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Theories of decision-making and its neural substrates have long assumed the existence
of two distinct and competing valuation systems, variously described as goal-directed
vs. habitual, or, more recently and based on statistical arguments, as model-free vs.
model-based reinforcement-learning. Though both have been shown to control choices,
the cognitive abilities associated with these systems are under ongoing investigation.
Here we examine the link to cognitive abilities, and find that individual differences in
processing speed covary with a shift from model-free to model-based choice control
in the presence of above-average working memory function. This suggests shared
cognitive and neural processes; provides a bridge between literatures on intelligence
and valuation; and may guide the development of process models of different valuation
components. Furthermore, it provides a rationale for individual differences in the tendency
to deploy valuation systems, which may be important for understanding the manifold
neuropsychiatric diseases associated with malfunctions of valuation.

Keywords: decision-making, reward, cognitive abilities, model-based and model-free learning, fluid intelligence,

habitual and goal-directed system

INTRODUCTION
Habitual responding to rewards and the pursuit of strategic
goals both play critical roles in complex human decision-making.
Evidence from animal models and human subjects suggests a clear
distinction between these systems of behavioral choice. The sys-
tem of habitual control is reflexive and works on the principles
of reinforcement. The goal-directed system, to the contrary, is
reflective, and works on the principles of planning. These systems
differ in their neural substrates (Killcross and Coutureau, 2003;
Yin et al., 2004, 2005) and in their computational characteristics,
with goal-directed and habitual systems having features of model-
based and model-free reinforcement learning, respectively (Daw
et al., 2005; for reviews, see Rangel et al., 2008; Redish et al., 2008;
Dolan and Dayan, 2013; Huys et al., 2014). Recent empirical evi-
dence provides initial support for this association (Friedel et al.,
2014). Computational accounts (Daw et al., 2005; Johnson and
Redish, 2007; Keramati et al., 2011; Huys et al., 2012; Dolan and
Dayan, 2013) propose that the model-based system constructs
and searches a tree of possible future states and outcomes to
compute action values on the fly. Thus, constructing, updating,
and searching a decision tree demands fast and flexible informa-
tion storage, selection of adequate computations, and depends

heavily on fast computing power (O’Keefe and Nadel, 1978;
Redish, 1999). These components match onto aspects of intelli-
gence including measures of processing speed, working memory
capacity, executive control processes and verbal knowledge (Horn
and Cattell, 1966; Johnson and Bouchard, 2005; Sternberg, 2012).
Yet, how individual differences in specific aspects of intelligence
influence the model-based system and its relative dominance over
model-free choice remains unclear.

Experimental manipulations involving dual tasks and stress
have argued for an important contribution of working memory,
with increases in working memory load resulting in a shift away
from model-based toward model-free decision-making (Schwabe
and Wolf, 2009; Otto et al., 2013a,b), and increases in working
memory resulting in a shift toward model-based decision-making
(Kurth-Nelson et al., 2012; Bickel et al., 2014). Indeed, both
dopamine, which is associated with increased processing speed
and working memory function (De Wit et al., 2011; Wunderlich
et al., 2012), and the lateral prefrontal cortex (Smittenaar et al.,
2013; Lee et al., 2014) appear to be directly involved in model-
based choice and affect the relative balance between the systems.
Accordingly, recent computational models have proposed impor-
tant roles for speed/accuracy tradeoffs (Keramati et al., 2011) in
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the arbitration. We have recently found that individual differences
in measures of processing speed and working memory are related
to neurobiological markers of model-free learning (Schlagenhauf
et al., 2013), and evidence suggests a general involvement of
cognitive abilities in choice (Burks et al., 2009). Other accounts
of the model-based system suggest a role of verbal task coding
(Waltz et al., 2007; FitzGerald et al., 2010), which relates to verbal
knowledge (Lehrl, 2005).

Two broad conceptualizations of the structure of intelligence
are particularly prominent in the literature. The two-component
model (Horn and Cattell, 1966; Sternberg, 2012) identifies two
factors that show differential trajectories in developmental stud-
ies across the life-span: fluid intelligence, measured by tasks
assessing processing speed, working memory, and executive func-
tions; and crystallized intelligence, measured by tests of verbal
knowledge putatively acquired through learning from experi-
ences. Comparing children and old adults, measures of verbal
knowledge tend to share less variance with abilities such as pro-
cessing speed and working memory, suggesting that the (culture-
based) acquisition of knowledge in children and adolescents as
well as the (biologically-driven) decline in processing speed and
working memory with age reflect two distinct components of
intelligence (Li et al., 2004). The verbal-perceptual-image model
(Johnson and Bouchard, 2005) in contrast posits the existence of
one general factor together with three subcomponents consisting
of verbal knowledge, perceptual speed, and visuospatial rotation
abilities. Unlike the two-component model, this conclusion is
derived from cross-sectional studies in middle-aged subjects.

