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– Development and implementation of the numerical model

– Execution and evaluation of the simulations

– Redaction of manuscript draft

• Bruno Weber and Patrick Jenny

– Development of the principal idea of the investigation

– Guiding and supervision of the project

http://ajpheart.physiology.org/content/308/3/H206


Abstract1

Most oxygen required to support the energy needs of vertebrate tis-2

sues is delivered by diffusion from microvessels. The presence of red3

blood cells (RBCs) makes blood flow in the microcirculation highly4

heterogeneous. Additionally, flow regulation mechanisms dynamically5

respond to changes in tissue energy demand. These spatio-temporal6

variations directly affect the supply of oxygen to parenchymal cells.7

Due to various limiting assumptions, current models of oxygen trans-8

port cannot fully capture the consequences of complex hemodynamic9

effects on tissue oxygenation, and are often not suitable for study-10

ing unsteady phenomena. With our new approach based on moving11

RBCs, the impact of blood flow heterogeneity on oxygen partial pres-12

sure (Po2) in the tissue can be quantified. Oxygen transport was13

simulated using parachute-shaped solid RBCs flowing through a cap-14

illary. Using a conical tissue domain with radii 19 µm and 13 µm15

respectively, our computations indicate that Po2 at the RBC mem-16

brane exceeds Po2 between RBCs by 30 mmHg on average, and that17

the mean plasma Po2 decreases by 9 mmHg over 50 µm. These results18

reproduce well recent intravascular Po2 measurements in the rodent19

brain. We also demonstrate that instantaneous variations of capillary20

hematocrit cause associated fluctuations of tissue Po2. Further, our21

results suggest that homogeneous tissue oxygenation requires capil-22

lary networks to be denser on venular side than on arteriolar side.23

Our new model for oxygen transport will make it possible to quantify24

in detail the effects of blood flow heterogeneity on tissue oxygenation25

in realistic capillary networks.26
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1 Introduction29

The supply of oxygen to tissues is an essential function of the vertebrate cir-30

culatory system. Oxygen bound to hemoglobin is carried from the lungs by31

the blood circulation to the target regions, and finally reaches individual cells32

by diffusive transport from microvessels. Red blood cells (RBCs) make up33

about 45% of the blood volume and contain hemoglobin, which is the main34

oxygen carrier. Gas exchange mostly occurs in the microcirculation, where35

erythrocytes and vessel diameters are similar in size. In particular, RBCs36

need to deform in order to enter capillaries. The particulate nature of blood37

has profound effects on hemodynamics and hence on oxygen transport. Blood38

rheological properties and the complex geometry of microvascular networks39

cause large variations of hematocrit which are specific to the microcircula-40

tion. Additionally, the microcirculation is a dynamic system that adapts to41

changes in energy metabolism. In the brain, blood flow is controlled by arteri-42

oles as well as capillaries (13); in muscles, capillary recruitment increases the43

surface area for diffusion in response to contractile activity (31). The tem-44

poral and spatial variations in the microcirculation render investigations by45

both experiments and theoretical models challenging. However, new exper-46

imental techniques such as two-photon phosphorescence lifetime microscopy47

were applied to measure in vivo oxygen tensions at depths up to 300 µm48

(19). In spite of these advances, control of physiological parameters and si-49
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multaneous measurements at multiple locations remain difficult to achieve.50

Theoretical models for oxygen transport ideally complement experiments by51

providing precise control on all variables and making it possible to isolate52

their individual influence.53

Oxygen modeling started with the seminal work of Krogh (18). For a54

tissue cylinder with a capillary at its center, the Krogh-Erlang equation yields55

an estimate of the oxygen gradient that is required to sustain a given rate56

of oxygen consumption. In the 1970s, Hellums (14) modeled for the first57

time oxygen transport with individual red blood cells and coined the term58

“erythrocyte-associated transients” (EATs). The presence of EATs in the59

blood was observed experimentally about thirty years later by Golub and60

Pittman (11) and confirmed with micrometric resolution by Parpaleix et al.61

(24). Further modeling studies have extended the original Krogh model and62

considered microvascular networks.63

Models for oxygen transport in the microcirculation were reviewed by64

Goldman (8). Current models for oxygen transport from capillaries to tissue65

generally employ two distinct approaches. The first class of models focuses66

on the tissue and does not represent individual RBCs. Instead, they employ a67

boundary condition at the capillary wall that accounts for oxygen transport68

from the capillary. While the original Krogh model assumed a constant69

oxygen tension at the capillary wall, more recent models often use a mass70

transfer coefficient (MTC) that relates the Po2 drop from the RBC to the71

oxygen flux across the capillary wall (j = k∆P ). Since these MTCs depend72

on hematocrit (15, 5), this approach captures the influence of RBC flow on73

tissue oxygenation. Besides, these models have the advantage that they do74
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not resolve the complex intravascular Po2 field with individual RBCs, which75

