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Structural Inspection Path Planning via Iterative Viewpoint Resampling
with Application to Aerial Robotics

Andreas Bircher, Kostas Alexis, Michael Burri, Philipp Oettershagen,
Sammy Omari, Thomas Mantel and Roland Siegwart1

Abstract— Within this paper, a new fast algorithm that
provides efficient solutions to the problem of inspection path
planning for complex 3D structures is presented. The algorithm
assumes a triangular mesh representation of the structure
and employs an alternating two–step optimization paradigm
to find good viewpoints that together provide full coverage
and a connecting path that has low cost. In every iteration,
the viewpoints are chosen such that the connection cost is
reduced and, subsequently, the tour is optimized. Vehicle and
sensor limitations are respected within both steps. Sample
implementations are provided for rotorcraft and fixed–wing un-
manned aerial systems. The resulting algorithm characteristics
are evaluated using simulation studies as well as multiple real–
world experimental test–cases with both vehicle types.

I. INTRODUCTION

The ongoing boom in utilizing mobile robots for real–
life applications sets new demands regarding their autonomy.
In the particularly interesting field of inspection operations,
aerial, maritime or ground robots are already utilized for
critical tasks such as infrastructure surveillance, damage
assessment or victim search. In such scenarios, the structure
to be inspected may be given as a 3D model (typically a
mesh from CAD software, Geographical Information System
data or civil engineering instrumentation) and robots are
employed either to derive an updated, possibly higher–
fidelity model, or scan for risks and hazards (e.g. cracks).

To facilitate autonomous inspection planning capabilities,
a robot must be equipped with algorithms that allow it to
quickly compute efficient paths that result in full coverage
of the structure to be inspected, while respecting any sensor
limitations and motion constraints that may apply. Such a
problem belongs to the general class of coverage planning
and –despite the interest of the community– its inherent
difficulties still limit the performance, efficiency and appli-
cability of the proposed solutions. Furthermore, so far, only
few works validated such algorithms in experimental studies.

Within this work, a novel fast iterative algorithm for
structural inspection is proposed. The new algorithm employs
an alternating two–step optimization paradigm to find good
viewpoints that together provide full coverage and lead to
a connecting path that is of low cost. In every iteration,
each viewpoint is chosen such as to reduce the cost–to–travel
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Fig. 1: Indicative inspection 3D reconstruction results using the
proposed structural inspection planner and a rotorcraft as well as a
fixed–wing UAV equipped with camera sensors.

between itself and its neighbours (first step) and subsequently
the optimally connecting tour is recomputed (second step),
while vehicle constraints and sensor limitations are respected
in all phases. Extensive evaluation studies including 3D
reconstruction experiments using a rotorcraft (hexarotor) Un-
manned Aerial Vehicle (UAV), as well as a 5.6m wingspan
glider fixed–wing UAV (both shown in Figure 1) reveal the
high–performance properties of the algorithm in challenging
scenarios and subject to real vehicle and sensor constraints.
An open source implementation [17] as well as the point-
clouds resulting from the experiments [2] are provided for
further use and development by the comunity.

A short overview of the related work and how our ap-
proach contributes further is presented in Section II, followed
by the problem description in Section III. Afterwards, the
proposed approach is presented in Section IV, while compu-
tational analysis takes place in Section V. Finally, evaluation
test–cases in simulation and experiments are shown in Sec-
tion VI, followed by conclusions in section VII.

II. RELATED WORK

In the literature, many contributions have been made
towards addressing the challenges of coverage planning. Sys-
tem and environment allowing, the space may be represented
by a simplified discrete grid and paths can be computed
using wavefront algorithms [23], spanning trees [7] or neural
networks [16]. The work in [4] proposed a cellular decom-
position of the planning space, covering each free cell with a
sweeping pattern and an advanced algorithm following this



concept was presented in [1]. Using a 2D planner, the authors
in [11] approximate a 3D structure using multiple 2D layers.

