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Abstract: Rail transit is developing rapidly in major cities of China and has become a key 

component of urban transport. Nevertheless, the security and reliability in operation are 

significant issues that cannot be neglected. In this paper, the network and station 

vulnerabilities of the urban rail transit system were analyzed based on complex network and 

graph theories. A vulnerability evaluation model was proposed by accounting metro 

interchange and passenger flow and further validated by a case study of Shanghai Metro with 

full-scale network and real-world traffic data. It is identified that the urban rail transit 

network is rather robust to random attacks, but is vulnerable to the largest degree node-based 

attacks and the highest betweenness node-based attacks. Metro stations with a large node 

degree are more important in maintaining the network size, while stations with a high node 

betweenness are critical to network efficiency and origin-destination (OD) connectivity. The 

most crucial stations in maintaining network serviceability do not necessarily have the 

highest passenger throughput or the largest structural connectivity. A comprehensive 

evaluation model as proposed is therefore essential to assess station vulnerability, so that 

attention can be placed on appropriate nodes within the metro system. The findings of this 

research are of both theoretical and practical significance for urban rail transit network 

design and performance evaluation. 
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1. Introduction 

In recent years, rapid urbanization and motorization in the major cities of China have resulted in a 

huge population explosion and private vehicle ownership, which consequently bring serious problems 

to traditional road transport, such as urban congestions and pollution, etc. Compared with road transport, 

urban rail transit, such as metro, light rail and regional railways, provide a variety of economic, social 

and environmental benefits [1]. Nevertheless, their security and stability in operation have become 

significant issues that cannot be neglected. In particular, network failures, outbursts of passenger flows, 

natural disasters and terrorist activities may cause the breakdown of stations or lines, affecting the overall 

efficiency of the rail networks [2]. In Shanghai, for example, on 27 October 2007, an electricity power 

failure led to the breakdown of Metro Line 1, Line 2 and Line 4 for more than one hour; on 22 December 

2009, a power blackout of Metro Line 1 directly resulted in a two-train crash; on 27 September 2011, a 

rear-end accident on Metro Line 10 occurred between Yuyuan Garden and Laoximen stations. Moreover, 

on 14 September 2013, water intrusion caused signal failures for Metro Line 2 and Line 6, leading to a 

large number of passengers stranded at the stations for more than four hours. Compared with road 

network accidents, rail accidents not only cause traffic delays of the direct line(s), but also have a wider 

impact on passengers in other stations along the line(s) or even potential passengers, which generally 

generate a larger social impact. 

With a history of more than 150 years, urban rail transit has attracted comparable more attention in 

the prevention of network failures and system disruptions [3–7]. In the recent ten years, graph and 

complex network theories have been introduced for analyzing the reliability and safety of urban rail 

transit networks. However, studies on this specific approach remain relatively limited. Del Río et al. [8] 

analyzed the resilience capabilities of underground systems and calculated the amount of backup 

capacity required to recover from system failures. Derrible and Kennedy [9] introduced robustness 

indicators corresponding to the characteristics of transit systems by investigating 33 metro systems 

throughout the world. Recommendations for improving the robustness of differently-sized metro 

networks were provided accordingly. De-Los-Santos et al. [10] proposed passenger robustness measures 

for rail transit networks under with and without bridging interruptions and verified the measures on the 

Madrid commuter system. Cadarso et al. [11] studied the disruption management problem of rapid transit 

rail networks and designed a two-step approach that combined an integrated optimization for the 

timetable and rolling stock by considering the passenger behavior.  

It is worth mentioning that although the concepts of reliability, resilience and robustness are closely 

related to the general subject of vulnerability [12], these terms are different in research scopes.  

Transport vulnerability is largely a fundamental feature of the urban system and concerns the 

consequences and probabilities of system failures [13]. Therefore, the above-mentioned literature tried 

to provide various tools in addressing vulnerability-related problems, but did not look into the issue of 

vulnerability directly.  
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Currently, vulnerability analysis of urban rail transit networks mainly refers to the research 

achievements in road network systems [13–16]. Gao and Shi [17] proposed an evaluation model of metro 

system invulnerability based on network topology and calculated the evaluation indices with matrix 

logic. Wang [18] constructed the topological model of the Beijing transit network and simulated the 

network efficiency under various attacks. Zhang et al. [19] measured the topological characteristics and 

functional properties of the Shanghai metro system. Nevertheless, these studies simplified the urban rail 

transit networks with graph theory and, therefore, lacked consideration of the significant properties of 

rail transit systems, such as the ability to transfer, etc. 

