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Abstract We show that a conformal connection on a closed oriented surface � of negative
Euler characteristic preserves precisely one conformal structure and is furthermore uniquely
determined by its unparametrised geodesics. As a corollary it follows that the unparametrised
geodesics of a Riemannian metric on � determine the metric up to constant rescaling. It is
also shown that every conformal connection on the 2-sphere lies in a complex 5-manifold of
conformal connections, all of which share the same unparametrised geodesics.
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Twistor space

Mathematics Subject Classification Primary 53A20; Secondary 53C24 · 53C28

1 Introduction

A projective structure p on a surface � is an equivalence class of affine torsion-free connec-
tions on � where two connections are declared to be projectively equivalent if they share the
same geodesics up to parametrisation. A surface equipped with a projective structure will be
called a projective surface. In [12] it was shown that an oriented projective surface (�, p)

defines a complex surface Z together with a projection to � whose fibres are holomorphi-
cally embedded disks. Moreover, a conformal connection in the projective equivalence class
corresponds to a section whose image is a holomorphic curve in Z . Locally such sections
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380 T. Mettler

always exist and hence every affine torsion-free connection on a surface is locally projectively
equivalent to a conformal connection. The problem of characterising the affine torsion-free
connections on surfaces that are locally projectively equivalent to a Levi-Civita connection
was recently solved in [3].

Here we show that if a closed holomorphic curve D ⊂ Z is the image of a section of
Z → �, then its normal bundle N → D has degree twice the Euler characteristic of �. This
is achieved by observing that the projective structure on � canonically equips the co-normal
bundle of D with a Hermitian bundle metric whose Chern connection can be computed
explicitly. Using the fact that the normal bundle N → D has degree 2χ(�) and that the
bundle Z → � has a contractible fibre, we prove that on a closed surface � with χ(�) < 0
there is at most one section of Z → � whose image is a holomorphic curve. It follows that a
conformal connection on � preserves precisely one conformal structure and is furthermore
uniquely determined by its unparametrised geodesics. In particular, as a corollary one obtains
that the unparametrised geodesics of a Riemannian metric on � determine the metric up to
constant rescaling, a result previously proved in [11].

In the case where � is the 2-sphere, it follows that the normal bundle of a holomorphic
curve D � CP

1 ⊂ Z , arising as the image of a section of Z → S2, is isomorphic to O(4).
Consequently, Kodaira’s deformation theorem can be applied to show that every conformal
connection on S2 lies in a complex 5-manifold of conformal connections, all of which share
the same unparametrised geodesics.

2 Projective structures and conformal connections

In this section we assemble the essential facts about projective structures on surfaces and con-
formal connections that will be used during the proof of the main result. Here and throughout
the article—unless stated otherwise—all manifolds are assumed to be connected and smooth-
ness, i.e. infinite differentiability, is assumed. Also, we let R

n denote the space of column
vectors of height n with real entries and Rn the space of row vectors of length n with real
entries so that matrix multiplication Rn × R

n → R is a non-degenerate pairing identifying
Rn with the dual vector space of R

n . Finally, we adhere to the convention of summing over
repeated indices.

2.1 Projective structures

Recall that the spaceA(�) of affine torsion-free connections on a surface� is an affine space
modelled on the space of sections of the real vector bundle V = S2(T ∗�) ⊗ T�.1 We have
a canonical trace mapping tr : �(V ) → �1(�) as well as an inclusion

ι : �1(�) → �(V ), α �→ α ⊗ Id + Id ⊗ α,

where we define

(α ⊗ Id) (v)w = α(v)w and (Id ⊗ α) (v)w = α(w)v,

for all v,w ∈ T�. Consequently, the bundle V decomposes as V = V0 ⊕ T ∗� where V0
denotes the trace-free part of V . The projection �(V ) → �(V0) is given by

φ �→ φ0 = φ − 1

3
ι (tr φ) .

1 As usual, by an affine torsion-free connection on � we mean a torsion-free connection on T�.
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Geodesic rigidity of conformal connections on surfaces 381

Weyl [14] observed that two affine torsion-free connections∇ and∇′ on� are projectively
equivalent if and only if their difference is pure trace

(∇ − ∇′)0 = 0. (2.1)

Wewill denote the space of projective structures on� byP(�). From (2.1) we see thatP(�)

is an affine space modelled on the space of smooth sections of V0 � S3(T ∗�) ⊗ 	2(T�).
Cartan [4] (see [8] for a modern exposition) associates to an oriented projective surface

(�, p) a Cartan geometry of type (SL(3, R),G), which consists of a principal right G-
bundle π : B → � together with a Cartan connection θ ∈ �1(B, sl(3, R)). The group
G � R

