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1 Abstract

Heterogeneity of user preferences can play a crucial role in the economic welfare
evaluation and transportation policy and project appraisal. In this work an activity- and
agent based simulation framework is applied to study effects of optimal congestion
pricing on welfare and equity in a multi-modal context and with heterogeneous values
of time. Bridging the gap between definition of value of time and schedule delay
heterogeneity in a single trip scheduling bottleneck model and its inclusion in an activity-
based context, this work focuses on two major aspects: impact of degree of heterogeneity
on benefits from congestion pricing and impact of availability of alternatives on equity
and consumer welfare.

The use of an activity- and agent based simulation framework MATSim enables integrated
multi-modal approach, capturing effects of congestion pricing on an individual level.
Accounting for service level of public transportation and associated capacity restrictions
as well as crowding effects in the evaluation of congestion charging policy proves to be
crucial for accurate identification of winners and losers of such policy. Based on a multi-
modal corridor scenario, results of this study indicate that increasing heterogeneity in
presence of multiple modes with different travel cost leads to beneficial self-organization
effects and therewith diminishing gains of congestion pricing policies. Furthermore,
changes in consumer welfare for individuals with different values of time are highly
dependent on availability of alternative mode. This might have important implications
on transport policy design in urban context and its impact on economic and social
inequality.
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2 Introduction

Addressing divergent mobility and transportation needs of growing, highly diverse
urban population in modern cities and metropolitan areas is a major challenge for
transportation planers and policy makers. Thereby, the heterogeneity of user preferences
plays a crucial role in outcomes of design and evaluation of infrastructure projects and
policy measures. Only by controlling for the different user as well as trip characteristics,
equity implications and winners and looser groups can be adequately identified. Failure
to address the diverse population needs and neglect of distributional effects is one of
major reason for struggle of pricing and demand management policies to win public
support.

One of the most important figures in transportation economics and major source of the
heterogeneity among travellers is the monetary value placed on the time gains resulting
from reduced travel times, It is commonly referred to as value of time (VoT) or value
of travel time savings (VTTS) (Small and Verhoef, 2007). Discussed in more detail in
Section 4, values of time are often linked to personal or household incomes, but can also
vary with travel conditions, trip characteristics and personal preferences.

Major effects of value of tine heterogeneity on outcomes of economic policy and project
appraisal have been shown in various publications. Among others Bates (1996), Arnott
et al. (1988) and van den Berg and Verhoef (2011a) highlight that type and extent of
heterogeneity strongly influence welfare effects of congestion tolling and different tolling
schemes and forcefully argue for the need to include it in models with trip-timing choice.
The presence of an alternative mode adds an additional degree of complexity to the
evaluation of pricing policies with heterogeneous traveller preferences, with only few
publications addressing this question (e.g. van den Berg and Verhoef, 2013).

Working with highly skewed value of time distributions and multiple levels of heterogene-
ity within analytical frameworks and aggregated demand models is often challenging. In
particular, real world scenarios involving multi-modal urban environment with popula-
tions of several million people analytical approach struggles to provide level of detail
and accuracy desired by planners and policy makers. Thereby, an agent-based mod-
elling approach, widely discussed in the literature during last two decades, represents a
promising alternative to address the challenges associated with travellers heterogeneity.
Operating on the level of individuals, with attached socio-economic and demographic
characteristics, it inherently provides the necessary structure for accounting for personal
user preferences. However, despite of being advocated as one of major advantages and
strengths of an agent-based modelling approach, so far only limited effort has been made
to truly include heterogeneous values of time into the models and simulation frameworks.
This is partially due to the lack of disaggregated data and estimates on individual utilities
attached to work and leisure activities and those variations within the population, time
of day or activity type on the one hand, and the challenges in software design on the
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other.

Most of the approaches to understand the interplay between pricing policies and hetero-
geneous user preference use dynamic economic models of traffic congestion, building
upon and extending the classical bottleneck model presented by Vickrey (1969). van den
Berg (2014), van den Berg and Verhoef (2013) and van den Berg and Verhoef (2011a)
represent just a selection of more recent publications and are based on a single-trip model
dynamic bottleneck model.

Activity-based approach to transport modelling, often used in an agent-based simulation
context, takes a different approach and focuses on individual activity chains as drivers
of travel demand. Thereby marginal utilities of activities play a determining role in trip
timing decisions. Research by Jenelius et al. (2011) focuses on analytical derivation of
traveller delay cost and value of time in presence of scheduling flexibility for an activity-
based two trip model. Building on top of previous work by Ettema and Timmermans
(2003), Jenelius et al. (2011) provide a generalization of a single-trip model using
marginal activity utility functions for preference representation. However, the simple
model restricted to two departure times as decision variables, discussing the inclusion
of other dimensions as mode, route and destination choice as desirable but challenging.
More recently, Li et al. (2014) use an activity-based approach to incorporate commuters
day-long activity schedule and time decisions into the Vikrey’s bottleneck model for the
morning and evening trips. The modelling approach based on the utility maximization,
is analytically explored for a special case of constant marginal utilities.

This paper goes a step further and uses an multi agent-based simulation framework
to investigate impact of value of time and schedule delay heterogeneity on economic
welfare and distributional effects of congestion pricing policy. In particular, this work
focuses on presence of heterogeneity in a multi-modal context, with detail modelling of
interaction between private and public transport as well as capacity constrained public
transport vehicles with crowding effects. Using a multi-modal corridor scenario in a
multi-agent and activity-based transport simulation framework MATSim (MATSim,
2015), differences in values of time are modelled based on individuals household income.
Thereby, availability of a bus service as additional alternative has significant impact on
level and distribution of gains ans loses resulting from introduction of congestion pricing
policy.

3 Methodology

Transportation demand originates from travel decisions of individuals, who use provided
transport supply to move from one location to another, mainly for sake of performing
some activity, which could not have been performed otherwise. Arising from com-
bination of travel choices made on an individual level, properties and behaviour of
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transportation system as a whole represent an emergent phenomena within a complex
system. Agent-based modelling and simulation approach provides a framework for
modelling and studying of such complex systems composed of autonomous, interacting
agents. In particular, given the vast range of personal socio-economic characteristics
and individual preferences influencing travel behaviour, agent-based simulation posses
essential properties for study of user heterogeneity and associated emergent phenomena
arising from collective behaviour. This work adopts and extends Multi-Agent Trans-
port Simulation (MATSim) framework (MATSim, 2015), which is described in detail
below.

3.1 Multi Agent Transport Simulation (MATSim)

Multi-Agent Transport Simulation (MATSim) framework integrates travel demand based
on individual activity schedules with simulation-based dynamic traffic assignment. One
of its major strength, is its capability for detailed modelling and simulation of multi-
modal networks. Joint simulation of private and public transport based on the queuing
model allows time-dependent calculation of travel times accounting for spill-over effects
and direct interaction of private and public transport. By modelling interaction dynamic
based on the actual physical properties of vehicles and links, it captures queueing ath the
end of links, enabling to accurately model congestion dynamics.

Based on a co-evolutionary algorithm, agents alter their behaviour from iteration to
iteration, evaluating new routes, alternatives transport modes and departure times in the
process. Thereby, each agent tries to find an optimal daily schedule, which maximizes
its utility function. Following each iteration of the queue-based network assignment, the
activity scheduling and travel choices of each agent are evaluated and scored, enabling
generation of an individual choice sets. The selection of travel alternatives from the
choice set of each agent is performed using on a random utility model. As described
in detail by Nagel and Flötteröd (2009), after number of iterations individual utilities
converge and the system reaches a stable agent-based Stochastic User Equilibrium (SUE).
MATSim features a modular architecture, allowing for flexible management, adoption
and extension of behavioural features and individual choice dimensions. For the single
corridor scenario used in this work two choice dimension modules are relevant: departure
time and mode choice.