Aiming towards real 3D structural inspection, advanced
algorithms have recently been proposed. Within the most
recent contributions, those that employ a two–step optimiza-
tion scheme proved to be more versatile with respect to the
inspection scenario. In a first step, such algorithms compute
the minimal set of viewpoints that cover the whole structure
which corresponds to solving an Art Gallery Problem (AGP).
As a second step, the shortest connecting tour over all
these viewpoints has to be computed, which is the Traveling
Salesman Problem (TSP). Fast algorithms to approximately
solve these two NP–hard, but well studied problems, are
known, for example in [9, 18] for the AGP, and [5, 15]
for the TSP. A recent application of these concepts, that
allows some redundancy in the AGP such that it is able to
improve the path in a post–processing step, was presented
in [12]. This algorithm can deal with 3D scenarios and is
demonstrated in experiments using underwater vehicles for
ship hull inspection. Addressing the problem from a different
perspective, the work in [21] concentrates on deriving close–
to–optimal solutions at the inherently large cost of compu-
tational efficiency. A comprehensive survey of the existing
coverage path planning methods may be found in [8].

The proposed fast inspection path planner retains a two–
step optimization structure but contrary to trying to find
a minimal set of guards in the AGP it rather tries to
sample them such that the connecting path is short while
ensuring full coverage. This is driven by the idea that with a
continuously sensing sensor the number of viewpoints (and
if this is minimal or not) is not necessarily important but
mostly their configuration in space, which has to be such
that short and full coverage paths are provided. As a result,
this novel approach leads to full coverage paths that are of
low cost and are computed quickly.

III. PROBLEM DESCRIPTION

The problem of structural inspection path planning, as it
is considered in this paper, consists of a 3D structure to be
inspected, a system with its dynamics and constraints and
an integrated sensor, the limitations of which have to be
respected. The 3D structure to be inspected is represented
by a triangular mesh, embedded in a bounded environment
that may contain obstacle regions. The problem setup is to
be such that for each triangle in the mesh, there exists an
admissible viewpoint configuration – that is a viewpoint from
which the triangle is visible for a specific sensor model.
Then, for the given environment and with respect to the
operational constraints, a path for the system has to be found
that guarantees complete inspection of the 3D structure.
Quality measures for paths are situation specific, depending
on the system and mission objectives, e.g. time or distance.

As sample systems we consider a rotorcraft and a fixed–
wing UAV, both equipped with a visual camera with a fixed
orientation relative to the platform. Minor adaptations to the
proposed path–planner enable its use for other common robot
configurations such as underwater ROVs or wheeled robots.

IV. PROPOSED APPROACH

As the algorithm does not focus on minimizing the
number of viewpoints, the proposed approach selects one
(admissible) viewpoint for every triangle in the mesh of the
structure to be inspected. In order to compute viewpoints that
allow low–cost connections, an iterative resampling scheme
is employed. Between each resampling, the best path for
the current viewpoints is computed. The cost to connect to
the current neighbours on the tour provides a metric for
the quality of the viewpoint in the subsequent resampling.
The initial selection of viewpoints for the first iteration is
arbitrarily done such that full coverage is provided with
non–optimized viewpoints. A fast implementation of the
Lin-Kernighan-Helsgaun Heuristic (LKH) TSP solver [10]
is employed to compute the best tour, while the cost of
the interconnecting pieces of path is calculated by means
of a boundary value solver (BVS). Algorithm 1 presents an
overview of the proposed inspection planning procedure.

Algorithm 1 Inspection path planner

1: k ← 0
2: Sample initial viewpoint configurations
3: Compute cost matrix for the TSP solver (Section IV-A)
4: Solve the TSP problem to obtain initial tour
5: while running
6: Resample viewpoint configurations (Section IV-B)
7: Recompute the cost matrix (Section IV-A)
8: Recompute best tour Tbest using the LKH and update
9: best tour cost cbest if applicable

10: k ← k + 1
11: end while
12: return Tbest, cbest

In the following, the formulations of the path computation
and the viewpoint sampling for a rotorcraft UAV are given.
Subsequently in Section IV-C, extensions and adaptations to
enable planning for a fixed–wing UAV are discussed.