2
� GL+(2, R) ⊂ SL(3, R) consists of matrices of the form

b � a =
(

(det a)−1 b

0 a

)
,

where a ∈ GL+(2, R) and bt ∈ R
2. The Cartan connection θ is an sl(3, R)-valued 1-form

on B which is equivariant with respect to the G-right action, maps every fundamental vector
field Xv on B to its generator v ∈ g, and restricts to be an isomorphism on each tangent space
of B. Furthermore, the Cartan geometry (π : B → �, θ) has the following properties:

(i) Write θ = (θ
μ
ν )μ,ν=0..2. Let X be a vector field on B satisfying θ i0(X) = ci , θ ij (X) = 0

and θ0j (X) = 0 for real constants (c1, c2) �= (0, 0), where i, j = 1, 2. Then every integral
curve of X projects to� to yield a geodesic of p and conversely every geodesic of p arises
in this way;

(ii) an orientation compatible volume formon� pulls-back to B to becomeapositivemultiple
of θ10 ∧ θ20 ;

(iii) there exist real-valued functions W1,W2 on B such that

dθ + θ ∧ θ =
⎛
⎜⎝
0 W1θ

1
0 ∧ θ20 W2θ

1
0 ∧ θ20

0 0 0

0 0 0

⎞
⎟⎠ . (2.2)

The fibre of B at a point p ∈ � consists of the 2-jets of orientation preserving local diffeo-
morphisms ϕ with source 0 ∈ R

2 and target p, so that ϕ−1 maps the geodesics of p passing
through p to curves in R

2 having vanishing curvature at 0. The structure group G consists of
the 2-jets of orientation preserving fractional-linear transformations with source and target
0 ∈ R

2. Explicitly, the identification between the matrix Lie group G and the Lie group of
such 2-jets is given by b � a �→ j20 fa,b where

fa,b : x �→ (det a)a · x
1 + (det a)b · x (2.3)

and · denotes usual matrix multiplication. The group G acts on B from the right by pre-
composition, that is,

j20ϕ · j20 fa,b = j20 (ϕ ◦ fa,b). (2.4)

Remark 1 Cartan’s construction is unique in the following sense: If (B ′ → �, θ ′) is another
Cartan geometry of type (SL(3, R),G) satisfying the properties (i),(ii),(iii), then there exists
a G-bundle isomorphism ψ : B → B ′ so that ψ∗θ ′ = θ .

Example 1 The Cartan geometry (π : SL(3, R) → S
2, θ), where θ denotes the Maurer-

Cartan form of SL(3, R) and

π : SL(3, R) → SL(3, R)/G � S
2 = (

R
3\ {0})/R

+
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382 T. Mettler

the quotient projection, defines an orientation and projective structure p0 on the projective
2-sphere S

2. The geodesics of p0 are the great circles S
1 ⊂ S

2, that is, subspaces of the form
E ∩S

2, where E ⊂ R
3 is a linear 2-plane. The group SL(3, R) acts on S

2 from the left via the
natural left action onR

3 bymatrixmultiplication and this action preserves both the orientation
and projective structure p0 on S

2. The unparametrised geodesics of the Riemannian metric
g on S

2 obtained from the natural identification S
2 � S2, where S2 ⊂ R

3 denotes the unit
sphere in Euclidean 3-space, are the great circles. In particular, for every ψ ∈ SL(3, R), the
geodesics of the Riemannian metric ψ∗g on S

2 are the great circles as well, hence the space
of Riemannian metrics on the 2-sphere having the great circles as their geodesics contains –
and is in fact equal to – the real 5-dimensional homogeneous space SL(3, R)/SO(3).

Example 2 Here we show how to construct Cartan’s bundle from a given affine torsion-
free connection ∇ on an oriented surface �. The reader may want to consult [8] for
additional details of this construction. Let υ : F+ → � denote the bundle of positively
oriented coframes of �, that is, the fibre of F+ at p ∈ � consists of the linear isomorphisms
u : Tp� → R

2 which are orientation preserving with respect to the given orientation on �

and the standard orientation on R
2. The group GL+(2, R) acts transitively from the right on

each υ-fibre by the rule u · a = Ra(u) = a−1 ◦ u for all a ∈ GL+(2, R). This right action
makes F+ into a principal right GL+(2, R)-bundle over �. Recall that there is a tautological
R
2-valued 1-form η = (ηi ) on F+ defined by

η(v) = u(υ ′(v)), for v ∈ Tu F
+.

The form η satisfies the equivariance property (Ra)
∗η = a−1η for all a ∈ GL+(2, R).

Let now ζ = (ζ ij ) ∈ �1(F+, gl(2, R)) be the connection form of an affine torsion-free
connection ∇ on �. We have the structure equations

dηi = −ζ ij ∧ η j ,

dζ ij = −ζ ik ∧ ζ k
j + 1

2
Ri
jklη

k ∧ ηl

for real-valued curvature functions Ri
jkl on F+. As usual, we decompose the curvature

functions Ri
jkl into irreducible pieces, thus writing2

Ri
jkl = R jlδ

i
k − R jkδ

i
l + Rεklδ

i
j

for unique real-valued functions Ri j = R ji and R on F+. Contracting over i, k we get

Rk
jkl = 2R jl − R jl + Rε jl = R jl + Rε jl .

