands
is approximately constant, and agrees with experimentsth&ucalculations at
lower temperatures are currently running.



Chapter 11

Spin freezing transition in a
3-orbital model

P. WernerE. Gull, M. Troyer, A.J. Millis,
Phys. Rev. Lett. 101, 166405 (2008)

The following section shows a further application of the hgization ma-
trix impurity solver. This paper was written in collabo@tiwith Philipp Werner,
who ran the calculations, and Andrew Millis, and was pulddéin Physical Re-
view Letters under the title “Spin freezing transition in @ibital model: non-
Fermi-liquid self energy and possible implications for tical conductivity of
SrRuQ”. My contribution to this project was mainly the design antplementa-
tion of the matrix impurity solver for general interactions

The ‘Mott’ metal-insulator transition plays a central ratethe modern con-
ception of strongly correlated materials [14,1177]. Muchoof understanding
of this transition comes from studies of the one-band Hutblbaodel. Here, the
transition is generically masked by antiferromagnetisut,ibthis is suppressed
(physically, by introducing lattice frustration or mathatcally, by examining an
appropriately restricted class of theories such as thempgaetic-phase single
site dynamical mean field approximatidrd [8]) a transitioonira paramagnetic
metal to a paramagnetic insulator is revealed. The pragsesti the paramagnetic
metal phase near the transition play a central role in ouerstdnding of the
physics of correlated electron compounds.

While one band models are relevant to many materials ineguttie high tem-
perature superconductors and some organic compounds,systeyns of interest
involve multiple correlated orbitals for which the physisgicher and less fully
understood. Multiorbital models have been studied in R&&,[179/ 180, 181,
182,183/ 184]. New physics related to the appearance of atiagnoments has
been considered in the context of the orbitally selectivétttansition which may
occur if the orbital degeneracy is lifteld [185, 186, 1187,,1788], but for orbitally
degenerate models it seems accepted that the essentiapten€a paramagnetic
metal to paramagnetic insulator transition and a strongiyetated paramagnetic
metal phase can be carried over from studies of the one-laadisn.
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In this paper we use the single-site dynamical mean fieldamation to
demonstrate the existence of a quantum phase transitisreéeta paramagnetic
Fermi liquid and an incoherent metallic phase charactermefrozen local mo-
ments. For densities per site= 2,3 the Mott transition occurs within or at the
boundary of the frozen moment phase and as Costi and Lielesah rioted in
the context of an orbitally selective Mott system, the pnegseof frozen moments
may be expected to influence the Mott transition [189]. The please appears for
multiple orbitals, a dierent number of electrons than orbitals and a rotationally
invariant on-site exchandg/3 > J > 0. While this situation is relevant to many
compounds, it has only recently become amenable to systestadly following
the development of flexible andfeient Monte Carlo methods [123,135].

The transition into the frozen moment phase produces a eomifiquid self
energy which varies as/w, and the quantum critical regime of the phase tran-
sition is suficiently large that the non-Fermi liquid behavior is obsetgaover
a wide range of temperature, interaction strength, spiarpation and carrier
concentration. The non-Fermi-liquid self energy we findrbemn intriguing re-
semblance to the self energy inferred from optical condiitgtimeasurements
on SrRuQ [190,[191/7192], although there is r@opriori reason to believe that
SrRuQ is close to the local moment transition we have uncovered.

We study a model inspired by titanate, vanadate and rutbenansition
metal oxide compounds, in which the relevant electronsieesi t,g-symmetry
d-orbitals. In the commonly occurring pseudocubic strugtilret,, levels are
three-fold degenerate, and the formal valence is such teatetvels contain 1
electron (Ti compounds), 2 electrons (some V compounds) eledtrons/ 2

holes (Ru compounds). The electronic Hamiltoniaklis Hpang+ 3 Hi ., With
Hpand = Za,pega‘ﬁraﬁp and the local Hamiltonian on each sitgiven by
Hioc = = D> Mgy + > UNg 3Ny, (11.1)
+ 3 UNy oo + (U = Ny o
a>p,0
tot tot
- Z ‘](lpa,iw‘g,ﬁl/ﬂ,il//aﬁ + l/’ﬁﬁd’@ﬁ#a,ﬂﬂa,i + hC)
a#f

Here,a = 1,2,3 is the orbital indexg =1,| the spin indexu is the chemical
potential,U (U’) the intra-orbital (inter-orbital) Coulomb interactioand J the
codficient of the Hund coupling. We adopt the conventional chofgarameters,
U =uU-2J.

