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Zusammenfassung

Naturkatastrophen, Finanzkrisen und Ausbrüche von Epidemien werden ge-
meinhin als Ereignisse betrachtet, deren Auswirkungen durch frühe Identi-
fikation potentieller Gefahren gemildert werden könnten. Allerdings man-
gelt es Risikoeinschätzungsstudien an einheitlichen Methoden. In dieser Dok-
torarbeit verwenden wir eine einheitliche theoretische Grundlage, nämlich
Netzwerktheorie, um scheinbar unterschiedliche Anwendungen in der wirk-
lichen Welt zu behandeln. Wir vereinfachen diese Systeme, erfassen dabei
immernoch ihre wichtigsten Eigenschaften und stellen neue Methoden vor,
um Einblicke in ihr Verhalten zu gewinnen. Wir erwarten, dass unsere Her-
angehensweise auch auf andere Gegebenheiten ausgedehnt werden kann. Ins-
besondere stellen wir komplexe Systeme entweder als statische oder dynami-
sche Netzwerke dar; dabei ist bei ersteren das Augenmerk auf die Risiken
bestimmter Wechselwirkungsmuster gerichtet und bei letzteren auf die zeitli-
che Entwicklung dieser Wechselwirkungen. Was statische Netzwerke betrifft,
stellen wir zwei neue Methoden zur Optimierung von Stabilitätsrisiken vor
— eine, die auf schnelle Optimierung, und eine andere, welche auf räumlich
eingebettete Netzwerke abzielt. Wir studieren das Synchronisationsverhalten
dynamischer Netzwerke in der Gegenwart desynchronisierender Agenten.
Des weiteren wird die Zerbrechlichkeit der Synchronisation zweier gekop-
pelter Netzwerke betrachtet, die durch ein neuartiges Atemverhalten überra-
schen. Die Grenze zwischen Dynamik und Statik ist jedoch nicht klar gezo-
gen, sodass wir hier nicht nur beide Rahmenwerke getrennt gründlich unter-
suchen, sondern auch das Wechselspiel zwischen statischen und dynamischen
Eigenschaften betrachten.
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Summary

Natural catastrophes, financial crisis, and diseases outbreaks have all been
considered as outcomes whose impact could be mitigated through the early
identification of potential threats. Risk analysis studies however lack com-
mon techniques. In this thesis we make use of a common theoretical foun-
dation, network theory, to deal with apparently distinct real applications.
We simplify the systems, still grasping the most relevant features, and pro-
pose new techniques to get insights on their behavior, and expect that our
approach could be extended to other situations as well.

In particular, we represent complex systems either as static or dynamic
networks, the former focusing on the risk of certain interaction patterns and
the latter on the time evolution of these interactions. For static networks,
we propose two new methods of robustness risk optimization, one focusing
on fast optimization and the other on spatially embedded networks. For dy-
namic networks, we analyze the synchronization risk of networks upon the
introduction of agents that try to break synchronization. Also, we analyze
the synchronization fragility of two coupled networks, reporting a surpris-
ingly new breathing behavior. The frontier between static and dynamic how-
ever is not clearly defined and here we study in depth not only both frame-
works separately but also look at the interplay between static and dynamic
features.
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Sumário

Catástrofes naturais, crises financeiras e surtos epidêmicos são considerados
processos cujos impactos podem ser atenuados através da identificação pre-
coce de potenciais ameaças. Estudos de análise de risco, no entanto, carecem
de técnicas similares. Nesta tese, fazemos uso de uma base teórica comum
- a teoria de redes - para lidar com aplicações reais aparentemente distintas.
Simplificamos os sistemas, ainda mantendo as características mais relevantes,
e propomos novas técnicas para obter uma análise compreensiva de risco so-
bre problemas diversos, esperando que nossa abordagem possa ser extendida
a outras situações.

Em particular, representamos os sistemas complexos como redes estáticas
ou dinâmicas - no primeiro caso focando no risco de certos padrões de intera-
ção e, no segundo, na evolução temporal dessas interações. Em redes estáticas,
propomos dois métodos para otimização do risco de robustez, um centrado
em uma otimização rápida e outro em redes espaciais. Em redes dinâmicas,
analisamos o risco de sincronização a partir da introdução de agentes que ten-
tam quebrar a sincronia. Além disso, analisamos a fragilidade da sincroniza-
ção de duas redes acopladas e descobrimos um comportamento de batimento
nunca antes reportado. A fronteira entre estática e dinâmica, contudo, não
está claramente definida e aqui estudamos em profundidade não só ambos os
quadros separadamente, como também a interação entre eles.
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Résumé

Les catastrophes naturelles, crises financières et épidémies sont considérées
comme des évènements dont l’impact pourrait être atténué par une identi-
fication précoce des risques potentiels. Cependant les études d’analyses de
risques manquent de techniques adaptées. Dans cette thèse nous utilisons un
fondement théorique commun, la théorie des réseaux, pour traiter des appli-
cations réelles a priori distinctes. Nous simplifions les systèmes, conservant
leurs propriétés les plus importantes, et proposons de nouvelles techniques
pour découvrir leur fonctionnement. Nous nous attendons à ce que notre
approche puisse également être étendues à d’autres situations.

En particulier, nous traitons les systèmes complexes soit comme des ré-
seaux statiques, soit comme des réseaux dynamiques. Dans le premier cas,
nous nous intéressons au risque associé à certains types d’interactions et dans
le second à leur évolution dans le temps. La frontière entre statique et dyna-
mique n’est cependant pas clairement définie. Ici nous étudions en profon-
deur non seulement les deux cadres séparément, mais également l’interaction
entre les propriétés statiques et dynamiques.
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Chapter 1

Introduction

Never ignore coincidence. Unless, of course, you’re busy. In
which case, always ignore coincidence.

— THE DOCTOR.

Natural catastrophes, financial crisis, and diseases outbreaks have all been
considered as outcomes whose impact could be mitigated through the early
identification of potential threats [9–12]. Risk analysis studies however, de-
spite their ubiquity, lack common background, techniques, or even vocabu-
lary. Reports usually rely on specialized approaches, which prevents coop-
eration and the propagation of the “hard learned lessons” to other fields. In
this thesis we make use of a common theoretical foundation, network theory,
to deal with apparently distinct real applications. We simplify the systems,
still grasping the most relevant features, and propose new techniques to get
insights on their behavior, and expect that our approach could be extended
to other situations as well.

Complex Networks are the physical interpretation of graph theory, the
study of pairwise interactions between objects [13]. In simple terms risk is
defined as an uncertain event that has an effect on at least one of the ob-
jectives of the system [14], a definition that is entangled with the concept
of complexity. Apparent harmless events interacting to create a spectacular
catastrophe have long been known in risk analysis, one example being the
crash of the Concorde in 2000 in Paris: instead of revealing a single major
cause, investigations concluded that a small series of errors were responsible
for the only fatal accident in Concorde history [15].

The use of Complex Networks and Statistical Physics in general is a pow-
erful way to understand risk [16, 17]. In Chapter 2 we introduce Complex
Networks and some of its useful metrics on the study of risk. In particu-
lar, analysis of complex systems can be subdivided into static and dynamic
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frameworks, the former dealing with the risk of certain interaction patterns
and the latter on the time evolution of these interactions. The frontier be-
tween static and dynamic however is not clearly defined and, in what follows,
we study in depth not only both frameworks separately but also look at the
interplay between static and dynamic features.

A network is said static if none of its properties evolve in time. At first,
this constraint might sound a bit too unrealistic, but this simplification is ca-
pable of yielding remarkable insights, specially when one considers a static
network formed by the aggregation of several events on time [18]. That is
exactly our approach in Chapters 3 and 4: information about flights, passen-
gers, and airports over an entire year is totalized on a single network which
represents an overall picture the World Air Transportation. From this, we
can ask the following question: is there an intervention that reduces the risk
of failure of this network? In Chapter 3 we focus on the fastest way that
interventions can be performed to make the network more robust, i.e., less
prone to major disruptions. In Chapter 4 we propose a method that im-
proves network robustness while avoiding possible economic downsides of
the interventions.

In opposition to purely static networks, in Chapters 5 and 6 we add a sec-
ond theoretical layer to our models. We study dynamic networks in which
their properties evolve according to the Kuramoto model of synchroniza-
tion [19]. In this model, nodes change their characteristics according to their
interactions in time and the entire system, under certain conditions, can
achieve a self-emerging synchronized state, i.e., a common behavior emerges
without the guidance of a central master. Chapter 5 deals with possible at-
tacks that create a synchronization risk. Chapter 6 details how fragile syn-
chronization is when not only one but two networks are interacting through
a communication lag. Both chapters present a bridge between real applica-
tions that could benefit from our results, such as the biological challenges
that some organisms, and our brain, have on transporting information from
geographically apart locations.
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Chapter 2

Networks & Robustness

Correlation doesn’t imply causation, but it does waggle its
eyebrows suggestively and gesture furtively while mouthing
“look over there”.

— RANDALL MUNROE.

2.1 Introduction

Networks are a useful tool to interpret physical systems [20, 21]. They are
built upon surprisingly simple elements: nodes, representing the most basic
elements of the model, and links, their interaction. For certain systems, it is
sometimes necessary to add some other simple features. Links, for instance,
can be directed, to represent the causality of the interaction, or weighted, to
represent its strength/importance. Nodes can also have weight, for the ele-
ment’s strength, or be embedded in a certain metric space, such as geograph-
ical coordinates, to represent their localization. We show in Fig. 2.1 a simple
sketch of a network model depicting a typical draw of nodes and links. Some
other concepts and measures are necessary when analyzing networks, among
them,

• Degree. The degree of a node is the number of links attached to it.
In most network studies, the degree distribution P (k), the frequency of
node’s degree observed in a network, is thoroughly analyzed. In relation
to a node i, the node at the opposite end-point of a link is called neighbor
of i;

• Distance. In a simple network context, the distance between two nodes
is defined as the smallest number of links necessary to connect them,
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Figure 2.1 – Properties of a network. Networks mostly look like this, small circles with
traces, the links, between them. Links can be of three types: weighted, directional, or plain
simple. Nodes can also have weights and be embedded in a metric space.

creating the shortest path between two nodes. If networks are embedded
in a metric space, distance is defined accordingly;

• Clustering Coefficient (CC). Measure of how nodes tend to cluster
together. It is defined as the fraction of neighbors that are connected
among themselves, averaged over all nodes [22];

• Communities and Modularity (M ). Networks might be sub-divided
in groups of nodes, called communities. Communities can be defined in
several ways, but here we follow Ref. [23], which proposes a heuristic
method to detect communities. This method defines the modularity
(M ) of a network as the density of links between communities of nodes
as compared to the density within a community;

• Assortativity (a). Measure of how nodes of similar/disparate degrees
are connected. It can be measured analytically with a degree-degree cor-
relation (Newman’s r coefficient [24], here called a coefficient to avoid
confusion with other terms) or observed through a visual inspection of

4



a plot of the average neighbor’s degree versus a nodes’ degree [25].

The pattern in which links are distributed among nodes is called network
topology. Variations of the topological structure are remarkably decisive to
the network properties. To name a few topologies,

• Lattice. A regular lattice network, or grid, is a network that when
embedded in an Euclidean Space Rd forms a regular tilling. Among
many possibilities to form this tilling, a common instance is formed by
placing nodes at the points in the plane with integer coordinates and
connect nodes whenever the corresponding points are at distance 1. In
this case, all nodes have the same degree equals 2d;

• Random (ER). Also known as Erdős-Rényi networks [13]. In this topol-
ogy, links are included between each pair of nodes with equal probabil-
ity p, independently of the other links. For a large number of N nodes,
the distribution of degrees is a Poisson distribution with average degree
equals (N − 1)p. ER networks exhibit a small average shortest path
length along with a small clustering coefficient;

• Small-world. Networks where the average distance between two nodes
scales with the logarithm of the number of nodes N . These networks
have a small shortest path length, similarly to ER networks, but with a
high clustering coefficient;

• Scale-free. Networks whose degree distribution follows a power law,
P (k) ≈ k−γ. The range of γ is usually at 2 < γ < 3 in which the the
power law has a well-defined mean. In scale-free networks, nodes with a
high degree are relatively common and are called hubs;

• Barabási-Albert (BA). Scale-free networks constructed through a pref-
erential attachment mechanism [26]. Starting from a small set of con-
nected nodes, new links are attached with higher probability to nodes of
high degree, a rich-gets-richer strategy. For large N , we obtain a power
law degree distribution with γ = 3.

Despite all these possible features, network models tend to be remarkably
simple in their details. However, the joint combination of several simple in-
teractions can give rise to properties that cannot be attributed to isolated re-
lationships. If these properties are interesting, we label the underlying model
as a complex network.
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The simplified representation of complex systems as a network of nodes
and links has provided important insights into the design of a variety of tech-
nical systems, such as power grids [27, 28], maritime commerce [29], com-
munication networks [30–32], connected water reservoir [33], air transporta-
tion [34], and road networks [35]. Networks have helped to shed light into
several macro-economics systems as well [18, 36, 37].

In opposition to technical systems, biological systems are constantly shaped
by the forces of evolution. Hence, we can analyze the properties of such
networks with the objective to understand better designs, diagnose possi-
ble problems, and uncover some remarkable new behavior. Many examples
of past research about biological networks are present in the literature, in
areas such as: protein interaction [38], gene regulatory networks [39, 40],
metabolism [41], neuronal systems [42, 43], brain dynamics [44], and psy-
chosis detection [45].

Networks have also been used to study the efficiency of the transference
of information [46], resource allocation [47], hierarchy emergence [48], and
synchronization [49–51]. A complete review of past and recent research on
networks can be found in References [52], [53] and [54].

An important aspect of a network is the capability to withstand failures
and fluctuations in the functionality of its nodes and links [55–57]. The de-
sign of networked infrastructures with these capabilities can be thought of
as an optimization task. An early important work in this field is Albert et
al. [21] where the authors showed by numerical simulations that scale-free
networks, while they are robust against random removal of nodes, are much
more vulnerable to the removal of nodes according to their degree. In other
words, in a scale-free network if the nodes are removed in decreasing order of
degree, starting with the most connected ones, then the network falls apart
very quickly.