Consequently, denoting by Ric±(∇) the symmetric and anti-symmetric part of the Ricci
tensor of ∇, we obtain

υ∗ (
Ric+(∇)

) = Ri jη
i ⊗ η j and υ∗ (

Ric−(∇)
) = Rεi jη

i ⊗ η j .

In two dimensions, the (projective) Schouten tensor of∇ is defined as Sch(∇) = Ric+(∇)−
1
3Ric

−(∇), so that writing

υ∗ (Sch(∇)) = Si jη
i ⊗ η j ,

2 We define εi j = −ε j i with ε12 = 1.
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Geodesic rigidity of conformal connections on surfaces 383

we have

S = (Si j ) =
(

R11 R12 − 1
3 R

R12 + 1
3 R R22

)
.

We now define a right G-action on F+ × R2 by the rule

(u, ξ) · (b � a) = (
det a−1a−1 ◦ u, ξa det a + b det a

)
, (2.5)

for all b � a ∈ G. Here ξ denotes the projection onto the second factor of F+ × R2. Let
π : F+ × R2 → � denote the basepoint projection of the first factor. The G-action (2.5)
turns π : F × R2 → � into a principal right G-bundle over �. On F+ × R2 we define an
sl(3, R)-valued 1-form

θ =
(

− 1
3 tr ζ − ξη dξ − ξζ − Stη − ξηξ

η ζ − 1
3 I tr ζ + ηξ

)
. (2.6)

Then (π : F+ × R2 → �, θ) is a Cartan geometry of type (SL(3, R),G) satisfying the
properties (i), (ii) and (iii) for the projective structure defined by ∇. It follows from the
uniqueness part of Cartan’s construction that (π : F+ × R2 → �, θ) is isomorphic to
Cartan’s bundle.

Remark 2 Note that Example 2 shows that the quotient of Cartan’s bundle by the normal
subgroup R

2
� {Id} ⊂ G is isomorphic to the principal right GL+(2, R)-bundle of positively

oriented coframes υ : F+ → �.

2.2 Conformal connections

Recall that an affine torsion-free connection∇ on� is called aWeyl connection or conformal
connection if ∇ preserves a conformal structure [g] on �. A torsion-free connection ∇ is
[g]-conformal if for some—and hence any—Riemannian metric g defining [g] there exists
a 1-form β ∈ �1(�) such that

∇g = 2β ⊗ g. (2.7)

Conversely, given a pair (g, β) on �, it follows from Koszul’s identity that there exists a
unique affine torsion-free connection ∇ which satisfies (2.7), namely

(g,β)∇ = g∇ + g ⊗ β� − ι(β), (2.8)

where g∇ denotes the Levi-Civita connection of g and β� the g-dual vector field to β. For a
smooth real-valued function u on � we have

exp(2u)g∇ = g∇ − g ⊗ g∇u + ι(du), (2.9)

and hence
(exp(2u)g,β+du)∇ = (g,β)∇. (2.10)

Fixing a Riemannian metric g defining [g] identifies the space of [g]-conformal connections
with the space of 1-forms on �. It follows that the space of [g]-conformal connections is
an affine space modelled on �1(�). A conformal structure [g] together with a choice of a
particular [g]-conformal connection ∇ is called a Weyl structure. We will denote the space
of Weyl structures on � by W(�). Furthermore, a Weyl structure ([g],∇) is called exact if
∇ is the Levi-Civita connection of a Riemannian metric g defining [g]. From (2.9) we see
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384 T. Mettler

that the space of exact Weyl structures on � is in one-to-one correspondence with the space
of Riemannian metrics on � modulo constant rescaling.

Let now� be oriented (pass to the orientable double cover in case� is not orientable) and
fix a Riemannian metric g and a 1-form β on �. On the bundle υ : F+ → � of positively
oriented coframes of � there exist unique real-valued functions gi j = g ji and bi such that

υ∗g = gi jη
i ⊗ η j and υ∗β = biη

i . (2.11)

The R2-valued function b = (bi ) satisfies the equivariance property

(Ra)
∗b = ba. (2.12)

The Levi-Civita connection form of g is the unique gl(2, R)-valued connection 1-form ϕ =
(ϕi

j ) satisfying

dηi = −ϕi
j ∧ η j and dgi j = gkjϕ

k
i + gikϕ

k
j .

The exterior derivative of ϕ can be expressed as

dϕi
j = −ϕi

k ∧ ϕk
j + g jk Kηi ∧ ηk,

where the real-valued function K is constant on the υ-fibres and hence can be regarded as
a function on � which is the Gauss-curvature of g. Infinitesimally, (2.12) translates to the
existence of real-valued functions bi j on F+ satisfying

dbi = b jϕ
j
i + bi jη

j .