Other approaches to vulnerability analysis were employed. Quan et al. [20] established an index 

system to assess the vulnerability of rainstorm water-logging in Shanghai Metro. Han et al. [21] analyzed 

urban mass transit accidents from three aspects, including interference, exposure and vulnerability. They 

regarded vulnerability as inherent defects of the system and established a theoretical safety insurance 

mechanism. Yuan et al. [22] studied the statistical data of metro network accidents and proposed the 

concepts of physical, structural and social vulnerabilities of metro system. These studies, unfortunately, 

lacked systematical analyses of urban rail transit networks, which may hinder accurate the definition, 

design and performance evaluation of the system, while these are particularly useful for the public 

transportation planners and practitioners. 

To provide theoretical support to the planning and operation of urban rail transit networks, this study 

conducts a comprehensive analysis of the vulnerability of urban rail transit networks. The paper is 

organized as follows. In Section 2, urban rail transit networks were modeled with the proposed 

topological parameters, so that a systematical vulnerability evaluation model can be built up. In Section 3, 

vulnerability analyses of Shanghai Metro were carried out, with a case study based on the proposed 

evaluation model. Finally, the paper closes with conclusions and possible research directions in Section 4. 

2. Model Descriptions 

2.1. Construction of Urban Rail Transit Networks 

A complex network model generally defines elements of the system as vertices, whose edges represent 

the interactions between vertices [23]. According to Angeloudis and Fisk’s study on the 20 largest 

subways throughout the world [24], urban rail transit networks can be depicted as complex networks, 

which possess the characteristics of high connectivity, but low maximum vertex degree and have typical 

features of both small-world and scale-free categories. 

Stations and metro lines are the basic components of the urban rail transit system. Based on complex 

network theory, stations can be virtualized into nodes of complex networks, while metro lines can be 

virtualized into edges to connect the nodes. As urban metros generally have two-way traffic, the rail 
transit network is viewed as an undirected graph ,G V E= , in which { }| 1, 2,3iV v i N= =   is the set 

of network nodes and { }| ,ij i jE e v v V= ∈  is the set of network edges. ij N N
A a

×
 =    is the network 

adjacency matrix, where ija  is defined as: 
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In urban rail transit networks, degree (Di) is defined as the number of edges connecting with node vi, 

and betweenness (Bi) is defined as the number of shortest paths between any two nodes in the network 

passing node vi. The two topological parameters depict the connectivity and the pressure of a given 

network, respectively. 

Meanwhile, many urban rail transit lines do not allow passengers to transfer on the same platform. 

Therefore, transfer duration, including the walking time from one metro line to another and the waiting 

time for the next train, should be incorporated. In general, passengers psychologically prefer to choose 

routes with fewer interchanges, which largely affects their route preference [25] and has further impacts 

on the shortest path and network efficiency. To this end, transfer duration is quantified by assigning 

impedance to the interchange stations. A simplified example is presented in Figure 1a. Two lines,  

A-C-E and B-C-D, intersect each other, with C as the interchange station. As shown in Figure 1b, in the 

modified model, node C is divided into two virtual nodes (C1 and C2), and the two lines are separated, 

with only C1-C2 connected. The shortest path for origin-destination (OD) pair A-D changes into A-C1-C2-D, 

while the shortest path for OD pair A-E remains unchanged. Each interchange brings the corresponding 

walking and waiting time to the trip, and the transfer time is therefore quantified as the path length.  

 

Figure 1. Method to quantify metro interchange: (a) original model; (b) modified model. 

Then, the quantify algorithm is explained as follows: 

(1) Each interchange station (with degree as Di) is divided into Di/2 virtual nodes. These virtual 

nodes, connecting with each other, belong to separate metro lines, and the related network 

adjacency matrix can then be obtained. 

(2) Input: the network adjacency matrix, including node names (virtual nodes that belong to one 

interchange station have the same node name vi) and other parameters.  

(3) Calculate the shortest paths based on the expanding network adjacency matrix with the Floyd 

algorithm [26] and obtain the corresponding matrix. 

(4) For all paths, whose origins or destinations have the same node name vi (the same interchange 

station), find the shortest path, and delete the others. In Figure 1b, for example, OD pair A-C has 

two paths, A-C1 and A-C2, with lengths of one and two, respectively, and consequently, the longer 

path A-C2 was deleted. Similarly, the paths E-C2, B-C1, D-C1, C1-D, C1-B, C2-E and C2-A were  

also removed. 

(5) Each interchange station is divided into several virtual nodes to consider the interchange effort. 