Thus, when considering the relationship between cognitive
abilities, intelligence, and aspects of decision making, multiple
aspects of intelligence need to be taken into account. Importantly,
however, both models of intelligence rely on the same key index
measures of verbal knowledge, perceptual speed, visuospatial
working memory and executive control: the first three reflect
principal components of the verbal-perceptual-image model
(Johnson and Bouchard, 2005), while the first vs. the last three
reflect the crystallized vs. fluid distinction of the two-component
model (Horn and Cattell, 1966).

The computational as well as the experimental considerations
outlined above suggest that the processes underlying these key
index measures may be involved in the model-based system and
in its relative dominance over model-free behavior. However, the
relative contribution and importance of these different aspects of
intelligence is as yet unclear. We therefore examined how the four
key cognitive abilities are related to model-free and model-based
choice components. We use a two-step Markov decision task that
was explicitly designed based on the statistical characteristics of
model-based and model-free choice behavior (Daw et al., 2011).

MATERIALS AND METHODS
PARTICIPANTS
Twenty-nine adults (8 female; mean age 43.3, range 25–58) partic-
ipated in our study. Participants were recruited via advertisements
in local newspapers and social clubs. Exclusion criteria were any
lifetime psychiatric disorder as well as any current medication
that could affect cognitive abilities. Demographic information
and smoking behavior were recorded. Two subjects were excluded

from analyses due to incomplete data. The study was approved
by the local ethics committee of the Charité University Medicine
Berlin.

COGNITIVE ABILITY MEASURES
DSST
For the Digit Symbol Substitution Test (DSST), subjects were pre-
sented with a code table assigning 9 different abstract symbols to
the digits 1–9. Subjects were then presented with a table present-
ing a list of digits in each top and empty boxes in each bottom row,
and instructed to sequentially draw as many of the correspond-
ing symbols underneath the digits as possible in 120 s. DSST
scores reflect the number of correct symbols the participants drew
within that time. The DSST measures general, unspecific process-
ing speed (Salthouse, 1992), and, to a lesser extent, writing speed,
and short-term-memory (Laux and Lane, 1985). In factorial anal-
yses, it has consistently been closely linked to other measures of
processing speed such as the Trailmaking Test, part A (Laux and
Lane, 1985).

Digit span
For the Digit Span test from the Wechsler Adult Intelligence Scale
(WAIS-II; Wechsler, 1997), the experimenter reads out increas-
ingly long sequences of digits. Participants were instructed to
repeat each sequence in reverse order. The experimenter started
with sequences of two digits and increased the number of dig-
its by one until the participant consecutively failed two trials of
the same digit span length. The individual Digit Span score rep-
resents the number of correctly repeated digits in reverse order.
The Digit Span Backwards Task measures verbal working memory
capacity in terms of the number of digits a person can memo-
rize concurrently, and the ability to manipulate these items and
sequence them in reverse order. Of note, it has been suggested that
this aspect of manipulating the order of the digits within working
memory has been related to both working memory capacity and
visuospatial working memory (Li and Lewandowsky, 1995).

TMT
The Trail Making Test (Army Individual Test Battery, 1944) con-
sists of two parts (A and B). In part A, subjects were presented
with 25 numbers written in circles distributed across a sheet of
paper. Subjects were instructed to use a pencil to connect these
numbers in ascending order. In part B, the subjects were presented
with both numbers (1–13) and letters (A–L) written in circles
distributed across a sheet of paper. As in Part A, subjects were
instructed to draw lines to connect the circles in an ascending
pattern, but with the added task of alternating between the num-
bers and letters (i.e., 1-A-2-B-3-C, etc.). Individual TMT A and B
scores are the number of seconds required to complete the task.
For part B, we computed a ratio score dividing the time needed for
completion of part B by the time needed for completion of part
A (Corrigan and Hinkeldey, 1987). The Trail Making Test, part
A measures visual attention and processing speed, and to a lesser
extent, writing speed (Sánchez-Cubillo et al., 2009). Part B, espe-
cially the ratio score, has been consistently linked to measures of
executive function and task set-switching (Arbuthnott and Frank,
2000) and hence has been shown to be an index measure of
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executive functions independent of processing speed (Corrigan
and Hinkeldey, 1987; Sánchez-Cubillo et al., 2009).