A. Path Computation and Cost Estimation

To find the best tour among the viewpoints, the TSP
solver requires a cost matrix containing the connection
cost of all pairs of viewpoints. The path generation and
its cost estimation relie on a two state BVS. The BVS
is either employed directly to connect the two viewpoints
or as a component in a local planner, in case the direct
connection is not feasible due to obstacles. In that case,
our implementation makes use of the RRT∗-planner [14]
to find a collision–free connection. The proposed model
for a rotorcraft UAV consists of position as well as yaw,
ξ = {x, y, z, ψ}. Roll and pitch angles are considered to be
near zero as slow maneuvering is desired to achieve increased
accuracy. The path from configuration ξ0 to ξ1 is given
by ξ(s) = sξ1 + (1 − s)ξ0, where s ∈ [0, 1]. The single
limitation considered is the speed limit. The translational
limit is denoted by vmax while the rotational speed is limited
by ψ̇max. Both values are small, such that the tracking of



paths with corners is sufficiently accurate. The resulting
execution time is tex = max(d/vmax, ‖ψ1 − ψ0‖ /ψ̇max),
with d the Euclidean distance. The cost of a path segment
corresponds to the execution time tex.

B. Viewpoint Sampling

For every triangle in the mesh, one viewpoint has to
be sampled, the position and heading of which is deter-
mined sequentially in the proposed procedure while retaining
visibility of the corresponding triangle. First, the position
is optimized for distance to the neighbouring viewpoints
using a convex problem formulation and only then, the
heading is optimized. To guarantee a good result of this
multistep optimization process, the position solution must
be constrained such as to allow finding an orientation for
which the triangle is visible.

Specifically, the constraints on the position g = [x, y, z]
consist of the inspection sensor limitations of minimum in-
cidence angle, minimum and maximum range (dmin, dmax)
constraints (depicted in Figure 2a). They are formulated as
a set of planar constraints: (g − xi)Tni

(g − x1)T aN
−(g − x1)T aN

 �

 0
dmin

−dmax

 , i = {1, 2, 3} (1)

where xi are the corners of the mesh triangle, aN is the
normalized triangle normal and ni are the normals of the
separating hyperplanes for the incidence angle constraints as
shown in Figure 2a.

Further, the camera has a limited field of view (FoV) with
a certain horizontal and vertical opening and is mounted to
the system with a fixed pitch angle. The imposed constraint
on the sampling space resulting from the vertical camera
opening is not convex (a revoluted 2D-cone, the height of
which is depending on the relevant corners of the triangle
over the revolution). To approximate and convexify the
problem, the space is divided in NC equal convex pieces
according to Figure 2b. The optimum is computed for
every slice in order to find the globally best solution. The
constraints for piece j are derived as follows: Left and
right boundaries of the sampling space are the borders of
the revolution segment and the cone top and bottom are
represented by a single plane tangential to the centre of the
slice. Angular camera constraints in horizontal direction are
not encoded and instead dmin is chosen high enough to allow
full visibility of the triangle. This leaves some space for
variation in the sampling of the heading, where the horizontal
constraints are enforced. Specifically, these constraints are:

(g − xrellower)
Tncam

lower

(g − xrelupper)
Tncam

upper

(g −m)Tnright

(g −m)Tnleft

 �

000
0

 , (2)

where xrellower, x
rel
upper are the respective relevant corners of

the mesh triangle, m the middle of the triangle and ncamlower,
ncamupper, nright and nleft denote the normal of the respective
separating hyperplanes.
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(a) Incidence angle constraints
on a triangular facet

ncamupper

ncamlower

1

2

3

. . .j

. . .

NC

nleft
nright

xrelupper

xrellower
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Fig. 2: a) The figure depicts the three main planar angle of incidence
constraints on all three sides of the triangle. For a finite number of
such constraints the incidence angle is only enforced approximately.
The red line (and n+) demarks a sample orientation for a possible
additional planar constraint at a corner. Minimum (green plane)
and maximum (red plane) distance constraints are similar planar
constraints on the sampling area. These constraints bound the
sampling space, where g can be chosen, on all sides (gray area).
b) The vertical camera angle constraints with the relevant corners
of the triangle in red are depicted in the upper part, while beneath
the partition of the space for convexification is depicted.