Departure time choice enables agents to alter their departure times from the activities.
Selected agents modify their departure times and activity durations of a daily plan
randomly within a pre-defined time window. For the simulation set-up presented here, a
time window of +- 60min is used for single modification of the departure time.

If an agent is selected for mode choice, it can change the mode of its journeys in the
next iteration. As the mode choice has to be consistent (taking bus in the morning to
work and car back home is improbable, due to non-availability of the vehicle at the work
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place), mode choice is altered at a sub-tour level (round-trip). For each mode route is
generated based on classical Dijsktra Algorithm for private transport and multi-node
Dijkstra routing algorithm of public transport (Rieser, 2010). However, given a simple
network configuration of a corridor, route choice does not feature as an independent
choice dimension at this stage. More details on the architecture and functionality of
modules handling these choice dimensions within the MATSim framework can be found
in Balmer et al. (2008) or MATSim (2015).

Incorporating heterogeneous value of time preferences in MATSim framework requires
assigning each agent an individual utility function, or as it is referred to in MATSim
language a scoring function, which evaluates daily schedule performance based on
individual attributes. As this work focuses on income related variations in values of
travel time, household income is attached to each agent, enabling its direct incorporation
into value of time and schedule delay within the individuals scoring function. Section 4.1
describes the concept behind value of time variations in an agent-based context in detail.
Same individual values of time have also to be taken into account in the routing module
during the shortest path calculations in order to ensure consistency between routing and
scoring.

3.2 Public Transport in MATSim

MATSim provides a fully integrated simulation of public transport operations, based on
the detailed model of interactions between passengers, buses, trains and private transport
vehicles. Each bus or train vehicle agent has its physical characteristics such as size,
capacity, number of seats and numbers of doors, associated with it and moves on the road
or rail network according to the queue-based traffic dynamics. Buses interacts with cars
and therefore, in absence of dedicated bus lanes, are subject to congestion delays. Vice
versa, a bus stopping at a bus stop without the bus bay on a one-lane street, will delay
following cars during the passengers dwelling process. In case a vehicle is full, further
boardings are denied, leaving travellers at the station to wait for the next bus or train. The
duration of dwell process itself depends not only on number of passengers boarding and
alighting, but also on number of bus doors and total bus occupancy. Thereby, a model
presented in Sun et al. (2014) is applied, which uses data from the electronic smart card
fare collection system in Singapore to study dwell process dynamics. The high level of
detail in modelling of public transport is crucial to accurately capture interplay between
public and private transport in case of shared road space as well as crowding effects and
dynamic phenomena such as bus bunching.
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3.3 Implementation of congestion pricing

Finding an optimal control strategy in a complex system and steer it towards an optimal
state can be a highly challenging task. In economics, internalization of external cost
is often considered to be a powerful policy for achieving more optimal outcome and
increasing social welfare. As transport infrastructure is a public good with limited capac-
ity, number of externalities on other users and non-users occur. Most prominent negative
externalities are congestion, pollution, changes in land value and safety hazards.

The concept of first-best congestion pricing is based on the idea of internalization of
congestion delay externality. Charging road user a toll equal to the cost she imposes
on all other travellers on the same route by adding to the congestion delay, leads to
an efficient allocation of network capacity among users. Adding this cost, commonly
referred to as marginal external congestion cost or mecc, to each travellers trip cost,
minimizes the total travel time in the network and lets the system converge to the state
equivalent to the system optimum, as defined by Wardrop (1952).

As number of more recent publications demonstrate (e.g. Yang and Huang (1998);
Safirova et al. (2007)), mecc can be computed on a link-by-link basis through the
network without the need to account for effects of toll on the one link on the other links
in the network. This property significantly simplifies the implementation of an optimal
congestion pricing within the large-scale agent-based simulation framework. A mecc
based pricing approximation for an agent-based queuing model was initially derived by
Lämmel and Flötteröd (2009) and later refined by Lämmel (2011). Thereby, a simplified
approximation of mecc based on the assumption of stationary flow through the time of
existence of the queue leads to the following definition:

meccl (t0) ≈ tend
l (t0) − t lv

l (t0) (1)

with meccl (t0) denoting the external cost that one additional agent causes by entering
a link l at the time t0. tend

l (t0) denotes the time at which the congestion, that the
"causative" agent contributed to by entering a link at t0, dissolves. And t lv

l (t0) is the
time at which the "causative" agent enters the bottleneck at the end of the link l (for
detailed derivation see Lämmel, 2011). In other words, under the assumption of constant,
maximal outflow rate at the link l, mecc equals to the time the link l remains congested
after the "causative" agent passed through it. Testing this computationally inexpensive
method with continuous evaluation of social cost for each agent on every link in the
network, Lämmel and Flötteröd (2009) and Lämmel (2011) present simulation results
for an optimization of routing in an evacuation scenario supporting the efficiency of this
approach.

The implementation of the presented marginal social cost pricing approach in MATSim
framework in context of this work is performed by closely following the algorithm pre-
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sented in Lämmel (2011, chap. 3.1) and under consideration of practical implementation
issues discussed in Lämmel (2011, chap. 4.1.3) . Thereby, time bins of 5 min were
chosen for aggregation of tolls, representing a reasonable time resolution for stable
convergence of toll values.

It is important to note, that while this approach represents an approximation of first-best
congestion pricing. The assumption of stationary flow is valid, as long as no spill back
occurs. With spill back, the congestion charges are likely to be overestimated as double-
charging on the bottleneck link and links further upstream might occur. Furthermore,
using 5 min time bins results in extension of delay cost occurred only for a short period
of time to the whole duration of a time bin, also leading to potential overcharging.

3.4 Economic Evaluation

As pointed out in the Introduction, central focus of this work lies in the assessment of
social and economic impact of urban transport polices as in particular congestion pricing
given a population of users with heterogeneous preferences. Benefits and losses of policy
in question have to be quantified and assessed from societal as well as individual points
of view. Thereby, defining an adequate economic evaluation methodology, capable to
comprehensively capture policy impact on different levels is crucial for the quality of
outcomes and robustness of conclusions derived.

Expected Maximum Utility (EMU) approach allows straightforward calculation of
consumer surplus, which is consistent with the discrete choice theory, underlying agents
daily schedule selection in MATSim. Challenges associated with EMU calculation,
alternative welfare indicators as well as transition to social welfare calculation in presence
of public transport operations are discussed in following.

3.4.1 Expected Maximum Utility

Mostly used in simulation, the discrete choice modelling approach enables the emergence
of complex system behaviour based on behaviour and preferences of individual travellers.
Rich body of work related to the applied welfare analysis based on random utility models
in general and discrete choice modelling approach in particular (de Jong et al., 2005;
Train, 2003; Ben-Akiva and Lerman, 1985; Small and Rosen, 1981; McFadden, 1981)
provides provides a natural and consistent way for welfare and benefit evaluation by
considering utilities of all alternatives available to the individual traveller. Referred to as
Expected Maximum Utility (EMU) or as interpreted by Ben-Akiva and Lerman (1985),
the systematic component of the maximum utility as a measure of accessibility, for a
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logit model it is defined as

VJ =
1
µ
· ln

J∑
j=1

eµVj , (2)

with Vi being a deterministic utility of an alternative i and J the size of individuals choice
set. µ is the scale parameter of the disturbance term and ε and can be understood as the
degree of decision makers rationality or the ability of the user to distinguish between
the utilities of different alternatives (see Section 2.3 in Kickhöfer (2014) for detailed
explanation). Being dependent on the size of the choice set, the logarithmic formulation
reflects the idea of decreasing marginal utility of additional alternatives.

Under the assumption of marginal utility of income staying constant over changes from
the particular policy, the expected change in the consumer welfare as result of policy
introduction for a traveller n is formulated in the equation 3, with αn indicating marginal
utility of income and superscripts 0 and 1 referring to the states before and after the
change (de Jong et al. (2005)).