To study the model we use the single-site dynamical mean digsfoxima-
tion [8] which ignores the momentum dependence of the sedfgy and reduces
the original lattice problem to the self-consistent santof a quantum impu-
rity model given by the Hamiltoniatlg = Hioc + Hnyo + Hoan With Hyy, de-
scribing the exchange of electrons between impurity ant.b&ur data were
computed for a semi-circular density of states with bandtivit (so the model
is particle-hole symmetric about the density 3), using the hybridization ex-
pansion QMC solver of Ref. [[123, B5]. We investigate the tetec self en-
ergy Z(w) and the imaginary-time impurity-model spin-spin and abdrbital
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Figure 11.1:Phase diagram fa}/U = 1/6 andgt = 50, 100 in the space of densityand
interaction strengtk. The light line with circles or diamonds indicates a phaaagition
between a Fermi liquid metal and a “frozen-moment” metale Black lines mark the
regions of Mott insulating behavior.

correlators(O(7)O(0)) with O representing either the electron spin density
S; = £¥,3(d!.d,; —df d,,) or the orbital densityn, = ¥, df ,d,,. Atten-
tion is restricted to solutions which preserve spin andtatbotational symmetry
at the level of the impurity model.

Figure[I11l presents our calculated phase diagram in thee sgadensityn
and interaction strengtl for the ratioJ/U = 1/6. The Mott insulating phases of
the model are shown as heavy solid lines. The light line wiltties or diamonds
is our new result: a phase boundary separating a smsthall U Fermi liquid
phase from a frozen moment phase at langemd largerU. Other values of
0 < J/U < 1/3 give similar results. Fod = 0 the new phase does not exist while
for J > U/3 the termU’ — J = U — 3J becomes negative and the physics of the
model changes.

We may define the phase boundary using the impurity modelsg@im cor-
relation functionCss(7) = (S,(7)S,(0)), shown in the upper panel of Fig.IL.2
for U/t = 8 and several values of. In a Fermi liquid at low temperaturg,
Css(7) ~ (T/sin(x7T))? for imaginary times suficiently far from eitherr = 0
orr = 1/T. Our results are consistent with this form in the Fermi ldgphase,
but in the non-Fermi-liquid phas€ss is seen to approach a constant at long
times indicating the presence of frozen moments. We alsbiplbig. [I1.2 the
corresponding orbital correlation function, which is séerdecay rapidly with
time on both sides of the phase transition. For a more qadirgtanalysis we
studied the temperature dependenc€gf = Css(7 = %). In a Fermi liquid,
Cy/2 ~ T2 while in the frozen moment pha€h, becomes temperature indepen-
dent at sficiently low T. Within our numerical accuracy, we find that at the
transition point,C,;, ~ T. The lower panel of Fig_T1.2 shows how the ratio
Cy/2(T =0.02t)/C, /(T = 0.01t) changes from the value 4 expected in the Fermi
liquid phase to the value 1 expected in the frozen momentgphas

The phase transition has consequences for the electroarsetiyZ(w). In a
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Figure 11.2:Left panel: imaginary time dependence of the spin-spinetation function
(Sz(0)S,(7)) (positive correlation function) and orbital correlatiamttion(ng(0)ny (7))
(negative correlation function) fdd = 8t and carrier concentrationsindicated. Right
panel: variation with doping of the temperature depende@ifdhe spin-spin correlation
att = B/2. The error bars are large at smaltdvecause the midpoint spin-spin correlator
is very small. The black line indicates tihevalue of the phase transition deduced from
the analysis of the self energy.