Paths between these nodes need to be deleted, as they do not exist in reality. For example, C1-C2 

and C2-C1 in Figure 1b are removed as C1 and C2 denote the same interchange station.  

(6) Output: the shortest path (lij) between any two stations vi and vj in the network. 
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2.2. Vulnerability Evaluation Model 

Vulnerability in traffic engineering is generally defined as “a susceptibility to incidents that may 

result in considerable reductions in network serviceability” [12], involving two components: (1) the 

probability that an event would happen and cause negative impacts; and (2) the negative consequences 

once the event has taken place. In this paper, urban rail transit networks were investigated from two 

aspects: network vulnerability and station vulnerability. Network vulnerability analysis consists of 

topological structure and functional ability and is carried out with attacking experiments. Node-based 

malicious attacks, generally considered as the most significant issue in network malfunctions, were 

studied and grouped into three types, namely the largest degree node-based attacks, the highest 

betweenness node-based attacks and random attacks. 

2.2.1. Topological Vulnerability 

Topological vulnerability is defined as network susceptibility to incidents, which may result in the 

reduction of structure connectivity. To this end, topological efficiency (E), calculated as the mean of the 

reciprocal of each shortest path within the network, is used to evaluate network topological vulnerability 

as follows:  

( ) ,

1 1

1
i jv v V ij

E
N N l∈

=
−   (2)

where N is the number of nodes in the network and lij is the shortest path between stations vi and vj. The 

index depicts the overall connectivity of the network, and a higher value of E indicates that the network 

is more efficient in OD transferring. 

2.2.2. Functional Vulnerability 

Functional vulnerability is defined as network susceptibility to incidents that may result in a reduction 

in transport ability. Each node in the network is supposed to possess an initial functional ability of one. 

If a node is removed from the network (attacked or isolated), the functional ability reduces to zero. Based 

on this definition, network size was defined and used to evaluate network functional vulnerability. When 

a network is attacked, the dysfunctional nodes have to be removed from the network, which may induce 

some isolated nodes within the network. Consequently, network size is therefore defined as the total 

number of nodes remaining connected within the network. 

To better analyze network transport ability, the concept of OD is introduced. When node vi is attacked, 

network efficiency generally decreases due to the increased system travel time; worst of all, some OD 

pairs would become unconnected, which indicates a dramatic reduction in transport ability. The 

connected OD ratio is therefore defined as the percentage of OD pairs remaining connected in the 

network, revealing the system robustness in maintaining network functional properties.  

Previous literature [19,27] used the largest connected cluster (LCC) to evaluate the functional 

vulnerability of urban rail transit networks, which was defined as the size of the largest sub-network 

after being attacked. However, this parameter is not suitable to be applied to urban rail transit networks, 
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as trains may still be in operation on each sub-network, even if the network is divided into multiple 

isolated sub-networks.  

2.2.3. Station Vulnerability 

Based on these concepts, station vulnerability is further defined to evaluate the vulnerability of each 

station. When a station vi is attacked and removed from the network, the value of E decreases, and the 

topological efficiency [e(vi)] is defined as: 

( ) ( ) ( )'i ie v e O e v= −  (3)

where E(O) is the original topological efficiency of the network and e(v’i) is the network topological 

efficiency after vi being attacked. A higher value of e(vi) indicates the greater impact of vi on the network 

efficiency. In another words, vi is more crucial to topological reliability.  

With passenger flow considered, the station vulnerability [S(vi)] is defined as: 

( ) ( ) ( )i i iS v R v p v= ×  (4)

where R(vi) is the reductions in network serviceability caused by the malfunction of vi and p(vi) is the 

probability that station vi is attacked and removed from the network. In this equation, R(vi) is relevant to 

e(vi) and passenger flow influence (Ii), as defined in Section 3.4.2:  

( ) ( )i i iR v e v I= ×  (5)

The index reveals the reduction in network topological efficiency and the number of travelers 

suffering such a reduction when station vi is attacked. 

3. Case Study of Shanghai Metro 

3.1. Basic Network Information 

In this section, the network and station vulnerabilities of Shanghai Metro were studied based on the 

proposed vulnerability model. By June 2014, Shanghai Metro had 287 nodes and 317 links, with an 

average degree of 2.2, which is at the middle level among urban rail transit networks in major cities 

throughout the world. Approximately 80% of the total number of nodes has a degree of two or above, 

while the nodes with a degree of four or above are approximately 9%. Only one node has a degree of 

eight, and two other nodes have degrees and six and five, respectively, indicating that the nodes in 

Shanghai Metro seldom have a large degree. A detailed map of Shanghai Metro can be found in [28] 

Table 1 presents the top ten important stations of Shanghai Metro based on node degree and 

betweenness, respectively. Century Avenue (No. 1) is the node with the largest degree of eight, which 

means that the station connects with the other eight stations within the network. Caoyang Road possesses 

the largest node betweenness of 19,114, indicating that overall, 19,114 shortest paths within the network 

pass the station. It is also worth noticing that the two rankings are quite different. Some stations, such as 

Caoyang Road and Zhenping Road, both with node degrees of four, possess higher node betweenness 

than Century Avenue and People’s Square (with node degrees of eight and six, respectively).  
  