makes them applicable to capillary networks (9, 29, 10, 35). However, this76

first class of models is dependent on other models that compute the oxygen77

flux out of capillaries.78

The second approach models intravascular oxygen transport in more de-79

tail and can be used to compute MTCs. Accurate MTC estimates re-80

quire discrete RBCs to be modeled (14, 6, 15) (as opposed to a continuous81

hemoglobin solution) and extracapillary oxygen transport to be included (5).82

Most models with individual RBCs carry out computations in the frame of83

reference of the erythrocyte, which simplifies the numerical treatment of the84

reaction between oxygen and hemoglobin in RBCs. In this moving frame,85

the tissue has an apparent velocity opposite to the RBC velocity and appears86

to move backwards. This idea was first used by Hellums (14) who used an87

analytical model with a cylindrical RBC and the adjacent tissue to compute88

MTCs. Eggleton et al. (5) built on this approach and used a model with con-89

centric layers around the capillary for wall, interstitial fluid and the tissue.90

They investigated the dependence of MTCs on hematocrit, RBC velocity91

and capillary radius. The resulting MTCs can then be used in simulations92

of oxygen transport in complex capillary networks (9, 29, 10, 35).93

Although the models for intravascular oxygen transport described above94

are convenient for numerical computations and useful for estimating MTCs,95

they suffer from limitations that restrict their scope. In the RBC frame of96

reference, the boundary condition at the distal end of the tissue cylinder has97

a considerable effect on tissue Po2 since the Po2 value at that boundary is98

advected backwards by the apparent tissue motion. Therefore, models that99
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use the RBC frame cannot fully capture the influence of RBC flow on tissue100

Po2, which is essential in applications such as hypoxia. These models are also101

inflexible in terms of geometry, since the backward motion of the tissue forces102

the computational domain to have the same radial cross section along the103

flow direction. For instance, local capillary dilations, as observed in vivo (13),104

cannot be simulated with this class of models. Furthermore, the simulation105

duration is limited to the time that RBCs spend in capillaries (100 to 300 ms106

in the cerebral cortex (16)). For applications that require a larger simulation107

time (e.g., functional hyperemia), it is also necessary to use the frame of108

reference of the tissue, as done by models based on MTCs. Unlike other109

studies, Groebe and Thews (12) modeled individual RBCs in a fixed tissue110

region. However, their approach is limited to steady state situations and111

relies on multiple simplifying assumptions that allow an analytic treatment112

of the intra-erythrocyte Po2 field.113

Finally, Goldman (8) pointed out that thorough model validations have114

yet to be done. For intravascular Po2, this task puts constraints on both the115

simulation method and the required experimental data. Since Po2 is gener-116

ally measured at one or more fixed locations, a convenient model validation117

should be performed in the fixed frame of reference of the tissue. Besides,118

a detailed comparison with measured intravascular Po2 requires high spa-119

tial and temporal resolution. Pioneering work by Vanzetta and Grinvald120

(37) has revealed Po2 transients related to neuronal activation and oxygen121

metabolism with the use of phosphorescence lifetime microscopy. Using one-122

photon excitation with a lower excitation volume, Golub and Pittman (11)123

measured EATs in the rat mesentery. However, until now, only two-photon124
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phosphorescence lifetime microscopy achieved sufficiently high resolution to125

enable in vivo measurements of the Po2 between RBCs in depth. This tech-126

nique was applied by Parpaleix et al. (24) in the olfactory glomerulus of the127

rodent brain. Sakadžić et al. (27) used it in the rat cerebral cortex, without128

reporting details of the intravascular Po2 field. Due to the absence of other129

detailed experimental studies, we compared our simulation results with the130

data from (24).131

We propose a new model of oxygen transport in the microcirculation that132

is adapted for validation against experimental data. The main improvement133

over previous models is the use of overlapping meshes, which simultaneously134

allows the frame of reference of the tissue to be fixed and individual RBCs135

to be modeled. Hence, the coupling between intravascular oxygen transport136

and tissue Po2 can be captured together with the details of the Po2 field in-137

side and around capillaries. Individual RBCs are followed by moving meshes138

that are used to compute hemoglobin diffusion and reaction with oxygen.139

These moving meshes are mapped onto a fixed mesh, where oxygen advec-140

tion, diffusion and consumption in the tissue are computed. This approach141

can capture the influence of heterogeneous RBC flow on tissue oxygenation142

in a time-dependent manner. Situations with unsteady blood flow such as143

functional hyperemia can be modeled by adapting blood velocity and hema-144

tocrit. A thorough comparison with the experimental data from Parpaleix145

et al. (24) showed that both intra- and extravascular oxygen transport are146

accurately simulated. For this comparison, an axisymmetric geometry based147

on Eggleton et al. (5) with concentric layers for the plasma, the capillary148

wall and tissue was used. However, we found that a cone-shaped geometry149
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as used by Hudetz (17) yields a better agreement with the measurements150