Fermi liquid at lowT the imaginary part of the real axis scattering r&téw) ~
max(w?, T?) so the imaginary part of the Matsubara axis self en&i@yn) ~ iwn

at smallw,. Frozen moments may be expected to scatter electrons shé¢hatal
axis self energy i€"(w) ~ I, implying on the Matsubara axis Bfiw, - 0) =
iFsgnwy). At the critical point we expect a power law behavidi(w) ~ w?; if

a < 1lthenXZ(iwy — 0) ~ (iwp)?. Figurd 1B shows that the imaginary part of our
computed Matsubara-axis self energy is consistent withlibhavior, vanishing
linearly in the Fermi liquid phase, exhibiting an intercapthe frozen moment
phase and an exponedmt~ 1/2 at the critical densityr.. The behavior of the
self energy in the region not too far from the transition isa@ed by a quantum
critical crossover function. Our resolution is notistient to identify this function
precisely. We have fit the self energy to the formX(w,)/t = C + A(wn/t)?,
recognizing that the varying value of represents the flerent regimes of the
crossover function. In Fig._11.3 we plot the exponertnd intercep€C extracted
from the fit as the transition line is crossed by varying iatéion strength at fixed
densityn = 2. Plots of this sort enable a simpler and more accurateitocaft
the transition line than an analysis©@§s(7) and were used to compute the phase
boundary shown in Fig._11.1.

Figure[II.B indicates that an approximately square roocakiehof the self
energy persists over a wide range of frequencies and caorerentrations near
the critical line. To further investigate th&ect of frozen spins oB we have stud-
ied the magnetic field dependence of the self energy. As tihe ape polarized by
the field, the intercept decreases and the apparent powehlamges towards the
Fermi liquid exponent ofr = 1. Near the critical point (see Fig_IlL 4)changes
relatively slowly and an approximately square root behasgmains visible even
for relative magnetizations of the order of 50%.
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Figure 11.3:Left panel: Doping dependence of the imaginary part of théshlaara axis
self energy folU/t = 8, Bt = 50, 100 at indicated dopings. Right panel: Exponeiind
interceptC obtained from a fit of the data talmX/t » C + A(wp/t)“.

h/t=0, m=0 ——
h/t=1/50, m=0.628 —<—
h/t=2/50, m=1.25
1.5 r hi=3/50, m=1.74 —=—

-lImZ/t

0.5

0

0 02 04 06 08 1 12 14 16
(wn/t)o.s

Figure 11.4: Self energy for the majority spin as a function of magnetitdfa U /t = 7,
Bt =50 andn = 2, slightly above the critical point for the glass transitio

We speculate that the/w self energy found here is related to the still-
mysterious optical conductivity-(Q2) of SrRuQ and CaRu@ [190,[191,192].
These materials are pseudocubic perovskites with two holé® t, d shell and
their behavior should be roughly modeled by our 3-orbitd¢w@ation at carrier
densityn = 2. In these materials:(Q) varies approximately as/1/Q at higher
frequencies, but rolls over (in a way which depends on teatpez and on mate-
rial) to an approximately constant behavior. In the momeniadependent self
energy approximation, vertex corrections may be neglemteldf the self energy
is small compared to the bare electron bandwidth the realgbdine optical con-
ductivity may be written { is the Fermi function)

1 rdo f(w+Q)-f(w)
G(Q)N5/7Q—Z(w+9)+2*(w)’ (11.2)

so that a square-root self energy implies that the conduictisries as 1/Q for
frequencies such thar( Q) > Q. Our finding, that the phase boundary runs close
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ton = 2 for arange of interaction strengths suggests that anmegtdegree of fine
tuning is not necessary to produce a square root self enéigymportant to note
that in SrRuQ the square root behavior persists well into the ferromagk
ordered phase at low temperature whereas in CaRu®conductivity develops a
nonmonotonic structure at lo® and higheiT.