In Ref. [58], a procedure is described that successfully modifies scale-free
networks so that the largest connected component still has a considerable size
after several attacks targeted at the most connected nodes. This feature guar-
antees that there is at least one path connecting a large number of nodes after
attacks and is considered an appropriate definition of robustness. A natural
question that follows is the maintenance of network efficiency after attacks,
i.e., a network is efficient in this sense if “good paths” among nodes do not
cease to exist after several targeted failures. Using a consolidated definition of
efficiency, we propose in this chapter an optimization procedure that mod-
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ifies existing networks in order to improve their efficiency under targeted
attacks.

2.2 Model

Our method is an extension of the work by Schneider et al. [58], who used a
hill-climbing procedure to optimize robustness against targeted attacks. We
modify this approach by adding a simulated annealing strategy [59] to avoid
the search getting trapped in local maxima. Previous approaches have suc-
cessfully used simulated annealing to increase network robustness [60]. Here
however we extend our focus to the following objectives: Robustness, Effi-
ciency, and a combined measure of both. We create three sets of networks
optimized for these cost functions and compare their characteristics. In what
follows, we describe the cost functions and the optimization procedure.

2.2.1 Network Robustness

The definition of network robustness might change according to a specific
application. Previous work used the percolation threshold, the formation of
long-range connectivity when links are randomly included, as a robustness
measure [61,62]. This threshold identifies the formation of a giant connected
component: below the threshold, it does not exist; while above it, there exists
a giant component of the order of the system size. This measure however is
a limited approach to study risk: it ignores the behavior before and after the
connection event.

In this chapter, and in the entire thesis as well, we call an attack the removal
of a node of the network, and the robustness we measure by the size of the
largest connected component (LCC) of the network after this removal, as
proposed by Schneider et al. [58]. Effectively, we observe the system during
the entire process, not only at the critical threshold value. To quantify it,
we proceed with a series of attacks and subsequently measure the robustness
after each node removal. Hence, robustness R is defined as:

R = 1
N

N∑
Q=1

S

(
Q

N

)
, (2.1)

where N is the number of nodes, Q is the number of nodes removed from
the network, and S(q) is the size of the LCC after a fraction q = Q/N of
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nodes is removed, considering that all incoming links are also removed from
the network. The parameter R is contained in the interval 1/N ≤ R < 0.5,
and is a measure for robustness: a small R is associated to a fragile network
and a larger R to a robust one.

The attacks performed are targeted to the nodes with highest degree of the
network: we find the most connected node, remove it, calculate S(q), update
the degrees, and find the new most connected node to repeat the process. In
case two nodes have the same degree, we choose the one with the smallest
index. The value R is therefore unique for each network.

2.2.2 Network Efficiency

One can think of network efficiency as a low cost of communication among
its members. In this light, we relate efficiency with the shortest paths between
all pairs of nodes, thus following Latora and Marchiori [46] who defined the
network efficiency E as:

E =
N∑

i,j=1
i6=j

1
lij
, (2.2)

where lij stands for the shortest path length between nodes i and j. If i and j
belong to separate connected components of the network, we set lij →∞ to
guarantee a consistent behavior of the cost function.

2.2.3 Network Integral Efficiency

Keeping in mind that we would like to keep the efficiency of networks after
attacks, it is straightforward to modify the definition of E to account for this.
Hence, we define Integral Efficiency IntE as:

IntE = 1
N

N∑
Q=1

E

(
Q

N

)
, (2.3)

where E(q) stands for the efficiency of the network after the removal of q =
Q/N nodes. Nodes are removed according to a targeted attack such as in
Sec. 2.2.1. The value of E(0) is the cost function E defined in Sec. 2.2.2. By
choosing this quantity instead of E, which does not consider nodes removal
in its definition, we try to avoid that the shortest paths among nodes increases
after targeted attacks.
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2.2.4 Optimization procedure

In their work, Schneider et al. [58] propose a simple hill-climbing search to
modify the network topology in order to optimize the robustness R whilst
keeping the degree of each node fixed. This restriction in often present in the
modification of artificial systems, such as electric grids where constructing a
receiver for a new power line in a station might be impractical. Hence, only
swaps between lines (links in the network) are possible. A consequence of
this restriction is that the underlying degree distribution of the network re-
mains unchanged after swaps. Clearly, if we had no constraints on the degree
distribution, we could design the topology starting from scratch with the
robustness and efficiency as objectives in mind, obtaining different optimal
topologies.

Next, we present an improved version of the optimization approach using
simulated annealing and we describe it for any cost function F that changes
after link modification:

1. Initial State. Let G(N,E) be a network with |N | nodes and |E| links.

2. Link swap. Choose two pairs of links (i, j) and (k, l) ∈ E randomly and
create the network G∗ by deleting the links (i, j) and (k, l), and adding
the links (i, l) and (k, j).

3. Acceptance probability. Calculate the transition probability p of the
system as:

p =


exp

−F (G)− F (G∗)
T

 if F (G∗) < F (G)

1 if F (G∗) ≥ F (G)

4. Comparison. Make G = G∗ with probability p, otherwise discard G∗.
Return to Step 2.

This approach allows a networkG∗ with F (G∗) < F (G) to be chosen with
finite probability. By doing this, global minima could be reached and infe-
rior local minima could be avoided. Notice that, for the three cost functions
studied here, the value of F (G) is unique for each network G. Furthermore,
by decreasing the value of T according to the amount of link swaps executed,
it is possible to decrease the acceptance ratio of worst networks when an op-
timum point is close. We decrease the temperature as function of the number
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Figure 2.2 – Examples of networks belonging to each set. Networks are drawn using the
k-core decomposition, represented by the different intensities of gray.

τ of link swaps, by following the equation: T (τ) = 0.0001× 0.8τ . Variations
to this function have shown little effect on the results. The search is stopped
when a predefined amount of link swaps is reached.

2.3 Results

The procedure outlined in Sec. 2.2.4 is applied to the cost functions: R (Ro-
bustness as described in Sec. 2.2.1), E (Efficiency as described in Sec. 2.2.2),
and IntE (Integral Efficiency as described in Sec. 2.2.3), starting from the
same set of randomly generated of BA networks. Hence, we created three
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Table 2.1 – Average values of the cost functions, standard deviation in subscripts. Each set
comprises 100 networks with n = 1000 nodes. 〈k〉 = average degree, 〈cc〉 = average of
clustering coefficient, 〈a〉 = average assortativity coefficient, 〈E〉 = average efficiency, 〈R〉
= average robustness, 〈IntE〉 = average integral efficiency.

Set 〈k〉 〈cc〉 〈a〉 〈E〉 〈R〉 〈IntE〉
Unopt. 5.95 0.0242± 0.0033 −0.085± 0.015 0.1486± 0.0012 0.1837± 0.0053 0.0308± 0.0011

E 5.95 0.0053± 0.0014 −0.076± 0.011 0.1539± 0.0015 0.1826± 0.0056 0.0310± 0.0012
R 5.95 0.0200± 0.0027 0.038± 0.024 0.1459± 0.0013 0.2266± 0.0055 0.0372± 0.0012

IntE 5.95 0.0195± 0.0029 0.055± 0.026 0.1456± 0.0013 0.2268± 0.0052 0.0391± 0.0012

sets of networks: Robustness set, Efficiency set, and Integral Efficiency set. As a
control, we compare to the original set of BA networks, from now on called
the Unoptimized set.

The Unoptimized set is composed of 100 networks of n = 1000 nodes
and average degree 〈k〉 = 5.95. The size of the networks was chosen based on
a trade-off between the appearance of topological features such as the scale-
free phenomenon, only present in large networks, and computational cost,
as the IntE cost function requires O(n3) operations to be calculated. The
amount of link swaps, 10.000, was chosen so that for each optimized set its
cost function is already statistically different from the Unoptimized set. It is
possible to see that this goal was achieved by comparing the values in bold for
columns 〈E〉, 〈R〉, and 〈IntE〉 in Table 2.1. To provide a visualization of the
network structure created, some examples of each set are drawn in Fig. 2.2.

To analyze the robustness of each set, a plot of S(Q/N) versus Q is shown
in Fig. 2.3, in which the area below each curve represents R for each set.
As expected, the Robustness set shows a bigger area (23% of increase), keep-
ing a considerable size of the LCC after several attacks. Indeed, Schneider et
al. [58] obtained an improvement of almost 75% for this cost function, but
by using a much more exhaustive approach: their search stops after 10.000
link-swaps without increase in R. Therefore, our results show that it is possi-
ble to increase network robustness using less computational effort. The plot
also shows that E, a cost function that does not consider attacks in its for-
mulation, has a bad performance in this scenario. We conclude that, though
more efficient, networks optimized exclusively for E might not be appropri-
ated in a realistic context, in contrast to IntE, which considers both effects.
Moreover, it is interesting to note also that the curves for R and the Integral
Efficiency set have comparable areas, considering the standard deviation of
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the measurements as detailed in Table 2.1.
In Fig. 2.4, the cost function IntE is analyzed through the plot ofE(Q/N)

versus Q, showing that, as expected, the Integral Efficiency set has the better
performance, i.e. the area under the corresponding curve is bigger. Interest-
ingly, the curve referring to the set of networks obtained by optimizing for E
alone shows that both have about the same performance as the unoptimized
ones for this cost function (data on Column 〈IntE〉 of Table 2.1).

Another interesting aspect of the work of Schneider et al. [58] is the topol-
ogy obtained by this optimization: a so-called onion-like structure. In this
topology, each layer is composed of nodes connected with nodes of the same
degree, with few connections between layers. A direct procedure to generate
this topology can be found in the work of Wu et al. [63].

To investigate the presence of an onion-like structure on our optimized
sets, three quantities were analyzed. In Fig. 2.5, we show the k-core decompo-
sition [64] for several k, showing that the Robustness and Integral Efficiency
sets have several k-core’s or layers, thus confirming a hierarchical structure of
the network. The Efficiency set does not present this clear hierarchy, but has
more layers than the Unoptimized set. In the inset of Fig. 2.5 we show that
the Integral Efficiency set and the Robustness set of networks have the greater
assortativity through the plot of Newman’s a coefficient [24]; the Efficiency
set is as dissortative as the Unoptimized set.

Finally, we check network layers by analyzing the sub-graph of each net-
work composed of Nk nodes with degree smaller of equal to k. In this sub-
graph, Sk represents the size of its largest cluster. In Fig. 2.6, we plot Sk/Nk

for several values of k. This plot shows that the Robustness and the Integral
Efficiency sets present practically the same increase in robustness with respect
to the Unoptimized set. In contrast, the Efficiency set does not show any im-
provement with respect to the original scale-free unoptimized networks.

Given the several layers showed by the k-core decomposition, its dissorta-
tive nature, and the increase in robustness of each layer, we conclude that the
Integral Efficiency set also has an onion-like structure similar to the Robust-
ness set.

2.4 Discussion

We outline here a procedure that optimizes a specific characteristic in any
type of network and create three sets of BA networks with distinguishable
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Figure 2.5 – Main plot shows the K-core decomposition for several values of k. It can be seen
that the same network optimized for IntE presents more layers than the network resulted
after the optimization for R. Inset shows Box-and-whiskers plot of the degree assortativity
through Newman’s a coefficient. Thick lines depict the median value; lower and higher
hinges gives the 0.25 and 0.75 quantiles, respectively; the whiskers extend to 1.5 times this
inter-quantile range. Values outside this range are considered outliers and appear as circle
dots in the plot.

features. Though BA networks are known to be resilient to random removals
of nodes and present other interesting properties [21], we show here a method
that creates networks with a certain specific characteristic enhanced, which
might be useful in some realistic scenarios.

Firstly, our results show that the Integral Efficiency set substantially im-
proved efficiency after attacks, compared to the Robustness, Efficiency, and
Unoptimized sets. Moreover, this set also sustains a large connected cluster
after attacks. Therefore, this cost-function could be used to generate highly
robust and efficient networks.

Another important result of our work is that networks optimized for
IntE also present an onion-like structure. This result suggests that this struc-
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ture is generically the optimal scale-free net independently of the chosen cost
function. It also helps the design of networks from scratch, as it is possible
to construct scale-free networks which present this structure.

It is also interesting to note that the Integral Efficiency set maintains sev-
eral similarities with the Robustness set, such as: high assortativity, size of the
largest cluster after attacks, efficiency after attacks, size of the largest cluster
for each degree layer, and a hierarchical structure regarding the k-core decom-
position. In fact, the Integral Efficiency set has a slightly better performance
on assortativity and efficiency after attacks, while the Robustness set has a
better performance on the others.

Future works might focus on the structures of the three generated sets.
The Efficiency set does not present an onion-like structure, remaining un-
clear if this optimization could lead to a different structure. The Integral
Efficiency set might have a hidden feature that differentiates it from the Ro-
bustness set. By finding a typical structure of optimized networks, new net-
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works could be designed from scratch with a desired feature.
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Chapter 3

Robustness Risk of Complex Networks

Sometimes the only thing more dangerous than a question is an
answer.

— FERENGUI RULE OF AQUISITION 208.

3.1 Introduction

The construction of a robust infrastructure network represents a great chal-
lenge to our society. In order to guarantee a broad and efficient coverage
of basic services such as water, electricity, and telecommunications, decision
makers need to take into account the effects of a great number of threats to
the correct functioning of the system [21, 65]. Targeted terrorist attacks or
random extreme weather conditions impose a systemic risk of catastrophic
failure that has to be mitigated. In this way, tools provided by network sci-
ence have offered interesting insights on common features of robust networks
or methods and strategies to protect infrastructures [66–71].