than a cylinder with constant radius. MTCs were also compared with results151

from previous models.152

Although we apply this new model to an axially symmetric geometry,153

our algorithm is formulated in a general way and can be applied to arbi-154

trary geometries. Therefore, using a model for RBC transport (e.g., (23)) to155

compute RBC trajectories, oxygen transport can be simulated in arbitrary156

capillary networks with realistic RBC dynamics. Our efficient time-stepping157

scheme allows taking large time steps and makes our model tractable in158

complex geometries. This will enable the investigation of the effects of159

blood flow heterogeneity during physiologically relevant phenomena such as160

microstrokes or capillary dilations (13).161

2 Methods162

2.1 Mathematical model163

Oxygen transport and consumption was modeled in a domain that consists of164

four regions: tissue, capillary wall, plasma and RBCs. Oxygen is consumed165

only in the tissue; the capillary wall does not consume oxygen and has a166

lower diffusion coefficient; in both plasma and RBCs, oxygen is convected167

by the blood flow. Finally, RBCs contain hemoglobin, which carries oxygen168

in bound form. In fact, due to the low solubility of oxygen in plasma, most169

oxygen in capillaries is bound to hemoglobin.170

Dissolved oxygen can be quantified by its concentration C [mlO2 cm−3]171
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and partial pressure P = Po2 [mmHg], which are related by Henry’s law as172

C = αP, (1 )

where α is the solubility coefficient in mlO2 cm−3 (mmHg)−1. The formu-173

lation of the conservation equation for oxygen in terms of C = αP is most174

convenient for our purposes. Hemoglobin is expressed using the saturation175

S, which is the concentration ratio of oxyhemoglobin to total hemoglobin.176

The reaction between oxygen and hemoglobin in RBCs is most completely177

described by the Adair equation (3). However, as in many previous studies,178

here we employ the Hill equation179

S =
P n

P n
50 + P n

(2 )

to describe the equilibrium curve between P and S, where P50 is the oxygen180

partial pressure at hemoglobin half-saturation and n is the Hill exponent.181

This results in a one-step reaction for the four heme groups of the hemoglobin182

molecule. To model the reaction rates when oxygen and hemoglobin are in183

nonequilibrium, we followed the approach of Clark et al. (3) and used the184

function185

f(P, S) =


k−

(
S − (1− S)

(
P

P50

)n)
inside RBCs,

0 outside RBCs,

(3 )

where k− is the dissociation rate. This function satisfies f = 0 when oxygen186

and hemoglobin are in equilibrium (Eq. (2 )). Since no hemoglobin is present187
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in healthy blood plasma, the reaction term f(P, S) was only used within188

RBCs.189

Oxygen consumption was modeled using first-order Michaelis-Menten ki-190

netics (8) and assumed to occur only in the tissue, which results in191

M(P ) =


M0

P

Pcrit + P
inside tissue,

0 outside tissue,

(4 )

whereM0 is the maximal metabolic rate of oxygen consumption in mlO2 cm−3 s−1
192

and Pcrit is the oxygen level at which consumption is half of M0. Since we193

compared our results with measurements performed in the rodent brain where194

no muscles are present, we did not consider myoglobin-facilitated diffusion of195

oxygen inside the tissue.196

Our model is based on a single equation for oxygen for all regions, that197

is,198

∂αP

∂t
+ v · ∇(αP ) = ∇ · (Dα∇P ) + cf(P, S)−M(P ), (5 )

where D is the diffusion coefficient and v the advection velocity. The factor199

c is given by c = NHbVmol,O2 , where NHb is the molar density of heme groups200

and Vmol,O2 is the molar volume of oxygen. Hemoglobin saturation is governed201

by the equation202

∂S

∂t
+ v · ∇S = ∇ · (DHb∇S)− f(P, S), (6 )

where DHb is the diffusivity of hemoglobin in RBCs.203

At interfaces between regions with different solubility or diffusion coef-204
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ficients, continuity of Po2 and oxygen flux across the interface have to be205

satisfied (39). For example, at the wall-tissue interface, the latter condition206

is207

Dwαw
∂P

∂n
= Dtαt

∂P

∂n
, (7 )

where the subscripts refer to the wall and the tissue, respectively.208

The choice of boundary conditions depends on the computational domain.209

In this study, we considered representative domains with ∂P/∂n = 0 at the210

tissue boundary. At the capillary entrance, a Po2 value is required since211

oxygen is convected into the domain by the blood flow. When a RBC overlaps212

with the domain boundary, the oxygen tension is interpolated from this RBC213

to the capillary entrance. When plasma is flowing in, a constant Po2 value214

Pp,in was used. At the capillary outlet, the boundary condition ∂P/∂n = 0215

was applied.216

Since RBC membranes are impermeable for hemoglobin, the boundary217

condition for hemoglobin saturation is ∂S/∂n = 0. Unlike hemoglobin, oxy-218

gen is soluble in lipids and can diffuse through cell membranes. The different219

solubility and diffusion coefficients of oxygen in lipid bilayers was not taken220