In conclusion, we have shown that in a model with severatedas in a three-
fold degenerate level —relevant to transition metal oxwiigs partly filled d-shells
—an apparent spin freezing transition occurs. The orbégtek of freedom is im-
portant to stabilize the metallic phase at relevant intevacstrengths (the two
orbital model with two electrons antfU = 1/6 is insulating fold > 3.7t [188]).
Trying to suppress the = 1 orbital angular momentum states by applying a crys-
tal field rapidly leads to an insulator. While it is possibtat the &ects could
be due to a rapid decrease of the spin coherence scale ts\mi@v the range
accessible to us, the square root self energy Blidhear spin-spin correlation
function are strong evidence for an actiiat O transition.

The frozen moment phase results from a calculation in whjgh sotation
symmetry was enforced and may thus be preempted by a stdtdoreiken spin
rotation symmetry (the exact nature of the broken symmaetieswill depend
upon the underlying lattice). Near density= 2, neither ferro nor antiferromag-
netic phases are stable for the semicircular density aéstaded here. It is likely
that the true ground state is either an incommensurate rhagpbase separated.
However, we emphasize that in contrast to the situation ifwand models, a
transition remains even if long range order is suppress#teigalculation.

Our results have many implications. The magnetic phaseathagf multior-
bital models must be explored. The theory of the multi-etaciMott transition
must be reexamined, as our results suggest that even forlsnedl high de-
grees of spin and orbital symmetry a paramagnetic metarpagnetic insulator
transition generically does not exist (at least for moretbae electron per site).
More generally the implications of the rich structure of 8later-Kanamori in-
teractions for the properties of the strongly correlatetbiqEhase deserve further
investigation.

The spin-freezing transition itself is of theoretical irgst. We find that the
density of states at the Fermi level remains non-vanistinguigh the transition,
suggesting that the transition exists at the level of thauntypmodel and therefore
should be related to a known or yet-to be classified impuribgleh transition. To
obtain insight into this issue we have studied the degreehiciwthe diferent
eigenstates dfl,,c are represented in the partition function. We find thatXorO
at couplings U > 4t) only a few states are relevant. For densityot too far from
n = 2 the dominant states are a nine-fold degenerate manifotd@felectron
states withS = 1 andL = 1, so at this filling the low energy physics is that of
a generalized Kondo model in which &= 1, L = 1 object is coupled to three
(spin-degenerate) channels of electrons. The lafggensity driven transition
is marked by a change in the dominant state fiéme 1/2, L = 1 to the state
described above, with an enlarged manifold of states atrtheat point, whereas
the interaction-driven transition at= 2 is marked by a change in the weight of
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the two subleading stat&=1/2,L = 1 andS = 3/2, L = 0, suggesting a change
in the magnitudes of coupling strengths. Determining hasséhimpurity-model
phenomena give rise to the observed behavior is an imparpeemt question.



Appendix A

Inverse Matrix Formulas

A.1 Inversion by Partitioning

The major computational task in all continuous-time quamidonte Carlo impu-
rity solver algorithms is the computation of ratios of deterants of matrices,

_ detDk?
~ detDk ’
with matrices that have one row and one column (sometimegdws and two

columns, rarely more than that) changed, added, or removed.
The determinant of & x k - matrix is usually defined as

detD = " sign(c) D1y(1)D2s(2) - Dior(iy» (A.2)

O'ESk

(A.1)

whereSy is the permutation group. This definition is useless for cotatonal
purposes, as the number of terms in the permutation groupsseaponentially
with k. For the direct computation of the determinant of large roes; it is there-
fore best to first perform a factorization like thé& or QR factorization, where
the matrixA is be written as the product of a matrix of which the determina
known, and another matrix where the determinant is easyrtpate, e.g. the the
diagonal of an uppeflower triangular matrix. The cost of such an operation is
O(k3).

Determinant ratios of two matrices thaffér only by one or two rows and
columns can be computed much mofigogently if the inverse of one of the matri-
ces is known. This is the reason for computing the inverse@sdunction matrix
in the weak coupling algorithm, the inverse hybridizationdtion matrix in the
hybridization algorithm, and the matrX in the CT-AUX algorithm. Numerical
Recipes([193] has a useful introduction to this topic in thetion on inversion by
partitioning.