Consider the construction of an air-transportation network as an exam-
ple, a challenge currently faced by many developing nations [72, 73]. The
localization of the airports should be decided given a tight supply and de-
mand rule in order to ensure their efficiency, but other factors should also be
included in the planning, such as security measures or noise reduction [74].
Besides that, the overall system robustness should be taken into account, as
the transportation of goods and people cannot be entirely halted in case that
some airports close.

When designing a new network from scratch, decision makers have an
excellent opportunity to warrant its future robustness against failures [75].
However, most of the current infrastructure has been built in a non-supervised
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fashion, mostly through a preferential attachment mechanism, where highly
connected nodes (e.g. airports, Internet Service Providers) have a higher
probability of receiving a new link (e.g. flights, transmission cables) [26].
Inspired by this situation, we propose in this chapter a strategy to improve
the robustness of a given network by a small number of interventions, which
makes the method useful for real-time actions under budget constrains.

Simple modifications of the network topology, the connection pattern of
nodes through links, have been shown to be an effective way to increase the
robustness under node or link attacks [76–80]. In particular, Schneider et
al. [58] showed that successive random rewirings (link swaps) create a robust
network through the formation of an onion-like structure in which high-
degree nodes compose a core with further interconnected layers of radially
decreasing degrees.

In this chapter we propose a smarter rewiring that lowers by several orders
of magnitude the computational effort necessary to improve robustness. Our
method is consistently better than the random rewiring for a small number of
swaps and yields the same level of robustness in the long term. An onion-like
structure is also created, although a higher modularity and degree correlation
is observed in comparison to networks created by random swaps. We apply
our rewiring strategy to the World Air-transportation network and we show
that an improvement of 30% in its overall robustness can be achieved through
smart swaps of around 9% of its links.

3.2 Model

We describe here a generic approach to improve network robustness and con-
sider only the simple case of networks where all links have the same im-
portance (unweighted) and no orientation (undirected). For illustration pur-
poses, we explain our model and related concepts in the framework of the
World Air-transportation network, a system of paramount importance to our
globalized world. Complex Networks have been used to study airflight net-
works, with simple abstractions of flights and airports used to characterize its
robustness [81], study its structural properties [34, 82–89] and evolution [90].

An Air-transportation network is defined here as robust when it allows a
passenger to travel between most of the airports even considering the disrup-
tion of the service in the major connection hubs, i.e., the airports with largest
number of flights. This feature is directly associated to the size of the largest
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Figure 3.1 – Smart rewiring for robustness improvement. Diagrammatic representation
of the smart rewiring. a, First steps of the smart rewiring: For a randomly selected node
(i, blue), its lowest degree neighbor (j, brown) and highest degree neighbor (k, brown) are
selected. In sequence, two neighbors of j and k are randomly selected (m and n, both brown),
and links to them (ejm and ekn) are removed (red X). b, Last step of the smart rewiring in
which links ejk and emn (green) are added.

connected component (LCC) of a network, and we define robustness R as in
Sec. 2.2.1.

To focus on targeted attacks, the node removal starts first with the highly
connected nodes, the network hubs, which intuitively have the largest im-
pact on the size of the LCC. After removing the more connected node we
update the degrees (number of connections) of every node, and remove the
next largest network hub. This process is further repeated until the network
completely collapses.

To improve robustness, one could simply add more flights between air-
ports. In the limit, the network becomes fully connected: all airports have
connections to each other and the disruption of one does not affect other
destinations. But improving an airport flight capacity by adding redundancy
might prove very impractical in the short term. In fact, numerous examples
of infrastructure networks present this capacity constraint, such as adding
new transmission lines to a power station or new traffic cables to an Inter-
net Service Provider. Therefore, a rewiring strategy where links are only
swapped, keeping the nodes’ degree fixed, is more appropriate: we reroute
flights from airports and create new connection possibilities, without consid-
erably changing the airports’ load.

Here we propose a novel rewiring strategy that improves network robust-
ness by creating alternative connections between parts of the network that
would otherwise be split upon the failure of a hub. As robustness is always
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Figure 3.2 – Proposed rerouting of flights for some airports in Oceania. a, Example of the
smart rewiring applied to the Hao Island Airport (HOI node), connected (in blue) to Faaa
Airport (PPT), a regional hub, and to Vahitahi Airport (VHZ), a small airport. Connections
Wallis Island (WLS) to Tureira Airport (ZTA) and PPT to VHZ are added (in green), while
previous links from WLS to PPT and VHZ to ZTA are removed (in red). This simple swap
increases the robustness of the World Air-transportation unweighted network by 1.85%. b,
Section of the World Air-transportation network showing the region in which airports in
a are located. c, Effects of a single swap following the random and smart strategies on the
overall robustness of a set of randomly generated Barabási-Albert networks.

relative to a type of attack strategy, in our targeted attack scenario we implic-
itly admit that the attacker perfectly knows the network degree sequence and
would attack first the current most connected node, which intuitively can
cause great damage. In the same way, we assume that the “defender" knows
that the attacker has this information and thus acts upon it through a smart
rewiring defined as follows:

1. Select a node i randomly with at least two neighbors with degree larger
than one;

2. Select the lowest degree neighbor of i, the node j, and its highest degree
neighbor, the node k;

3. Select randomly a neighbor m of node j and a neighbor n of node k;
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4. Repeat steps 1-3 until all nodes concerned are different from each other;

5. Remove links ejm and ekn;

6. Create links ejk and emn.

where eij represents an undirected link between nodes i and j. An illustration
of this strategy is provided in Fig. 3.1. Swaps can provide positive or negative
change in the robustness. In Chapter 2 we propose different swap acceptance
mechanism in order to increase robustness faster. To focus on the comparison
of the random and smart strategies, we perform a simple greedy choice: at
every step we compare the robustness before and after the swap, and consider
it a successful step if the robustness has improved. If unsuccessful, the swap
is reverted and another rewiring is considered. In what follows, we define R0
as robustness of the network before any swap is executed, R1 as robustness
after one successful swap, and R as its value after some steps are executed.

3.2.1 Onionlikeness

The onion-like structure was first proposed by Schneider et al. [58] as an
emerging structure resulting from the random swap robustness optimization.
To quantify this feature, we start by plotting the maximal number of nodes
Sk with degree k that are connected through nodes with a degree smaller or
equal to k. The onion-like structure presents more often paths between nodes
of equal degree, which are not passing through nodes with higher degree, so a
vertical positive shift in the Sk curve is observed in comparison to a randomly
generated BA network. Hence, a possible way to quantify this structure is
through an onionlikeness parameter c, the area below the Sk curve,

c = 1
k∗

k∗∑
k=1

Sk
Nk

, (3.1)

where k∗ is the maximum degree among the nodes and Nk is the number of
nodes with degree k. In this formulation 1/k∗ ≤ c < 1. At the lower bound,
c = 1/k∗, no special relation between a node degree and its neighbors’ degree
is present. A regular lattice, for instance, where all nodes have the same
degree, has c = 1/k∗. The value of c is close to the upper bound for networks
with prominent onion structures, such as scale-free networks optimized for
robustness.
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Figure 3.3 – Fast improvement of network robustness for the smart rewiring strategy.
The smart rewiring allows a much faster improvement of R in comparison to the random
strategy. For 106 steps, the inset shows the LCC during a sequence of targeted attacks.

3.3 Results

A swap keeps the number of links and nodes’ degree unchanged, and is ca-
pable of changing the network robustness. A simple example is presented in
Fig. 3.2a-b for an unweighted representation of the World Air-transportation
network. In this example, a single smart rewiring applied to an airport in
Oceania is capable of improving the overall robustness by 1.85%. If a swap
is randomly executed, however, there is no guarantee that an improvement
occurs, or that the magnitude of the improvement is satisfactory. Smart
rewiring diminishes this problem as it presents a bias toward improvement.
In a set of Barabási-Albert (BA) networks, the distribution of the robustness
improvement after one swap, ∆1 = R1−R0, shows that significant changes of
robustness are more common with our strategy (Fig. 3.2c). Details regarding
this and all other simulations are in Appendix A.

If positive swaps are executed in sequence, a systematic increase in the net-
work robustness is achieved. Schneider et al. [58] showed an improvement of
roughly 100% in R for a network of N = 1000 after an extremely large num-
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Figure 3.4 – Smart and random rewiring for networks of different sizes. a, Robustness.
b, modularity. c, assortativity. d, onionlikeness. Each plot shows the difference between the
quantity after 105 steps (R, M , a, and c) and its initial value (R0, Q0, r0, and c0).

ber of swaps. Successive applications of the smart rewiring are much more
efficient. We compare the evolution of R in both methods starting from a
set of BA networks in Fig. 3.3, considering only the execution of successful
swaps for both cases. While the smart rewiring doubles R after roughly 106

steps, random swaps are still at the level of 20% improvement. The collapse
of the LCC happens after a removal of 52% of the nodes, a 50% improve-
ment over the random rewiring strategy (inset of Fig. 3.3). Tests for different
network sizes show that the performance difference increases with network
size (see Fig. 3.4a). In the limit of a large amount of swaps, random swaps
can yield close to optimal robustness [58]. Smart rewiring approaches the
optimal robustness much faster and, consequently, both methods converge
to the same level of robustness (see Fig. 3.5). Successive swaps in the World
Air-transportation network improve its robustness by 4.82% with as few as
50 swaps, 0.32% of the total of links, as shown in Fig. 3.6a. In this network,
for a fixed level of robustness improvement (30%), smart swaps affect only
9.24% ± 0.53% of the total of links, while random swaps have to change
15.19% ± 0.90% links (Fig. 3.6b).

Successive applications of the smart rewiring change drastically other char-
acteristics of the network as well. Fig. 3.6c shows the evolution during
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Figure 3.5 – Evolution of the difference between robustness for smart and random
rewirings. Comparing the difference between both methods, it is clear that for small net-
works a large number of swaps, either random or smart, lead to the same level of robustness.
Each curve represents a system size.

rewiring steps of modularity (M ). The smart rewiring makes networks con-
sistently more modular than random rewiring. This difference is a conse-
quence of the intervention performed in the local connectivity by the smart
rewiring, as our strategy deliberately creates triangles of connections. This
structure reduces the importance of the hubs, which are now connected to
leaves (nodes of low degree), and their removal does not have huge impact
on global connectivity. These results are valid for different system sizes (See
Fig. 3.4c).

Despite the creation of connections between hubs and leaves, network as-
sortativity [24] increases, as the evolution of Newman’s a coefficient shows in
Fig. 3.6d. This result can be qualitatively understood considering the edges
swapped. Before the rewiring, two edges contribute in a negative way to as-
sortativity: ejm connects a leaf to an average degree node and ekn connects a
hub to an average node. After the rewiring, one edge contributes negatively
(ejk connects leaf to hub) and the other contributes positively (emn connects
average to average nodes). This effect is also persistent for different system
sizes (See Fig. 3.4b) and considering assortativity through neighbor connec-
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Figure 3.6 – Robust Air transportation network. a, The World Air-transportation net-
work has its robustness improved by 4.82% with swaps of 50 links (red) following the smart
rewiring strategy. b, Size of the largest cluster for the World Air-transportation network
through a sequence of targeted attacks before and after the application of the smart and ran-
dom rewiring strategies. In this case, both strategies reach the same level of robustness (30%
of improvement), but while random rewiring changes 15.19% ± 0.90% of network links,
smart rewiring changes only 9.24% ± 0.53%. c-e, modularity (M ), assortativity (a), and
onionlikeness (c) during the application of the random and smart rewiring strategies.

tivity [25] (See Fig. 3.7). In comparison, both the original BA networks and
networks optimized through random swaps are dissortative.

Higher modularity and assortativity produced by the smart rewiring do
not interfere with the formation of the onion-like structure, where layers of
nodes of increasing degree hold the network robustness. Both strategies pro-
duce the onion-like structure but, by yielding a larger robustness, the onion
structure is more prominent in the case of the smart rewiring (Fig. 3.6e).
Onionlikeness also remains larger for smart rewiring for different system
sizes (See Fig. 3.4d).

3.4 Discussion

Through a simple rewiring strategy we present here a method that improves
drastically the network robustness while consuming little computational time.
The proposed smart rewiring quickly increases robustness in comparison to a
random choice of links. The high efficiency, together with the fact that only
local knowledge of the two first neighbors of a given node is necessary, makes
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this strategy a potential tool for network designers and policy makers hav-
ing the task of protecting our already built infrastructure against targeted at-
tacks. As an example, simple interventions on the World Air-transportation
network have been able to considerably improve its robustness. Our main
analysis is performed on a set of randomly generated BA networks, which
suggests that the same findings would apply to all real networks with a broad
degree distribution since the smart swap is general and not limited to a par-
ticular network class.

Besides its simplicity, the smart strategy counter-intuitively improves the
maintenance of the largest cluster through a local division of the network: at
each step five nodes previously connected are transformed into a triangle and
a pair of nodes. This apparent division does not fully fragment the network,
it only reduces the importance of the network hubs in keeping the global
connectivity through the addition of links between nodes of average degree.
These rewired links might eventually bridge different parts of the network
after the hub failure. Moreover, smart rewiring creates also a highly modular
and assortative topology while forming an onion-like structure.
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As modularity and assortativity differ radically from networks modified
through random swaps, we define the structure of networks generated through
successive applications of the smart rewiring as a modular onion structure.
This new topology gives rise to the question if further changes in the swap
mechanism could create different structures. Following this, swap mecha-
nisms could be designed to improve a certain desired feature, in the same way
as the smart rewiring enhances modularity, while improving network robust-
ness. As a method based on a simplified framework, another possible appli-
cation of the current study is to adapt the strategy to real-time circumstances
of an infrastructure network, such as flight capacity and climate conditions
in the air transportation problem.

It is noteworthy that our model does not account for weights in the links,
which would represent the number of passengers traveling between airports
in a certain period of time. A rewiring method that takes advantage of this
information, together with adaptations of the robustness concept, could have
direct applications in the optimization of a real technical system.
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Chapter 4

Robustness Risk of Spatial Networks

The best that most of us can hope to achieve in physics is simply
to misunderstand at a deeper level.

— WOLFGANG PAULI.