MWT
The German vocabulary test (MWT; Lehrl, 2005) consists of
37 lists of 5 verbal items each, of which four represent non-
sense words and one represents a correct word. Participants were
instructed to mark the correct word in each row without time
constraint. Individual MWT scores represent the number of cor-
rectly recognized words. Tests of verbal knowledge have been
related to education and knowledge domains in healthy and
clinical populations (Rolfhus and Ackerman, 1999; Reichenberg
et al., 2006) and have been shown to be relatively independent
of processing speed and working memory components across the
lifespan (Rolfhus and Ackerman, 1999; Li et al., 2004).

TWO-STEP TASK
The two-step decision task (Daw et al., 2011; see Figure 1) was
re-programmed in MATLAB, using the Psychophysics Toolbox
extensions and a different set of colored stimuli. Importantly, the
same sequence of outcome probabilities as used in the original
publication was used. The task required subjects to choose one
of two stimuli (step 1) immediately followed by another stim-
ulus pair at step 2 (see Figure 1A). Participants were instructed
to maximize their rewards. Crucially, the probability of reward at
step 2 changed over time according to an independent random
walk for each of the four step 2 stimuli (Figure 1B). The prob-
abilities of being presented with a given set of stimuli at step 2
were determined by the choice at step 1 and did not change over
time; there was a common (70%) and a rare (30%) transition. To
enhance participants’ motivation one third of all rewards with a
fixed minimum of 3 and a maximum of 10 Euros were addition-
ally paid out at the end of the experiment. Participants were given
very detailed information about the structure of the task; they
were informed about the varying outcome probabilities at step

2 (including being shown sample random walks) and about the
constant transition probabilities between step 1 and 2. Subjects
underwent 50 practice trials prior to performing the task proper.

PROCEDURE
Prior to the experiment, participants were screened by telephone.
The laboratory test session lasted 1 h in total and started with ver-
bal and written informed consent. After that, participants com-
pleted the two-step task, followed by a debriefing questionnaire
asking participants for specific strategies, their motivation, and
alertness throughout the experiment. Then, participants under-
went the neuropsychological testing containing the cognitive abil-
ity measures. After completing the Digit Span Backwards Task and
the Trail Making Test, participants completed the DSST followed
by the German vocabulary test MWT. Finally participants were
debriefed and paid out the monetary compensation.

ANALYSES
Given an expected true correlation between cognitive ability
scores and behavioral markers of model-based choice of r = 0.45
(cf. Smittenaar et al., 2013) we performed a priori Monte Carlo
simulations (n = 100.000), which showed that our sample size
provides a reasonable 71% chance for finding a significant effect.

We used R version 3.0.0 (R Development Core Team, 2013)
for data analysis. Following Daw et al. (2011), we performed
both analyses on the repetition probability of step 1 choices, and
model-based analyses.

STEP 1 REPETITION PROBABILITIES
In a first step we focused on the within-subject probabilities for
repeating step 1 choices. The rationale for analysing step 1 repe-
tition probabilities is as follows (see also Figure 1). In model-free
choice (habitual system), the choice probability depends on past
reinforcements only. A previously rewarded step 1 choice will

FIGURE 1 | (A) Trial structure: Step 1 consisted of a choice between two
abstract gray stimuli. The unchosen stimulus faded away while the
chosen stimulus was highlighted with a red frame and moved to the top
of the screen, where it remained visible for 1.5 s. In Step 2 a second,
colored, stimulus pair appeared. Step 2 choices resulted either in a win of
20 Cents or no win. (B) Transition structure: Each first stage stimulus led
to one, fixed, second stage pair in 70% of the trials (common transition),
and to the other second stage stimulus pair in 30% of the trials (rare
transition). Reinforcement probabilities for each second stage stimulus
changed slowly and independently between 25% and 75% according to

Gaussian random walks with reflecting boundaries (Daw et al., 2011). Win
probabilities, P (reward), are displayed as a function of trial number. (C)

Model predictions: Predictions from the computational model (Daw et al.,
2011) based on the model-free (left panel) vs. model-based (right panel)
system for the probability to repeat the choice from the previous trial as
a function of reward (rew., rewarded; unrew., unrewarded) and transition
type at the previous trial. Model-free choice predicts a main effect of
reward, and no effect of transition. Model-based choice predicts an
interaction of transition × reward. Figure partly adapted from Sebold et al.
(2014).
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tend to be repeated irrespective of whether it led to reinforce-
ment through a common or rare transition, and hence lead to
a main effect of reinforcement on the previous trial (but no effect
of frequency and no interaction between frequency and rein-
forcement). A simple single-subject measure of the model-free
contribution is thus given by the main effect of reward:

P(repeat (t) | reward(t − 1)) − P(repeat (t) | no reward(t − 1)).