We illustrate the linear algebra at the example of the CT-AlhAtrix N
[10, [194,44] introduced in chaptElr 5. Rubtsoivsmatrix and the inverse hy-
bridization matrix are computed analogously. For the sdka&mplicity we as-
sume that the rows and columns that have been changed aestlomés. As the
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determinants are invariant under the exchange of both amava@olumn, we can
simply move both to the bottoyright if this is not the case.
The CT-AUX matricesN are defined by

N = (e -Go(d-1)™ (A.3)

Inserting a spin into this matrix only adds one row or colusamj we choose it to
be the last row and column.

(Nk+1)—1 — ((N:;)_l g) ’ (A.4)
a_(PQ
NK l:(ﬁe s) (A.5)

The matrice®),R, S are(kx 1), (1xKk), and(1x 1) matrices, respectively, which
contain the contribution of the added spin accordinigtd A.3.

We follow [193] to compute the determinant raﬂﬁf‘?%?j1 and the value of
the inverse matrices.

A straightforward calculation shows that the elements efrttatrixN can be
expressed by the elements of the maMi®, R, S, andQ:

S=(s-[RIIN¥Q])™, (A.6)
Q=-[N¥Q]S, (A7)
R=-S[RN®], (A.8)
P=N® 4+ [NWQIS[RNM]. (A.9)

As long as the computation & namely the evaluation of the matrix inverse
in Eqn. [A8), is of order 1, we can obtain a new matrix in @@&?) steps that are
minimally required to access each element. This is the casauseS has a size
of (1x1).

The determinant ratios that are needed to accept or rejeciva im [4.20),
G22), [625), are given by

det(Nk1)-1 1
det(N¥)-1 ~ detS

There is only the need to compute one matrix inverse, namegquatior’AB.
This inverse is easy to compute if or(1) rows and columns are added simul-
taneously. Fof rows and columns S has sizgl x I).

The computationalféort for computing the insertion probabilit,.. of a spin
is O(k?), or a matrix-matrix multiplication followed by an inner proct, as in
Eqn. [A8). The removal probability is computed in ju8¢1), because there
we already know8, as it is an element o+, If a move is accepted, a rank
one update has to be performed for Eqn._1A.9), which is alsordér O(k?).
As we need approximately moves to decorrelate our system and obtain a new
configuration, the overall algorithm scales@&?), with k the typical expansion
order.

= det(S - RNWQ). (A.10)
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A.2 Spinflips

The insertion and removal updates of auxiliary spins makectide ergodic. In
addition to these updates we can perform additional moastie very similar to
the ones of the Hirsch - Fye algorithm, if we choose not to gleahe imaginary
time location of our auxiliary spins, but instead only fligeth. These moves are
self-balanced, but they are not ergodic, as we need updatesttange the order
of the expansion and shift them on the imaginary time axisrdter to sample all
configurations of Eqri{5l8). In order to flip our spins, we hetveompute ratios
of determinants of matrices of the form

A=N"1= (" -Gy, (€7 -1)), (A.11)
N = (6" - Gor (67 - 1)), (A.12)

Defining a vectowr; as
vj =€ (A.13)

and dropping all indices for physical spin we obtain for twaxidiary spin config-
urationss ands' that difter only for thek-th auxiliary spins,

Aij = Vj6ij - gi?(Vl - 1)6|j’ (A.14)
Ay =i - 3, 1) 19

Thus we can writéd andA’ as matrices that only fier on thek-th column:

A-A=A+Av®eg, (A.16)
Aj = Ay + (8 = GDO (Vi — Vi), (A.17)
AVt = (S = Gie) (Vi = W) (A.18)

The Sherman Morrison 195, 1196] formula describes how a gbamthe di-
rect matrix of the form

AsA=A+udV (A.19)

results in a change in the inverse of a matrix:

(N-u)® (v-N)
~ 1+v-N-u

N—->N=N (A.20)
Note that the change @ in Eqn. [A1®) is exactly of that form.