4.1 Introduction

The construction of a new terminal at the Schenzen airport, Southeast China,
has been used to question the current strategies of infrastructure growth in de-
veloping countries [91, 92]. Schenzen is a large city, but its airport is directly
connected by an eight kilometer ferry to the Hong Kong airport, which can
handle twice as many passengers. Is it reasonable to invest more than one bil-
lion dollars increasing the capacity of such a large infrastructure with another
one nearby? Opponents to this investment classify it as a white elephant and
as one example of the misbegotten infrastructure growth in developing coun-
tries. The ones in favor, argue that not only the costs of investing in Schenzen
are lower than in Hong Kong but also global connectivity can profit from co-
operation between stakeholders of air-transportation systems in the region.
Here we address, from a network science perspective, how such proximity
and cooperation between local actors is key to the robustness of spatial net-
works.

The simplified representation of complex systems as a network of nodes
and links has provided important insights into the design of a variety of sys-
tems. In many cases, nodes are spatially embedded according to the geograph-
ical coordinates of the elements. This simplification allows us to focus on the
topological aspects of the system and to easily extend our results to many
applications. We characterize the robustness of a network as its capacity to
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maintain global connectivity under a sequence of node removals and describe
a strategy based on local cooperation to improve robustness under possibly
realistic constraints. We discover a continuum transition when changing the
distance for which nodes are allowed to swap links, a cooperation range. We
calculate the critical exponents of this transition and show that the key factor
controlling the value of the critical exponents is the exponent of the algebraic
decay of the connection probability with the node distance.

As an ubiquitous infrastructure system, we explain our method in the con-
text of the worldwide air-transportation network (WAN), though our results
impact the whole class of spatially embedded networks. It is paramount that
the WAN works in an extremely reliable and efficient fashion, as any tempo-
rary airspace closure, such as the one caused by the eruption of the volcano
Eyjafjallajökull in 2010, may cause huge losses worldwide [93, 94].

4.2 Model

In this chapter, we go one step further of Chapter 3 and model the WAN
with greater detail. We summarize data provided by OpenFlights in the year
2011 as a single static network with 3237 airports (nodes, modeled as points
distributed across the surface of a sphere with distance calculated according
to the Haversine formula) and around eighteen thousand links [95]. Links
are undirectional, assuming that each flight should return to its origin, and
weighted according to the number of possible flights between two airports.
Airports are weighted by the number of passengers transported.

As a self-organized system, in which preferential attachment is expected
to play a pivotal role, the WAN is quite fragile to targeted attacks, i.e., in-
tentional removal of the most connected nodes causing the collapse of the
giant connected component [89]. The aim of our optimization strategy is
to create a robust yet economically feasible WAN. Since robustness can be
defined in different ways, we consider that a robust WAN should be capa-
ble of transporting passengers even in face of a targeted attack, in contrast
with Chapter 3 and 2, and previous works as well, where only the size of
the largest connected component is considered [57, 58, 63, 78]. We simulate a
sequence of airport closures (node removal) and quantify robustness r as:

r = 1
Π(0)

N∑
n=1

Π
(
n

N

)
, (4.1)
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Figure 4.1 – Geo swap: a cooperation range rewiring. Diagrammatic representation of a
rewiring procedure based on a cooperation range. For a randomly selected node i, a node k
at distance d(i, k) ≤ v is selected (Panel a). If nodes j, neighbor of i, and l, neighbor of k,
also have d(j, l) ≤ v then links eij and ekl, in blue, are swapped (Panelb).

where N is the total number of nodes, n is the number of nodes removed
from the network, and Π(q) is the number of passengers in the largest compo-
nent after a fraction q = n/N of nodes were removed. Closures are executed
from the most to the least connected node.

The location of airports are mostly determined by economical forces, such
as to cater to local demands. In many cases, airports are located within a short
distance from each other, sometimes only a few kilometers away as, e.g., air-
ports in the Schenzen-Hong Kong area, or a few hundred kilometers but still
easily reachable, such as the airports in the northeast of the United States.
We assume that a flight rerouted to an airport within a cooperation range v
of the original destination has a similar attractiveness. If need be, a passenger
landing at a different airport could easily take another means of transporta-
tion, such as the local train network or a shuttle bus, to go to the desired
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Figure 4.2 – Robustness increase of the WAN under the geo swap. Dependence of the
optimized robustness on the cooperation range (blue) and variance over samples (red) with a
maximum at 910± 90 km, in which the standard deviation reaches the maximum.

destination. For transportation networks, the cooperation range is defined
as the geographical distance between nodes, but other spatial networks might
require other metrics, such as travel time or cost.

We increase network robustness through link swaps. Instead of adding
or deleting connections, rerouting does not change the transportation capac-
ity of the system: no airport would have to be expanded as the number of
routes does not change. Moreover, a connection is only rerouted to an air-
port within the cooperation range of the original destination. As an example,
flights could be distributed between Hong Kong and Schenzen or among the
airports surrounding London. Lastly, the probability to swap a route is in-
versely proportional to the weight of a link eij between airports i and j, so
that important connections are affected with less priority.
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Table 4.1 – Characteristics of the WAN and its continents. Continental networks contain
flights in which both end-points are in the same continent. Australia includes all islands in
the Pacific ocean. For simplification, Russia is entirely part of Europe, and Turkey is entirely
in Asia.

Name Nodes Links Passengers
(daily)

Flights
(daily)

Average
Degree

Passengers
per

Airport
(daily)

Flights
per

Airport
(daily)

Distance
btw

Airports
(km)

Route
Length
(km)

Africa 269 642 220, 481 3, 023 4.77±
0.43

819.63±
129.59

2.35±
0.10

3, 759.92±
10.52

1, 139.23±
44.35

Asia 773 3, 911 2, 409, 160 23, 406 10.12±
0.64

3, 116.64±
281.14

2.99±
0.07

4, 089.57±
4.16

1, 338.13±
19.76

Australia 288 567 178, 447 2, 499 3.94±
0.39

619.61±
132.87

2.20±
0.11

3, 450.12±
10.14

810.18±
39.03

Europe 602 5, 188 1, 907, 980 25, 587 17.24±
1.07

3, 169.40±
391.04

2.47±
0.07

2, 410.24±
4.05

1, 250.84±
12.11

North
America 1, 006 4, 289 2, 344, 470 20, 593 8.53±

0.62
2, 330.48±

245.49
2.40±
0.08

3, 386.44±
2.66

1, 150.44±
15.67

South
America 299 762 380, 348 3, 984 5.10±

0.44
1, 272.07±

154.33
2.61±
0.10

2, 719.93±
6.84

793.98±
27.81

World 3, 237 18, 125 7, 440, 880 94, 644 11.20±
0.42

2, 298.70±
127.80

2.61±
0.04

8, 678.58±
1.92

1, 734.64±
14.58

Given a cooperation range v and a metric d(i, j), which calculates the
distance between nodes i and j, the following swap strategy is performed:

1. Select a node i randomly having at least one neighbor;

2. Select a neighbor j of node i with probability inversely proportional to
the weight of eij;

3. Select a pair of connected nodes k and l so that d(i, k) ≤ v and d(j, l) ≤
v with probability inversely proportional to the weight of ekl;

4. Remove links eij and ekl and create links eil and ejk.

This strategy is illustrated in Fig. 4.1. Swaps change the network robustness r
but we only perform swaps that increase r. From this point on, we call such
a swap, a geo swap. A fixed number of geo swaps of the order of the number
of links is executed. To compare networks of different sizes and populations,
we normalize the robustness as R = (r − rmin)/(rmax − rmin), in which rmin
is the value of r for v = 50 km, the minimum value for which a geo swap
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Figure 4.3 – Critical cooperation range as a function of the nodes’ coverage. The criti-
cal cooperation v∗ is positively correlated with

√
A/N , where A is the total area in which

N nodes are embedded. The three different symbols represent the types of infrastructure
networks in which the geo swap is applied.

will be considered in the WAN, and the maximum robustness rmax obtained
for v = 18 × 103 km, which is approximately half of the planet perimeter.
This strategy builds on top of our previous approaches based on different
acceptance mechanisms (Sec. 2.2.4) or topological characteristics (Sec. 3.2),
but differs significantly by focusing on geographic limitations and low-weight
links.

4.3 Results

The cooperation range v limits the area of possible swaps to guarantee that a
geographically acceptable change is performed. A too small value of v does
not provide sufficient room for robustness improvement. If v is too large we
recover the properties of networks optimized with random swaps [58], such
as the presence of an onion-like structure (Sec. 3.2.1), but we end up swapping
connections to impractically far away airports. By tuning the values of v, we
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Figure 4.4 – The critical cooperation v∗ correlated with
√
A/N , where A is the total area

in which N nodes are embedded, in ER networks.

observe a critical value of the cooperation range v∗ = 910± 90 km at which
a significant improvement in the WAN is first registered. This range in fact
yields the highest variance of robustness increase among all possibilities, as
shown in Fig. 4.2. Details regarding this and all other simulations are in
Appendix B.

By considering continental airflight networks - constructed from the divi-
sion of the WAN into continents (details in Table 4.1) - together with other
spatially embedded networks (the European Power Grid and the European
Rail network), we observe that v∗ is positively correlated with

√
A/N (Spear-

man’s correlation coefficient ρ = 0.78), where A is the total area in which
the N nodes are embedded (Fig. 4.3). Being the combination of local and in-
tercontinental flights, the WAN lies slightly off the trend, but in general we
can conclude that the typical radius served by an airport is correlated to the
minimum distance at which swaps become effective. Artificially generated
random networks also confirm this relationship (Fig. 4.4). Other topological
characteristics of the optimized networks are detailed in Fig. 4.5.
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Figure 4.5 – Changes on networks characteristics after successive geo swaps with v = v∗.
The strategy makes the networks more assortative, more onion-like, but also more ran-
dom, as clustering coefficient and modularity decrease. Plots show the change of several fea-
tures of the airport networks after 104 tentative geo swaps. a, Degree assortativity (a) [96].
b, Neighbors’ degree correlation (knn) [25]. c, Weighted clustering coefficient (CCw) [97],
weighted by the number of passengers per airport. d, Clustering coefficient (CC). e, Onion-
likeness (Sk) (Sec. 3.2.1). f, Modularity (M ) [98]. The subscript 0 represents the value of the
feature without any optimization.
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Close to the critical cooperation range, the evolution of R scales with
v − v∗ for the continental networks. Applying the finite-size scaling,

R = N−
β
νF

[
(v − v∗)N 1

ν

]
, (4.2)

where ν and β are critical exponents and F [x] is a scaling function, we col-
lapse the data for different system sizes. For v = v∗, as shown in the inset of
Fig. 4.6, R scales with N−

β
ν , with β/ν = 0.08±0.01, as expected for a contin-

uous transition. This allows us to calculate the exponents in the main panel
of Fig. 4.6 as β = 0.20 ± 0.02 and 1/ν = 0.40 ± 0.03. The data suggest that
the construction of airports and the creation of connections follow a similar
mechanism in all continents, though the limited system size of each conti-
nent and obvious geographic differences prevent strong conclusions. How-
ever, data for Australia significantly differs from the others. Because a great
number of islands in Oceania have many small airports, sometimes being the
only feasible connection between remote areas, we assume that airports and
flights in this continent were established following a different mechanism.

Spatial networks are mainly defined by three properties: nodes’ position,
degree distribution, and connection pattern. A simplified model - where
nodes are assigned random positions, the degree distribution is a Poisson dis-
tribution, and connections are randomly assigned without any spatial/degree
bias - displays different critical exponents (Fig. 4.7). However, if the proba-
bility P (i, j) that nodes i and j are connected decays algebraically with the
distance between i and j,

P (i, j) ∝ 1
d(i, j)α , (4.3)

where α ∈ R is the decay exponent, we obtain exponents that are numerically
consistent with the ones in Fig. 4.6. Based on a simplification of the grav-
ity model, used to describe connections between geographically distributed
nodes [29, 99–101], we call Eq. 4.3 a distance-decay model as it does not take
into account the degree/weight of the nodes to calculate P (i, j).

To test Eq. 4.3, we plot a new data-collapse in Fig. 4.8 based on net-
works generated as follows. Node positions are uniformly distributed across
an Earth spherical cap of area A and in order to keep

√
A/N ≈ 195, the

same value of the WAN, network size is calculated accordingly. Node degree
follows a Poisson distribution of average degree 12. Node weights are cho-
sen according to the equation W (i) = 102.6k1.1

i , where ki is the degree of
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Figure 4.6 – Continuous transition of robustness. Data collapse of the robustness evolu-
tion for v − v∗ > 0 after successive applications of the geo swap. Curves in the main panel
represent each continent. A total of 104 tentative geo swaps are executed for several coopera-
tion range values. The value of v∗ is selected as the highest variance point over 100 samples.
Data is scaled using 1/ν = 0.40 and β/ν = 0.08. The inset shows size dependence of R at
v = v∗, scaling as R ∼ N− β

ν , with β/ν = −0.08 ± 0.01, where N is the total number of
nodes. Symbols are larger than the standard deviation.

node i, which is a fit of the relationship between node weights and degree of
the WAN. Link weights are randomly distributed from [1, 14], in which 14
is the maximum link weight on the WAN. We observe that changes in the
value of α affect consistently the slope in the data-collapse (Fig. 4.8b). We
find a value of β similar to the one of the continents, without Australia, for
α ∈ [1.8, 2.0]. For α = 2.0, the finite-size scaling in Fig. 4.8c allows us to
estimate: β = 0.23 ± 0.02 and β/ν = 0.08 ± 0.01 (Fig. 4.8a and Fig. 4.8c).
Further analysis also show that when α ≈ 2 the ratio between the average
length of routes and the average distance between two airports is similar to
that found for the continents (Fig. 4.9). Interestingly, the empirical proba-
bility distribution of link lengths in the WAN is a power law of exponent
α = 2.2 ± 0.2 (Fig. 4.10) with some studies linking this value to intrinsic
characteristics of the underlying metric space [102, 103]. This suggests that
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Figure 4.7 – Data collapse of the robustness evolution for v − v∗ > 0 after successive
applications of the geo swap in random networks. Curves in the main panel represent
each continent scaled with 1/ν = 0.28 and β/ν = 0.20. The inset shows the size dependence
of R at v = v∗, scaling as R ∼ N− β

ν , with β/ν = −0.20± 0.01, where N is the total number
of nodes. Data is based on artificially generated random networks but with links randomly
assigned without any bias.

correlations as the ones developed in the distance-decay model are consistent
with the ones found for the WAN and characteristic for the universality class.