∆E(CSn) =
1
αn

1
µ


ln

J1∑
j=1

eµV 1
j − ln

J0∑
j=1

eµV 0
j


. (3)

Extending the EMU formulation for the change in individual welfare of an agent n to a
population of N individuals, the total change in the consumer welfare is computed as a
sum of individual changes (equation 4).

∆W =

N∑
n=1

∆E(CSn). (4)

Challenges in Choice-Set Generation

One of the main premisses in the discrete choice modelling framework is the assumption
of independence of irrelevant alternatives (IIA), where adding additional alternatives
should not change the decision makers choice for any existing alternative. This is a
strong condition to be satisfied, in particular in cases when potential set of alternatives is
very large. Hall (2003, Chapter 2) discusses this intricate problem in detail for departure
time and route choice. Main challenge thereby is containing number of possible choice
alternatives while establishing independence between relevant potential choices.
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MATSim can be considered as multidimensional choice set generator, which generates
and evaluates number of alternative daily plans by varying existent plans in predefined
dimensions (e.g. route, mode, departure time or location choice) with every iteration.
With a commonly used "best score" criteria for selection of daily plans, only a limited
number (typically 5) of best performing plans are kept as a part agents choice set in
its memory, discarding other, worse performing alternatives. Though this guarantees
a smooth and stable conversion of the overall system, with the increasing number
of iterations plans in agents memory tend to become very similar, violating the IIA
condition. Though identified and partially addressed in recent publication (Oliveros,
2013; Nagel et al., 2014; Grether, 2014), a cohesive multi-modal and time-dynamic
approach to this problem requires further research and in-depth evaluation, as alternative
choice sets may alter the stability and convergence process of the simulation

To circumvent this problem and ensure compliance with the IIA condition, a slightly
alternative solution for generation of a choice set suitable for welfare evaluation is
proposed and applied in this work. For each agent, the chosen plan of the final iteration
of the simulation run is picked and used for a rule-based definition of alternatives.
Thereby departure time alternatives are defined following the approach by Antoniou
et al. (1997), where authors used set of five alternatives for each departure.

In an activity-based context, trip departure times are essentially activity end times.
Therefore a choice alternative is determined not by a single departure time, but by a
set of all departure times through the day, resulting in exponential growth of the choice
set with increasing number of activities during the day. For the home - work - home
activity chain considered in this study, departure times with +1h and -1h relative to the
observed chosen alternative are considered. Applied for morning and evening commute,
this results in a set of 9 possible departure time combinations. Thereby combinations,
where work durations is altered by two hours: earlier departure in the morning (-1h)
and later in evening (+1h), or later departure in the morning (+1h) and earlier in the
evening (-1h) are discarded as being too substantial and therefore improbable schedule
variations. Generating these alternatives for the car and bus modes, results in a total of
14 possible alternatives of a daily schedule. In case walking appears to be a realistic
alternative (travel duration less than 1h), it is as well added to the choice set. As walking
is unaffected by traffic and crowding conditions, only one utility maximizing set of
departure time is chosen. This results in a choice set of 14 to 15 alternatives for each
agent, with size of the choice set of an individual agents remaining constant in all
scenarios. Though this appears to be a fairly large number, taking into account that
it is a full day schedule and looking on it from single trip perspective, leaves us with
maximum 7 choices for the morning commute (3 departure time for car and bus, and
one for walking) and dependent on the first choice between 3 and 1 alternatives for the
evening commute. These appear to be fairly realistic numbers, in line with number of
choices considered by other studies.

Given the one chosen alternative and 13 to 14 non-chosen for each agent, the utility
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of non-chosen alternatives is evaluated based on travel times of the last iteration. This
is basically equivalent to the state, where only the agent of interest would change to a
different plan without his decision having an effect on system sate as whole. Simulation
of these 13 to 14 non chosen alternatives for each agent with keeping behaviour of all the
other agents constant, would result in maximum of 8000x14 = 112′000 simulation runs,
which given a simulation time of about 1 min per run, is infeasible to execute. Therefore,
to score all the alternatives, an approach based on a pseudo-simulation, presented by
Fourie et al. (2013), is applied.Thereby, travel times from the network conditions and
travel times from the last iterations are used to score each possible alternative.

3.4.2 Generalized cost and realized utility in an agent-based SUE

In an agent-based simulation framework each agent follows the goal of maximising its
utility given a personal objective function, also refereed to as utility function in discrete
choice theory and or scoring function in a MATSim context. In an activity based model
the utility function commonly incorporates utilities gained from activity performance
and (dis)utilities associated with travelling. In context of MATSim’s co-evolutionary
optimization algorithm, each agent’s experienced utility in the course of the simulated
day is calculated at the end of each iteration. Sum of all utilities from the chosen
alternatives across agents, can be interpreted as a form of generalised cost given the
overall system state in this iteration and is refereed to as

∑
Realized utility (Zöllig and

Axhausen, 2012). In MATSim framework, average of
∑

realized utilities, also called
simulation score, is often used as a measure of convergence and stability of the stochastic
user equilibrium . As it directly measures the actual utilities of chosen alternatives, it
also can be adopted as qualitative indicator of overall economic performance. (Zöllig
and Axhausen, 2012), for example, use it next to EMU calculation for assessment of
infrastructure investments with an agent-based accessibility approach.

3.4.3 Public Transport Operation Cost

Providing a high service level of public transportation comes at a cost. Operating a bus
line with higher headway requires more investments in buses, more manpower and results
in more vehicle kilometres. At the same time, as demonstrated in following sections,
level of public transportation service and availability of alternatives to the car mode has
a decisive impact on economic benefits of congestion pricing in a multi-modal urban
environment and in particular in presence of heterogeneous values of time. However,
conducting welfare evaluations and analysing sensitivity of pricing policy effects in
presence of varying bus service frequencies, requires to account for operational as well
as capital cost of service provision.

Matching the travel behaviour parameters, which are based on the survey data from
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Sydney Tirachini et al. (2014), formula and parameters for cost estimates of bus op-
erations in the corridor scenario are borrowed from national guidelines for transport
management in Australia Australian Transport Council (2006) and were previously used
for simulation-based public transport fare and frequency optimization by Kaddoura
et al. (2015). The total cost C of bus operations for one day are calculated according to
equation 5.

C = (dvkm · cvkm + tvh · cvh) · O + Nv · cvday, (5)

with dvkm as total vehicle kilometres per day, cvkm monetary cost per km, tvh total
operational vehicle hours, cvh monetary cost of vehicle operation per hour, O factor for
overhead cost, Nv total number of vehicles and cvday daily capital cost. Thereby the first
part of the equation accounts for variable operational cost and the second part of the fixed
cost. The daily unit cost cvday and the cost per vehicle kilometre cvkm are dependent
on the vehicle capacity, with cost functions derived from linear regression and shown
together with other parameters in Table 1.

Table 1: Bus operation cost according to Australian Transport Council (2006)
cvkm 0.006 · capacity + 0.513 [$/vkm ]
cvday 1.6064 · capacity + 22.622 [$ / vday]
cvh 33 [$ / vh]
O 1.21

3.4.4 Social welfare and consumer surplus

In this work, social welfare is defined as sum of consumer benefits, monetary payments
made by travellers for the usage of transportation infrastructure and cost of bus operations,
as presented in equation 6. This definition is based on an idealized assumption of zero
transaction cost and no loses as a result of monetary transfers from travellers to the bus
and road operators. Money collected from congestion charging and public transport is
assumed to be returned to society in one form or another, incurring no additional toll
collection or administration cost in the process.