Sustainability 2015, 7 6925 

 

Table 1. Top ten important stations of Shanghai Metro. 

Station Ranking Based on Node Degree (Di) Station Ranking Based on Node Betweenness (Bi) 

No. Di Station Name No. Bi Station Name 

1 8 Century Avenue 1 19,114 Caoyang Road 

2 6 Xujiahui 2 18,738 Xujiahui 

3 6 People’s Square 3 18,566 Century Avenue 

4 5 Oriental Sports Center 4 18,180 Zhenping Road 

5 5 Yishan Road 5 17,848 People’s Square 

6 4 South Shaanxi Road 6 17,574 Shanghai Railway Station 

7 4 Changshu Road 7 14,206 Baoshan Road 

8 4 Shanghai Railway Station 8 13,556 Oriental Sports Center 

9 4 Shanghai Indoor Stadium 9 12,868 Hailun Road 

10 4 Zhaojiabang Road 10 12,560 Zhongtan Road 

3.2. Topological Vulnerability Analysis 

Figure 2 depicts the deterioration in network efficiency of Shanghai Metro under malicious attacks. 

The original network efficiency is 0.0852, indicating a poor overall connectivity of the network. As can 

be seen from Figure 2, the random attacks cause minimal losses in network efficiency among the three 

malicious attacks. When 10% of the nodes (29 nodes) are attacked and removed from the network, the 

efficiency decreases by 37.6%. However, both the largest degree node-based and the highest 

betweenness node-based attacks cause much larger losses in network efficiency. Under these two 

circumstance, when 10% of the nodes are removed, the network efficiencies decrease by 89.6% and 

90%, respectively. The highest betweenness node-based attacks cause slightly larger losses than the 

largest degree node-based attacks, but only a few differences exist in between. This means that stations 

with higher node betweenness have at least the same influence on network efficiency as stations with a 

larger node degree. These stations with higher betweenness may not be important from a common sense 

perspective, but they have a larger impact on maintaining network connectivity. It is also inferred that 

urban rail transit networks are vulnerable to the largest degree node-based attacks, as well as the highest 

betweenness node-based attacks, but are comparably rather robust to random attacks. 

 

Figure 2. Network efficiency of Shanghai Metro under malicious attacks. 
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3.3. Functional Vulnerability Analysis 

Figure 3 depicts the changes in the network size of Shanghai Metro under malicious attacks. The 

largest degree node-based attack causes the maximum losses in the network size among the three 

malicious attacks. When 20% of the nodes (58 nodes) were attacked and removed from the network, the 

network size decreases by 39%. Apart from the 58 attacked nodes, this also results in 54 isolated nodes 

in the network, indicating that the stations with a large node degree are generally important in 

maintaining network transport ability.  

 

Figure 3. Network size of Shanghai Metro under malicious attacks. 

Figure 4 depicts the changes in the connected OD ratio of Shanghai Metro under malicious attacks. 

As can be seen, malicious attacks have larger impacts on OD connectivity. When the top seven stations 

with the highest betweenness were attacked, the connected OD ratio decreases to only 29%. Moreover, 

when 10% of the nodes (29 nodes) were attacked and removed from the network, the connected OD ratio 

decreases to approximately 2% under both the largest degree node-based and the highest betweenness node-

based attacks. Only 760 OD pairs are still connected out of 41,041 original pairs, and the network is 

almost paralyzed, demonstrating that OD connectivity is vulnerable to malicious attacks.  

 

Figure 4. Connected origin-destination (OD) ratio of Shanghai Metro under malicious attacks. 
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3.4. Station Vulnerability Analysis 

3.4.1. Calculations of Station Topological Efficiency 

Figure 5 depicts the topological efficiency e(vi) of each interchange station of Shanghai Metro. Only 

the top 20 stations are presented, because of space limitation, where Caoyang Road station and Oriental 

Sports Center station possess the largest station topological efficiency among the 41 interchange stations. 