In order to obtain acceptance ratios, we will need ratioseténinants. As
the change fronN to N’ is local in A, we will build a matrixZ with N’ = ZN,
whereN and N’ are only diferent by a spin flip. By examining the Sherman
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Morrison formula Eq.[([A.20) and using = & = §jx as well asj; = Av; we see that

(N AV)) (8miNmj)

Nij = N; T+ NoAv, (A.21)
= Nj - 71’-\|:|‘Al\\|:<||§|3| (A.22)
_ (5ip - %) Ny, (A.23)
Zip = Gip - %‘m. (A.24)

This matrix has ones on the diagonal and is zero everywhseeheit on the-th
column. The determinant ratio is therefore given by

detN’ NigAvy

=detZ=1- ———.
detN 1+ NgAv

(A.25)

This is an overalD(N) effort - unlike theO(N?) naive éfort.

We can arrive at a moreffecient method by taking the Hirsch Fye Dyson

equation
G=(1+(-G+1)(e"V-1))G = A(G)G (A.26)

and inserting inG = NGy. Note that we have stordd-1, not N. Therefore we
need to obtailN Gy via

1= Ne' - NGge” + NGy (A.27)
NGo(e” - 1) = Ne&/ - 1 (A.28)
(NGo)i = (Ny&’ - 1)/(e/ - 1), (A.29)

which we insert into EQn[{A.26) above to obtain B€l) acceptance rate:

r=1+(-(NGo)y +1)(e""V -1) (A.30)



Appendix B

Fourier Transforms in
Continuous-Time DMFT
Algorithms

Numeric Fourier transforms of anti-periodic functionstie DMFT are an impor-
tant but dificult topic. For previous finite temperature solvers that&ezkss only
to a coarse imaginary time discretization like the Hirscle Fgolver, an accurate
approximation to the Fourier transform was essential fecise results. In the
new continuous-time algorithms, many more frequenciekaosvn exactly and
therefore an accurate high frequency expansion is legsatritNevertheless, a
proper high frequency behavior of the self energy and Gssiemictions is desir-
able, and we therefore describe how best to do Fourier wemsfbased on high
frequency expansions, as developed e.g. by Armin Comadadlj find Carsten
Knecht [197] for the Hirsch-Fye algorithm.

The main problem stems from the fact that the anti-period&e@’s function
has a jump at zero, as well as higher order derivatives that ttabe measured
accurately in order to give a reasonable intermediate agidfrequency behavior
of the self energy.

The basic idea is that we fit the impurity Green'’s functiorhagtspline inter-
polation and choose the boundary conditions of the splioh that we obtain the
proper high frequency behavior.

B.1 Green’s Function in Frequency Space

We write down a high frequency expansion of the Matsubara&&fenction

G(iwn) = e

G, Co N C3 N 1
iwn  (iwn)?  (iwn)? |

o) _60—4) (B.1)

n

The codficients are defined by the Fourier transfornGgfr):
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. B ;
Gliwn) = f G(r)d“ (B.2)
0
_G(B)-6(0) -G({H) -G -G-GO gy
iwn (iwn)? (iwn)3 l
The second line being a consequence of partial integratidivg = (Z”;Tl)”.

We can therefore identify
¢, =-G(B) - G(0) (B.4)
c,=G'(B) +G'(0) (B.5)
c;=-G"(B) -G"(0). (B.6)

B.2 Spline Interpolation

We would like to fit the measured Green'’s function by cubidregd, which we
then Fourier transform. To this end, we introduce splinesafdi-periodic func-
tions.