Conversely, the model-based system is sensitive to the transi-
tion probabilities. Subjects who exhibit model-based strategies
will prefer a switch after a rare transition is rewarded or a com-
mon transition is punished; and will tend to stay after a common
transition is rewarded or a rare transition punished. Thus, a sim-
ilarly simple measure of the model-based contribution is the
single-subject interaction between reward and frequency.

Step 1 repetition probabilities (repetition = 1 vs. switch = 0)
at trial N were predicted by reward (i.e., reward = +0.5 vs. no
reward = −0.5) and transition (common = +0.5 vs. rare = −0.5)
at the preceding trial (N − 1) using a baseline logistic linear
mixed-effects model (GLMM; Pinheiro and Bates, 2000; fitted
using the glmer function from the lme4 package; Bates et al., 2013;
using a maximal random effects structure; Barr et al., 2013). For
statistical testing, we use unstandardized orthogonalized logistic
regression coefficients, b, reflecting an unstandardized effect size
(on a logit scale), together with 95% confidence intervals (CIs)
based on posterior simulations (n = 10.000 per model; under a
flat prior) using the sim function in the arm package (Gelman
et al., 2013). To enable comparison of effect sizes between cog-
nitive abilities, we moreover report (exponential) standardized
regression coefficients β. The effects of the five cognitive ability
scores on repetition-probabilities were tested by separately adding
linear and quadratic terms of each ability score. For models
where all effects involving a quadratic trend were non-significant,
quadratic terms were removed from the model. Median- and
tertile-splits of the ability scores were computed for plotting.

We tested the effects of each cognitive ability measure on
individual choice strategies by computing separate generalized
linear mixed-effects models (GLMM; see Table 2 for the results).
We tested the effects of all five ability measures on the main
effect of reward and the reward × transition interaction, and cor-
rected p-values for the False Discovery Rate (FDR; Benjamini
and Hochberg, 1995) for the 10 tests (5 measures × 2 lin-
ear/quadratic effects). In an explorative manner, we additionally
tested the main effect of cognitive abilities on overall repetition
probabilities—reflecting choice stickiness—and whether cogni-
tive abilities moderated the transition effect, again correcting FDR
for 10 tests.

COMPUTATIONAL MODELING
We fitted the original computational model by Daw et al. (2011)
using a mixed-effects fitting procedure (Huys et al., 2012). The
model contains seven free parameters: the inverse temperature
parameters at the first- (β1) and second-stage (β2) that control
how deterministic choices are; the first- (α1) and second-stage
learning rate (α2); the relative degree of second-stage prediction
errors to update first-stage model-free values (λ); the weighting
parameter (ω) determining the balance between model-free

(ω = 0) and model-based (ω = 1) control; as well as p, which
captures first-order perseveration. Table 3 displays the estimated
parameter values. We then tested the effects of the cognitive abil-
ity scores on individual parameter estimates using correlations
and linear models. Due to the normal distribution assumption in
parameter fitting and statistical analysis we transformed bounded
model parameters to an unconstrained scale via a logistic
transformation [x′ = log(x/(1 − x))] for parameters α1, α2, λ,
and ω and via an exponential transformation [x′ = exp (x)] for
parameters β1 and β2.

RESULTS
Table 1 provides the summary statistics for the cognitive ability
measures. There was a large range of cognitive abilities. DSST
and TMTspeed scores were highly correlated, suggesting that both
measures share variance related to processing speed (Corrigan
and Hinkeldey, 1987; Sánchez-Cubillo et al., 2009). As expected,
the executive control measure (TMTexec) was largely indepen-
dent of perceptual speed and working memory (Corrigan and
Hinkeldey, 1987; Arbuthnott and Frank, 2000; Sánchez-Cubillo
et al., 2009), and working memory functioning exhibited only
small and statistically non-significant correlations with process-
ing speed (Li and Lewandowsky, 1995). Verbal knowledge corre-
lated with processing speed, suggesting some amount of shared
variance related to general intelligence between these measures
(Johnson and Bouchard, 2005).