From (2.8) we see that the connection form ζ = (ζ ij ) of the [g]-conformal connection (g,β)∇
can be written as

ζ ij = ϕi
j +

(
bkg

ki g jl − δij bl − δil b j

)
ηl ,

where the functions gi j = g ji satisfy gikgk j = δij . It followswith the equivariance property of
η and (2.11) that the equations g11 ≡ g22 ≡ 1 and g12 ≡ 0 define a reduction λ : F+

g → � of
υ : F+ → � with structure group SO(2) which consists of the positively oriented coframes
that are also g-orthonormal. On F+

g we obtain

0 = dg11 = 2(g11ϕ
1
1 + g12ϕ

2
1) = 2ϕ1

1 ,

0 = dg22 = 2(g21ϕ
1
2 + g22ϕ

2
2) = 2ϕ2

2 ,

0 = dg12 = g11ϕ
1
2 + g12ϕ

2
2 + g12ϕ

1
1 + g22ϕ

2
1 = ϕ1

2 + ϕ2
1 .

Therefore, writing ϕ := ϕ2
1 we have the following structure equations on F+

g

dη1 = −η2 ∧ ϕ,

dη2 = η1 ∧ ϕ,

dϕ = −Kη1 ∧ η2,

dbi = bi jη
j + εi j b

jϕ.

Furthermore, the connection form ζ pulls-back to F+
g to become3

ζ =
(

−b1η1 − b2η2 b1η2 − b2η1 − ϕ

−b1η2 + b2η1 + ϕ −b1η1 − b2η2

)
=

( −β �β − ϕ

ϕ − �β −β

)
,

3 In order to keep notation uncluttered we omit writing λ∗ for pull-backs by λ.
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Geodesic rigidity of conformal connections on surfaces 385

where � denotes the Hodge-star with respect to the orientation and metric g. A simple cal-
culation now shows that the components of the Schouten tensor are

S =
(
K + b11 + b22 − 1

3 (b12 + b21)
1
3 (b12 − b21) K + b11 + b22

)
.

Note that the diagonal entry of S is K − δβ where δ denotes the co-differential with respect
to the orientation and metric g.

If we now apply the formula (2.6) for the Cartan connection of the projective structure
defined by (g,β)∇ – whilst setting ξ ≡ 0 – we obtain

φ =
⎛
⎜⎝

2
3β (δβ − K )η1 + 1

3 (�dβ)η2 − 1
3 (�dβ)η1 + (δβ − K )η2

η1 − 1
3β �β − ϕ

η2 ϕ − �β − 1
3β

⎞
⎟⎠ . (2.13)

Denoting by (π : B → �, θ) the Cartan geometry associated to the projective structure
defined by (g,β)∇, it follows from the uniqueness part of Cartan’s construction that there
exists an SO(2)-bundle embedding ψ : F+

g → B so that ψ∗θ = φ.
For the sake of completeness we also record

dφ + φ ∧ φ =
⎛
⎝ 0 Ŵ1φ

1
0 ∧ φ2

0 Ŵ2φ
1
0 ∧ φ2

0
0 0 0
0 0 0

⎞
⎠ ,

where

Ŵ1φ
1
0 + Ŵ2φ

2
0 = − � d(K − δβ) + 1

3
d � dβ − 2(K − δβ) � β − 2

3
β � dβ.

3 Flexibility and rigidity of holomorphic curves

A conformal structure [g] on the oriented surface � is the same as a smooth choice of a
positively oriented orthonormal coframe for every point p ∈ �, well defined up to rotation
and scaling; in other words, a smooth section of F+/CO(2) where CO(2) = R

+ × SO(2) is
the linear conformal group.

Assume � to be equipped with a projective structure p and let (π : B → �, θ) denote
its associated Cartan geometry. Recall that F+ is obtained as the quotient of B by the
normal subgroup R

2
� {Id} ⊂ G, hence the conformal structures on � are in one-to-one

correspondence with the sections of τ : B/
(
R
2

� CO(2)
) → �, where τ denotes the

base-point projection. By construction, the typical fibre of τ is the homogeneous space
GL+(2, R)/CO(2) which is diffeomorphic to the open unit disk in C.

In [5,13] it was shown that p induces a complex structure J on the space B/
(
R
2

� CO(2)
)
,

thus turning this quotient into a complex surface Z . The complex structure on Z can be
characterised in terms of the Cartan connection θ on B. To this end we write the structure
equations of θ in complex form.
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386 T. Mettler

Lemma 1 Writing

ω1 = θ10 + iθ20 ,

ω2 = (θ11 − θ22 ) + i
(
θ12 + θ21

)
,

ξ = θ01 + iθ02 ,

ψ = −1

2

(
3θ00 + i(θ12 − θ21 )

)
,

we have

dω1 = ω1 ∧ ψ + 1

2
ω1 ∧ ω2,

dω2 = −ω1 ∧ ξ + ω2 ∧ ψ + ψ ∧ ω2,

dξ = Wω1 ∧ ω1 − 1

2
ξ ∧ ω2 + ψ ∧ ξ,

dψ = −1

2
ω1 ∧ ξ + 1

4
ω2 ∧ ω2 + ξ ∧ ω1, (3.1)

where W = 1
2 (W2 − iW1) and α denotes complex conjugation of the complex-valued form

α.