4.4 Discussion

In order to provide applicable insights, any network modification strategy
should take into account realistic constraints naturally imposed by the prob-
lem. The geo swap contains a simple set of rules specifically designed to
improve the robustness of spatial networks. It is important to note however
that a probabilistic approach is more a guidance than a closed optimization
recipe. We expect that future procedures built on top of our strategy should
be carefully tailored to the underlying system.

In an infrastructure perspective, the geo swap, which makes flights land in
different airports, has two crucial implications. Firstly, a second transporta-

38



Figure 4.8 – Distance-decay model reproduces the same critical exponents of the WAN.
Data-collapse of the robustness evolution for v − v∗ > 0 after successive applications of the
geo swap on random networks generated through the distance-decay model with

√
A/N ≈

195. a, value ofR at v = v∗ with α = 2.0 scaling with the number of nodes (N ) asR ∼ N− β
ν ,

with β/ν = −0.08 ± 0.01. b, impact on β for the distance-decay model with different
values of α. c, curves for different system sizes with α = 2.0, scaled using 1/ν = 0.35 and
β/ν = 0.08.
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tion system should be used to connect nearby airports, in line with recent
works dealing with the coupling of infrastructure networks [104]. By taking
into account the critical cooperation range these couplings could be designed
or improved for distances close to v∗. Secondly, a local level of cooperation
is necessary between airports. Flights in Schenzen and Hong Kong could be
rerouted to attend different yet nearby airports worldwide, further increasing
the reliability of the local service and the overall WAN robustness.

Our rewiring strategy is also able to show that the continents, with one
exception, follow the same universality class regarding robustness improve-
ments, as the probability that two airports are connected decays quadrati-
cally with their distance. Being a continent with its own geographical id-
iosyncrasies, Australia does not fit our analysis, for which further studies
are necessary. In summary, our results show that, for any spatial network,
the universality class of the robustness improvement strongly depends on the
spatial correlation of connected nodes.
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Figure 4.9 – Distance-decay model reproduces the same β for different ratios between
the average distance traveled by the flights (route length) and the average geographical
distance between two airports of the WAN. Plot shows the impact on β for the distance-
decay model with different values of α (blue) in comparison with data for the continents
(green).
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Figure 4.10 – Flight distance distribution (route length) of the WAN. The empirical
distribution of flight length shows a power law decay with exponent −2.2 ± 0.2. Both raw
(turquoise) and binned (purple) data are shown in the plot. For simplicity, an exponential
cutoff is not considered.
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Chapter 5

Synchronization Risk of Complex
Networks

It’s a poor sort of memory that only works
backwards.

— LEWIS CARROLL.

5.1 Introduction

In the year 2000, Londoners were presented with the Millennium Bridge, a
futuristic footbridge that became the center of attention on the inauguration
day. The elbowing of the crowd, eager to be the first to cross it, forced
the synchronization of walkers causing a lateral swing of the structure [105].
Once on this wobbly structure, how could one avoid such uncomfortable
situation? The risk of synchronization, here defined as the possibility that
agents behave in a synchronized fashion with further dreadful consequences,
is a real threat in many situations.

In fact, the risk of synchronization has been observed in many other cir-
cumstances. Abnormal synchronization is also the origin of neurological
diseases such as epilepsy and Parkinson [106]. Brain pacemakers have been
developed and implanted in the patient to discharge an electrical signal into
the brain tissue and restore the normal activity [107–109]. But imagine a, still
to develop, device able to interact with individual neurons. What would be
the best strategy to break the synchronization? A third source of inspiration
can be found in the Internet, where several interconnected routers receive
and redistribute the information packages in the network. When multiple
routers synchronize their delivering events, the network collapses, a dysfunc-
tion known as TCP global synchronization. To avoid it, several algorithms
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have been developed and implemented in some routers [110]. What is the
fraction of such proactive routers required to avoid global synchronization?
In social context, avoiding synchronization might represent a political tool to
fight a charismatic leader. Consider a speech that inflames a crowd. Initially
every individual claps at his/her own rhythm but rapidly a coherent clap
emerges [111]. If a set of political adversaries (contrarians) try to destroy the
harmony, what would be the best strategy, the proper amount of contrarians,
and their spatial distribution in the hall?

The Kuramoto model has extensively been used as the paradigm to study
synchronization [19, 111–122]. In a first attempt to address the questions
raised above, we generalize this well-established model to include contrarians
which try to suppress the emergence of global synchronization. We present
a systematic study of how the synchronizability depends on the fraction of
contrarian oscillators for two different strategies and analyze the influence
of the topology in the mitigation process. To illustrate our results, contrar-
ian oscillators have been studied in silico for two real networks, namely, the
routers that compose the Internet [123] and the network of neurons of the
organism C. elegans [124, 125]. Our results suggest that local contrarians can
be used as a powerful way to control synchronization, avoiding the necessity
of monitoring the global state. Moreover, spreading contrarians as hubs is
also much more effective.

5.2 Model

The described examples are characterized by a set of N oscillators (walkers,
neurons, routers, or spectators), mutually interacting. Hereafter we take the
example of the walkers but the model can be straightforwardly extended to
all other cases. The stepping of each walker i is characterized by the phase
θi(t) and its natural frequency ωi, corresponding to the stepping frequency
when isolated. When the crowd moves, all walkers initially step at their nat-
ural frequency but herding (under strong coupling) rapidly leads to coherent
walking [105]. In the Kuramoto model, the motion of each oscillator is de-
scribed by a phasor eiθi(t), where θi(t) is the phase, and the coupling between
walkers is such that the dynamics of each is governed by,

θ̇i = ωi + λ
N∑
j=1

Aij sin (θj − θi) , (5.1)
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where the sum is over all other walkers (i 6= j), λ is the coupling strength, ωi
is the walker’s natural frequency, and A is the connectivity matrix such that
Aij = 1 if walker i is influenced by walker j or zero otherwise. The collective
walking can be characterized by the complex order parameter defined as,

r(t)eiΨ(t) = 1
N

N∑
j

eiθj(t), (5.2)

where the sum is over all walkers, the amplitude 0 ≤ |r(t)| ≤ 1 measures the
global coherence, and Ψ(t) is the average phase (geometric mean).

To account for contrarians we introduce a second population of Nc walk-
ers also coupled with the others but following a different dynamics. A con-
trarian k is also characterized by the phase θk(t) and its natural frequency
ωk. We consider two types of coupling: a mean-field (Model A) and a pair-
wise (Model B). In the mean-field coupling the dynamics of contrarians is
governed by,

θ̇k = ωk + λ sin (Ψ− θk − δ) , (5.3)

where Ψ(t) is the average phase and δ is a phase shift. In the pairwise coupling
the dynamics of contrarians is governed by,

θ̇k = ωk + λ
NT∑
j=1

Akj sin (θj − θk − δ) , (5.4)

where the sum is over all the NT walkers (NT = N +Nc). Hereafter, we take
δ = π in both cases. Such phase shift between two walkers (k and j) would
correspond to a walking such that when k steps with the left foot j steps
with the right. It is noteworthy that these two models yield different types
of frustration. While in Model A frustration between regular and contrarian
walkers is mediated by the average phase, in Model B the frustration results
from a pairwise interaction between regular and contrarian walkers where the
former attempts to mutually synchronize while the latter tries to dephase.

Two models accounting for frustration in the mean-field Kuramoto model
have recently been discussed in the context of a mixture of positive and neg-
ative couplings. Zannette [126] considered a pairwise coupling where the
strength and sign of the interaction between two oscillators is symmetric.
This model, in the limit ωk = 0, is equivalent to a magnetic XY model with
a distribution of couplings. Hong and Strogatz proposed a different scheme,
where regular walkers are also solely coupled with the average phase Ψ(t) and
the spatial distribution of regular walkers is not considered [127, 128]. This
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Figure 5.1 – Comparison between mean-field and pairwise coupling. Dependence of the
order parameter r on the coupling strength λ, for the mean-field (A) and the pairwise (B) cou-
plings. Different curves stand for different fractions of contrarians ρ randomly distributed
in a random graph with average degree equal to four.

model is similar to the mean-field limit of Model A discussed here. In con-
trast to the model discussed here, synchronization cannot be suppressed in
any of these previous models. Wang and Slotine [129] use contraction theory
to derive results when the interaction between two oscillators are of a con-
trarian nature. While failing to consider the minimal amount of contrarian
oscillators to achieve any practical interference, nor the influence of a spatial
distribution of contrarians, they recognize that the application of such types
of oscillators in possible brain pacemakers or network communication are
promising.

5.3 Results

In the absence of contrarians, the classical Kuramoto model is characterized
by the emergence of synchronization at a critical coupling λc which depends
on the distribution of natural frequencies (ω) and on the degree. While under
weak coupling (λ < λc) the motion is incoherent (r = 0), above the critical
coupling a coherent motion emerges (r > 0). In the limit of very strong
coupling (λ� λc) all oscillators participate in the coherent motion.

The presence of contrarians can affect the coherent motion. In Figure 5.1,
different fractions ρ = Nc/N of contrarian oscillators are considered in the
mean-field (A) and pairwise (B) models. While mean-field contrarians are not
able to reduce the value of r, a fraction as small as 5% of pairwise contrarians
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Figure 5.2 – Distribution of oscillator phases. Histogram of the phase of oscillators for t =
100. Curves represent oscillators according to the mean-field (A) and pairwise (B) models,
both with 10% of contrarians and λ = 1.0. While mean-field contrarians are frozen in −π
and π, pairwise contrarians are uniformly distributed through all phases.

is enough to significantly reduce the synchronizability. Further investigation
shows that, although contrarians enable the system to desynchronize, mean-
field contrarians drive the system to a polarized state, where oscillators are
concentrated around two phases: −π and π. It is possible to understand
this splitting through the analysis of the stable point (given by θ̇k = 0) for
contrarians in the mean-field model, yielding

λ sin(Φ− θk − π) = −ωk. (5.5)

Assuming that ωk is symmetrically distributed around zero, this equation
shows that the difference between the phase of contrarians and the average
phase must be equal to π. Thus, contrarians have a tendency towards the
extremes of the possible phases, dragging their conformist neighbors in the
process. Hence, mean-field contrarians introduce differences in the dynamic
behavior of oscillators by polarizing them in two distinct phases (see Fig. 5.2).
Details regarding this and all other simulations are in Appendix C.
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Figure 5.3 – Impact of pairwise contrarians on the synchronization. Order parameter r
dependence on the fraction of contrarians ρ showing suppression of synchronization. Dif-
ferent curves stand for different network sizes. The inset contains a plot of the standard
deviation of r among samples showing a transition around ρ = 0.15. A coupling strength of
λ = 2.0 has been used.

For the pairwise (B) contrarians, the emergence of a coherent state is sup-
pressed above a certain fraction of contrarians (Figure 5.3). We notice that
synchronization is suppressed for values of ρ > 0.15, as shown by the peak in
the standard-deviation of r in the inset of Figure 5.3. The peak increases with
the network size. For small values of ρ synchronization is maintained, r > 0,
as conformists synchronize their phases with each other and the small frac-
tion of contrarians dephase from their neighbors without destroying global
synchronization. In this situation, the average phase of contrarians and con-
formists create a periodic alternating wave over time, an interesting mecha-
nism that resembles, for instance, the oscillation of populations of predators
and preys which characterizes the classical Lotka-Volterra model [130]. Fig-
ure 5.4 shows an example where contrarians (the central layer of the networks
in the upper part) are in opposition to their first neighbors conformists,
which in turn try to synchronize with them. The sequence of networks
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Figure 5.4 – Time dependence of the phase. Upper part: Snapshot of a network of 200
oscillators at 4 different time steps (vertical dashed lines in the lower part). A total of 20
pairwise contrarians are displayed in the central layer. Each concentric layer i, from inside
to outside, contains the ith neighbors of the contrarians. The color of each node represents
its phase. Lower part: Time dependence of the average phase of contrarians (red squares),
conformists (blue triangles), and the whole set of oscillators (black circles) showing a periodic
oscillation over time.

in the figure are snapshots of the oscillators and their phase over time. Before
all conformists could match their phases with contrarians, the latter already
have an opposite phase. The periodic wave that conformists and contrarians
create is clear in the lower part of Figure 5.4 which shows the average phase
of different types of oscillators.

As the fraction of contrarians overcomes a certain threshold, the effect
of contrarians spreads over the entire network completely suppressing global
synchronization. This suppression is a consequence of an increasing fraction
of contrarian/contrarian interactions, which naturally tend to be dephased,
reinforcing their impact. For ρ > 0.15, neither synchronization (r = 0) nor
a periodic wave is observed (see Fig. 5.5).

5.3.1 Contrarians as Hubs

The phenomenon of synchronization is known to result from the interplay
between the network topology and the dynamics of oscillators [131, 132]. In
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Figure 5.5 – Average phase of oscillators with different fractions of pairwise ρ contrari-
ans. Time dependence of the average phase of oscillators for different fractions of randomly
assigned contrarians. The amplitude of the wave goes to zero with the fraction of contrari-
ans.

this section, we discuss the improvement in the desynchronization efficiency
by distributing the contrarians among the oscillators (nodes) with higher de-
gree and compare this strategy with the random distribution case discussed
above.