into account since RBC membranes are generally less than 10 nm thick (33),221

which is negligible compared to the cell size.222

The entry of RBCs into the capillary plays a crucial role, since it deter-223

mines the amount of oxygen in bound form that enters the domain. The224

oxygen tension in entering erythrocytes was set to a constant value Prbc,in.225

The simplest model for capillary spacing is a constant distance between each226

RBC pair. However, Chaigneau et al. (2) observed large instantaneous fluc-227
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tuations of the RBC linear density. Moreover, they showed that variations228

of RBC flow were primarily caused by fluctuations of linear density, whereas229

instantaneous RBC velocity fluctuations were 2.5 times lower. Therefore,230

we treated RBC spacings as a random variable and modeled it using a log-231

normal random variable with independent values for each RBC pair. The232

parameters were chosen to match experimentally measured mean µLD and233

standard deviation σLD of linear density.234

The initial Po2 field in RBCs was set to Prbc,in and hemoglobin saturation235

was set to equilibrium with oxygen. Outside RBCs, the initial Po2 was set236

to Pp,in in the plasma and to 22 mmHg in the tissue.237

2.2 Discretization238

The main objective of this study is to thoroughly compare simulation results239

with experimental data. To allow an easy comparison with measurements,240

the numerical model should reflect how experiments are carried out. Our241

reference data (24) were acquired using two-photon phosphorescence lifetime242

microscopy. Thus, measurements were obtained from the focal plane of the243

microscope which may contain both capillaries and tissue. An easy compar-244

ison with these data requires a model that focuses on a fixed region. This245

approach also enables capturing transient phenomena such as local changes246

in RBC flow or metabolism.247

The fixed frame of reference motivated above is problematic when solv-248

ing Eq. (6 ). Hemoglobin is a large protein that cannot cross erythrocyte249

membranes. However, the discretization of the advection term would cre-250
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ate numerical diffusion, which would in turn cause an unphysical leak of251

hemoglobin out of RBCs. These problems can be circumvented by solving252

Eq. (6 ) in a Lagrangian frame of reference that follows the moving RBC.253

This approach enables the no-flux boundary condition for hemoglobin at the254

RBC membrane to be exactly satisfied.255

We therefore used a fixed computational domain for the capillaries and256

the tissue, denoted by Ω, as well as a moving domain for each RBC, denoted257

by Ωrbc (Fig. 1). Each domain is covered by its own computational mesh.258

This overlapping mesh approach was adapted from the overset grid method259

(26), which has been applied to aerodynamic problems with moving objects.260

We will also refer to Ω as Eulerian domain and to Ωrbc as Lagrangian domain.261

To simplify the notation, we omit RBC indices. Since RBCs are entering and262

leaving Ω, the Lagrangian domain Ωrbc may be completely or partly inside263

Ω.264

Erythrocytes were assumed to have a fixed shape. While they actually265

deform, this assumption avoided the expensive treatment of fluid-structure266

interaction. Therefore, our modeled RBCs behaved similar to solid bodies267

that follow the plasma flow. As a further simplification, we considered plasma268

flow to be uniform along radial cross sections of capillaries. Note that the269

detailed flow field around RBCs is not of importance here, since transport270

of oxygen is diffusion dominated (see (36) for a corresponding study about271

nitric oxide). Consequently, the blood velocity was given by v = Q/A, where272

Q is the blood volume flow and A the capillary cross section.273

Equation (5 ) for oxygen was solved in the Eulerian domain Ω, whereas274

the hemoglobin equation (6 ) was solved in the Lagrangian domain Ωrbc.275
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Since Ωrbc moves with the velocity vrbc, the coordinate transformation x′ =276

x + vrbct cancels the advection term and yields277

∂S

∂t
=

∂

∂x′i

(
DHb

∂S

∂x′i

)
− f(P, S). (8 )

Since this equation is discretized in Ωrbc, the oxygen partial pressure is also278

needed in that domain. This field, denoted by Prbc, is obtained by inter-279

polation from Ω to Ωrbc. Likewise, since Eq. (5 ) is solved in Ω, values of280

S in the Eulerian domain, denoted by SEuler, have to be interpolated from281

Ωrbc (Fig. 1). The interpolation method may considerably affect simulation282

results, since most oxygen in the blood is bound to hemoglobin. Thus, in-283

terpolation errors that cause inaccurate values of SEuler may have a large284

effect on the resulting Po2. A conservative interpolation scheme is therefore285

crucial.286

To obtain Prbc and SEuler, we used a volume-based interpolation scheme287

that is discretely conservative in the sense that the integral of the interpolated288

field on any subset of the target mesh is conserved. For grid cells VI and Vrbc,J289

in Ω and Ωrbc, respectively, interpolation weights were defined by290

wrbc
I,J =

|VI ∩ Vrbc,J |
|Vrbc,J |

(9 )

and291

wEuler
I,J =

|VI ∩ Vrbc,J |
|VI |

. (10 )
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The interpolation formulas for Prbc and SEuler are then given by292