Proof The proof is a straightforward translation of the structure equations (2.2) into complex
form. ��

Using Lemma 1 we can prove:

Proposition 1 There exists a unique integrable almost complex structure J on Z such that
a complex-valued 1-form α on Z is a (1,0)-form for J if and only if the pullback of α to B
is a linear combination of ω1 and ω2.

Proof By definition, we have Z = B/H where H = R
2

� CO(2) ⊂ G. The Lie algebra h
of H consists of matrices of the form⎛

⎜⎝
−2h4 h1 h2
0 h4 h3
0 −h3 h4

⎞
⎟⎠ ,

where h1, . . . , h4 are real numbers. Therefore, since the Cartan connection maps every fun-
damental vector field Xv on B to its generator v, the 1-forms ω1, ω2 are semibasic for the
projection to Z , that is, vanish on vector fields that are tangent to the fibres of B → Z .
Consequently, the pullback to B of a 1-form on Z is a linear combination of ω1, ω2 and their
complex conjugates. We write the elements of H in the following form

z � reiφ =
⎛
⎜⎝
r−2 Re(z) Im(z)

0 r cosφ r sin φ

0 −r sin φ r cosφ

⎞
⎟⎠ ,

where z ∈ C and reiφ ∈ C
∗. The equivariance of θ under the G-right action gives(

Rb�a
)∗

θ = (b � a)−1θ(b � a) = (−(det a)ba−1
� a−1)θ(b � a)

which implies (
Rz�reiφ

)∗
ω1 = 1

r3
eiφω1 (3.2)
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Geodesic rigidity of conformal connections on surfaces 387

and (
Rz�reiφ

)∗
ω2 = z

r
eiφω1 + e2iφω2, (3.3)

thus showing that there exists a unique almost complex structure J on Z such that a complex-
valued 1-form α on Z is a (1,0)-form for J if and only if the pullback of α to B is a linear
combination of ω1 and ω2. The integrability of J is now a consequence of the complex form
of the structure equations given in Lemma 1 and the Newlander-Nirenberg theorem. ��
Using this characterisation we have [12, Theorem 3]:

Theorem 1 Let (�, p) be an oriented projective surface. A conformal structure [g] on � is
preserved by a conformal connection defining p if and only if the image of [g] : � → Z is a
holomorphic curve.

3.1 Chern-class of the co-normal bundle

Here we use the characterisation of the complex structure on Z in terms of the Cartan
connection θ to compute the degree of the normal bundle of a holomorphic curve D ⊂ Z
arising as the image of a section of Z → �.

Lemma 2 Let (�, p) be a closed oriented projective surface and [g] : � → Z a section with
holomorphic image. Then the normal bundle of the holomorphic curve D = [g](�) ⊂ Z
has degree 2χ(�).

Proof Wewill compute the degree of the co-normal bundle of D = [g](�) ⊂ Z by comput-
ing its first Chern-class. We let B ′ ⊂ B denote the subbundle consisting of those elements
b ∈ B whose projection to Z lies in D. Consequently, B ′ → D is a principal right H -bundle.

The characterisation of the complex structure on Z given in Proposition 1 implies that the
sections of the rank 2 vector bundle

T 1,0Z∗|D → D

correspond to functions λ = (λi ) : B ′ → C
2 such that

(ω1 ω2) ·
(

λ1

λ2

)
= λ1ω1 + λ2ω2

is invariant under the H -right action. Using (3.2) and (3.3) we see that this condition on λ is
equivalent to the equivariance of λ with respect to the right action of H on B ′ and the right
action of H on C

2 induced by the representation

χ : H → GL(2, C), z � reiφ �→
(

1
r3
eiφ z

r e
iφ

0 e2iφ

)
.

Similarly, we see that the (1,0)-forms on D are in one-to-one correspondence with the
complex-valued functions on B ′ that are equivariant with respect to the right action of H on
B ′ and the right action of H on C induced by the representation

ρ : H → GL(1, C), z � reiφ �→ 1

r3
eiφ.

The representation ρ is a subrepresentation of χ , hence the quotient representation χ/ρ

is well defined and the sections of the co-normal bundle of D are therefore in one-to-one
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388 T. Mettler

correspondence with the complex-valued functions ν on B ′ that satisfy the equivariance
condition

ν(b · z � reiφ) = (χ/ρ)
(
(z � reiφ)−1) ν(b) = e−2iφν(b)

for all b ∈ B ′ and z � reiφ ∈ H . Here we have used that the quotient representation χ/ρ is
isomorphic to the complex one-dimensional representation of H

z � reiφ �→ e2iφ.