We start considering the case of a random graph (Erdős-Rényi (ER) net-
work), characterized by a Poisson distribution of degree. As shown in the
Fig. 5.6, in spite of the narrow degree distribution, the fraction of contrarians
necessary to reduce synchronization is reduced to one third (ρ = 0.05) when
contrarians sit at the nodes with higher degree. In this case, the disturbing
effect of contrarians occurs even for smaller fractions ρ and synchronization
is efficiently suppressed. In scale-free networks, where the degree distribu-
tion follows a power-law and highly connected nodes are more frequent, the
assignment of hubs as contrarians is even more effective (see Fig. 5.7).

5.3.2 Contrarians in Real Networks

The presence of communities and other features, such as assortativity and
clustering, also play a role in synchronization [133, 134]. Here we con-
sider two real networks and show that the same behavior holds (see Fig-
ure 5.8). The first one is the network of routers in the Internet. This
network is believed to have grown through the mechanism of preferential
attachment, being characterized by a scale-free degree distribution of expo-
nent γ = 3.00 [135]. Moreover, it has been shown to have a hub domi-
nant structure, where many hubs share low degree neighbors [136]. In this
case, similarly to scale-free networks, hubs play a major role in the synchro-
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Figure 5.6 – Impact of pairwise contrarians assigned to the nodes of highest degrees on
the synchronization of ER networks of average degree four. Order parameter r depen-
dence on the fraction of contrarians ρ for different network sizes showing a suppression of
synchronization after the introduction of pairwise contrarians. The inset is the standard-
deviation of r showing a transition around ρ = 0.05, much smaller than randomly assigned
contrarians.

Figure 5.7 – Scale-free networks with contrarians. Fraction of pairwise contrarian oscilla-
tors assigned randomly and based on their degree to scale-free networks of different degree
exponent γ, namely, 1.75, 2.5, and 3.25.
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Figure 5.8 – Pairwise contrarians on real networks. Fraction of contrarian oscillators
randomly assigned and based on the degree for different networks: (a) the routers of the
Internet, (b) neurons on C. elegans. The insets are snapshots of the referred networks where
each concentric layer i, from inside to outside, contains the ith neighbors of the contrarians.
The color of each node represents its type: contrarians (green) and conformists (yellow). A
coupling strength of λ = 4.0 has been used.

nization, and only 10% of them are necessary to suppress synchronization.
Highly connected contrarians have a disordering effect on a great number
of conformists and a few hubs control the phase of the entire set of oscilla-
tors. The second one is the neuronal network of the organism C. elegans, a
Small-World network and the largest network of neurons that has been to-
tally mapped [20]. There, random or degree-based distribution of contrarians
suppress synchronization, although the network seems to be more resilient
to such control than ER networks. The presence of functional communities
of neurons that are highly connected within themselves might be the cause
of this resistance [137]. It is interesting to note that this biological system,
evolved under evolutionary pressure, has converged to a resilient structure
regarding synchronization.

5.4 Discussion

The best way to use agents to control the dynamics of a network is still an
open debate [138, 139]. We have shown that global synchronization can be
suppressed with local agents (contrarians) which systematically dephase from
their nearest neighbors. We show that solely local information is required to
efficiently avoid a coherent oscillatory state. If instead, global information is
considered, the set of oscillators splits into two oscillatory states with differ-
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ent phases and a global coherent state is still possible. Analyzing the impact
of the network topology in desynchronization we concluded that, when con-
trarians sit at the nodes of higher degree, the process is more efficient than in
the random case. Even with random graphs, characterized by a narrow degree
distribution, the degree strategy reduces to one third the amount of required
contrarians to suppress synchronization. We also show that the synchroniza-
tion of real networks that present underlying features such as communities
and dominant hubs is also suppressed with the use of contrarians.

The present work is the first attempt to understand the interplay between
the desynchronization dynamics and the topology when considered to mimic
real systems. The Kuramoto model provides a standard framework to study
synchronization, however it entails several approximations when discussing
real networks. For example, social systems are composed of adaptive agents
that might change their strategy over time and avoid being trapped in a locked
state. Developments build up on top of this work should account for fur-
ther details on the coupling scheme and on the contrarian dynamics. For
instance, here we have focused on the distribution of contrarians, but recent
works have shown that rewiring interventions, such as swapping, adding, or
removing edges, have a crucial role in the collective dynamics [140,141]. Nev-
ertheless, general conclusions can be drawn shedding light on the problems
discussed in the introduction. For instance, as referred, some routers on the
Internet have a special algorithm implemented to avoid synchronization. We
have shown that placing contrarian routers as hubs on the network could
optimize the fraction of proactive routers necessary to prevent global syn-
chronization. Also, modifying the coupling mechanism between two routers
and the contrarian strategy implemented, it becomes possible to extend our
work to define the best location of contrarians on the Internet.

Regarding the development of brain pacemakers, our study suggests that
a set of small size devices spread throughout the brain, and solely track-
ing the phase of neighboring neurons, would be more effective to prevent
a seizure than monitoring the global state. After the mapping of a neural
network [142], and the characterization of the coupling dynamics between
neurons, our work also gives helpful hints about the minimum amount and
the optimal spatial distribution of these active devices.

Interesting applications could also be found in social dynamics. Whenever
a “social synchronization” is achieved, such as clapping after a speech, a small
amount of influential agents can be trained to prevent this synchronization.
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Political opponents could be spread in the crowd to avoid a proper saluta-
tion simply by “dephasing” their claps with their close neighbors. The same
method might be used to prevent a synchronized walk on a bridge where in-
structed actors could walk dephased from others. Evidently crowd behavior
control is a very hard task [143], but here we show that it could theoretically
be achieved.
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Chapter 6

Synchronization Fragility of Coupled
Networks

If you cannot control yourself, you cannot
command others.

— KLINGON HONOR GUARD MANUAL.

6.1 Introduction

Technology has furnished us with global connectivity changing the function-
ing of cooperative work, international business, and interpersonal relation-
ships. However, despite the ever faster Internet connections, there will al-
ways be a physical limit speed to information transport, thereby imposing a
time delay in communication. As we discuss here, this time delay affects the
synchronization risk of oscillators.

Understanding the consequences of a communication lag is of major con-
cern in different fields [65, 144, 145]. In what follows, we discuss the syn-
chronization fragility of two networks connected through a communication
delay, but our study might have impact on several biological and techno-
social systems as, for example, the human brain. Being a highly modular
structure, its coherent operation must rely on the independence of different
brain modules, which are functionally specialized, as well as on their efficient
connection to ensure proper information transmission and processing. In a
recent study [146], it was shown that the optimal integration of these mod-
ules, which can be interpreted as complex networks made of intra-network
couplings, is achieved through the addition of long-range inter-network ties,
therefore behaving globally as a small-world system.
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Recent geometrical studies of coupled networks with intra- and inter-
network links have revealed novel features never observed for isolated net-
works [147]. In particular, it has been shown that the overall robustness is
reduced [148,149] and the collapse of the system occurs through large cascades
of failures [150,151]. Dynamic properties of coupled networks have also been
studied [152–159], but the impact of a time delay on their synchronization is
still an open issue, which we address here. Typically, the intra- and inter-
network couplings have different time scales. For simplicity, we consider
the case where intra-network interactions can be considered instantaneous
and the inter-network ones have a communication lag that depends on the
distance between networks. In particular, we show that, when isolated, the
two networks would naturally move in unison. However, when interacting
the oscillators in the same network split into two groups, synchronized with
different frequencies, leading to breathing synchronization.

6.2 Model

We consider two populations (Γ and Θ) of nKuramoto oscillators each (Sec. 5.2)
interacting through inter and intra-network connections. Each network is a
random graph of average degree four. For simplicity, we assume the same
frequency ωi ≡ ω0 for all oscillators. We couple each j ∈ Γ with one, and
only one, corresponding partner i ∈ Θ, forming the inter-network couplings.
The inter-network coupling is subjected to a time delay τ , corresponding to
the time required for information to travel between networks [160]. Pre-
vious studies introduced time delay among oscillators of the same popula-
tion [161, 162]. Here we consider the competition between an instantaneous
intra-network and a delayed inter-network coupling. In a nutshell, the dy-
namics of oscillators is described by,


θ̇i = ω0 + σEX sin

(
γt−τj(i) − θi

)
+ σIN

N∑
k=1

AΘ
ik sin (θk − θi)

γ̇j = ω0 + σEX sin
(
θt−τi(j) − γj

)
+ σIN

N∑
k=1

AΓ
ik sin (γk − γj)

,

(6.1)
where the superscript t − τ indicates the instant when the phases are calcu-
lated, θi and γi are the phase of oscillators at the two networks, and σEX and
σIN are the inter and intra-network couplings, respectively.

56



Figure 6.1 – The interactions between a strongly delayed inter-network coupling and a
weak intra-network coupling create two communities of different frequencies in steady
state. a, Snapshot of populations at two different time steps (black dashed vertical lines in
b) near the steady state, for ω0 = 1.0, τ = 1.53, σIN = 0.01, and σEX = 0.5. The vertical
position of each oscillator represents its phase, from−π to π, and the color represents the fre-
quencies achieved with oscillators mostly presenting values near the theoretical frequencies
(1.63 and 4.63) of the steady state. Superposition of these two communities leads to breath-
ing synchronization. b, Time evolution of the order-parameter of populations Θ (blue) and
Γ (red) composed of n = 305 oscillators each with ω0 = 1.0, τ = 1.53, and σEX = 0.5. Two
scenarios of weak intra-network coupling are represented: σIN = 0.01 (continuous lines) and
σIN = 0.001 (dashed lines).
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6.3 Results

We observe that two frequency communities emerge within the same net-
work, each synchronized with its mirror in a breathing mode, if two net-
works are connected with time delay, weak intra-network coupling, and ran-
dom initial distribution of phases (Fig. 6.1a). In the figure, the color de-
scribes the frequency and the vertical position the phase. The frequency syn-
chronization within groups occurs with phase locking. Interestingly, inter-
network coupled pairs of nodes oscillate with the same frequency (same color)
but might be either in phase or anti-phase (phase shift of π). Consequently,
the presence of these two frequency groups affects the perception of the new
global oscillatory state, which we call breathing synchronization. Figure 6.1b
shows the time evolution of the order parameters rΘ and rΓ for each popu-
lation, quantifying this breathing behavior. For each curve, the maximum
corresponds to the instant at which both groups of frequencies are in phase,
while the minimum to an anti-phase between groups in the same network.
Additionally, since for one frequency there is a phase shift of π between inter-
network pairs of nodes, the minimum in one network corresponds, necessar-
ily, to the maximum in the other. Cohesion within each community affects
the amplitude of the breathing, as indicated by the order parameters for dif-
ferent values of σIN in Fig. 6.1b. The weaker the intra-network coupling, the
smaller is this amplitude.

The observed breathing behavior is in deep contrast with what is expected
for an isolated network (σEX = 0). For isolated networks, the classical
Kuramoto model is recovered, with frequency and phase synchronization
emerging at a critical coupling σIN = σ∗IN. Above this threshold, a macro-
scopic fraction of oscillators is synchronized, all with the same frequency
and phase. The value of σ∗IN increases with the variance of the natural fre-
quency distribution. Since here we consider the same natural frequency for
all oscillators (ωi ≡ ω0), σ∗IN → 0. The group of synchronized oscillators
has frequency ω = ω0 and the order parameter rΘ(t) (or rΓ(t)) saturates in
time at a non-zero steady-state value [19], which is a monotonically increasing
function of (σIN − σ∗IN). Interestingly, in the case of coupled networks, and
for sufficient inter-network couplings, none of the two frequencies is ω0.

To better understand the breathing synchronization, and in particular the
emergence of frequency groups, let us consider the case of two coupled os-
cillators with time delay. The analytic solution obtained by Schuster and
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Figure 6.2 – Steady state frequency achieved for varying initial conditions. For a com-
bination of ∆0, the initial phase displacement between inter-network oscillators, and ω0, we
map the final frequency ω achieved in the case of a weak intra-network coupling (σIN = 0.01
and σEX = 0.50). The color scale represents the variable ω − ω0. As for our simulations
phases are initially randomly distributed, blue and red areas can be seen as the size of the
basin of attraction of different frequency solutions. Panels a-d show different time delays.

Wagner [160] for this problem indicates that, depending on the initial phase
difference between oscillators, the pair can synchronize with different fre-
quencies ω (see Fig. 6.2a-d), which are solutions of,

ω = ω0 − σEX sin (ωτ) . (6.2)

In spite of oscillating with the same frequency in the stationary state, the two
oscillators might either be in phase, if cos(ωτ) > 0, or anti-phase, otherwise.
In the case of inter-connected networks, in the limit σIN = 0, the stationary
state is expected to include all possible solutions of Eq. 6.2. Surprisingly, our
results with a weak σIN reveal instead two frequency groups with phase lock-
ing. Nevertheless, the observed frequencies are consistent with the solution
of Eq. 6.2 and are unique with respect to ω0 and τ . The final frequency of a
pair of oscillators only depends of their relative initial displacement.