When either of the two stations was attacked and removed from the network, the network topological 

efficiency decreases by 11.08%.  

To better illustrate the topological efficiencies of stations, six OD pairs with the highest demand 

volume of Shanghai Metro were selected and are presented in Table 2, accounting for approximately 

13% of the total demand. With the shortest path algorithm, the fastest transit routes between these pairs 

were determined when the network is operated at full capacity. The selected routes may include one or 

several metro line(s), with some OD pairs relying on a single line and others with transfers. Ideal travel 

time, as listed in the last column of the table, includes transfer penalties. 

 

Figure 5. Topological efficiencies of the interchange stations of Shanghai Metro. 

Table 2. Shortest travel time for selected OD pairs. 

No. 
OD Pair 

Route 
Ideal Travel 

Time (min) Origin Destination 

1 Dongchuan Road Lujiazui Line 5-Line 1-Line 2 70 

2 Zhongtan Road Dongchang Road Line 4-Line 1-Line 2 31 

3 Gongkang Road Shanghai South Railway Station Line 1 51 

4 Pengpu Xincun Huamu Road Line 1-Line 2-Line 7 58 

5 Hongqiao Railway Station Middle Yanggao Road Line 2-Line 9 50 

6 Yishan Road Yuanshen Stadium Line 9-Line 6 35 

0.076
0.077
0.078
0.079

0.08
0.081
0.082
0.083
0.084
0.085

Network Efficiency after the Station being Attacked Topological Efficiency of the Station e(vi)
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Table 3 shows the new transit travel time between the selected ODs when specific transfer centers 

have been removed. The removed interchange nodes are Xujiahui, People’s Square, Century Avenue 

and Shanghai Railway Station with topological efficiency e(vi) of 0.0034, 0.0029, 0.0054 and 0.0070, 

respectively. As can be inferred from Table 3, when a station with low topological efficiency, such as 

Xujiahui or People’s Square, is out of service, locations remain accessible, but the travel time to those 

locations likely increases. This reveals that stations with lower topological efficiency may have an 

impact on the system travel time, but generally do not result in any unavailable nodes within the network. 

However, when a station with higher topological efficiency, such as Century Avenue or Shanghai 

Railway Station, is out of service, some stations become inaccessible by metro. Take Shanghai Railway 

Station as an example: when the node is removed, Routes 2, 3 and 4 significantly decline in connectivity. 

For Route 2, the travel time increases by 19.4%, while Routes 3 and 4 become inaccessible.  

Table 3. Shortest travel time for OD pairs after interchange station removal. 

Route 

No. 

Ideal Travel 

Time (min) 

Travel Time with Station Removed (min) 

Xujiahui People’s Square Century Avenue Shanghai Railway Station 

1 70 81 78 70 70 

2 31 31 32 31 37 

3 51 59 59 51 Not Accessible 

4 58 58 63 73 Not Accessible 

5 50 50 64 Not Accessible 50 

6 35 41 35 91 35 

Route 

No. 

Ideal Travel 

Time (min) 

Percentage Change in Travel Time 

Xujiahui People’s Square Century Avenue Shanghai Railway Station 

1 70 15.7% 11.4% 0.0% 0.0% 

2 31 0.0% 3.2% 0.0% 19.4% 

3 51 15.7% 15.7% 0.0% N/A 

4 58 0.0% 8.6% 25.9% N/A 

5 50 0.0% 28.0% N/A 0.0% 

6 35 17.1% 0.0% 160.0% 0.0% 

3.4.2. Calculation of Station Passenger Flow  

While urban rail transit networks are viewed as complex networks, what differentiates them from 

other complex networks (such as the power grid, etc.) is the interactions between infrastructures 

(stations, lines, etc.) and the passengers. Passenger flow is an important attribute of metro operations 

and also a critical factor for vulnerability analysis. Large passenger flow would add pressure to the 

network system and increase the probability of breakdown, and the passenger flow affected by the 

breakdown of a certain metro station also reveals the incident severity and the station importance. 

Therefore, two vulnerability indexes—passenger flow influence (Ii) and platform passenger flow  

(Pi) —are defined to relate to the consequences and probability, respectively. 

Passenger flow influence (Ii) is defined as the flow volume that is affected by the breakdown of a 

certain station vi, represented as:  

i i i iI OF DF PF= + +  (6)
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where OFi is the passenger flow whose travel origins are vi, DFi is the passenger flow whose travel 

destinations are vi and PFi is the passenger flow whose travel paths pass vi. The index not only reflects 

the importance of the station vi in the urban rail transit network, but also reveals the consequences and 

severity of the station breakdown. 