The optimization objective for the viewpoint sampling in
iteration k, in the case of a rotorcraft UAV, is to minimize the
sum of squared distances to the preceding viewpoint gk−1p ,
the subsequent viewpoint gk−1s and the current viewpoint in
the old tour gk−1. The former two parts potentially shorten
the tour by moving the viewpoints closer together, while the
latter limits the size of the improvement step, as gk−1p and
gk−1s potentially move closer as well.

The resulting convex optimization problem is given be-
low. Its structure as a Quadratic Program (QP) with linear
constraints allows the use of an efficient solver [6].

min
gk

(gk − gk−1
p )T (gk − gk−1

p ) + (3)

(gk − gk−1
s )T (gk − gk−1

s ) + (gk − gk−1)T (gk − gk−1)

s.t.


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
gk �
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
(4)

For the computed optimal position, the heading is determined
according to the criterion minψk =

(
ψk−1p − ψk

)2
/dp +(

ψk−1s − ψk
)2
/ds, s.t. Visible(gk, ψk), where

Visible(gk, ψk) means that from the given configuration,
gk and ψk, the whole triangle is visible. dp and ds are the
Euclidean distances from gk to gk−1p and gk−1s respectively.
For simple sensor setups establishing the boundaries on ψk



for Visible(gk, ψk) = TRUE makes the solution explicit.
Otherwise a grid search can be employed.

C. Extensions for Fixed-Wing UAVs

Fixed–Wing UAVs correspond to another excellent config-
uration for inspection operations. However, their advantages
in aspects like long–endurance, come together with limi-
tations on handling sharp turns, steep ascents or descents.
Moreover, the direction of a fixed camera is related to the
direction of travel. Accordingly, the implementation for the
BVS and the viewpoint sampling have to be adapted.

Assuming that highly dynamic maneuvers are avoided for
inspection flights, the minimum turn radius of the aircraft is
constrained to be rmin while roll and pitch are considered to
be near zero. For planning purposes, the xy–plane vehicle
dynamics are captured using Dubins curves, thus minimizing
the distance w.r.t. rmin. Furthermore, in the vertical direction
the path is constrained by a maximum climb and sink
rate. Since these values are small, instantaneous changes
are acceptable and the rate ż is chosen to be constant
along a path segment. If the maximum rate is exceeded,
ascending/descending loitering circles are added at the end of
the path segment to allow larger changes of height. In many
practical cases such as flat landscape coverage, it makes
sense to constrain the height of the path to a fixed value
to avoid undesirable loitering circles. The fixed-wing UAV
is assumed to travel with constant velocity vFW and the path
cost is the time tex = lPath/vFW , with lPath the path length.

In contrast to the case of rotorcraft UAVs, where only the
distance is minimized in the viewpoint position sampling
step, the fixed-wing UAV sampler also aims to align the
viewpoints on a as straight line as possible. This effectively
avoids too many curly path segments and thus, together
with the distance minimization tends to reduce the path
length. The addition in the objective is therefore to minimize
the squared distance d2 to the straight line between the
neighbouring viewpoints. Using its direction vector b, the
distance is calculated as follows:

b =
gk−1
s − gk−1

p∥∥∥gk−1
s − gk−1

p

∥∥∥ (5)

d =
∥∥∥b× (gk − gk−1

p )
∥∥∥ =

∥∥∥∥∥∥
 0 −b3 b2
b3 0 −b1
−b2 b1 0

 (gk − gk−1
p )

∥∥∥∥∥∥
and with  0 −b3 b2

b3 0 −b1
−b2 b1 0

 (gk − gk−1
p ) = q (6)

follows d2 = qT q. To avoid the insertion of unnecessary
circles, the distance between the viewpoints has to be
large enough according to their heading, the direction to
the next viewpoint and rmin. The bounds on that distance
li, i = {p, s} are derived geometrically and evaluated using
numerical algorithms. The distance criterions are therefore
(gk − gk−1i )T (gk − gk−1i ) ≥ l 2

i , i = {p, s} which are non-
convex. To convexify, the criterions are linearized around
the old viewpoint. This adaptation is conservative by the