In the two-step task, we found a main effect of reward (b =
0.68, 95% CI [0.42 0.94], exp(β) = 1.97, p < 0.001) and a
reward × transition interaction (b = 1.15 [0.55, 1.72], exp(β) =
3.16, p < 0.001), indicating contributions of both model-free and
model-based strategies to our data. The main effect of transition
(b = 0.15 [–0.01 0.34], exp(β) = 1.16, p = 0.06) did not reliably
differ from zero. There was substantial inter-individual variance
in all three measures (1.34 ≥ SDb ≥ 0.25).

MEASURES OF COGNITIVE ABILITIES ARE ASSOCIATED WITH BOTH
MODEL-BASED AND MODEL-FREE DECISIONS
Several aspects of cognitive abilities affected the strength of
model-based decision-making as measured by the reward ×

Table 1 | Summary statistics of fluid intelligence scores.

Task DSST TMTspeed TMTexec Digit span MWT-B

backwards

Mean (SD) 68.6 (15.9) 34.2 (12.1) 2.2 (0.76) 7.6 (2.6) 32 (3.2)
Range
(Min − Max)

35–98 20–70 1.1–4.7 4–14 24–37

Correlations
TMT speed −0.575**

TMT exec −0.099 −0.282
Digit Span
Backwards

0.306 −0.121 −0.090

MWT-B 0.576** −0.490** −0.205 0.379+

**p < 0.01; +p < 0.1; DSST, Digit Symbol Substitution Task score; TMTspeed,

Trail Making Test A in s; TMTexec, Trail Making Test B in s/TMTspeed);

Digit Span, Digit Span Backwards maximum span retained; MWT-B, German

vocabulary test.
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Table 2 | Logistic mixed-effects model results testing the effects of individual cognitive abilities on reward, transition frequency, and their

interaction in first-stage choice repetition.

DSST TMTspeed MWT

exp(β) Punc PFDR exp(β) Punc PFDR exp(β) Punc PFDR

Main effect ability
ability linear 1.65 0.003** 0.03* 1.43 0.06+ 0.11 1.47 0.04* 0.09+

ability quadratic 0.81 0.02* 0.08+

Reward × ability
ability linear 1.18 0.096+ 0.48 1.12 0.35 0.83 1.11 0.43 0.83
ability quadratic 0.78 0.002** 0.02*

Transition × ability
ability linear 1.20 0.02* 0.08+ 1.12 0.17 0.42 1.07 0.44 0.63
ability quadratic 0.92 0.14 0.42

Reward × Transition × ability
ability linear 2.23 0.003** 0.03* 1.89 0.02* 0.06+ 1.79 0.03* 0.10+

ability quadratic – – –

+p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001; exp(β), exponential standardized logistic regression coefficient, indicating the (multiplicative) influence of cognitive

ability scores on odds-ratios; p-values indicate significance: Punc, uncorrected; PFDR, FDR corrected; DSST, Digit Symbol Substitution Task score; TMT, Trail Making

Test A in s × −1; MWT, German vocabulary test score (Mehrfachwahl-Wortschatz-Intelligenz Test). Main effect ability reflects choice stickiness. Reward indicates

whether participants were rewarded or not on the preceding trial, reflecting model-free learning. Transition indicates whether previous transition was common or

rare. The reward × transition interaction reflects model-based learning. BothTMTexec (=Trail Making Testexecutive) and Digit Span Backwards did not significantly

interact with reward, transition, or their interaction and results from these variables are presented in the SOM. Control analyses showed that all significant effects

survived statistical control for years of education as well as its interactions with reward, transition, and reward × transition.

Table 3 | Computational mixed-effects model parameter estimates.

Parameter β1 β2 α1 α2 λ ω p

Mean 5.00 3.63 0.39 0.25 0.45 0.49 0.12
Subject SD 0.46 0.18 0.34 0.51 0.44 0.80 0.16

Standard Deviations (SD) of the parameters are given on the transformed scale

used for parameter fitting and statistical analysis. Statistical tests for model

components are based on Bayesian model comparison (see SMO). Subject

SD indicates variability of estimated model parameters across individual partic-

ipants. In the model fitting, we allowed all model parameters to vary across

subjects; this procedure effectively de-confounds effects of cognitive abilities on

model parameters from any other process captured in the computational model.

transition effect. There was a significant three-way interaction
between linear DSST, reward, and transition (b = 59 [21 96];
for p-values see Table 2), indicating more model-based choices
in high speed (DSST) subjects (see Figures 2A–C,E). Similar
three-way interactions involving linear TMTspeed (b = −47
[−83 −11]; see SOM Figure S1A) and linear MWT (b = 43 [5
81]; see SOM Figure S1B) also showed more model-based behav-
ior with increasing TMTspeed and MWT, but did not survive FDR
correction (p < 0.10, see Table 2). There was no significant effect
for any other cognitive ability measure.