Social Wel f are = Consumer Wel f are + Fare Revenue
+ Toll Revenue − PT Operation Cost (6)
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3.5 Simulation methodology

The simulation methodology draws on wide body of experience of previous MATSim
based studies and related research. The initial demand for all scenarios is based on a set
of relaxed plans with car as a single mode and one plan per agent. After introduction of
new bus service frequency or congestion pricing policy, 1000 iterations are performed
to allow the system to reach a state of equilibrium. In the first 800 iterations, agents
generate and evaluate new plans with the two major replanning strategies: mode choice
and departure time choice. During this plan generation process the share of agents trying
out new plans is linearly decreasing, with total of 40% in the first iteration and no new
plans generated after iteration 800. This process is referred to as "linear annealing" and
prevents extreme system state changes after disabling of the plan generation process. In
the last 200 iterations, agents choose from the existing 5 plans in there memory with
probabilities given by the logit model.

4 Value of time and money

As pointed out in the Introduction, valuation of travel time savings and its distribution
across population can play a determining role in outcomes of economic project and
policy appraisal and evaluation. One of the main challenge thereby is the high inter-
as well as intra personal variations in values of time among individuals. Theoretical
framework for valuation of time builds on models of time and income allocation, as
initially presented by Becker (1965) and later refined and extended by i.a. DeSerpa
(1971), Jara-Diaz (2003). An detailed overview of the theory and state of the art of
estimation methodologies for value of travel time savings can be found in Small and
Verhoef (2007), Small (2012) and Börjesson and Eliasson (2014).

Traditionally the values of time are estimated using travel diaries, micro-census data or
other stated preference (SP) surveys (Jara-Diaz and Guevara, 2003, e.g.). Alternatively
few studies were performed based on revealed preference (RP) observations or the
combination and comparison of SP and RP sources (e.g. Brownstone and Small, 2005).
The Swiss study by Axhausen et al. (2008) obtains not only high variation in valuation
of travel time savings based on the trip purpose but also show significant influence of
personal income and trip distance. Hess et al. (2008) produce more stable and reliable
results by combing evidence from four different studies conducted in Switzerland.

Focusing only on income - dependent heterogeneity of values of time in this work,
continuous interaction formulation used by Axhausen et al. (2008) is adopted in order to
incorporate income parameter into the utility function. Therewith, for the (dis)utility of
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monetary travel cost τ follows

TC(inc, τ) = βmon

(
inc

înc

)λinc,mon

· τ, (7)

with inc being the income variable influencing the sensitivity to monetary expenses βmon
and înc being a sample mean value used as a reference. In the subsequent part of the
paper, the subscripts in λinc,mon will be omitted, substituting λinc,mon with λ for better
readability. The income dependent factor in the formulation above will be referred to as
"income-sensitivty factor".

4.1 Heterogeneity in an activity-based modelling context

An agent-based framework with personal utility function for every economic agent is in
particularly suitable for the incorporation of heterogeneity on individual and trip levels
into the simulation model.

As indicated in the previous section, the factors for (dis)utilities from travelling, activities
or monetary expenses can vary from agent to agent. Kickhöfer (2014), Kickhöfer et al.
(2011), Kickhöfer et al. (2010) previously addressed heterogeneity in user perception
of monetary expenses on travel within MATSim context. Focusing on economic policy
appraisal, the marginal utility of money was multiplied by an income-dependent term
to reflect differences of users in perception of monetary travel expanses. More recently
Nagel et al. (2014) used heterogeneous values of time and therewith varying sensitivity to
road tolls to demonstrate the benefits of adding randomness to routing, when faced com-
plex interactions between toll levels and values of time. However, in all this approaches
(dis)utilities travel time and activity performance were left homogeneous among popu-
lation. This work takes a different approach by incorporating heterogeneous values of
time into individuals utilities of activity performance and (dis)utility of travelling, as
presented in following.

Detailed review of utility functions for activity performance and travel (dis)utilities can
be found in Nagel and Flötteröd (2012). Jumping straight to the definition of marginal
values of travel time savings in MATSim (Nagel et al., 2014), mVTTS for an agent a are
defined as opportunity cost of time divided by the marginal value of money βmon

a :

mVTT Sa =
mUTT Sa

βmon
a

=
−βtrv

a + βact
a ·

tt y p
t

βmon
a

, (8)

with t as actual activity durations and ttyp as typical or ideal activity duration. Following
the logic of activity based modelling approach, it can be argued, that the differences in
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variations of value of time across the population result from varying utilities of activities.
Translating this argumentation into an activity-based modelling framework, the heteroge-
neous values of time should be reflected in variations of βact among agents. Thereby the
higher willingness to pay for the reduction of travel times emerges intrinsically from the
higher activity utilities and travel (dis)utilities of agents with high personal or household
income.

Following the definition of (marginal) value of travel time savings and adding hetero-
geneity from (7) into it, for the heterogeneous utility factor of money for an agent a
becomes:

βmon
a = βmon

(
inc

înc

)λinc,mon

(9)

Substituting (9) into (8) and rearranging the heterogeneity multiplier for the monetary
cost into the nominator, follows:

mVTT S =
−βtrv

a + βact
a ·

tt y p
t

βmon
a

=
−βtrv

a + βact
a ·

tt y p
t

βmon
(

inc
înc

)λinc,mon

=
−βtrv

a

(
inc
înc

)−λinc,mon
+ βact

a

(
inc
înc

)−λinc,mon
·

tt y p
t

βmon .

(10)

Under the assumption of an activity duration being in the neighbourhood of its typical
duration, linearisation around t = ttyp makes the mVTTS independent of the duration of
the activity following the trip. As Nagel et al. (2014) point out, using this approximation
substantially simplifies a robust software design.

Combining the homogeneous utility parameters for travel and activities with the hetero-
geneity factors, leads to:

mVTT S =
− β̂trv

a + β̂act
a

βmon , (11)

with

β̂trv = βtrv
a

(
inc

înc

)−λinc,mon

(12)
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β̂act = βact
(
inc

înc

)−λinc,mon

. (13)

As equation 11 shows, the above formulation adjust the marginal utilities of activity
performance and travelling for each individual, keeping the marginal utility of monetary
travel expenses constant across the population. This transformation does not change
individuals mVTTS, but has an important behavioural effect. Becoming intrinsic property
of the model, heterogeneity in VTTS does not anymore directly depend on level of
monetary travel expenses. It also paves the way towards activity specific marginal utilities
as well as potential inclusion of budgeting into the simulation framework. Moreover, as
it is demonstrated in the following section, this approach facilitates inclusion of schedule
delay heterogeneity in an activity-based context as it intrinsically emerges from income
dependent variation of the marginal activity utility.

5 Schedule delay

In the dynamic models of congestion schedule delay commonly refers to the time
difference between preferred arrival and actual arrival time at an activity or preferred
and actual departure time from an activity. The cost associated with these, for travellers
undesired time deviations, is referred to as the schedule delay cost. Affected by a
broad range of factors, schedule delay cost display a wide inter- and intra-personal
variability, leading to challenges in study and quantification of its distributions. However,
as recent studies show (van den Berg, 2014; van den Berg and Verhoef, 2013, 2011a,b,
e.g. ), heterogeneity in schedule delay cost can have significant influence on welfare
and distributional effects in transport planning and policy design, and therefore requires
more attention from modellers and practitioners.

5.1 Being Early or Late – Modelling and Behaviour

Schedule delay cost are commonly divided into schedule delay early (β) – arriving at an
activity location before the desired activity can be started and the schedule delay late (γ)
– arriving later than planned.

Work activity has traditionally been the most prominent example for illustration and
study of schedule delay cost. The often rigid working hours in developed parts of the
world lead to the high penalization of arriving at workplace too late or leaving them
too early. Number of publications studied the schedule delay in the context of the
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morning commute problem, using the same exact time preference for the arrival at the
work place among all travellers. Thereby the starting point is commonly the bottleneck
model presented by Vickrey (1969) and its extension with heterogeneous preferences
or additional choice dimensions (see Small (2012) for overview). Comparatively little
however was written about the evening peak, where traveller’s deviation from preferred
departure-time lead to additional cost. Vickrey (1973), Fargier (1983) and later de Palma
and Lindsey (2002) compared the morning and evening commutes and demonstrated that
the convenient symmetry of the two peaks in case of identical travellers, breaks down
when heterogeneous trip timing preferences, values of time and schedule delay cost
are considered. Yet, only little attention was given to the interdependency of morning
and evening peaks and the whole day schedule dynamics. As activities often require a
minimal duration for their performance, delays tend to propagate through the day and
often have implications on all consecutive activities.