TABLE I: Scalable Inspection Scenario

Nfacets [100...3600] ∠incidence 30◦

FoV [70, 70]◦ Mouting pitch 25◦

Range unconstrained Height 200m
rmin 60m vFW 9m/s
vmax 5m/s ψ̇max 0.5rad/s

exclusion of the non-convex part and attenuates the impact
of the extrapolation error:

(gk − gk−1i )T (gk−1 − gk−1i ) ≥ l 2
i , i = {p, s} (7)

Wrapping all up in a single QP-formulation and adding
the two slack variables εp and εs with constant C to allow
occasional violation of the minimal distance criterion:

min
q,gk

(objective in (4)) + qT q + C(εp + εs) (8)

s.t.

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 (gk − gk−1
p ) = q

constraints in (4)
(gk−1 − gk−1

p )T

(gk−1 − gk−1
s )T

 gk �
constraints in (4)

l 2
p − εp
l 2
s − εs

 (9)

εp ≥ 0

εs ≥ 0

The criterion of Equation (7) is inverted for the heading
computation and applied as long as a feasible solution is
found. The proposed approach also works efficiently in case
of obstacles up to some complexity by dividing the sampling
space in convex pieces that are evaluated individually. In our
implementation obstacles are approximated with cuboids.

D. Additional Heuristic Concepts

Additional heuristic measures increase the quality of com-
puted paths. These primarily concern the rotorcraft UAV
path planning. In order to allow a faster and more rigorous
ordering of the viewpoints, initial iterations of the algorithm
consider not the nearest neighbour on the tour to minimize
the distance to, but neighbours that are NNeighbour away on
both sides. NNeighbour is then decremented in every iteration
to finally reach 1. To further improve the viewpoint ordering,
the allowable yaw rate is set lower in the initial iterations and
then slowly increased to reach the maximally allowed ψ̇max.

V. COMPUTATIONAL ANALYSIS

In order to evaluate the capabilities of the proposed
algorithm, a simple and scalable scenario is used. An array of
equilateral triangles is arranged in a plane as shown in Figure
3, with a height of 1250m and a width of

√
3
2 2500m. This

corresponds to an area of 2.71km2. This area is filled with
a variable number of equilateral triangles, effectively cor-
responding to different mesh resolutions and thus numbers
of viewpoints. The mesh resolution is varied to examine the
impact on the quality of the resulting path, while the number
of viewpoints is a meaningful parameter of the problem
complexity and the time the algorithm needs for execution.
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Fig. 3: Illustration of the triangular pattern that is used in different
resolutions for the following analysis of the algorithm’s character-
istics. Overlayed in brown is a naive sweeping path with a certain
base line (in this case the same as the triangle edge length).
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Fig. 4: Correlation of the number of viewpoints for both systems
with the computational time consumption. The time consumption
curve is given individually for different components of the algo-
rithm.

Both for the rotorcraft and the fixed–wing UAV cases,
the inspection is performed from a constant height of 200m
above ground, with a minimum incidence angle of 30◦. The
employed camera is mounted with a pitch of 25◦, the FoV
is 70◦ in both vertical and horizontal directions, while a
margin for robustness is deducted in the horizontal direction,
thus leading to an effectively usable opening of 60◦. This
reduction from the nominal FoV is done in all test cases. The
rotorcraft UAV is assumed to move with a maximum trans-
lational speed of 5m/s and a maximum yaw rate of 0.5rad/s,
while the minimum turn radius for the fixed-wing is 60m.
Simulations for both models, using triangular patterns with
variable numbers of facets, were performed on a computer
with a 1.73GHz processor running Ubuntu 14.04 and using
a single-thread C++ implementation. The time consumption
for the computation is depicted in Figure 4 for the rotorcraft
and the fixed–wing UAV cases. It shows accumulated time
consumptions of the different parts of the algorithm, as well
as the total, while Figure 5a depicts the relative shares.
The time complexity of the algorithm for large numbers of
viewpoints is dominated by the LKH for which [10] gives
a time complexity of O(N2.2), where N is the number of
viewpoints. Less dominant is the viewpoint sampling, with a
complexity of O(N), since the constant complexity method
of sampling has to be repeated for every viewpoint. Lastly,
the complexity of the distance computations is O(N2), since