Platform passenger flow (Pi) is defined as: 

i i i iP OF DF TF= + +  (7)

where TFi is the passenger flow that transfers at vi. Pi depicts the passenger volume at station vi during 

a certain period of time. Large platform passenger flow, especially common in peak hours, would add 

pressure to the platform operations and increase the probability of accidents.  

While passengers may choose different routes for the same OD pair due to personal reasons, the 

problem is simplified by using the path matrix {lij} obtained in Section 2.1 as the routes for given OD 

pairs. The route choice model provides the shortest path (lij) between any two nodes vi and vj with metro 

interchange taken into considerations. In this model, the passenger flow-related indexes are calculated as:  

1

N

i ij
j

OF F
=

=  (8)

1

N

i ji
j

DF F
=

=  (9)

{ }, ,i mn ij

i mn
v l l m n i

PF F
⊆ ∈ ≠

=   
(10)

{ }1 2, , ,i i mn ij

i mn
v v l l m n i

TF F
⊆ ∈ ≠

=   
(11)

where Fij is the passenger flow for the OD pair i to j, N is the number of stations in the network and vi
1 

and vi
2 are any two virtual nodes within the node vi. When the shortest paths for any OD pairs pass both 

vi
1 and vi

2, this means that passengers have to make a transfer at station vi. 

For validation purposes, field traffic data of Shanghai Metro were obtained from the Automatic Fare 

Collection (AFC) of Shanghai Shentong Metro Group Co., Ltd. Information, including entry station ID, 

exit station ID, passenger flow within a 5-min period and ticket types, was recorded, from which the OD 

matrix can be approximated. Then, passenger flow indexes were calculated and analyzed based on the 

OD matrix of 16 September 2013, from 7:30 a.m. to 8:30 a.m., the peak hour of Shanghai Metro for a 

typical weekday. A total of 370,414 raw records were obtained, and the enter and exit passenger flows 

at each station are supposed to be constant during peak hours. 

Figure 6 presents the results of platform passenger flow (Pi) and passenger flow influence (Ii) of 

Shanghai Metro during peak hours in descending order of Pi. With space limited, only the top 20 stations 

were presented. As can be seen from Figure 6, the station with the largest platform passenger flow (Pi) 

and passenger flow influence (Ii) is People’s Square. The platform passenger flow of this station is as 

high as 67,664 per hour, which brings large challenges to the station management and increases the 

difficulties in keeping order. Meanwhile, the passenger flow influence of People’s Square Station is 

135,481 per hour, indicating that more than 135 thousand passengers would be affected by the 
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breakdown of this station during one hour. They either have to change to the routes with longer lengths 

on the metro or to choose other transport modes. 

 

Figure 6. Top 20 heavy traffic stations of Shanghai Metro in peak hours. 

3.4.3. Station Vulnerability Evaluations 

Based on the field data, the station vulnerability of each station vi [S(vi)] is further studied. As interchange 

stations are generally more important in maintaining network connectivity, the 41 interchange stations 

of Shanghai Metro were studied for peak hours. Table 4 presents the malfunction severity of these 

interchange stations. As shown in Table 4, Shanghai Railway Station ranks the first, which means the 

malfunction of this station causes the largest reduction of network connectivity. The topological 

efficiency of Shanghai Railway Station is 0.007, and the breakdown would affect almost 99 thousand 

passengers within one hour. Both the reduction in network efficiency and the influence on passenger 

flow have an enormous impact on the entire network.  

On the other hand, although People’s Square Station has the largest passenger flow influence on the 

network, the topological efficiency of the station is approximately only one-third that of Caoyang Road 

Station. This means that while a large amount of passengers have to re-route due to the breakdown of 

People’s Square Station, the alternative route choices do not decrease their travel efficiencies too much, 

and most can still arrive at their destinations within a certain duration with other alternative routes.  

Oppositely, Oriental Sports Center Station ranks the first in station topological efficiency e(vi), but 

has a relatively small passenger flow influence (Ii). This indicates that passengers generally have no 

other choices but to take much longer routes to their destinations during the breakdown of this station 

or, even worse, to switch to other transport modes. However, as the station is located in the suburbs of 

Shanghai, the passenger flow of the station is only about 20% that of People’s Square. Consequently, not 

many passengers would be influenced by the breakdown of the station, and therefore, the overall reduction 

in network serviceability of this station ranks only 12th among the 41 interchange stations of Shanghai Metro.  
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Table 4. Malfunction severities of 41 interchange stations of Shanghai Metro. 