As schedule delay cost for commuting trips depend on individuals job and function, a
direct relation with the personal value of time and therewith correlation with income is a
common assumption. People with a high income tend to have more flexibility and power
to adjust there personal schedule, while workers with lower income, often employed in
service industry, healthcare, education or manufacturing industries, tend to be bound by
strict opening and shift timings.

5.2 Schedule delay in an agent – based framework

Accurately capturing different levels and dimensions of user’s preference heterogeneity
among individuals and trips in a single model is a challenging task. From the transport
economics perceptive, the ratios of individual’s value of time, schedule delay early
and schedule delay late play a determining role in trip scheduling and is therewith of
major relevance for the welfare evaluation. Three forms of user’s scheduling preference
heterogeneity are commonly considered in the literature: proportional heterogeneity,
α-heterogeneity and γ-heterogeneity (van den Berg (2014)). Being defined by the ratios
of value of time and schedule delay cost µ = α

β , η =
γ
β and λ = α

γ , different modelling
forms try to capture varying trade-offs and user preferences between queuing and arriving
before or after the preferred arrival time at given activity location.

In this paper, the activity-based framework is linked with the proportional form of
heterogeneity. It is based on the assumption that values of time and schedule delay vary
proportionally over travellers, following a certain distribution function. Consequently
the ratios of value of time and schedule delay µ,η and λ remain constant for all travellers.
Initially discussed by Vickrey (1973), it commonly follows the argumentation that people
with higher income have higher value of income and therewith corresponding higher
cost of schedule delay early and late. The major drawback of this heterogeneity form, is
that it does not account for different flexibilities of schedule based on other factors as
income.
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For agent- and activity-based framework MATSim, the relation between marginal utilities
as used in the simulation framework and values of time α and schedule delay early β
and late γ from Vicekery’s bottleneck model with homogeneous user preferences were
discussed by Nagel and Flötteröd (2009) and are summarized in equation 14,

α = mVTT S · βmon = −βtrv + βact

β = βact

γ = βlate.

(14)

Following the concept of heterogeneity with income depended utility of activity perfor-
mance as presented above, transition to proportional heterogeneity in schedule delay
is straightforward. By defining βlate in the equation (14) as βlate = βlate

const · β̂
act
a , for

heterogeneous values of time and schedule delay follows:

α = −βtrv + βact = −βtrv
cost ·

(
inc

înc

)−λinc,mon

+ βact
const ·

(
inc

înc

)−λinc,mon

β = βact = βact
const ·

(
inc

înc

)−λinc,mon

γ = βlate
const · β

act = βlate
const · β

act
const ·

(
inc

înc

)−λinc,mon

(15)

From the equations (15), it is easy to see, that ratios µ = α
β and η =

γ
β stay constant for all

agents, with α, β and γ varying proportionally with the income factor. This corresponds
to the definition of proportional heterogeneity. The value of βlate

const is determined by the
ratio η =

γ
β = 3.9 as in by Arnott et al. (1990).

6 Experimental Scenario Set-up

6.1 Supply

For the initial evaluation of presented methodology and effects of heterogeneous trav-
ellers, a rather simple, multi-modal corridor scenario is chosen. Essentially limiting
agents choice dimensions to departure time and mode choice, allows for better isolation
of effects from users heterogeneous values of time as well the fist-best road pricing
approximation. At the same time, limiting agents to 2 degrees of freedom enables
drawing of parallels between analytical economic models and agent-based simulation
methodology.
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The 20km long corridor, with distribution of home on one and work locations on the
other end, consist of three lanes in each direction with flow capacity of 800 vehicles per
hour and lane. A bus line in each direction is operating along the full corridor length,
with bus stops located each 600 meters. The headway in each direction is 5 min during
the course of day.

A sketch of the scenario set-up can be found in figure 1

Figure 1: Corridor scenario set-up, with bus stops locations and distribution of home and
work locations

6.2 Travel demand and behavioural parameters

The agent population consist of 8’000 agents, all with a same daily home - work - home
activity chain. The home locations of agents follow a normal distribution along the west
side of the corridor, with µ = 6.67km and standard deviation σ = 3.33km. On the other
side, the work locations are distributed around µ = 13.33km with the same standard
deviation σ = 3.33km. Furthermore, both home and work locations are also uniformly
distributed on the north and south side of the corridor, with maximal distance of 1km to
each side. This results in maximal bee line distance to the closet but stop of 1.04km.

In the agent based context, the preferred arrival and departure times to and from activities
are determined by typical activity duration parameters as well as additional constrain
parameters for the time intervals during which each activity can actually be performed
(also called facility opening times). An additional set of parameters: "latest start time"
and "earliest end time" helps to translate the definition of schedule delay cost to the
activity-based framework. Arrival at an activity location after "latest arrival time"
or departure from an activity before the "earliest departure time" induces additional
schedule delay penalty. Table 2 presents activity timing constrains as defined in the
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corridor scenario. The behavioural parameters for the corridor scenario are borrowed

Table 2: Activity constrains
Activity Typical duration Opening time Latest start time Earliest end time Closing time

Home 14h - - - -
Work 9.5h 8.00am 9.00am 6.00pm 7.00pm

from the enriched, agent- and activity-based Sioux Falls model, as presented in Chakirov
and Fourie (2014) and initially estimated by Tirachini et al. (2014) from results of stated
choice survey conducted in Sydney in 2009 Hensher et al. (2011). Table 3 summarizes
the parameters used for this study.

Inherently, the marginal travel time related disutility coefficients estimated in traditional
discrete-choice models combines the opportunity cost time and the additional disutility
caused by the travel time with the corresponding mode. Applying this behavioural
parameters in an activity-based model requires to split the estimated utility parameters
into two components and assign a separate utility for activity performance and a disutility
for travel time (Kickhöfer, 2014; Kickhöfer et al., 2011). As the "doing nothing" situation,
which occurs in case of early arrival at an activity location or departure after the closing
time, corresponds to the disutility of schedule delay early β , the split of marginal travel
time related disutility for car mode is defined by the ratio α

β = 2 (Arnott et al., 1990).

Table 3: Behavioural and monetary simulation parameters for the corridor scenario

Parameter Value

βact + 0.48 [utlis/h]
βtr,car - 0.48 [utlis/h]
βtr,pt -0.66 [utlis/h]
βtr,walk -1.401 [utlis/h]
βwait,pt -1.458 [utlis/h]
βcost -0.062 [utils/$]
β0,car -0.562 [utils]
β0,pt -0.124 [utils]
β0.walk 0.0 [utils]

Parameter Value

PT Fare 2 $ / trip
Car cost per km 0.2 $ / km
Parking cost 6$ / trip (= 12$ / day)

6.3 Socio-economic characteristics

In this work household income represents the single socio-economic characteristics
attached to the agent population. Thereby incomes of agents in the corridor scenario
are generated using the income distribution from the synthetic population of the Sioux
Falls scenario presented by Chakirov and Fourie (2014). In case of Sioux Falls scenario
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the distribution emerges intrinsically during the iterative proportional fitting inflation
procedure. In order to recreate the same incomes distribution, a log-normal probability
density function was fitted to the Sioux Falls income distribution and used to randomly
draw incomes for the 8000 agents of the corridor scenario. Figure Fig. 2 shows the
resulting income histogram incomes. No correlation between personal income and home
or work locations exists and therewith the daily commute distance is independent of the
income. Furthermore, car ownership is not specifically modelled in the corridor scenario
and is equal to 100%.
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Figure 2: Histogram of incomes with dashed line indicating the mean of 73’320 USD.