500 1000 1500 2000 2500 3000 3500
0

50

100

T
im

e
 [
%

]

Rotorcraft UAV

 

 

200 400 600 800
0

50

100

T
im

e
 [
%

]

Fixed−wing UAV

 

 

LKH

Distance

VP sampling

Overhead

LKH

Distance

VP sampling

Overhead

(a) Relative time consumption

0 1000 2000 3000
0

50

100

C
o
s
t 
[m

in
]

Rotorcraft UAV

0 200 400 600 800 1000
0

100

200

300

400

Number of facets [−]

C
o
s
t 
[m

in
]

Fixed−wing UAV

(b) Resolution dependent cost

Fig. 5: Figure 5a depicts the relative time consumption of different
parts of the algorithm, while Figure 5b shows the cost of the
computed paths for different amount of facets, corresponding to
varying mesh resolution.
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Fig. 6: Improvement of the path cost over the course of 25 iterations
for 100, 144 and 256 facets. The left top figure depicts a run
without heuristics and one with the heuristic on the viewpoint
neighbours (running for the first 10 iterations) and the heuristic on
the viewpoint yaw (running for the first 15 iterations). As shown,
for the fixed–wing UAV case a less smooth path improvement
procedure takes place after the first iterations due to the additional
complexity introduced by the nonholonomic constraints.

the distance has to be computed for all pairs of viewpoints.
The predicted behaviour of the viewpoint sampling and
distance computation complexities can be observed in the
plots for the rotorcraft UAV case (Figure 4a), which contain
scenarios for up to 3600 viewpoints. For lower numbers of
viewpoints 25 iterations were performed, while for numbers
of viewpoints above 900, 50 iterations were performed in
order to find high quality paths. Consequently the rotorcraft
graphs contain two seperate curves. The fixed–wing UAV
graphs in Figure 4b were computed with 25 iterations for
numbers of viewpoints up to 900. Overall, the relative time
consumption plots in Figure 5a show an increasing share
of computation time for the LKH for larger numbers of
viewpoints, as could be expected from the theoretical com-
plexities. Evidently, the distance computation, which time-
wise is insignificant for the rotorcraft UAV case, consumes
a large part of the computation time for the fixed–wing case.



This is due to the fact, that the system constraints induce
an asymetric TSP, which doubles the amount of viewpoints
(corresponding to both directions of travel). While the TSP
solver can efficiently handle this, the number of two state
boundary value problems is quadrupled. As the number of
facets increases, the path is more densely populated with
viewpoints, thus attenuating the increase of cost through
the larger amount of connections. This can be observed
in Figure 6b for both the rotorcraft and the fixed–wing
UAV, respectively. To further validate the proposed approach,
comparison to a sweeping path as depicted in Figure 3 can
be made. With an image base–line of approximately 190m 7
sweeps of 2165m length are necessary to cover the area, to
which adds the translation of 6 times the base–line. With
a travel speed of 5m/s the resulting path cost is 3259s,
which is more than double the cost of what the proposed
algorithm computes for a rotorcraft UAV when planning
with e.g. 100 facets (1234.90s). This stands as an indication
of the performance of the algorithm, the main strength of
which is however related with complex 3D scenarios, as
those presented in Section VI, where simplified approaches
like the sweeping path lose their potential.

Finally, the path length over the course of 25 iterations
is depiced in Figure 6 for 100, 144 and 256 facets. The
effect of the additional heuristics on finding a better final
solution for the rotorcraft UAV case is shown in the top plot
of Figure 6a where the cost curve is compared to the one
without the heuristics discussed in Section IV-D. Overall,
quick progression towards lower–cost paths is achieved for
all scenarios, while for the fixed–wing UAV case the curve
flattens sooner due to the additional complexity introduced
by the nonholonomic constraints.

VI. EVALUATION TEST–CASES

Within this section advanced evaluation test–cases in
simulation and experimental studies are presented. Three
challenging experiments are presented, one using a rotorcraft
and two with a 5.6m wingspan fixed–wing UAV.