As we show next, when the internal coupling (σIN) is further increased,
breathing synchronization is no longer stable and each network is synchro-
nized, in one of two other synchronization regimes. In simulations with
σEX = 1.5, ω0 = 2.75 and τ = 1.53, when σIN = 0.4 interactions among os-
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Figure 6.3 – Scatter plot for the matrix of frequency pairs of intra-network neighboring
oscillators, for 500 different realizations of random coupled networks of n = 750, with
ω0 = 2.75, τ = 1.53, σEX = 1.5, and various σIN, namely, 0.4 (a), 0.8 (b), 1.2 (c), and
1.6 (d). Empty and filled circles are centered on the frequency pairs (ωi, ωj) for each (i, j)
neighboring nodes within a network, calculated with a 2D binning of size 0.05. The filled
circles color, according to a purple-yellow scale, corresponds to their relative occurrence in
the dataset: purple circles are the predominant frequencies registered, while yellow circles
are less common. For comparison, blue empty circles correspond to results for σIN = 0. The
size of the symbols is also used for the relative occurrence of each pair.

cillators in the same network become more relevant than the inter-network
delayed coupling, and the larger frequency group, in terms of population
size, dominates over the smaller one. This competition results in all oscil-
lators synchronizing at the same frequency and the order parameter of each
network saturates in time. To systematically study the dependence on σIN,
we analyze the frequency correlation among intra-network neighbors i and
j. Figure 6.3 shows the scatter plots of the pair (ωi, ωj) for different values
of intra-network coupling strengths. The limit σIN = 0 is represented by the
blue empty circles in all panels and the radius corresponds to the relative pop-
ulation of pairs when considering several samples. In this limit, the oscillators
have all one of two possible frequencies, with four possible combinations of
frequency pairs. From the relative size of the circles, we observe that the
lowest frequency (ω ≈ 2.3 for ω0 = 2.75 and τ = 1.53) is the most popu-
lated one. As shown in Fig. 6.3a, for σIN = 0.4 most nodes are synchronized
with the lowest frequency and therefore a large percentage of the pairs are in
the left-bottom corner. Similarly to the Kuramoto model, in this competing
state, oscillators synchronize at a unique stable frequency (ω ≈ 2.3), which
is a solution of Eq. 6.2. As σIN is further increased (Fig. 6.3b-d), due to the
strength of the intra-network coupling, each network tends to behave like a
supernode and, depending on the initial conditions, one of two frequencies is
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Figure 6.4 – Dependence of the phase difference and frequency variance on the strength
of the intra-network coupling. Panels on the left column represent the phase difference ∆
between pairs of inter-network neighboring oscillators. Panels on the right column repre-
sent the average phase variance of the frequency of oscillators in the same network. a and
b, results for networks with different sizes and average degree of four. c and d, results for
networks with node degree fixed at four in comparison with networks with randomly dis-
tributed degree of average four. e and f, results for networks with different average degrees.
Each point in all plots represents an average over 500 samples with ω0 = 2.75, τ = 1.53, and
σEX = 1.5. Panels c-f represent results for networks with 500 nodes. The standard deviations
in all cases are smaller than the symbols.
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Figure 6.5 – Frequency communities in transition regions. For certain combinations of
coupling strengths, one can observe abrupt transitions in which global synchronization is
lost (Panels a and c) or recovered (Panel b). Points are averages over oscillators in each
frequency community. Simulations were performed with 300 samples with τ = 1.53 and
ω0 = 2.75. In Panel a, we show results for σIN = 1.5, while Panels b and c are for σEX = 1.5.

obtained, which is again a solution of Eq. 6.2. Further analysis across samples
(See Fig. 6.4) also shows that the average phase displacement between pairs
of oscillators in different networks reaches ∆ = π for intermediary values
of σIN, and decreases again once the supernodes are formed (See Fig. 6.4a).
For large σIN, the supernodes can be either in phase or anti-phase and, there-
fore, the average variance within a network has a value between zero and π
(See Fig. 6.4b). Results are qualitatively similar for networks with fixed node
degree (See Fig. 6.4c-d) or with different average degree (See Fig. 6.4e-f).

We further analyze the transitions between synchronization regimes. The
transitions between regions of one and two stable frequencies are not smooth
(See Fig. 6.5). We investigate three regions of the parameter space where
transitions between states are expected. All are consistently abrupt, i.e., a
small difference in the coupling strength triggers a bifurcation in the possible
stable frequencies. Differences in the transition point can be explained in the
context of finite size effects. A certain combination of coupling strengths and
time delays leads to synchronization at a single stable frequency, but a small
difference in any of the parameters can give rise to two stable frequencies,
with the possibility of breathing synchronization, and a strong dependence
of the final state on the initial conditions.

To summarize the effect of several combinations of parameters, we plot in
Fig. 6.6a the phase diagram in the space of the two coupling strengths (σIN
and σEX). To identify each regime, we compute the amount of oscillators
with steady frequency below and above the mean value of possible frequen-
cies (see Appendix D), A1 and A2, respectively, over different samples (see
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Fig. 6.6b). The color map of the main plot of Fig. 6.6 shows the ratio of
these quantities. While the blue area represents the domain of σIN and σEX
combinations that leads to the smaller frequency, the shades in red represent
the two regions where two frequencies can be achieved. Note that the nature
of the two synchronization regimes in red is different. The one in the left
(lower σIN) is characterized by the breathing behavior due to the presence of
two frequency groups within each network. By contrast, in the supernode
regime all nodes within a network are in phase locking, with the same fre-
quency and, therefore, the order parameter is constant in time in the steady
state. In Fig. 6.6c, we show the phase boundaries for different time delays.
From this, one can also see that the transition between regimes changes sub-
stantially for different time delays. Since delay and natural frequency are not
multiples, harmonic interactions are considered negligible. Table 6.1 contains
a brief summary of all states reported in Fig. 6.6.

6.4 Discussion

The presence of a time delay between two coupled networks of oscillators
poses a new challenge to the synchronization risk of the system. We have
shown that the interplay between coupling and delay leads to states of ei-
ther a unique or two possible synchronized frequencies. We have found that,
even with a weak intra-network coupling, oscillators within the same net-
work split into two frequency groups. Each group has a mirror one in the
other network oscillating at the same frequency. However, depending on
their frequency, a group can be either in phase or anti-phase with its mir-
ror in the other network, resulting in breathing synchronization. Also, we
show that an arbitrary increase of the intra-network coupling is not an op-
tion to achieve phase and frequency synchronization regardless of its initial
conditions. In a certain region of the parameter space, the intra-network
coupling promotes the formation of two supernodes (one per network), and
two frequencies become stable. We have numerically identified the transition
regions between regimes. Future works should consider recent advances on
group synchronization to analytically study these transitions through linear
stability analysis using the master stability function [163, 164].

It is possible to prepare controlled experiments to evaluate the existence of
these different regimes in biological systems. For example, the plasmodium
Physarum polycephalum, an amoeba-like organism consisting of a network of
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Figure 6.6 – Phase diagram for delayed coupled networks. Parameter space of two coupling
strengths σEX and σIN showing that the prevalence of one frequency over the other changes
according to the coupling strengths. a, parameter space in which the color of each region
represents the occurrence of the two theoretical frequencies: red if two frequencies (ω = 2.3
and ω = 3.7) and blue if only one (ω = 2.3) is observed. Shaded regions mark the boundaries
between states. The dominant mechanisms of each region are labeled accordingly: Breathing,
Kuramoto [19], Competing, and Supernode states. b, example of the histogram used to
calculate Panel a: areas around the theoretical frequencies are defined (A1 and A2) and their
ratio used to define the prevalence of only one or two of them. c, state boundaries for
different time delays. Regions are defined based on simulations over 300 different realizations
of random coupled networks of n = 500, with ω0 = 2.75 and τ = 1.53.

.

tubular structures for protoplasm flow, naturally shows periodic variations
in its thickness, a necessary feature for its survival. A controlled setup has
been prepared by Takamatsu et al. where two regions of the same organism
have been physically separated by a certain distance with the possibility of
fine tuning the communication between them [165, 166]. Depending on the
coupling strength and time delay, the two regions have been shown to present
phase and anti-phase synchronization of the oscillatory thickness. This is
precisely what we find in the regime of strong intra-network coupling. In
the experimental study, the focus was only on the regime where the intra-
region interaction is much stronger than the inter-region one. Using the same
methodology, it is possible to control the intra-region interaction and study
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Table 6.1 – Summary of different synchronization regimes. A brief description of the
properties of all states encountered for ω0 = 2.75 and τ = 1.53.

State Frequency groups Phase shift

Breathing Two groups: ω = 2.29 (low freq.)
and ω = 3.71 (high freq.) π for low freq. and 0 for high freq.

Competing One group: ω = 2.29 π
Supernode One group: ω = 2.29 or ω = 3.71 π if low freq. or 0 if high freq.

the different regimes described here. In particular, it would be of interest
to observe oscillations with two different frequencies within the same region
due to the communication lag with the other region, resulting in breathing
synchronization.
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Chapter 7

Conclusion

Science says the first word on everything, and the
last word on nothing.

— V. M. HUGO, ATTRIBUTED.

If one considers the abundance of data, and techniques to handle them,
that exists in our technological society, it is rather surprising that studies
based on the simplification and abstraction of a system receive so much at-
tention. One could argue that abstractions can be modeled and simulated
much faster, or that beauty lies in simplicity. Here however, we defend that a
simplification let us focus on the most important mechanisms of the underly-
ing system, avoiding complications that an excessive number of dimensions
might bring, and argue that this approach can actually give some contribu-
tion to the solution of a problem. More specifically, we show that network
theory can give meaningful insights to the risk analysis of real systems. Our
findings are mainly divided in two frameworks: static and dynamic models,
though we focus, whenever possible, on the interplay between them.

For static networks, we present in Chapter 2 a simple technique that gen-
erates robust and efficient networks. Though based on random link swaps
and simulated annealing, this method is quite inefficient for larger networks
and, in Chapter 3, we present a new rewiring method to modify the network
topology, improving its robustness, based on the evolution of the network’s
largest component during a sequence of targeted attacks. In comparison with
previous strategies, our method lowers by several orders of magnitude the
computational effort necessary to improve robustness. Our rewiring also
drives the formation of layers of nodes with similar degree while keeping a
highly modular structure. This “modular onion-like structure” is a particu-
lar class of the onion-like structure previously described in the literature. We
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apply our rewiring strategy to an unweighted representation of the World
Air-transportation network (WAN) and show that an improvement of 30%
in its overall robustness can be achieved through smart swaps of around 9%
of its links.

In Chapter 4 we go one step further into modeling the WAN by adding
information about number of passengers, flights, and airports’ location. We
address how WAN’s robustness can profit from local cooperation between
airports. For this, we reroute a series of flights among airports within a cer-
tain distance, a cooperation range, and describe the improvement of WAN’s
robustness with distance as a continuum transition. We calculate the critical
exponents and identify a critical cooperation range below which improve-
ment is negligible. We propose a network model that falls into the same
universality class in which the probability to connect two nodes decays alge-
braically with their distance. As a by-product of our high level of abstraction,
our results impact the whole class of spatially embedded networks.

By using the Kuramoto model of synchronization, we have made rele-
vant contributions to the study of the synchronization risk of networks as
well. In Chapter 5 we propose the use of contrarians to suppress undesired
synchronization. We perform a comparative study of different strategies, ei-
ther requiring local or total knowledge, and show that the most efficient one
solely requires local information. Our results also reveal that, even when the
distribution of neighboring interactions is narrow, significant improvement
is observed when contrarians sit at the highly connected nodes.

Extending the problem to the synchronization fragility of interconnected
networks, we study in Chapter 6 the synchronization properties of oscilla-
tors with a time delay between networks and analyze the dynamics as a func-
tion of the couplings and communication lag. We discover a new breathing
synchronization regime, where two groups appear in each network synchro-
nized at different frequencies. Each group has a counterpart in the opposite
network, one group is in phase and the other in anti-phase with their coun-
terpart. For strong couplings, instead, networks are internally synchronized
but a phase shift between them might occur.

Through a handful of examples, our thesis shows that network theory
provides a nice foundation on which the risk of several systems can be de-
bunked. Instead of developing over-specialized network models, we use a
common vocabulary in our approach and, when possible, common concepts
and risk measures (robustness of the largest connected component and the
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synchronization order parameter). We show here that it is possible to start
a comprehensive risk analysis of distinct systems, from airports to the slime
mold, if they are simplified with the help of complex network models. We
expect that future works built upon our models study more and diverse sys-
tems until the similarities are stronger than the specificities. This will be the
first step towards a unified risk analysis theory.
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Appendix A

Methods and Parameters of Chapter 3

The World Air-transportation network was retrieved from Amiel et. al [167].
It contains data regarding only international airports and flights. The number
of nodes/airports is 1326, with 16001 links, and average degree of 24.13.
Artificial networks considered in this work are all BA networks of average
degree six.

In Fig. 3.2, Panels a and b represent sections of the World Air-transportation.
In particular, airports in Panel a are labeled according to their IATA code.
Panel c is an average over 100 BA networks of 1000 nodes, the standard devi-
ation of the points being smaller than the symbols.

In Fig. 3.3, the main plot is an average over 100 BA networks of 2005
nodes, which is the same data used for Fig. 3.7. The inset is an average of
100 BA networks of 1000 nodes subjected to 105 steps of rewiring (smart or
random) in comparison to the original network. In both plots the thickness
of the lines is bigger than the standard deviation.

In Fig. 3.4, box plots are used to represent the quantities computed for
100 BA networks, according to: lower whisker for the lowest observation
still within 1.5 IQR of the lower quartile, bottom of the box for the lower
quartile, white trace for the median, top of the box for the upper quartile,
and upper whisker for the highest value still within 1.5 IQR of the upper
quartile.

In Fig. 3.5, data is an average of 100 BA networks, with standard devia-
tions smaller than curve thickness.

The main plot of Fig. 3.6 contains the entire World Air-transportation
network with rewired links in red and thicker. The location of some airports
are slightly altered due to map projection distortions. Inset b contains data
regarding the Air-transportation network before and after 105 smart swaps,
for which the smart rewiring curve is an average over 100 different sequences
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of random swaps. Insets c-e are averages over 100 BA networks of 2005 nodes.
In all insets the thickness of the lines is bigger than the standard deviation.
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Appendix B

Methods and Parameters of Chapter 4

Figure 4.2 results from the application of 104 tentative geo swaps for each
value of v in the WAN. Each blue circle is the average over 250 samples while
red circles stand for the variance over samples.

In Fig. 4.3, data for the European Power Grid (red) is retrieved from
Ref. [168] and the Rail transportation network was manually assembled us-
ing public data. The power grid network has 1254 nodes and 1812 links, and
the rail network has 39 nodes and 70 links. For continents, the power grid,
and the rail network, a total of 104 tentative geo swaps are executed for sev-
eral cooperation range values. The value of v∗ is selected as the highest vari-
ance point over 100 samples, with error bars representing the values where
variance is equal to 0.75σ2(v∗). The same data for the continents is used to
construct Fig. 4.6, in which symbols are larger than the standard deviation.