Station Name 
Degree 

(Di) 

Topological 
Efficiency of  
Station e(vi) 

Passenger Flow 
Influence (Ii) 

per Hour 

Reductions in 
Network 

Serviceability R(vi) 

e(vi) No. (Ii) No. R(vi) No. 

Shanghai Railway Station 4 0.007 4 98,963 3 692.74 1 

Caoyang Road 4 0.0085 1 77,687 9 660.34 2 

Zhenping Road 4 0.0075 3 81,264 6 609.48 3 

Century Avenue 8 0.0054 8 107,152 2 578.62 4 

Yishan Road 5 0.007 4 75,087 11 525.61 5 

People’s Square 6 0.0029 16 135,481 1 392.89 6 

Hongkou Football Stadium 4 0.0059 7 56,562 16 333.72 7 

Xujiahui 6 0.0034 14 98,013 4 333.24 8 

Shanghai South Railway Station 3 0.0053 9 59,934 14 317.65 9 

Longyang Road 4 0.0053 9 54,452 17 288.60 10 

Siping Road 4 0.0068 6 37,863 27 257.47 11 

Oriental Sports Center 5 0.0085 1 26,549 34 225.67 12 

Zhongshan Park 4 0.0024 18 89,514 5 214.83 13 

Jinshajiang Road 3 0.0039 12 52,750 20 205.73 14 

East Nanjing Road 4 0.0021 22 78,957 8 165.81 15 

Jing’an Temple 4 0.0019 26 78,968 7 150.04 16 

Shanghai Indoor Stadium 4 0.0019 26 76,716 10 145.76 17 

Jiangsu Road 4 0.002 24 65,339 13 130.68 18 

Hongqiao Road 4 0.0024 18 53,710 18 128.90 19 

Baoshan Road 3 0.0024 18 53,407 19 128.18 20 

Xinzhuang 2 0.0035 13 32,862 31 115.02 21 

Zhongtan Road 2 0.0021 22 51,724 21 108.62 22 

Hailun Road 4 0.0024 18 44,931 23 107.83 23 

Changshu Road 4 0.0015 34 70,721 12 106.08 24 

Lujiabang Road 4 0.002 24 48,090 22 96.18 25 

South Shaanxi Road 4 0.0014 37 59,742 15 83.64 26 

Zhaojiabang Road 4 0.0017 31 44,621 24 75.86 27 

South Xizang Road 4 0.0019 26 39,224 26 74.53 28 

Dalian Road 4 0.0025 17 29,277 32 73.19 29 

Yaohua Road 4 0.0019 26 37,044 28 70.38 30 

Dongan Road 4 0.0017 31 35,465 29 60.29 31 

Laoximen 4 0.0017 31 32,975 30 56.06 32 

Jiaotong University 4 0.0018 30 29,017 33 52.23 33 

Jufeng Road 4 0.0044 11 11,105 40 48.86 34 

West Yan’an Road 2 0.0011 40 41,791 25 45.97 35 

Lancun Road 4 0.0013 38 24,707 35 32.12 36 

West Gaoke Road 4 0.0015 34 21,295 36 31.94 37 

Hongqiao Airport T2 3 0.0015 34 19,667 37 29.50 38 

Tiantong Road 3 0.0012 39 13,359 39 16.03 39 

Hongqiao Railway Station 2 0.0009 41 15,798 38 14.22 40 

Luoshan Road 2 0.0033 15 619 41 2.04 41 
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As shown in Table 4, the malfunction severities of interchange stations differ greatly. Some stations 

may not be as important as others. For example, stations, such as Lancun Road or West Gaoke Road, 

have an R(vi) of only 4% that of Shanghai Railway Station. To this end, it is concluded that  

the vulnerability model assists with distinguishing critical stations within the network from a  

systematic perspective.  

The consequences of station malfunctions were analyzed, as shown in Table 5. Platform passenger 

flow (Pi) refers to taking the probability of breakdown into consideration. While it is generally difficult 

to predict the probabilities of certain events, such as terrorist actions and extreme weather, etc., the 

probability of a station breakdown p(vi) was found positively correlated with Pi [4,22]. Although the two 

parameters do not have strictly linear correlations, a large Pi, especially common in peak hours, would 

add pressure to the platform operations and increase the probability of station breakdown.  

Table 5. Station vulnerabilities of critical stations of Shanghai Metro. 