A. Complex 3D Simulation Test–Case

As a complex simulation test–case, a mesh model of
the 405m high Central Radio & TV Tower in Beijing was
used [3]. The employed mesh contains Nfacets = 1701
triangular facets that model the real building. A rotorcraft
vehicle is assumed which is subject to a maximum allowed
linear velocity of vmax = 2m/s and a maximum yaw rate
ψ̇max = 0.5rad/s while it carries a camera sensor mounted
with 15◦ pitch and has a field of view [120, 120]◦ along the
vertical and the horizontal axis respectively. Furthermore, it
is enforced that the distance of the camera to the inspected
structure is set between 10m and 25m to ensure safety but
also close–inspection capable of revealing structural prob-
lems (e.g. cracks). The test–case parameters are summarized
in Table II. The building and the derived inspection path
are illustrated in Figure 7. Eventually, this complex test–
study reveals the high–performance characteristics of the
proposed inspection planner which are further evaluated

TABLE II: Beijing Tower Inspection Scenario

Nfacets 1701 ∠incidence 30◦

FoV [120, 120]◦ Mouting pitch 15◦

dmin 10m dmax 25m
vmax 2m/s ψ̇max 0.5rad/s

in the experimental studies presented in subsections VI-B
and VI-C.
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Fig. 7: Large scale structure to be inspected: The 405m high Central
Radio & TV Tower in Beijing. The mesh used to compute the path
contains 1701 triangular facets. After a computation time of 92s
the cost for the inspection is 2997.44s with a maximal speed of
2m/s and a maximal yaw rate of 0.5rad/s. The red point denotes,
start– and end–point of the inspection.

B. Rotorcraft UAV Inspection Operations

A first experimental test study was conducted using an
AscTec Firefly Hexacopter MAV onboard of which the
Visual–Inertial Sensor (VI–Sensor) developed by our lab and
Skybotix AG was further integrated. The VI–Sensor inte-
grates 2 HDR global shutter cameras (Aptina MT9V034) and
an Analog Devices ADIS16448 IMU in a tightly aligned and
synchronized way using an ArtixTM–7 FPGA, a Xilinx Zynq
7020 SoC module and an ATOM CPU running Linux. This
integrated sensor system runs advanced image processing
algorithms, provides complete pose estimates and builds a
3D map of the environment. Figure 8 shows the employed
UAV equipped with the VI–Sensor.

The experimental setup refers to the inspection of the
3D structure shown in Figure 9 and consists of 106 facets
capturing the structure in detail. The scenario is further
complicated by a bounding box of 3×3×2.75m and a sensing
minimum range dmin = 1m. This inspection structure was
offline reconstructed from a set of terrestrial images and
consequently a mesh was computed to be utilized by the
proposed inspection path planner. Table III summarizes the
experiment parameters. Using the proposed inspection path



Fig. 8: The Firefly UAV equipped with the VI–Sensor.

TABLE III: Rotorcraft UAV Inspection Scenario

Nfacets 106
∠incidence 30◦ Bounding box 3x3x2.75m
FoV [60, 90]◦ Mouting pitch 15◦

dmin 1m dmax 3m
vmax 0.25m/s ψ̇max 0.5rad/s

planner, a path that guarantees complete coverage is derived
and has a total length of 151.44s. Reconstruction results
derived using pose–annotated (position and rotations) image
sequences from one of the VI–Sensor cameras and the Pix4D
software indicate excellent 3D reconstruction results, a fact
that further increases confidence on the practical applicability
of the proposed algorithm. The reference path and the
recorded flight response along with the reconstruction results
are shown in Figure 9. The arrows indicate the reference
viewpoints proposed by the inspection planner.

Fig. 9: Experimental study of the inspection of a trolley. The
preliminary, terrestrial images–based, 3D reconstruction of the
inspection structure is depicted and was used to derive a simplified
mesh that was then employed by the inspection path planner to
compute the inspection path shown in the Figure. The path cost is
151.44s for vmax = 0.25m/s and ψ̇max = 0.5rad/s .