Following the formulation presented in equation 7, the degree of heterogeneity and the
sensitivity of the utility function to income can be controlled by adjusting the parameter
λ. Using a scale factor n for variation of λ, the contribution of travel cost to the utility
term becomes:

TC(inc, τ) =
βmon

m

(
inc

înc

)n·λ

· τ with m =
1
N

N∑
p=1

(
incp

înc

)n·λ

(16)

with τ being the amount of monetary expenses and m the normalization factor equal to
the average of the income dependent correction term. As the mean value of the income
sensitivity factor is , 1, introducing it with a constant βmon, which was estimated
separately, leads to an increase in mean of value of time. Therefore, normalization term
m is used to ensure comparability between the homogeneous reference case and various
heterogeneity scenarios, keeping the average value of time for all scenarios constant.

For heterogeneous (dis)utilities of activity performance and travelling accordingly fol-
lows:

β̂trv = βtrv
a · m ·

(
inc

înc

)−n·λ

β̂act = βact · m ·
(
inc

înc

)−n·λ
(17)
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The meaning of n for scaling of the parameter λ can be interpreted in two ways. On the
one side, scaling λ can be seen as change in sensitivity for perception of the monetary
travel cost expenses to income. This sensitivity can vary based on number of economic
and cultural characteristics of a particular geographic region or even for the same person
dependent on a trip purpose. As Axhausen et al. (2008) observe, the λ for business
trips is significantly higher as for commuting trip and almost corresponds to n=5 in this
study.

On the other side, slightly rewriting equation 16,as follows

TC(inc, τ) =
βmon

m

(
incn

înc
n

)λ
· τ =

βmon

m

(
incnew

încnew

)λ
· τ (18)

allows to interpret different n - factors as variations in spread of the underlying income
distribution and therewith varying inequality. As a common measure of inequality, a
Gini-coefficient indicates the deviation of distribution of incomes from perfectly equal
distribution, with 0 in case to perfect equality of incomes and 1 the population where
one person is receiving all the income (Gini, 1921; Cowell, 2011). Geometrically, it
can be visualized as area difference between integral of the real cumulative income
percentage curve and the integral of the perfectly equal cumulative income percentage
curve. Such plots also refereed to as Lorenz curves and are presented in Figure 3 for
different n-factors and the underlying income distribution of the corridor scenario. It is
interesting to note that Gini-coefficient of 0.20 (n=0.5) is rather close to a more equal
country as Sweden, 0.39 (n=1) is slightly under the US average and close to the Gini
estimates for UK and 0.69 (n=2) is only slightly above the Gini-coefficient estimates for
South Africa (World Bank, 2015; Central Intelligence Agency, 2013). The scenarios of
n=0 is the homogeneous user case and n=3, n=5 can be considered as extreme reference
cases, or as scenarios with not only high income inequality, but also higher sensitivity to
travel cost. Such situation could be expected in places, where the share of transport cost
of the total living expenses is especially high.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cummulative share of population 

C
u

m
m

u
la

ti
v

e
 s

h
a

re
 o

f 
in

c
o

m
e n = 0.5, Gini = 0.20

n = 1, Gini = 0.39

n = 2, Gini = 0.69

n = 3, Gini = 0.86

n = 5, Gini = 0.98

Figure 3: Lorenz curves and Gini coefficients for different heterogeneity parameters.
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The bean plot in Figure 4 shows the effective value of time distributions dependent on the
heterogeneity factor n and based on behavioural parameters and the income distribution
as presented in Section 6.2. It highlights the growing gap between minimum to maximum
values of α as the mean remains constant. In the remainder of this work, expressions
such as degree of heterogeneity, spread in values of time or increasing n-factor are used
interchangeably.
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Figure 4: Distribution of Value of Time for different heterogeneity factors (car mode)

7 Simulation Results and Discussion

As this work focuses on better understanding gains or loses of congestion tolling based
on availability of alternative transport modes and heterogeneity in values of time and
schedule delay, simulation set with all possible combinations of parameters presented in
Table 4 are conducted. With heterogeneity degree n = 0 being equal to homogeneous
users, total of 48 simulation runs were performed.

In order to better understand the effect of alternatives available to travellers on outcomes
of pricing policies, experiments with bus headways of 2 min, 5 min, 10 min and no bus
operations at all are conducted. Given a capacity of 90 passengers per bus, the used
service headways translate into the overall throughput of the bus line of 2700, 1080, 540
and 0 passengers per hours, respectively.

Based on agent- and activity-based simulation approach, the results presented here are
derived from fundamentally different methodology as in case of trip-based bottleneck
model. Therefore direct comparisons of the results should be enjoyed with caution.
However, such comparison can also be highly beneficial for bridging the gap between
analytically robust transport economics approach, but based on highly simplified as-
sumptions and agent-based simulation approach allowing for detailed modelling of
travel behaviour and physical interactions, but more challenging for generalization of
simulation results.
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Table 4: Simulation sets

Heterogeneity degree n

(0)
0.5
1
2
3
5

Bus headway

2 min
5 min
10 min

no service

Heterogeneity type

homogeneous
proportional

Pricing

no road pricing
congestion charge

In following, sensitivity of economic welfare and distributional effects of congestion
pricing policies to varying parameters of transportation supply and demand, as listed
in Table 4, are evaluated. Starting with the unimodal case and extending it to a muli-
modal scenario, the importance of integrated transport policy modelling and planning is
highlighted and discussed. Table 5 provides overview of abbreviations used in figures
and tables presented in the course of this discussion.

Table 5: Overview of abbreviations and terminology

Scenarios

n Factor determining the level of heterogeneity
NCP No Congestion Pricing
CP Congestion Pricing

Evaluation measures

CW Consumer welfare Consumer welfare (also known as consumer sur-
plus or user benefits) calculate as average EMU
per person.

SW Social Welfare Sum of consumer welfare (CW), cost of bus op-
erations and monetary revenues from congestion
charge and bus fares.

RCW Realized Consumer Welfare Realized consumer welfare, averaged over last
100 iterations.

RSW Realized Social Welfare Sum of Realized Consumer Welfare (RCW),
cost of bus operations and monetary revenues
from congestion charge and bus fares, averaged
over last 100 iterations.
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7.1 Social and Consumer Welfare

Total social and consumer welfare represent fundamental aggregated indicators for
policy and project evaluation. As discussed in detail in Section 3.4, calculation of
consumer welfare is performed using the Expected Masimum Utility approach, based on
the chosen daily schedule in the last iterations as well as a choice set of 13-14 non-chosen
alternatives. Total social welfare is calculated as sum of consumer welfare, cost of public
transport operations and monetary revenue from toll and fare collection. It is important to
highlight, that the utilities of chosen and non-chosen alternatives used in the calculation
of the EMU results from the system state in the last iteration of the evaluated simulation
run. Same applies to the monetary revenues from pricing and public transport fares.
Though, the simulation methodology presented in Section 3 ensures stable convergence
of the stochastic user equilibrium, minor variations from iterations to iteration remain. In
particular in process of comparison of two simulation run, unfavourable superposition of
such stochastic variations can hide more subtitle changes in social and consumer welfare
indicators.

In order to better understand the degree and impact of stochastic variations, average of
realized social and user benefits from a set of last 100. iteration runs, is evaluated for
the unimodal scenario. Averaging over multiple iterations, during which travellers only
choose from the existing daily plans in their memory, enables to smooth out effects of
stochasticity, providing additional qualitative indicator in support of EMU - based social
and consumer welfare evaluation.

7.1.1 Unimodal scenario - car only

In a unimodal scenario car is the only mode available to the commuters. In absence of a
bus service as a viable alternative, departure time choice represents the single degree of
freedom along which an agent can optimize its behaviour. It is also important to note,
that without congestion charging and no bus operations in place, social and consumer
welfare are identical.