In particular, given two such complex-valued functions ν1, ν2 on B ′, we may define

〈ν1, ν2〉 = ν1ν2,

which equips the co-normal bundle N∗ → D with a Hermitian bundle metric h.
We will next compute the Chern connection of h and express it in terms of the Cartan

connection θ . This can be done most easily by further reducing the bundle B ′ ⊂ B. Since
D ⊂ Z is the image of a section of Z → � and is a holomorphic curve, it follows from the
characterisation of the complex structure J on Z given in Proposition 1 that there exists a
complex-valued function f on B ′ such that

ω2 = f ω1.

Using the formulae (3.2) and (3.3) again, it follows that the function f satisfies

f (b · z � reiφ) = r2
(
reiφ f (b) + z

)
for all b ∈ B ′ and z � reiφ ∈ H . Consequently, the condition f ≡ 0 defines a principal
right CO(2)-subbundle B ′′ → D on which ω2 vanishes identically. The representation χ/ρ

restricts to define a representation of the subgroup CO(2) ⊂ H and therefore, the sections
of the co-normal bundle of D are in one-to-one correspondence with the complex-valued
functions ν on B ′′ satisfying the equivariance condition

ν(b · reiφ) = e−2iφν(b) (3.4)

for all b ∈ B ′′ and reiφ in CO(2). Equation (3.4) implies that infinitesimally ν must satisfy

dν = ν(1,0)ω1 + ν(0,1)ω1 + ν
(
ψ − ψ

)
for unique complex-valued functions ν(1,0) and ν(0,1) on B ′′. A simple computation shows
that the form ψ − ψ is invariant under the CO(2) right action, therefore it follows that the
map

∇p : �(D, N∗) → �1(D, N∗), ν �→ dν − ν
(
ψ − ψ

)
defines a connection on the co-normal bundle of D ⊂ Z . By construction, this connection
preserves h. As a consequence of the characterisation of the complex structure on Z , it follows
that a section ν of the co-normal bundle N∗ → D is holomorphic if and only if ν0,1 = 0.
This shows that ∇0,1

p = ∂̄N∗ , that is, the connection ∇p must be the Chern-connection of h.
The Chern-connection of h has curvature

d
(
ψ − ψ

) = 1

2

(
ω1 ∧ ξ − ω1 ∧ ξ

)
where we have used the structure equations (3.1) and that ω2 ≡ 0 on B ′′. Since we have a
section [g] : � → Z whose image is a holomorphic curve, we know fromTheorem 1 that p is
defined by a conformal connection. Let g be any metric defining [g] and denote by F+

g → �
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the SO(2)-bundle of positively oriented g-orthonormal coframes. By the uniqueness part of
Cartan’s bundle construction we must have an SO(2)-bundle embedding ψ : F+

g → B ′′

covering the identity on � � D so that ψ∗θ = φ where φ = (φi
j )i, j=0,1,2 is given in (2.13).

Recall that ω2 vanishes identically on B ′′ which is consistent with (2.13), since

ψ∗ω2 = (φ1
1 − φ2

2) + i
(
φ1
2 + φ2

1

)
= −1

3
β −

(
−1

3
β

)
+ i ((�β − ϕ) + (ϕ − �β)) = 0.

Therefore, by using (2.13), we see that the curvature of ∇p is given by

d
(
ψ − ψ

) = 2i (K − δβ) dμ.

where dμ = η1 ∧ η2 denotes the area form of g. Concluding, we have shown that the first
Chern-class c1(N∗) ∈ H2(D, Z) of N∗ → D is given by

c1(N
∗) =

[
1

π
(δβ − K )dμ

]
=

[
−K

π
dμ

]
.

Hence the degree of N∗ → D is

deg(N∗) =
∫
D
c1(N

∗) = −2χ(�),

by the Gauss-Bonnet theorem. It follows that the normal bundle N → D has degree 2χ(�).
��

3.2 Rigidity of holomorphic curves

We are now ready to prove the following rigidity result.

Proposition 2 Let (�, p) be a closed oriented projective surface satisfying χ(�) < 0. Then
there exists at most one section [g] : � → Z whose image is a holomorphic curve.