We define a local polynomial between two siyesy;.1

y = Ay; + Byj.1 + CY/ + DY/, (B.7)
where
A= X=X (B.8)
Xjr1 — X
X — Xi
B-= ) B.9
X (B.9)
1
C= E(AS—A)(XH;L—XJ')Z (BlO)
1
D= 6(83_ B)(Xj:1 - Xj)% (B.11)

The finite diference equation for the second derivatives yields theesphjua-
tions:

Xj = Xj-1_,, Xj+1 = Xj-1_,,  Xj+1 = Xj_,, Yi#r = ¥Y+]  Yi—Yj
5 Yt 3 Vit 5 YmTTAr T Ax (8.12)
AX ,  2Ax , AX_,, 1
B Vit ?% t g Yin T W(Yjﬂ_zw +Yj-1). (B.13)

This determines the spline everywhere in the inside of thenwal, but two
equations are missing as boghandyy are unknown. However, we obtain another
equation usingyy +Yy =—Czas in [B.6). The remaining equations follow from the
continuity of the first derivative, which is given by

dy -y, 3M-1_ . 3B-1
axT Ax 6 XM

(Xjs1 = Xj)Yi1- (B.14)
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We need to evaluate this bothxgtand atx,-+1:

dy| V-V 1
-2 A 4 A / B.15
dXX:XJ AX Xy Xj+l ( )
dy Yoy 1
a4 —A !+ ZAXY B.16
dXlxex. AX 6Vt g XY, (B.16)

With this equation we obtain a condition for the boundaries0p:

G'(0) + G'(B) = A Yo _ %Axyo’ Pl "Ain‘l N %Axyn’ - :—éAxyl’ N éAxyn’_l
(B.17)
1 2 o1 o
= Y0 Y= Yo 1) ¢ SAXCYE V) + XYY Vi)
(B.18)

Usingc, = G'(0) + G’(B) as in [B.5) we obtain the missing second equation.

This allows us to write down the spline equation as matrixa¢ign in the form
Ax =y, where A denotes a spline matrix, y the right hand side and xel#or of
second derivatives:

1 0 0 - 1\(y 3

¥ ZA% 2§X R | B ax (Yie1 = 2 +Yj-1)

0 % T % 0||yz|= (B.19)
U AN (V1Yo +Yn—Yn1) +C

or equivalently

0 0 &)y ey
L4 1.0 0fty 6 (Yis1 = 2Yj +Yj-1)

0 1 4 1 O||Y5]|=— : B.20
e ylz AX? _ ( )
_2 —1 O 1 2 y|/’]/ _(yl _ yo + yn yn 1) + CZAX

Solving for the second derivativg$ yields the spline cdécients of Eqnl{BlI7).

B.3 Fourier Transform using the High Frequency
Tall

From [B1) we know that

oG C2 C3 B G (1)€gwnt
Glion) = 12+ ot + (s - JA o~ (B.21)
= f(iwn) + Gresf(iwn)

_ /0 ’ drdor (£ (1) + GroalT)).
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While we do not have direct access to the fourth derivative,de know the
Fourier transfornf (iw,) of the functionf (7):

Fllon) = o+ o5 * G (:22)
()= -2+ Bprar)+ Dpr-r). (8.23

The remaindeG«(iwy) is well behaved (its real part goes to zero faster than
(Iw_l)z its imaginary part faster tha@}?). Thus, if we know the cd#cients
C1, C2, C3 We can numerically compute the Fourier transform to highueazy.

B.4 Density-Density Multi-Orbital Problems

The Fourier transforms for the lattice and bare Green’stfan@ccording to this
scheme are detailed in[1110]. We illustrate computatiornefdodficients for the
Fourier transform for the multi-orbital problem with detysdensity interactions
here.
We consider the Hamiltonian
K:_Z(tij +,uc5ij)CiTCj +ZUijninj. (B.24)
ij i#]
Note the absence of a factor of2lin this definition ofU. It is convenient to use
spin-orbital indices that include the spinr instead of explicitly treating spin. The
derivatives of the Green’s function in formu[@a{B.2) can Bpressed as commu-
tators and anticommutators afc™ with the HamiltoniarK:

_{{a.q})  {IKal.cl) ({[K,[K,Ci]],cT}).