There were also associations with model-free performance
measured in terms of the main reward effect. There was a
significant interaction between reward and quadratic DSST
(b = −22 [−36 −8]; see Figure 2D), indicating that individuals
with a medium level of processing speed, i.e., DSST performance,
(Figure 2B) showed strongly model-free behavior (i.e., strong
main effect reward), which was reduced or absent for high-

(Figure 2C) or low- (Figure 2A) DSST participants. No other
interaction between cognitive abilities and the effect of reward was
significant.

Exploratively, we also tested whether cognitive abilities inter-
act with transition and stickiness. There were no significant effects
involving transition. Stickiness (indicated by the average repe-
tition probability) did increase linearly with DSST (b = 38 [13
62]). Effects of other cognitive abilities did not survive correction
for multiple comparisons.

MEASURES OF COGNITIVE ABILITIES MODULATE THE TRADEOFF
BETWEEN MODEL-BASED AND MODEL-FREE DECISIONS
To directly examine how variation in DSST is associated with the
tradeoff between model-free and model-based behavior, we first
computed a difference score that measured each participant’s rela-
tive preference for model-based over model-free behavior: wrepeat

= “reward × transition” − “reward” (cf. Smittenaar et al., 2013).
There was a marginal linear (b = 0.34 [−0.04 0.72], p = 0.08)
but a significant quadratic (b = 0.49 [0.10 0.88], p = 0.02) asso-
ciation between DSST and wrepeat, reflecting a shift from model-
free control in low-DSST participants to model-based control in
high-DSST participants.

The above analyses consider the effects of reward and
transition on the next choice, but ignore more long-term
effects. Reinforcement learning approaches (Sutton and Barto,
2009) allow explicit formulation of learning and decision-
processes and thus test their ability to account for the entire
dataset. We fitted such a model to the choice data. It com-
prised model-free and model-based components (Daw et al.,
2011), and a parameter ω for the tradeoff between the two
systems.
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FIGURE 2 | (A–C) Choice repetition probabilities: Average proportion of
trials on which participants repeated their previous choice, as a function
of outcome (reward vs. no reward) and transition (common vs. rare) at
the previous trial. Results are presented for individuals with a low (A,
35–59), medium (B, 59–75), and high (C, 76–98) performance score on
the Digit Symbol Substitution Test (DSST ). Error bars are subject-based
standard errors of the means. (D–E) Individual reward and transition

effects and DSST performance: Individual estimates of the main effect of
reward (= rewarded − unrewarded; D) and the reward × transition
interaction (= rewarded common − rewarded rare − unrewarded
common + unrewarded rare; E) on repetition-probabilities (p_repeat:
repetition = 1, switch = 0) as a function of individual DSST scores. Lines
show the estimated quadratic (D) and linear (E) effects with 95%
confidence intervals.

There was a linear correlation between DSST and individual
ω parameter estimates (r(25) = 0.42 [0.04 0.68], p = 0.03; see
Figure 3A), confirming that high-DSST participants relied more
on model-based and low-DSST more on model-free learning.

There was no main effect of working memory functioning.
However, given recent accounts whereby the balance between
model-free and model-based control is moderated by working
memory (Otto et al., 2013b; Smittenaar et al., 2013), we asked
whether working memory functioning might moderate the DSST
effect. We split the Digit Span Backwards score along its median,
and regressed individual ω estimates on the two-way interac-
tion of the continuous DSST score with the categorical Digit
Span factor (high vs. low). This revealed a significant DSST ×
Digit Span Backwards interaction (b = 2.73 [0.18 5.26], β = 0.53,
p = 0.03, R2 = 0.36; for the continuous interaction: p = 0.12).
Figure 3B shows that large values of ω are achieved only when
high DSST scores are paired with a high working memory func-
tioning (DSST effect: b = 3.24 [1.03 5.46], β = 0.64, p = 0.006),
whereas high DSST performance does not enhance model-based
relative to model-free control for individuals with low working
memory functioning (DSST effect: b = 0.51 [−0.67 1.71], β =
0.10, p = 0.37).

The effects of DSST for individuals with a high working mem-
ory functioning (b = 3.09 [0.30 5.86], β = 0.61, p = 0.03) and

the DSST × Digit Span Backwards interaction (b = 2.83 [0.02
5.69], β = 0.56, p < 0.05) on ω remained significant when con-
trolling for other cognitive ability scores, suggesting that the
effects were unique to the two scores and independent from the
other abilities.