No. Station Name 

Reductions in 
Network 

Serviceability 
R(vi) 

Platform 
Passenger Flow 
(Pi) per Hour 

Estimated 
Breakdown 

Probability due to 
Large Flow p(vi) 

Station 
Vulnerability 

S(vi) 

1 Century Avenue 578.62 56,461 5.2% 30.2 

2 People’s Square 392.89 67,664 6.3% 24.6 

3 Shanghai Railway Station 692.74 34,148 3.2% 21.9 

4 Caoyang Road 660.34 24,170 2.2% 14.8 

5 Yishan Road 525.61 28,302 2.6% 13.8 

6 Zhenping Road 609.48 23,354 2.2% 13.2 

7 Xujiahui 333.24 33,960 3.1% 10.5 

8 Hongkou Football Stadium 333.72 17,211 1.6% 5.3 

9 Longyang Road 288.6 19,891 1.8% 5.3 

10 Shanghai South Railway Station 317.65 14,760 1.4% 4.3 

Table 5 presents the top 10 critical interchange stations of Shanghai Metro with the largest station 

vulnerability. As can be seen, the platform passenger flows of stations, such as People’s Square, Century 

Avenue, Shanghai Railway Station and Xujiahui, are extremely enormous during peak hours. Such 

pressures on the station operation and management caused by huge passenger flows are turned into 

increases in the probabilities of sudden events and station breakdown. Estimated breakdown 

probabilities are therefore calculated as the ratio of Pi to the overall passenger flow of Shanghai Metro 

during a.m. peak hours (1,081,218 passengers per hour). An overall consideration of the consequences 

and probabilities of station breakdown brings the conclusion that Century Avenue, People’s Square and 

Shanghai Railway Station are the three most critical stations of Shanghai Metro in maintaining network 

serviceability. These stations are vulnerable to attacks due to large passenger flow, and the consequences 

of breakdown are severe and, therefore, need to be better protected. 

The results of the calculations are summarized and illustrated in Figure 7. The locations of the top ten 

stations in terms of topological efficiency (e(vi)), platform passenger flow (Pi) and station vulnerability 

(S(vi)) (with specific data provided in Figures 5 and 6 and Table 5, respectively) are simultaneously 

marked on the Shanghai Metro map. As shown, the most critical stations in maintaining system 

serviceability are not necessarily the locations with the highest passenger throughput or the largest 
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structural connectivity. It may be misleading or not appropriate if the greatest attention were paid to the 

busiest stations or the topologically important stations. Therefore, the evaluation model proposed in this 

paper proves to be a useful tool to assist traffic administrators with figuring out any neglected, but 

important stations in urban rail transit networks, so that priorities in funding and other resources could 

be allocated to the appropriate nodes efficiently.  

 

Figure 7. Locations of critical stations of Shanghai Metro. 

4. Conclusions 

This paper proposes a systematic framework to investigate the network and station vulnerabilities of 

urban rail transit networks. A vulnerability evaluation model is developed, optimized and verified. 

Special characteristics of urban rail transit networks, such as metro interchange and traveler route-choice 

habits, were taken into consideration. Field passenger flow was introduced and quantified in the 

vulnerability analyses. The probabilities of network malfunctions were then evaluated, and the incident 

severity and station importance were calculated. 

Results from the case study of Shanghai Metro indicate that urban rail transit networks are generally 

vulnerable to the largest degree node-based attacks and the highest betweenness node-based attacks. 

Disruptions to a single station, especially intended terrorism attacks, would have severe impacts on the 

entire network. Furthermore, stations with the most significant effects on system connectivity are not 

necessarily locations with the largest passenger flow. A comprehensive evaluation model, as proposed 

in this paper, is therefore needed to accurately assess station vulnerability, so that attention could be 

provided to the most critical stations. 
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The systematic framework of this paper is useful for transit system planners in terms of urban rail 

transit network design. Vulnerabilities of different urban rail transit networks could be analyzed and 

compared based on the model, and a reliable network geometry could then be obtained. Such a tool can 

provide theoretical support to the design and optimization of network layout and be used to explore 

possible improvements to network reliability when new lines are built [29]. 

Moreover, the case study has demonstrated the utility of the proposed vulnerability evaluation model 

in a real-world rail transit network. Crucial stations were identified based on the analyses, so that 

measurements to reduce incident possibilities or action plans to better respond to emergencies at these 

stations can be explored beforehand. The vulnerability model provides a proactive approach that assists 

with identifying network weaknesses and prepares for extreme events beforehand, rather than reacting 

afterward [30]. 

Further studies on the probabilities of network malfunctions may be conducted with additional factors 

considered. The interdependence of metro network with other transport modes can be investigated, so as to 

incorporate a wider range of travel behaviors into the vulnerability analysis. Alternative solutions to 

disruptions of urban rail transit networks may also be explored.  
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