Prbc,J =
∑
I

wrbc
I,JPI (11 )

and293

SEuler,I =
∑
J

wEuler
I,J SJ . (12 )

The discrete conservation property for the interpolated field SEuler is shown294

as follows. Consider a subdomain Ω′ =
⋃m
k=1 VIk that consists of m grid cells295

VIk . The integral of SEuler on Ω′ is given by296

∫
Ω′
SEuler dV =

m∑
k=1

|VIk |SEuler,Ik (13 )

=
m∑
k=1

∑
J

|VIk |
|VIk ∩ Vrbc,J |
|VIk |

SJ (14 )

=
∑
J

m∑
k=1

|VIk ∩ Vrbc,J |SJ (15 )

=
∑
J

|Ω′ ∩ Vrbc,J |SJ (16 )

=

∫
Ω′
S dV. (17 )

The same argument can be used for the integral of Prbc on a subset of Ωrbc,297

which shows that the interpolation scheme given by Eqs. (11 ) and (12 ) is298

discretely conservative.299

Grid cells in Ω that overlap with the RBC border require special care. If300

the intersection of a grid cell VI with Ωrbc occupies a small volume, SEuler,I301

will be also small. This fact has to be accounted for in the discretization of302

14



the reaction term f(P, S). We introduce the RBC volume fraction303

γI =
|VI ∩ Ωrbc|
|VI |

. (18 )

In VI , we consider that the chemical reaction between hemoglobin and oxygen304

only occurs in a fraction of VI with volume γI |VI | where all the hemoglobin is305

contained. Since this volume fraction has hemoglobin saturation SEuler,I/γI ,306

the discretized reaction term in Ω is given by307

f(PI , SEuler,I) = γIk−

(
SEuler,I

γI
−
(

1− SEuler,I

γI

)(
PI
P50

)n)
(19 )

= k−

(
SEuler,I − (γI − SEuler,I)

(
PI
P50

)n)
. (20 )

Continuity of the oxygen flux at interfaces between regions with different308

solubility or diffusion coefficient (Eq. (7 )) is enforced by adequately interpo-309

lating the Krogh diffusion coefficient Dα. At cell faces, mass conservation310

is enforced by using the harmonic average of Dα in both neighboring grid311

cells (25). The boundary condition at the capillary inlets of Ω also requires312

interpolation. If a RBC overlaps a cell face at the capillary inlet, the Po2313

value at that face is obtained by bilinear interpolation of the RBC Po2 at the314

corresponding location. Otherwise, the boundary Po2 is set to the constant315

value Pp,in.316

The governing equations were discretized using a finite-volume method317

with the central scheme for the divergence operator. For the Laplace oper-318

ator, Gauss integration, centered differences for the surface normal gradient319

and harmonic interpolation for the diffusion coefficient were used. Time step-320

15



ping and coupling between Eqs. (5 ) and (6 ) are addressed in Appendix A.321

The algorithm was implemented using the open source software package322

OpenFOAMr v.2.1.1.323

2.3 Model parameters324

Our main goal is the validation of the method explained above against the325

experimental data from Parpaleix et al. (24). These data were acquired in the326

rodent olfactory glomerulus, which is an area with a high capillary density.327

We used an axially symmetric geometry with a capillary at its center –328

similar to the classical Krogh model (18). Instead of a cylinder, we employed329

a cone-shaped domain with different radii at the proximal (arteriolar) and330

distal (venular) ends. Due to symmetry, Ω can be represented by a two-331

dimensional domain. As shown in Figure 2, Ω consists of three regions, that332

is, the plasma, the capillary wall and the tissue region.333

In the olfactory glomerulus, the average distance from any point to the334

nearest capillary is 10.8 µm (20). In a hexagonal array of Krogh cylinders335

with a capillary diameter of 4 µm, this corresponds to a radius of 16 µm.336

Therefore, unless stated otherwise, the radii on the arteriolar and venular337

sides were set to rt,a = 19 µm and rt,v = 13 µm, respectively. The length of338

the capillary was set to 100 µm.339

The RBC shape was taken from Secomb et al. (30) for a RBC velocity340

of 1 mm s−1. This shape (computed for human RBCs) was scaled down to341

the size of mouse erythrocytes with volume Vrbc = 59.0 fl (32). We used the342

mean RBC velocity vrbc = 0.57 mm s−1 measured in the olfactory glomerulus343
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by Chaigneau et al. (2).344