No congestion pricing (NCP)
Figure 5 depicts social and consumer welfare before and after introduction of congestion
pricing dependent on degree of heterogeneity n, comparing the three types of value
of time heterogeneity discussed above: proportional, α and γ. Solid lines represent
the scenarios before congestion pricing and dashed lines after the pricing policy is
introduced.

Table 6 summarizes changes in social and consumer welfare resulting from congestion
pricing in presence of proportional heterogeneity, as visualized in 5. From the Table 6
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Figure 5: Effect of congestion pricing on social welfare and consumer surplus for dif-
ferent degrees of heterogeneity n and different types of schedule-delay hetero-
geneity, with only car mode available. Base case (n = 0) is the scenario with
homogeneous travellers.

however, it is easier to note the subtle increase in social welfare with higher n values,
resulting in welfare for n=5 being 0.5% larger than in homogeneous case. This minor
increase is an artefact of generation and evaluation of alternative daily planes with
the non-linear activity utility function, using the Logsum term for welfare calculation.
Realized welfare averaged over multiple iterations and summarized in Table 7, does
not exhibit the same increase. Therefore, it can be concluded that without congestion
pricing, degree of proportional heterogeneity does not affect social and consumer welfare.
This independence of welfare on proportional heterogeneity is expected. Without time
depended monetary travel expenses, introduction of proportional heterogeneity does not
alter individuals ratios of value of time and schedule delay early and late, and therefore
provides no incentives for agents to change there travel behaviour compared to the
homogeneous values of time scenario. It is also in line with the publications based on the
bottleneck-model mentioned above(van den Berg, 2014; van den Berg and Verhoef, 2013,
2011a,b). All of these publications agree, that introducing proportional heterogeneity
does not change the departure and travel time patterns.

Table 6: Effects of congestion charge on social and consumer welfare (logsum) for
proportional heterogeneity in the unimodal "car only" scenario

n SW Prop. (p.p) CW Prop. (p.p) ∆ SW prop. ∆ CW prop.
0 154.2 $ 154.2 $ 4.12 % - 3.13 %

0.5 154.2 $ 154.2 $ 4.13 % - 3.58 %
1 154.3 $ 154.3 $ 4.06 % - 3.70 %
2 154.4 $ 154.4 $ 4.11 % - 2.75 %
3 154.5 $ 154.5 $ 4.17 % - 1.60 %
5 154.9 $ 154.9 $ 4.26 % - 0.13 %
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Congestion pricing (CP)
Introduction of congestion pricing has significant effect on social welfare, increasing it
by around 4 % for all degrees of heterogeneity (Figure 5 ). Though differences between
varying degrees of heterogeneity scenarios appear to be of minor scale compared to
total gains of congestion pricing, it is worth to discuss these effects at this point, as they
become more pronounce after the introduction of mode choice as an additional choice
dimension.

For proportional heterogeneity, a slight increase in welfare gain with increasing degree
of heterogeneity can be presumed mainly based on scenarios with wider spread in
values of time n=3 and n=5 (Table 6, ∆ SW prop.). For lower degrees of proportional
heterogeneity, stochastic variations in SUE outweigh this effect. Averaged over last
100 iterations, realized values of social welfare in Table 7 (avg. ∆RSW) confirm
this assumption. Therefore, it can be concluded, that imposing congestion pricing on
population of travellers with proportionally heterogeneous values of time, allows for
more efficient self-organization of travel and departure times as in case of identical value
of time for all users.

One of the most interesting results however, emerges from analysing effects of conges-
tion pricing on consumer welfare under heterogeneous preferences. For homogeneous
travellers, congestion pricing has a negative effect leading to an average loss of 3.13 %.
Even though congestion pricing almost eliminates travel delays, monetary toll payments
of second-best congestion charging scheme exceed gains from eradication of excessive
congestion, causing average loss for the consumer. Most surprisingly however is the
rapidly diminishing average consumer loss with increasing degree of heterogeneity. For
extreme case of proportional heterogeneity (n=5), second-best congestion charge has
almost no effect on consumer welfare (∆CW = −0.13%), substantially increasing the
social welfare at the same time. This outcome is primary due to the strong distributional
effects, with high value of time travellers disproportionally gaining from the congestion
eliminating pricing policy while schedule delay losses of the commuters with low value
of time contributes only little to the overall welfare.

According to dynamic bottle model of traffic congestion (Small and Verhoef, 2007),
first-best pricing of a single bottleneck does not affect consumer welfare. The toll paid
be travellers is equal to the monetary value of time savings resulting from elimination of
congestion delays, leaving the generalised price of travel constant. For the second-best
pricing however, which is commonly studied in presence of an untolled alternative,
such as untolled parallel road or lane, results diverge. Conventional static models of
congestion tend to predict loses in average consumer welfare and for the majority of users
from introduction of first- and second-best pricing policies with and without presence of
heterogeneity (Small and Yan, 2001; de Palma and Lindsey, 2002; Verhoef and Small,
2004; van den Berg and Verhoef, 2011b). For the dynamic congestion model however,
the impact of pricing policy on consumer welfare before returning toll revenues to the
user can be either negative (van den Berg and Verhoef, 2011a) or positive (van den
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Table 7: Effects of congestion charge on realized social welfare and consumer surplus
for proportional heterogeneity and "car only" scenario, averaged over last 100
iterations

n avg. RSW (p.p) avg. RCS (p.p) avg. ∆RSW avg. ∆RCW avg. Toll revenue

0 126.9 $ 126.9 $ + 4.7 % - 4.5 % 92,979 $
0.5 126.8 $ 126.8 $ + 4.8 % - 4.1 % 90,419 $
1 126.8 $ 126.8 $ + 4.9 % - 4.0 % 90,054 $
2 126.8 $ 126.8 $ + 5.3 % - 3.9 % 82,919 $
3 126.9 $ 126.9 $ + 5.7 % - 1.6 % 73,653 $
5 126.9 $ 126.9 $ + 6.5 % + 0.8 % 58,056 $

Berg and Verhoef, 2011b, 2013). This appears to be highly dependent on dimensions
of heterogeneity in value of time and schedule delay taken into account. These finding
are also confirmed by van den Berg (2014), who investigated performance of different
models of course tolling in presence of heterogeneous user preferences.

As discussed above, the overall impact of heterogeneity on social welfare changes from
congestion pricing in a unimodal scenario appears to be rather minor, while it is more
significant for consumer welfare. Yet, the rather small scale of pricing policy effects
amounting to few percentage points is eye-catching. Being highly dependent on the
scenario set-up, double digit percentage point gains are commonly seen in bottleneck
model based scenarios (van den Berg and Verhoef, 2013, 2011b). However, the social
and consumer welfare in traditional models only capture the time and monetary cost
of travel. Welfare gains are expressed as percentage reduction of total travel cost. In
contrast, in an activity-based context social and consumer welfare are assessed based on
sum of utility gains in activity performance and utility losses from travelling in the course
of one day. Therefore, changes in welfare from pricing policies need to be considered
not as percentage of travel cost but as of total utility earned through the day.

7.1.2 Multi-modal scenario with varying levels of bus service

Studies of pricing and optimization policies based on simplified, uni-modal models are
helpful to gain valuable fundamental insights and understanding of system dynamics.
However, considering transport modes in isolations neglects number of important factors
acting on transport demand and behaviour in a context of dense, modern urban environ-
ments. Shifting the focus of transport planning practice towards individual well-being,
opportunities and inclusion, requires comprehensive integrated system modelling ap-
proaches. Presence of alternative transportation modes can have a significant impact on
welfare and distributional effects of pricing policies. Therefore, moving to a multi-modal
approach with high degree of realism is crucial for provision of valuable and applicable
insights to planners and practitioners.
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In order to correctly capture welfare effects of varying levels of bus service, it is important
to account for operation and capital cost of providing the service. Therefore, model
and cost estimates presented by Australian Transport Council (2006) and discussed in
Section 3.4 are applied. As only morning and evening peak hours and commuting trips
are considered, cost of bus operations from 6am - 10am and 5pm - 21pm are taken
into account. The capital cost are accounted for in full, neglecting the use of the same
vehicles through the day and serving a wider rider ship of non-commuting passengers.
Accounting for potential delays along the route and proving time buffer for on-time
service in the opposite direction, total time of 1h is assumed for a vehicle and driver to
serve the 20km corridor in one direction. The resulting cost estimates are presented in
Table 8

In this set-up, the bus fare is kept constant at 2 $. This fare amount can not cover the
bus operation cost for any of the three bus service frequencies. This implies the case of
public transport subsidies from other revenues sources.