Finally, we explored whether DSST was associated with any
other model parameter and FDR corrected p-values for the six
tests. There were three significant correlations: First, with the
second stage learning parameter α2 (r(25) = 0.57 [0.24 0.78];
p = 0.002 uncorrected; p = 0.01 corrected; Figure 3C), reflect-
ing faster second stage learning in high- compared to low-DSST
participants; second, with the λ parameter (r(25) = 0.47 [0.11
0.72]; p = 0.01 uncorrected; p = 0.04 corrected; see Figure 3D),
indicating stronger update of model-free step 1 action values
by step 2 prediction errors in high- compared to low-DSST
participants; and third, with the stickiness parameter p(r(25) =
0.44 [0.07 0.70]; p = 0.02 uncorrected; p = 0.04 corrected;
Figure 3E), reflecting predisposition to stronger choice stickiness.

OVERALL PERFORMANCE
Model-based decisions are more effective in the two-step task.
Indeed, subjects with higher DSST scores had achieved more
rewarded trials (r(25) = 0.38 [0.01 0.67], p < 0.05; see SOM
Figure S2). This effect disappeared when controlling for the
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FIGURE 3 | Individual parameter estimates and DSST performance:

Maximum posterior parameter values of the dual-system reinforcement

learning model for each participant as a function of performance on the

Digit Symbol Substitution Test (DSST ) are displayed. The lines represent
predictions from linear regressions of each model parameter on DSST
scores, with 95% confidence intervals (CI). (A–D) Regression lines and CI in
unbounded fitting-space were transformed to model-space for plotting by
passing them through the inverse-logit function. (A) Best-fitting individual

parameter values for the weighting parameter ω, which determines the
balance between model-free (weight = 0) and model-based (weight = 1)
control. (B) Regression of best-fitting weighting parameter values on the
interaction between DSST scores × working memory span (median-split
factor). (C) Best-fitting parameter values for the second-stage learning rate
α2. (D) The lambda (λ) parameter determines update of model-free step 1
action values by step 2 prediction errors. (E) Repetition factor, p, indicates
how strongly individuals tend to repeat previous actions.

weighting parameter (ω; partial correlation: r(25) = 0.27 [−0.12
0.59], p = 0.17; correlation between ω and rewarded trials:
r(25) = 0.38 [−0.004 0.66], p = 0.053), indicating that high-
DSST subjects increased their reward by relying on model-based
control.

DISCUSSION
We examined how cognitive abilities were related to model-free
and model-based components of decision-making using a task

specifically designed to dissociate these components (Daw et al.,
2011). We found that specific abilities are differentially related to
model-based and model-free choice.

The central finding is that processing speed consider-
ably enhanced model-based over model-free choice behavior.
Participants with higher DSST and TMT speed scores had higher
markers of model-based behavior (c.f. Arbuthnott and Frank,
2000; Joy et al., 2003). This finding is in line with theoreti-
cal accounts of model-based and model-free decision-making,
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which propose that model-based predictions are computation-
ally expensive and time consuming (Daw et al., 2005; Keramati
et al., 2011; Huys et al., 2012). To determine the value of an
action, the model-based system considers each possible outcome
for this action: it computes how likely each outcome is, what its
expected value will be, and then integrates this information to
estimate overall action value (see SOM, Equation 4). Model-free
action values, in contrast, are pre-computed, stored in memory
and readily available for choice.

There are several prominent accounts of the arbitration
between the two systems. Daw et al. (2005) suggested that arbitra-
tion depends on the relative certainty of the predictions made by
the two systems. Cognitive abilities could affect this in a number
of ways. First, considering delay discounting, Kurth-Nelson et al.
(2012) suggested that cognitive abilities could influence the search
process. Under time pressure, lower processing speed might lead
to poorer model-based predictions due to incomplete calcula-
tions. Second, Keramati et al. (2011) suggested that arbitration
is determined by the value of information and reflects trade-
offs between speed and accuracy. Lower processing speed might
make it more expensive to perform model-based evaluations. It
might be possible to disentangle these possibilities by systemati-
cally exploring the effect of time pressure and uncertainty in the
two systems (Lee et al., 2014). Third, system damage could also
impair the functioning of either system and lead to a bias away
from it (Redish et al., 2008), though this is unlikely to be rele-
vant to the current sample of healthy subjects. Finally, arbitration
between systems may be instantiated through an external system
(Rich and Shapiro, 2009; Lee et al., 2014), or may be guided by
self-consistency of each system’s action proposal (Van der Meer
et al., 2012).