The cerebral metabolic rate of oxygen consumption (CMRO2) is an es-345

sential model parameter. To our knowledge, no measurement of CMRO2 in346

the olfactory glomerulus has been performed. Therefore, we chose the value347

CMRO2 = 197 µM s−1 to obtain Po2 values in the tissue between 15 and 20348

mmHg approximately (using the perfect gas law at 36.9◦C, this corresponds349

to M0 = 5 · 10−3 mlO2 cm−3 s−1). The resulting values of Po2 in the plasma350

agree well with the results of Parpaleix et al. (24).351

3 Results352

We now show simulated oxygen tensions inside the sample capillary and353

the surrounding tissue region shown on Figure 2. Whenever possible, we354

compare our results with the data measured by Parpaleix et al. (24) us-355

ing two-photon phosphorescence lifetime microscopy in the rodent olfactory356

glomerulus. They characterized intracapillary oxygen tensions by the three357

following quantities: RBC Po2, mean Po2 and inter-RBC Po2. RBC Po2 is358

the maximal oxygen tension in the plasma, which is attained at the erythro-359

cyte membrane. Mean Po2 is the average Po2 value between two erythrocytes360

and inter-RBC Po2 is the minimal Po2 between two RBCs. The EAT am-361

plitude is the difference between RBC Po2 and inter-RBC Po2. Throughout362

this section, the coordinate x denotes the axial direction.363

Using the parameters listed in Table 1, we obtained an averaged EAT364

amplitude of 29.7 mmHg (RBC Po2 = 50.8 mmHg, inter-RBC Po2 = 21.1365

mmHg, mean Po2 = 27.4 mmHg). These values were obtained by sampling366
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Po2 on the capillary centerline at nine evenly spaced longitudinal locations367

(between x = 10 µm and 90 µm). The maximal Po2 in the plasma was368

attained on the rear side of the RBC membrane. Parpaleix et al. (24) also369

observed significant differences between these quantities (RBC Po2 = 57.1±370

1.3 mmHg (mean ± s.e.m.), inter-RBC Po2 = 23.6± 0.7 mmHg, mean Po2371

= 30.8±0.9 mmHg). Since they performed 241 measurements, the results for372

our sample capillary differ from these average values by less than one third373

of a standard deviation.374

Figure 3 shows instantaneous longitudinal profiles on the capillary cen-375

terline and at various radial distances from the capillary wall. In RBCs close376

to the arteriolar end of the domain, the intracellular Po2 variation exceeds377

30 mmHg and decreases to 15 mmHg at the venular end. These strong in-378

travascular oxygen variations extend to the nearby tissue. At 1 µm from the379

outer side of the wall, the amplitude of these fluctuations ranges from 12.7380

mmHg to 4.2 mmHg. Away from the capillary entrance, these values agree381

well with the mean pulse amplitude of 5.0 mmHg reported by Parpaleix et al.382

(24) outside the vessel (< 2µm). At 5 µm from the endothelium, these pulses383

are almost entirely smeared out. The influence of instantaneous linear den-384

sity fluctuations on inter-RBC Po2 is clearly illustrated by the second and385

the third RBC spacings. Since short RBC spacings cause higher inter-RBC386

Po2 values, the EAT amplitude drops when the instantaneous linear density387

increases.388

We then investigated longitudinal variations of Po2 along our sample389

capillary. Figure 4 shows time-averaged oxygen partial pressures for the390

cone-shaped geometry (Fig. 2) and for a cylinder with equal tissue volume.391
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Since RBC Po2 declines faster than inter-RBC Po2, the EAT amplitudes also392

decrease along the capillary. Parpaleix et al. (24) reported longitudinal vari-393

ations of Po2 in single capillaries over a mean distance of 49.7 µm. Table 2394

contains these values as well as our simulated Po2 variations in the conical395

and cylindrical geometries. The maximal gradients in the cone-shaped ge-396

ometry are a consequence of the high RBC Po2 at the capillary entrance.397

However, the gradients away from the arteriolar end of the domain corre-398

spond very well to the experimental data, while in the cylinder geometry the399

gradients of mean Po2 and inter-RBC Po2 are significantly higher than in400

the reference data. A better match could not be obtained in a cylindrical401

geometry by changing CMRO2, since this would considerably decrease the402

agreement of RBC Po2 and inter-RBC Po2 with experimental data. The403

chosen geometry with rt,a = 19 µm and rt,v = 13 µm had the smallest taper404

that yielded a good match with the measured longitudinal Po2 variations.405

These results suggest that a cylindrical geometry is not a suitable model for406

capillaries, at least in the brain region considered in this study.407

Our model includes instantaneous variations of linear density similar to408

those observed by Chaigneau et al. (2). Figure 5 shows values of RBC Po2409

and inter-RBC Po2 that were collected during three seconds at 30 µm from410

the capillary entrance. The linear density on the horizontal axis was quanti-411

fied by the length occupied by RBCs over a given capillary segment divided412

by the segment length. As previously observed in Figure 3, inter-RBC Po2413

is correlated with the linear density. The dependency of inter-RBC Po2 on414

linear density agrees very well with the experimental data, but the simulated415

RBC Po2 is almost constant, while the reference data exhibit a positive416
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correlation between linear density and RBC Po2. Our simulations did not417