Proof Let [g] : � → Z be a section whose image D = [g](�) is a holomorphic curve.
Since D is an effective divisor, the divisor/line bundle correspondence yields a holomorphic
line bundle L → Z and a holomorphic section σ : Z → L so that σ vanishes precisely on D.
Recall that the fibre of Z → � is the open unit disk and hence contractible. It follows that the
projection to Z → � induces an isomorphism Z � H2(�, Z) � H2(Z , Z). In particular,
every smooth section of Z → � induces and isomorphism H2(Z , Z) � H2(�, Z) on the
second integral cohomology groups and any two such isomorphisms agree. Keeping this in
mind we now suppose that [ĝ] : � → Z is another section whose image is a holomorphic
curve. Using the functoriality of the first Chern class we compute the degree of L → Z
restricted to D′ = [ĝ](�)

deg (L|D′) =
∫
D′

c1(L) =
∫

�

[g]∗ (c1(L)) =
∫
D
c1(L) = deg (L|D)

where c1(L) ∈ H2(Z , Z) denotes the first Chern-class of the line bundle L → Z . Using the
first adjunction formula

N (D) � L|D
and Lemma 2 yields
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390 T. Mettler

deg (L|D′) = deg (L|D) = deg (N (D)) < 0.

Since L|D′ → D′ has negative degree, it follows that its only holomorphic section is the
zero section. Consequently, σ vanishes identically on D′. Since σ vanishes precisely on D
we obtain the desired uniqueness D = D′. ��
Combining Theorem 1 and Proposition 2 we get:

Theorem 2 Let � be a closed oriented surface � with χ(�) < 0. Then the map

W(�) → P(�), ([g],∇) �→ p(∇),

which sends a Weyl structure to the projective equivalence class of its conformal connection,
is injective.

Proof Let ([g],∇) and ([ĝ],∇′) be Weyl structures on � having projectively equivalent
conformal connections. Let p be the projective structure defined by ∇ (or ∇′). By Theorem 1
both [g] : � → Z and [ĝ] : � → Z have holomorphic image, with respect to the complex
structure on Z induced by p, and hence must agree by Proposition 2. Since ∇ and ∇′ are
projectively equivalent, it follows that we may write

∇ + ι(α) = ∇ + α ⊗ Id + Id ⊗ α = ∇′

for some 1-form α on �. Since ∇ and ∇′ are conformal connections for the same conformal
structure [g], there must exist 1-forms β and β̂ on � so that

g∇ + g ⊗ β� − ι(β − α) = g∇ + g ⊗ β̂� − ι(β̂).

Hence we have

0 = g ⊗
(
β� − β̂�

)
+ ι(α + β̂ − β).

Writing γ = α+β̂−β aswell as X = β�−β̂� and taking the trace gives 3 γ = β̂−β = −X �.
We thus have

0 = g ⊗ X − 1

3
ι(X �).

Contracting this last equation with the dual metric g# implies X = 0. It follows that α

vanishes too and hence ∇ = ∇′ as claimed. ��
Since exact Weyl structures correspond to Riemannian metrics up to constant rescaling, we
immediately obtain [11]:

Corollary 1 A Riemannian metric g on a closed oriented surface � satisfying χ(�) < 0 is
uniquely determined–up to constant rescaling–by its unparametrised geodesics.

Remark 3 The first (non-compact) examples of non-trivial pairs of projectively equivalent
Riemannian metrics, that is, metrics sharing the same unparametrised geodesics, go back to
Beltrami [1].

Remark 4 Clearly, pairs of distinct flat tori (after pulling back the metrics to T 2 = S1 × S1)
yield pairs of Riemannian metrics on the 2-torus that are (generically) not constant rescalings
of each other, but have the same Levi-Civita connection. This fact together with Example 1
shows that the assumption χ(�) < 0 in Theorem 2 is optimal.
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3.3 Conformal connections on the 2-sphere

As an immediate by-product of the proof of Theorem 2 we see that a conformal connection
on a closed oriented surface � with χ(�) < 0 preserves precisely one conformal structure.
By Remark 4, this is false in general on the 2-torus. It is therefore natural to ask if a conformal
connection on the 2-sphere can preserve more than one conformal structure. We will show
next that this is not the case. Let therefore (g, β) and (h, α) on S2 be such that the associated
conformal connections agree

(g,β)∇ = (h,α)∇ = ∇.

Fix an orientation on S2 and let λ : F+
g → S2 denote the SO(2)-bundle of positively

oriented g-orthonormal coframes with coframing (η1, η2, ϕ) as described in §2.2. Write
λ∗h = hi jηi ⊗ η j for unique real-valued functions hi j = h ji on F+

g and λ∗β = biηi as well

as λ∗α = aiηi for unique real-valued functions ai , bi on F+
g . Recall from §2.2 that on F+

g

the connection 1-form ζ = (ζ ij ) of ∇ takes the form

ζ =
(

−b1η1 − b2η2 b1η2 − b2η1 − ϕ

−b1η2 + b2η1 + ϕ −b1η1 − b2η2

)
. (3.5)

By assumption, we have

∇h = 2α ⊗ h.

On F+
g this condition translates to

dhi j = hkjζ
k
i + hikζ

k
j + 2akhi jη

k .