Gij(iwn) o o)’ + (i) (B.25)
The first term yields
el = 5. (B.26)
For the second term, the commutators have to be computedg Usi
[cc;, ] = —6iC;, (B.27)
[ninj, ] = —ikCN;j — NS jkC« (B.28)
they yield

_C|§| =1y _M5k| - |:Z Ukiniéu(] - U|(|CkC|Jr + U|kC|TCk - Z Uikniéu(] s (829)
i | i

which in the diagonal cade- k simplifies to

_Cgk:tkk_l-l_ [Z(Ukl +Uik)ni- (BSO)

= €k~ M~ [Z(Uki"'uik)ni] (B.31)

(and is zero otherwise). Obviously, for the case of the shigipurity Anderson
model these expression simplify to the formulae_in[110].
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B.4.1 Lattice Green’s Function and Self Energy Terms

The k-summed lattice Green’s function is defined as

N

1 Z (iwn +,u—6k—hDC—E(iwn))ﬁl. (B.32)

Gijjat = N
keBZ

Defininguy = u — e(k) — hpc and using a self energy expansbfiw,) = Zo+ L+
O(Iwz) we obtain for an expansion of the lattice Green’s functloﬁn

1 ,u -20 1 21+ (ljk - ZO)(ﬁk - 20) 1
Gat=—-— — . O(—), (B.33
&t on Zk: w2 +Nzk: iw? " (lw;‘) (B.33)
in matrix form.
Identifying the lattice Green'’s function with the impuriBreen’s function, we
obtain

c'z""t:—(lu—ZGK—th—zo) E_ﬁ"'Z(Uki"'Uik)ni’ (B.34)
K i
fi=p—(€) - hoc. (B.35)
This determines the high frequency behavior of the selfgner
Zokk = Zzukjnj- (B.36)
j

Eqn. [B:36) simplifies to the correct value (the factor of @nstning from the
absence of a factor c%fin the definition ofU) in the AFM case detailed in [110].

Comparison with the next order yieldls, the next high frequency term. Care-
ful evaluation of the commutators along the same lines stibafs for density-
density terms and equal orbitals

Zl,ii (iwn) = %: UikU" ((nkn|) — (nk)(n|)). (837)

B.4.2 Bare Green’s Function and Hybridization Function

The high frequency expansion of the bare Green’s fungifgiw,) can be derived
directly, by using the expansion for the lattice Green'stion and setting the self
energy part to zero. Unlike for the case of the lattice Greémction, we need
at least the third order to make the proper Fourier transfonthe hybridization
function

F(~iwn) = iwn+ji-G%iwn) ™. (B.38)
Using equation(B.33), we obtain
go(iw”):i - (lula()k)z Z“E.kw”(k ((iwln)“) (B.39)
_ 1 p—(e)—hoc (4—Poc)®—2(u—hoc)(e) +{€?) 1
iwp (iwn)? (iwn)® O((iwn)“).

(B.40)
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The series expansion of the inverse@fiw,) then yields the high frequency
expansion of the hybridization function:

E (iwp) = “ﬁj v 0(%). (B.41)

n |

B.4.3 Self Energy Calculation

In order to compute the self energy with the proper high fezgpy tails, we em-
ploy the Dyson equatiof {Z.B3) and the definitibn {B.38)

T(iwn) = G iwn) -G (B.42)
=iwn+ - F(-iwy) -G, (B.43)

and write down the high frequency d&ieients of the hybridization function:

(1~ {€) = oc)® = ({1 = hoc)® - 2(u ~ o) {e) + {€?))

F(Iwn) = + Fres[
iwn
€ 2 _ 62
= —< >, (€) + Frest (B.44)
iwn
Comparison of the first orders yields a quick consistendy tes
21 . —
ZO+ — +Zrest: I(,l)n +/.l (B.45)
wn
F . cz-c .
- (_1 + I:rest) - ('wn -G+ 2 S + Grest(|wn)),
Ia)n |wn
Yo=p-C= Z(Uki+Uik)ni = Yo, (B.46)
|

21 = —Fl—C%—Cg, =21, (B47)

where the remaining terms &fandF fall off at least as fast a@l—)z
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