reproduce this trend, since a single capillary with constant RBC Po2 at418

its arteriolar end was used. However, Parpaleix et al. (24) measured EAT419

properties in 42 capillaries, which limits the scope of this comparison. This420

difference between the pooled experimental data and our computations in421

a single capillary indicates that capillaries with high average linear density422

also have a higher Po2. Besides, Parpaleix et al. (24) have observed that423

inter-RBC Po2 attains similar values as Po2 in the neuropil. Figure 5 also424

shows the difference between inter-RBC Po2 and tissue Po2 at 10 µm from425

the capillary wall as a function of linear density. For linear densities lower426

than 0.25, this difference stays below 2.0 mmHg. For high hematocrit values,427

this gap exceeds 10 mmHg. Thus, our results indicate that inter-RBC Po2428

may significantly exceed tissue Po2 for high linear densities.429

Since linear density affects tissue Po2, we investigated the influence of430

the standard deviation σLD of linear density on tissue Po2. Figure 6 shows431

tissue Po2 at 10 µm from the capillary wall and x = 50 µm for two different432

values of σLD. The same random numbers were used and the parameters433

of the log-normal distribution for RBC spacings were adjusted to obtain an434

average linear density of 0.28 over four seconds and the desired standard435

deviation. Only the last second of the simulation is shown. Random fluc-436

tuations of linear density led to large Po2 oscillations. For σLD = 0.08, the437

difference between minimal and maximal Po2 was 5.7 mmHg, and for higher438

fluctuations (σLD = 0.16), it increased to 10.9 mmHg. This is a consequence439

of RBC groups that are close to or far away from each other. Occasionally, a440

large RBC spacing resulted in a sudden drop of tissue Po2 by several mmHg.441
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Therefore, if linear density fluctuations as reported by Chaigneau et al. (2)442

are present, Po2 in the tissue cannot be considered to be constant.443

Finally, we compare our results with previous works by examining the444

intracapillary resistance to oxygen transport. MTCs were computed using445

a constant linear density and compared with previously published values.446

The MTC may be defined as k = j/(P ∗ − Pw), where j is the oxygen flux447

(mlO2 cm−2 s−1), P ∗ is the oxygen tension in equilibrium with the mean448

hemoglobin saturation in the RBC and Pw is the average oxygen tension at449

the capillary wall around a RBC. For a tube hematocrit of 0.25, we obtained450

k = 1.67 ·10−6 mlO2 cm−2 s−1, which exactly matches the results of Eggleton451

et al. (5) for the same hematocrit and capillary radius (rp = 2.0 µm). This452

consistency was expected, since the same equations as in (5) were solved453

(except myoblogin-facilitated diffusion in the tissue) and similar diffusion454

and solubility coefficients were chosen.455

Comparison with earlier works can also be performed using the Nusselt456

number, which is defined by457

Nu =
jdp

Dpαp(P ∗ − Pw)
, (21 )

where dp is the capillary diameter. For tube hematocrit values between 0.15458

and 0.36, we obtained Nusselt numbers from 0.48 to 1.7. Hellums et al. (15)459

summarized Nusselt numbers from various studies. For a diameter of 3.6 µm460

and a tube hematocrit of 0.28, Secomb and Hsu (28) calculated Nu = 1.22461

using a solid cylinder model. Our computed value for this tube hematocrit462

is 1.17. Therefore, our model reproduces oxygen fluxes from previous studies463
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in steady state situations.464

4 Discussion465

Oxygen transport from a capillary with moving RBCs to the surrounding tis-466

sue has been simulated in an axisymmetric cone-shaped geometry. Oxygen467

partial pressure in the capillary and the tissue was compared with experi-468

mental data (24). Longitudinal oxygen variations and the influence of linear469

density were investigated. As an application of our model, we studied the470

impact of instantaneous hematocrit fluctuations on tissue oxygenation.471

Our simulations reproduced a number of results from Parpaleix et al.472

(24). Their average measured EAT amplitude was 33.5 mmHg, and similar473

amplitudes were obtained in the first section of our sample capillary (Fig. 4).474

At 30 µm from the capillary entrance, the simulated EAT amplitude was475

33.6 mmHg. Close to the venular end, RBC Po2 was lower due to oxygen476

consumption in the tissue, which gave rise to smaller EATs (< 25 mmHg).477

Therefore, our average EAT amplitude of 29.7 mmHg over the nine sampled478

positions is slightly lower than that from Parpaleix et al. (24). Since the479

experimental data were collected independently of the measurement position480

in the vascular bed, it is difficult to further interpret these differences. How-481

ever, the dependency of EAT values on the distance from the arteriolar side482

could for example be studied experimentally in the brain cortex.483

The relationship between intracapillary oxygen tensions and tissue Po2484

was also examined. For linear densities lower than 0.25, simulated inter-485

RBC Po2 exceeds tissue Po2 at 10 µm from the capillary wall by less than486
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2.0 mmHg (Fig. 5), while this difference is larger than 10 mmHg for higher487

hematocrit values. These findings are only in partial agreement with the ob-488

servation by Parpaleix et al. (24) that inter-RBC Po2 attains similar values489

as in the neuropil. However, measurements in capillaries and tissue were not490

performed simultaneously and results were averaged over several seconds,491

which filtered out Po2 fluctuations, whereas we report instantaneous snap-492

shots. Moreover, the influence of hematocrit fluctuations was not examined493

in this part of the experiment. Therefore, our simulations indicate that inter-494