Table 8: Bus operation cost
Headway (min) Number of vehicles Fixed cost Operational Cost Total cost

10 12 2006 $ 6280 $ 8286 $
5 24 4013 $ 12559$ 16572 $
2 60 10032 $ 31398 $ 41430 $

In presence of alternative mode, relative gains from congestion pricing decrease with
proportional heterogeneity, even though the absolute social welfare under congestion
pricing increases, following the same pricing effect on travellers with different values
of time as described in Section 7.1.1. The welfare increasing effect of proportional
heterogeneity under pricing is offset by self-sorting effects in presence of imperfect mode
substitutes. Availability of viable alternatives to the car mode leads to strong efficiency
gains through self-selection without pricing and therewith reduction of potential for
benefits from congestion pricing policy. This effect becomes more pronounce as level
and capacity of bus service increases.

These results match observation by van den Berg and Verhoef (2013), who find relative
efficiency of welfare maximising road toll decreasing in presence of a rail alternative.
They also do not contradict findings by van den Berg and Verhoef (2011b), who observe
the relative efficiency gains from proportional heterogeneity on for parallel tolled and
non-tolled alternatives. The welfare increase under heterogeneity is still observed, but is
dominated by welfare increase without congestion pricing.

The even more critical effect of increased bus headways, is the direction of change
in consumer welfare with introduction of the congestion pricing policy. Dependent
on the level of bus service, changes on consumer welfare can be either positive or
negative, which is crucial for potential support and implementation of the policy. Figure 7
visualizes changes in social and consumer welfare after introduction of congestion pricing
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(f) Consumer surplus (10min headway)

Figure 6: Effect of first-best pricing on social welfare and consumer surplus for different
degrees of heterogeneity n. Base case (n = 0) is the scenario with homogeneous
travellers

policy dependent on bus service frequency and degree of proportional heterogeneity.
Highlighting the findings depicted above based on Figure 6, it offers a new perspective
on the sensitivity of the pricing welfare gains to the two parameters. In case of social
welfare, the maximal gains from congestion pricing policy are achieved not in presence
biggest delays in absence of any public transport alternative, but in presence of moderate
congestion and low frequency bus service operating with a 10 min headway. However,
with growing spread in values of time and schedule delay, the largest welfare gains
of congestion pricing are observed in the scenario with the biggest congestion due to
the absence of any bus service. Furthermore, from the twisted shape at the transition
from low bus frequencies to no bus service scenario, the interplay of two opposing
effects becomes apparent: the increasing gains of pricing in presence of proportional
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heterogeneity, combined with stronger effect of self-organization from spread in values of
time in a multi-modal case without pricing. Lowest pricing gains can be observed, as to
be expected for high degree of heterogeneity combined with high bus service frequency.
The changes in consumer welfare, before redistribution of toll revenues, are shown in
Figure 7 (b). In this graph non-linear dependency on bus frequency and heterogeneity is
striking. In absence of any alternative to the car mode, the spread in values of time has
profound effects on consumer welfare. Given everyone that has the same preferences
and no alternative mode is available, consumers suffer a substantial loss from the pricing
policy. However, with growing gap between higher and lower travel time valuations
these gap vanishes and the change in consumer welfare turns positive. Same occurs
for the increasing level of bus service, where even low frequency service substantially
reduces aggregate consumer loses from congestion pricing. This creates a plateau, where
given availability of bus alternative, the change in aggregate consumers welfare as a
result of congestion pricing turns rather insensitive to the level of user heterogeneity.
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Figure 7: Welfare effects of congestion pricing, dependent on availability of public
transport with proportional heterogeneity

7.2 Distributional Effects

For the decision making process in favour or against certain policy implementation
as well as public discussion around it, distributional effects often play more crucial
role, than the aggregated social and consumer welfare gains of the policy in question.
In context of pricing policies, the direct impact on welfare of individuals or groups
characterized by certain socio-economic characteristics or locations of there activities
can be especially evident, while redistribution benefits often take time to materialise.
Given the dependency of values of time and schedule delay on household incomes in the
presented approach, it is interesting to look at the relation between income and change in
consumer welfare as a result of a congestion pricing policy, directly. Figure 8 visualizes
gains and loses of different income groups for all scenarios with varying degrees of
heterogeneity and levels of bus service. For all cases with any degree of heterogeneity
high income groups with high values of time are better off compared to the lower income
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groups. As already seen above the sign and extend of consumer welfare changes is
strongly dependent degree on availability of alternative transport mode and the degree of
heterogeneity. Another characteristic of welfare change distribution is the narrowing gap
between winners and losers with increasing service level of public transportation. The
most surprising effect, however, appears to be the disappearing benefits and increasing
loses of low-income groups with growing heterogeneity in all multi-modal scenarios.
This is solely due to the increasing bus readership and associated crowding effects. With
increase in degree heterogeneity, growing share of population has very low values of
time leading to increase in bus ridership, with bus mode share among low-income groups
reaching nearly 100% percent. As the introduction of congestion pricing pushes the bus
mode shares even higher, crowding induced delays cause loses to the existing bus riders.
The ability to adequately capture this effect originates from the detailed simulation of
physical passenger - bus interactions, such as dwell times and bus capacity constraints,
implemented within the MATSim framework.
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Figure 8: Changes in consumer welfare dependent on income after introduction of con-
gestion pricing for different levels of proportional heterogeneity
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8 Conclusion

The effects heterogeneous user preferences on social welfare and consumer benefits in
presence of alternative modes can have major consequences for transportation policy
design and project evaluation. Using only average values does not account for self-
organizing effects in case of multiple choice dimensions and can significantly over -
and underestimate the social and consumer welfare changes. Furthermore, the benefit
of adding capacity to the public transport network is undervalued with homogeneous
users as the effects of self-organization are not taking into account. On the contrary, the
gains from introduction of congestion pricing policy could be overvalued. Furthermore,
consumer benefits and therewith public acceptance of congestion pricing policy appears
to be strongly dependent on availability of an alternative mode, to which drivers tolled
away from the road, can divert.

This highlights the importance of joint evaluation of congestion pricing policy and public
transport operations. Given fixed public transport fare, optimal operations frequency
with heterogeneity can be higher than with homogeneous users. Furthermore, even if an
increase in level of public transport service might have a negative effect on social welfare
when evaluated as a stand alone policy, packaging it with congestion pricing policy can
not only increase social but also consumer welfare and turn out to be pareto improving.
This findings strengthen the case for use of multi-modal models and heterogeneous
values of time for urban transport policy design and evaluation.

One of major challenges in transfer of such models into practice lies in cost associated
with collection of data required for estimation of disaggregated values of time based on
socio-economic characteristics, activity types, trip characteristics etc. More general, a set-
up of a large scale agent based model is a laborious task with extensive data requirements
on transportation infrastructure, building stock, population statistics, travel behaviour
as well as residential-, business-, work- and education locations (Erath et al., 2012).
But once such model is established, it provides a variety of benefits for scenario-based
analysis and due to the large amount of disaggregated data incorporated in it, allows a
wide range of applications. As shown in this paper, agent- and activity based simulation
approach opens up new prospects for pricing policy design and evaluation. In particular,
its ability to account for travel demand patterns of economic agents on individual scale
including their socio-demographic attributes, makes it a highly suitable and attractive
tool for evaluation of transportation policies on city scale.
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