In Fig. 4.4, data is based on artificially generated random networks, simi-
lar to the ones used for the distance-decay model in Fig. 4.8, but with links
randomly assigned without any bias. Each point represent the average over
100 randomly generated networks of 500 nodes. A total of 104 tentative geo
swaps are executed for several cooperation range values. The value of v∗ is
selected as the point with highest variance, with error bars representing the
values where the variance is equal to 0.75σ2(v∗).

In Fig. 4.5, box plots are used to represent the quantities computed for 100
networks, according to: lower whisker (horizontal trace below and on top of
the box) for the lowest observation still within 1.5 IQR of the lower quartile
(25% percentile of the distribution), bottom of the box for the lower quartile,
white trace for the median, top of the box for the upper quartile, and upper
whisker for the highest value still within 1.5 IQR of the upper quartile.

In Fig. 4.7, a total of 104 tentative geo swaps are executed for several co-
operation range values. Each point represents the average over 200 samples,
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with symbols being larger than standard deviation in the main panel. The
critical cooperation range is defined as v∗ = 240± 10.

For all panels in Fig. 4.8, a maximum of 104 tentative geo swaps are exe-
cuted for several cooperation ranges. Each point represents the average over
100 samples, with symbols being larger than standard deviation in Panel c.
The critical cooperation range is defined as v∗ = 240± 10 km. In Fig. 4.9 the
data used is the same from Fig. 4.6 and Fig. 4.8b.
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Appendix C

Methods and Parameters of Chapter 5

Equations 5.1, 5.3, and 5.4 have been numerically solved using a fourth order
Runge-Kutta method with discrete time steps δt = 0.001. The complex order
parameter was computed in the interval t ∈ [90, 100] using the average value
of Eq. 5.2. For all considered cases, natural frequencies of oscillators have
been uniformly distributed between −0.5 and 0.5 and initial phases have also
been uniformly distributed between −π and π. A coupling strength of λ =
2.0 has been used. For the Internet and the C. elegans, natural frequencies
and initial phases have been distributed uniformly between −0.1 and 0.1,
and between −π

2 and π
2 , respectively, and a coupling strength of λ = 4.0 has

been used.
Networks of oscillators have been constructed as undirected ER networks

of average degree four, unless otherwise stated. The network of Internet
Routers has been analyzed through data retrieved from the Opte Project that
represents all the communication among 40028 routers on January 15th of
2005 [123]. Each node of this network is a Router with an associated IP
address and the links (edges) are established between two IP address which
have communicated at least once. The network of neurons was constructed
through data obtained on the WormWeb website [125] and is mostly based
on the work by Chen et al. [124]. In this network, links have been established
whenever an interaction between neurons has been registered, regardless of
their type or direction. Other measures regarding these networks are avail-
able in Table C.1.

All results have been averaged over several samples. The error bars were
omitted in all figures, being smaller than the symbols. For the Internet and
the C. elegans only the natural frequencies and initial phases change among
samples. Panels in Figure 5.1 are constructed using the average value over
100 networks of size N = 1000. In Figure 5.2, results are averages over 1000
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Network Nodes Average Degree Max Degree
The Internet 40028 2.36 259

C. elegans 283 17.39 115
Table C.1 – Number of nodes, average degree, and maximum degree for network of routers
in the Internet and the neural network of the C. elegans.

networks of size N = 1000, where ρ = 0.1 and λ = 1.0. Figures 5.3 and
5.6 show averages of 5000 networks of size N = 1000, 1000 networks of size
N = 5000, and 600 networks of size N = 10000. In Figure 5.4 and 5.5,
we represent a single network of N = 200 with λ = 1.0. Figure 5.7 is an
average over 1000 networks of size N = 1000. For Figure 5.8, Panel a is an
average over 200 initial distributions of phases and frequencies, and Panel b
is an average over 10.
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Appendix D

Methods and Parameters of Chapter 6

Eq. 6.1 has been numerically solved using a fourth order Runge-Kutta method
with discrete time steps δt = 0.003. The stable frequencies were computed
at tmax = 100, using the difference between phases after one δt step. The
natural frequency has been chosen as ω0 = 1.00 in Fig. 6.1 and ω0 = 2.75 for
Figs. 6.3-6.6. Initial phases of oscillators in all simulations have been sampled
from a random uniform distribution between −π and π. Different values of
ω0 do not affect qualitatively the results. The same values of δt and tmax were
adopted for all simulations in this study.

In Fig. 6.1, Panels a and b are based on one pair of undirected random
networks of average degree four and 305 nodes in each. Oscillators in this
figure have been simulated for τ = 1.53, σEX = 1.5. Panel a is based on
σIN = 0.01.

In Fig. 6.2, Panels a-d are an average over 500 samples of n = 576 oscilla-
tors simulated with σIN = 0.01 and σEX = 0.50.

In Fig. 6.3, Panels a-d contain the simultaneous representation of 500 pairs
of random networks of 750 nodes. Color and size of each point represents the
relative occurrence in all data. Oscillators in this figure have been simulated
for τ = 1.53 and σEX = 1.5.

In Fig. 6.5, Panels a-c are averages over 300 pairs of random networks
of 1000 nodes, 300 pairs of 1500 nodes, and 300 pairs of 1950 nodes. The
standard deviation in all cases are smaller than the symbols. To reduce noise,
we consider only frequencies with a relative occurrence of more than 10% to
calculate averages.

Figure 6.6 is a schematic representation based on the average over 300
pairs of undirected random networks of average degree four and 500 nodes
in each. Panel b is a graphical representation of the histogram of all stable
frequencies. Panel c contains the same study for different delays, also averaged
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over 300 pairs of undirected random networks of average degree 4 and 500
nodes in each. A cutoff of ω = 3.00, the midpoint of the stable frequencies
for σIN = 0, was used to determine the areas A1 and A2. Colors in Panel a are
defined according to the ratio of A1 and A2: blue if log(A1/A2) < 4 and red if
log(A1/A2) > 4, with shades of these colors used to represent the transition
regions. To avoid the effect of oscillators that did not reach a stable state
by the end of the simulation, we consider only frequencies with a relative
occurrence of more than 10%. Oscillators in this figure have been simulated
with τ = 1.53 in Panel a and tau = 0.53 in Panel c.
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[13] P. Erdős and A. Rényi. On the evolution of random graph. Publ Math
Inst Hung Acad Sci, 5:17–60, 1960.

[14] A Guide to the Project Management Body of Knowledge (PMBOK Guide).
Project Management Institute, 2013.

[15] BEA (Bureau Enquetes-Accidents) Accident on 25 July 2000 at La Patte
d’Oie in Gonesse (95) to the Concorde registered F-BTSC operated by Air
France. 2000.

[16] D. Sornette. Critical phenomena in natural sciences: chaos, fractals, self-
organization and disorder: concepts and tools. Springer, Berlin, 2006.

[17] N. A. M. Araújo and H. J. Herrmann. Explosive Percolation via Con-
trol of the Largest Cluster. Phys Rev Lett, 105:035701, 2010.

[18] S. Vitali, J. B. Glattfelder, and S. Battiston. The network of global
corporate control. Plos ONE, 6:e25995, 2011.

[19] Y. Kuramoto and I. Nishikawa. Statistical Macrodynamics of Large
Dynamical Systems. Case of a Phase Transition in Oscillator Commu-
nities. J Stat Phys, 49:569–605, 1987.

[20] D. J. Watts. Small Worlds: The Dynamics of Networks Between Order
and Randomness. Princeton Univ Press, Princeton, 1999.

[21] R. Albert, H. Jeong, and A. Barabasi. Error and attack tolerance of
complex networks. Nature, 406:378–382, 2000.

[22] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393:440–442, 1998.

78



[23] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast un-
folding of communities in large networks. J Stat Mech, P10008, 2008.

[24] M. E. J. Newman. Assortative Mixing in Networks. Phys Rev Lett,
89:208701, 2002.

[25] R. Pastor-Satorras, A. Vasquez, and A. Vespignani. Dynamical and
correlation properties of the Internet. Phys Rev Lett, 87:258701, 2001.

[26] A. Barabási and R. Albert. Emergence of Scaling in Random Networks.
Science, 286:509–512, 1999.

[27] R. Albert, I. Albert, and G. Nakarado. Structural vulnerability of the
North American power grid. Phys Rev E, 69:025103, 2004.

[28] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa. Spontaneous
synchrony in power-grid networks. Nat Phys, 9:1–7, 2013.

[29] P. Kaluza, A. Kölzsch, M. T. Gastner, and B. Blasius. The complex
network of global cargo ship movements. J R Soc Interface, 7:1093–
1103, 2010.

[30] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin. Breakdown of the
Internet under Intentional Attack. Phys Rev Lett, 86:3682, 2001.

[31] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,
R. Tanaka, and W. Willinger. The "robust yet fragile" nature of the
Internet. P Natl Acad Sci USA, 102:14497–502, 2005.

[32] P. Mátray, P. Hága, S. Laki, G. Vattay, and I. Csabai. On the spatial
properties of internet routes. Comput Netw, 56:2237–2248, 2012.

[33] G. L. Mamede, N. A. M. Araújo, C. M. Schneider, J. C. Araújo, and
H. J. Herrmann. Overspill avalanching in a dense reservoir network.
P Natl Acad Sci USA, 109:7191–7195, 2012.

[34] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral. The world-
wide air transportation network: Anomalous centrality, community
structure, and cities’ global roles. P Natl Acad Sci USA, 102:7794–7799,
2005.

[35] E. Strano, V. Nicosia, V. Latora, S. Porta, and M. Barthélemy. Ele-
mentary processes governing the evolution of road networks. Scientific
Reports, 2:296, 2012.

79



[36] D. Sornette, F. Deschâtres, T. Gilbert, and Y. Ageon. Endogenous
Versus Exogenous Shocks in Complex Networks: An Empirical Test
Using Book Sale Rankings. Phys Rev Lett, 93:228701, 2004.

[37] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespig-
nani, and D. R. White. Economic networks: the new challenges. Sci-
ence, 325:422–425, 2009.

[38] S. Maslov and K. Sneppen. Specificity and stability in topology of pro-
tein networks. Science, 296:910–913, 2002.

[39] S. A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. J Theor Biol, 22:437–467, 1969.

[40] C. H. A. Higa, V. H. P. Louzada, T. P. Andrade, and R. F. Hashimoto.
Constraint-based analysis of gene interactions using restricted boolean
networks and time-series data. BMC proceedings, 5(Suppl 2):S5, 2011.

[41] K. Takemoto. Does Habitat Variability Really Promote Metabolic Net-
work Modularity? Plos ONE, 8:e61348, 2013.

[42] M. Dhamala, V. Jirsa, and M. Ding. Enhancement of Neural Syn-
chrony by Time Delay. Phys Rev Lett, 92:074104, 2004.

[43] F. Lombardi, H. J. Herrmann, C. Perrone-Capano, D. Plenz, and L. De
Arcangelis. Balance between excitation and inhibition controls the tem-
poral organization of neuronal avalanches. Phys Rev Lett, 108:228703,
2012.

[44] F. Abdelnour, H. U. Voss, and A. Raj. Network diffusion accurately
models the relationship between structural and functional brain con-
nectivity networks. NeuroImage, 90:335–47, 2014.

[45] N. B. Mota, N. A. P. Vasconcelos, N. Lemos, A. C. Pieretti, O. Ki-
nouchi, G. A. Cecchi, M. Copelli, and S. Ribeiro. Speech graphs pro-
vide a quantitative measure of thought disorder in psychosis. Plos ONE,
7:e34928, 2012.

[46] V. Latora and M. Marchiori. Efficient Behavior of Small-World Net-
works. Phys Rev Lett, 87:198701, 2001.

[47] D. Kim and A. E. Motter. Resource allocation pattern in infrastructure
networks. J Phys A-Math Theor, 41:224019, 2008.

80



[48] R. Louf, P. Jensen, and M. Barthelemy. Emergence of hierarchy in cost-
driven growth of spatial networks. P Natl Acad Sci USA, 110:8824–9,
2013.

[49] X. F. Wang. Complex Networks: Topology, Dynamics and Synchro-
nization. Int J Bifucart Chaos, 12:885–916, 2002.

[50] C. Li and G. Chen. Synchronization in general complex dynamical
networks with coupling delays. Physica A, 343:263–278, 2004.

[51] D. Huber and L. Tsimring. Cooperative dynamics in a network of
stochastic elements with delayed feedback. Phys Rev E, 71:036150, 2005.

[52] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford University Press,
New York, 2003.

[53] M. E. J. Newman. The Structure and Function of Complex Networks.
SIAM Review, 45:167–256, 2003.

[54] G. Caldarelli. Scale-Free Networks: Complex Webs in Nature and Tech-
nology (Oxford Finance). Oxford University Press, New York, 2007.

[55] P. Holme, B. Kim, C. Yoon, and S. Han. Attack vulnerability of com-
plex networks. Phys Rev E, 65:056109, 2002.

[56] A. Sydney, C. Scoglio, M. Youssef, and P. Schumm. Characterizing the
Robustness of Complex Networks. IJITST, 2:291–320, 2010.

[57] H. J. Herrmann, C. M. Schneider, A. A. Moreira, J. S. Andrade Jr, and
S. Havlin. Onion-like network topology enhances robustness against
malicious attacks. J Stat Mech, P01027, 2011.

[58] C. M. Schneider, A. A. Moreira, J. S. Andrade Jr, S. Havlin, and H. J.
Herrmann. Mitigation of malicious attacks on networks. P Natl Acad
Sci USA, 108:3838–3841, 2011.

[59] S. Kirkpatrick, C. D. Gelatt, and Vecchi M. P. Optimization by Simu-
lated Annealing. Science, 220:671–680, 1983.

[60] P. Buesser, F. Daolio, and M. Tomassini. Optimizing the Robustness
of Scale-Free Networks with Simulated Annealing. In A. Dobnikar,
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