Of note, the actual cognitive computations probed by the
DSST are somewhat similar to those probed by model-based
choices in the present task. Performing the DSST efficiently
requires associating complex shapes with numbers, while in the
two-step task, choices at the first step can in part be driven by the
association of action sequences with numbers (the reward out-
comes; Dezfouli and Balleine, 2012, 2013; Huys et al., 2014). That
is, model-based control might relate to individual differences in
the ability to manipulate complex sequence information, and
hence reduce the number of computations needed to compute
model-based predictions. Indeed, this link has been proposed
previously with respect to general cognitive abilities, whereby a
key aspect of intelligence is the ability to subdivide complex tasks
into larger chunks (Bhandari and Duncan, 2014). The correlation
between DSST and the parameter λ in the model (which medi-
ates the effect of rewards on first-stage choices) may be seen in
this light, and suggests that high processing speed may help to
subdivide the complex two-step task into an efficient cognitive
task representation, which closely links first-stage actions to their
associated reward outcomes at terminal states.

The findings with respect to DSST are qualified by the find-
ings involving working memory functioning. The specific task
used in our study reflects both working memory capacity and
manipulation of information within working memory (Li and
Lewandowsky, 1995). Beyond the effects of processing speed, we
did not find a strong effect of working memory functioning per se.

We did however find that processing speed and working memory
functioning interacted to moderate the tradeoff between model-
based and model-free choices. Only people with high working
memory functioning benefited from processing speed advantages
to reach high values of model-based control. This suggests that
the ability to compute model-based predictions (i.e., planning)
and to manipulate complex task chunks depends on a substantial
working memory functioning, and implies that dual-task manip-
ulations (Otto et al., 2013a) may interfere with this prerequisite
working memory capacity and the ability to manipulate complex
representations. Furthermore, the complex spatial nature of the
two-step task may require the ability to manipulate information
within visuospatial working memory, which has been related to
performance on backward digit span as used in our study (Li and
Lewandowsky, 1995). More generally, it indicates that working
memory functioning in that context represents a necessary but
not a sufficient prerequisite for model-based choice behavior.

Interestingly, we also found a relation of the knowledge-based
aspects of intelligence (as evinced by the vocabulary test) with
model-based control. Knowledge-based or crystallized intelli-
gence reflects accumulated knowledge about the world, i.e., it
provides the kinds of world models that model-based perfor-
mance may rely on. On the other hand, high verbal knowledge
might support verbal task-coding in the model-based system,
reflecting either spontaneous construction of verbal strategies
or improved comprehension of instructions, i.e., by promoting
model-construction based on verbally transmitted information.

With respect to model-free choice behavior, we found evi-
dence for a quadratic relationship between processing speed and
model-free choice. We here speculate that this quadratic effect
may relate to two distinct influences of processing speed on (i)
successful learning of the space of states and actions in the task
environment and on (ii) relative reliance on the model-free (as
compared to the model-based) system. Model-free learning algo-
rithms depend on correct representations of the states and actions
in the current environment, which needs to be learned from
rather complex sequences of events in the two-step task. Here,
a minimum level of processing speed may be needed for this
learning to succeed and to support successful model-free learning.
Higher levels of processing speed, to the contrary, may reduce the
influence of model-free values on choice and induce a shift toward
model-based behavior.

Interestingly, the pattern of results does not map onto either
conceptualization of intelligence in any simple manner. In terms
of the two-component model (Horn and Cattell, 1966; Li et al.,
2004; Sternberg, 2012), we found evidence for an association
between measures of fluid intelligence and model-based choice
behavior, but we also found a trend association with crystallized
intelligence. Likewise, for the verbal-perceptual-image model of
intelligence (Johnson and Bouchard, 2005), we found associations
between all components and model-based choice.

CONCLUSIONS
In conclusion, specific aspects of individual variation in cogni-
tive abilities are associated with individual variation in model-free
vs. model-based decision-making and point toward potentially
important components of the reinforcement learning process.
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This work also provides a bridge between procedurally defined
cognitive ability components and neurocomputationally defined
ones as in the two-step task, and paves the way for more detailed
process-oriented models of neurocomputationally well-defined
decisions. As the tradeoff between model-based and model-free
decision-making is of great interest in the investigation of a vari-
ety of disorders (Everitt and Robbins, 2005; Gillan et al., 2011;
Sebold et al., 2014; Sjoerds et al., 2014), this study highlights
the importance of detailed measures of cognitive abilities, which
may provide potential moderating or protective factors for aber-
rant decision-making processes associated with neuropsychiatric
diseases.
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