C. Fixed-Wing UAV Inspection Operations

A second set of experiments was conducted using a
long endurance fixed–wing UAV platform developed by our

TABLE IV: Marche–en–Famenne Inspection Scenario

Nfacets 8, 8 ∠incidence 30◦

vFW 9m/s rmin 60m, 60m
FoV [90, 50]◦, [120, 120]◦ Mouting pitch 50◦, 90◦

Range unconstrained Height 120m, 100m

lab. The particular platform, AtlantikSolar [20], is a 5.6m
wingspan, 7.5kg, solar–powered vehicle with robust state–
estimation capabilities [22], automatic trajectory tracking
control [19] and further integrates a) an advanced sensor pod
with a monocular version of the aforementioned VI–Sensor
with the Aptina MT9V034 camera mounted at a 50◦ front–
down oblique view and every image is fully pose–annotated
as well as b) a GPS–tagged Sony HDR-AS100VW camera.
Figure 10 depicts the UAV as well as the sensor pod.

Fig. 10: The AtlantikSolar UAV with the sensor pod attached to its
wings and further photos of the sensor pod, the solar cells and an
instant of the hand–launching.

With this UAV corresponding to an excellent test–case for
nonholonomic inspection path planning, two inspection mis-
sions were designed to be conducted within the framework
of the ICARUS project field–trials in the area of Marche–en–
Famenne in Belgium [13]. Geographical Information System
(GIS) data were used to derive a first, rough, 8 facets
(Nfacets = 8) mesh of the area and subsequently two
inspection paths were computed, one for the oblique view
grayscale camera of the VI–Sensor with a fixed reference
altitude set at an absolute value zr = 362m (corresponding
to 120m above the highest point to be inspected) and the
other for the nadir–mounted Sony HDR-AS100VW with
zr = 342m, while the modelled minimum turning radius was
rmin = 60m. Table IV summarizes the parameters used for
the two experiments. Figures 11 and 12 present the results for
the two camera configurations. In both cases, the optimized
reference inspection path, the real recorded UAV trajectory
as well as an offline computed dense point–cloud of the
inspection area are shown such that the completeness of
coverage is visually assessed. The point clouds are derived
using the pose–annotated images and the Pix4D software and
are freely available online [2].

For both configurations the proposed inspection planner
manages to provide short distance paths that guarantee com-
plete coverage while accounting for the motion constraints
of the fixed–wing UAV. The reconstructed point cloud is



Fig. 11: Inspection path and point–cloud for 3D reconstruction pur-
poses using the front–down mounted view grayscale camera of the
VI–Sensor onboard AtlantikSolar. Blue line represents the reference
path, green circles are used to indicate the actual waypoints loaded
to the autopilot and red is used for the vehicle response. The planner
commands the vehicle to navigate such that the camera covers the
whole desired area marked with dashed cyan line. A UTM31N
coordinate system is employed.

Fig. 12: Inspection path and 3D reconstruction results using the
nadir mounted Sony HDR-AS100VW onboard AtlantikSolar. Blue
line represents the reference path, green circles are used to indicate
the actual waypoints loaded to the autopilot and red is used for the
vehicle response. The planner commands the vehicle to navigate
such that the camera covers the whole desired area marked with
dashed cyan line. A UTM31N coordinate system is employed.

very dense which indicates that such short paths remain
practically useful for high fidelity reconstruction purposes
where significant overlap is typically required.

VII. SUMMARY & CONCLUSIONS

Within this paper, a practically–oriented fast inspection
path planning algorithm capable of computing efficient solu-
tions for complex 3D structures represented by triangular
meshes was presented. The method was first tested on a
scalable scenario and the results were summarized both
for the case of a rotorcraft as well as a fixed–wing UAV.
Subsequently, the capabilities of the algorithm were demon-
strated in real–world application scenarios and experimental
studies using both UAV configurations. With the help of 3D–
reconstruction software, the recorded inspection data were
postprocessed to support the claim of finding full coverage
paths and the point cloud datasets are released to enable
evaluation of the inspection quality. An implementation of

the presented algorithm is accessible [17] for further use and
development by the community.
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