Hence using (3.5) we obtain

d(h11 − h22) = 2h11ζ
1
1 − 2h12ζ

1
2 + 2h21ζ

2
1 − 2h22ζ

2
2 + 2akη

k(h11 − h22)

= 2
[
(ak − bk)(h11 − h22)η

k + 2h12ζ
2
1

]
,

dh12 = h12ζ
1
1 + h22ζ

2
1 + h11ζ

1
2 + h12ζ

2
2 + 2h12akη

k

= 2(ak − bk)h12η
k − (h11 − h22)ζ

2
1 .

Writing

f = (h11 − h22)
2 + 4(h12)

2,

we get

d f = 4(h11 − h22)
[
(ak − bk)(h11 − h22)η

k + 2h12ζ
2
1

]
+ 8h12·

·
[
2(ak − bk)h12η

k − (h11 − h22)ζ
2
1

]
= 4(h11 − h22)

2(ak − bk)η
k + 16(h12)

2(ak − bk)η
k

= 4 f (ak − bk)η
k .

(3.6)

In particular, the function f on F+
g is constant along the λ-fibres and hence the pullback of

a unique function on S2 which we will also denote by f . The Ricci curvature of ∇ is

Ric(∇) = (Kg − δgβ)g − 2dβ = (Kh − δhα)h − 2dα.
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It follows that the metrics g and h are conformal on the non-empty open subset �′ ⊂ S2

where the symmetric part of the Ricci curvature is positive definite. Since dα = dβ and
H1(S2) = 0, we must have that α − β = du for some real-valued function u on S2.
Consequently, it follows from (2.10) that after possibly conformally rescaling h we can
assume α = β (and hence ai = bi ) without loss of generality. Therefore, (3.6) implies that
f is constant. By construction, the function f vanishes precisely at the points where h is
conformal to g. Since we already know that f vanishes on the open subset �′ it must vanish
on all of S2. We have thus proved:

Proposition 3 A conformal connection on the 2-sphere preserves precisely one conformal
structure.

Combining Lemma 2, Theorem 1 and Proposition 3 with Kodaira’s deformation theo-
rem [9], we obtain the following result about the deformation space of a conformal connection
on the 2-sphere S2.

Theorem 3 Every conformal connection on the 2-sphere lies in a complex 5-manifold of
conformal connections, all of which share the same unparametrised geodesics.

Remark 5 Recall that Kodaira’s theorem states that if Y ⊂ Z is an embedded compact
complex submanifold of some complex manifold Z and satisfies H1(Y,O(N )) = 0, then
Y belongs to a locally complete family {Yx | x ∈ X} of compact complex submanifolds of
Z , where X is a complex manifold. Furthermore, there is a canonical isomorphism Tx X �
H0(Yx ,O(N )).

Proof of Theorem 3 Let ∇ be a conformal connection on the oriented 2-sphere defining the
projective structure p. Let [g] : S2 → Z be the conformal structure that is preserved by
∇, then Theorem 1 implies that Y = [g](S2) ⊂ Z is a holomorphic curve biholomorphic
to CP

1. By Lemma 2 the normal bundle N of Y ⊂ Z has degree 4 and hence we have (by
standard results)

dim H1(CP
1,O(4)) = 0, and dim H0(CP

1,O(4)) = 5.

Consequently, Kodaira’s theorem applies and Y belongs to a locally complete family
{Yx | x ∈ X} of holomorphic curves of Z , where X is a complex 5-manifold. A holomor-
phic curve in the family X that is sufficiently close to Y will again be the image of a section
of Z → S2 and hence yields a conformal structure [g′] on S2 that is preserved by a conformal
connection ∇′ defining p. Since by Proposition 3 a conformal connection on S2 preserves
precisely one conformal structure, the claim follows. ��
Remark 6 In [12, Corollary2] it was shown that the conformal connections on S2 whose
(unparametrised) geodesics are the great circles are in one-to-one correspondence with the
smooth quadrics in CP

2 without real points. The space of smooth quadrics in CP
2 is the

complex 5-dimensional space PSL(3, C)/PSL(2, C), with the smooth quadrics without real
points being an open submanifold thereof. Thus, the space of smooth quadrics without real
points is complex five-dimensional, which is in agreement with Theorem 3.

Remark 7 Inspired by the work of Hitchin [7] (treating the case n = 2) and Bryant [2]
(treating the case n = 3), it was shown in [6] that the deformation spaceMn+1 of a holomor-
phically embedded rational curve with self-intersection number n ≥ 2 in a complex surface
Z comes canonically equipped with a holomorphic GL(2)-structure, which is a (holomor-
phically varying) identification of every holomorphic tangent space of M with the space of
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homogeneous polynomials of degree n in two complex variables. Therefore, every conformal
connection on the 2-sphere gives rise to a complex 5-manifold M carrying a holomorphic
GL(2)-structure.

Remark 8 It is an interesting problem to classify the pairs of Weyl structures on the 2-torus
having projectively equivalent conformal connections. The Riemannian case was treated
in [10].
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