RBC Po2 is similar to tissue Po2 only close to the capillary or at low linear495

densities. Since concentration gradients drive molecular diffusion, we sug-496

gest that inter-RBC Po2 is on average higher than tissue Po2 far away from497

capillaries, provided they are not close to an arteriole. This hypothesis can498

be tested in vivo by measuring the dependency of tissue Po2 on the distance499

to the nearest capillary.500

Our simulation setup with RBCs moving through a fixed capillary allows501

the computation of longitudinal oxygen gradients. Motivated by the fact that502

capillary segments with high oxygen tensions can supply a correspondingly503

large tissue volume, we used a cone-shaped geometry (Fig. 2) similar to504

Hudetz (17). We compared results obtained with this geometry and with a505

simple cylindrical domain to the data (24), where longitudinal Po2 variations506

were measured in individual capillaries. While gradients of mean Po2 and507

inter-RBC Po2 in the classical Krogh cylinder geometry are much higher508

than in the reference data (Table 2), the cone-shaped domain leads to a509

very good agreement. Although a conical geometry is idealized, it appears510

to be a suitable model to reproduce in vivo intracapillary oxygen gradients511
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in the brain. This finding may imply that capillary density increases along512

RBC paths through capillary networks. In other words, we suggest that an513

evenly distributed tissue Po2 requires denser capillary networks on venular514

side. However, one should examine whether these simulation results hold in515

realistic networks, where capillary interactions and tortuosity are present.516

Instantaneous variations of hematocrit as observed by Chaigneau et al.517

(2) can be accounted for by our model, which overcomes a limitation of the518

models based on MTCs. We treated linear density as a random process519

governed by a log-normal RBC spacing distribution. The resulting depen-520

dency of inter-RBC Po2 on linear density agrees very well with the data (24)521

(Fig. 5). On the other hand, RBC Po2 stayed constant, which means that522

the drop in hemoglobin saturation along RBC paths was not influenced by in-523

stantaneous hematocrit fluctuations. Since our results were produced in one524

sample capillary and the data from Parpaleix et al. (24) were pooled from 42525

capillaries, we propose the following interpretation of this discrepancy: while526

fast fluctuations of linear density do not influence RBC Po2, capillaries with527

high average hematocrit have a higher RBC Po2. This explanation should528

be investigated by measuring RBC Po2 in capillaries that have different av-529

erage linear densities. Additionally, these hematocrit fluctuations also affect530

tissue Po2 (Fig. 6). With a RBC length of 7.27 µm, the standard devia-531

tion of linear density reported by Chaigneau et al. (2) is 0.12. Our results532

show that for this value, oscillations of oxygen tension in the tissue approach533

10 mmHg. During transient periods of low RBC density and/or velocity, it534

therefore seems possible that tissue oxygenation drops at times below the535

critical level for oxidative phosphorylation, although the average tissue Po2536
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remains above this level. Since the geometry of complex capillary networks537

affects tissue Po2, it will be essential to further study the influence of linear538

density fluctuations.539

Although multiple experimental results could be reproduced, the sim-540

ulation setup presented here has several limitations, in particular the ax-541

isymmetric geometry. While such a geometry is most relevant for parallel542

capillary arrays in muscles, Krogh cylinder models fail to capture the min-543

imal tissue Po2 in the capillary beds of the brain cortex (29). Accordingly,544

our conclusions on the relationship between inter-RBC Po2 and tissue Po2545

will certainly need to be refined for realistic networks. The hypothesis that546

capillary networks are denser on venous side should also be verified in such547

networks. Nevertheless, the simulated oxygen tensions in the plasma mainly548

depend on hemoglobin saturation in nearby erythrocytes and should not be549

directly affected by diffusive interactions between capillaries. This is con-550

firmed by the good agreement between the simulated inter-RBC Po2 and551

experimental data (Fig. 5).552

Other limitations include constant blood velocity, the absence of shifts of553

the oxygen-hemoglobin dissociation curve and the uncertainty in the choice of554

parameters. While RBC velocity undergoes fluctuations, their amplitude is555

lower than that of linear density (2), hence we chose to keep it constant. How-556

ever, RBC velocity is an important factor for tissue oxygenation and should557

be realistically modeled. Besides, variations of carbon dioxide concentration558

and pH are known to shift the equilibrium curve modeled by Eq. (2 ). This559

may be significant in regions with low Po2 and high CO2 concentration (4).560

The inclusion of these shifts would require further modeling efforts. Finally,561
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tissue oxygenation highly depends on CMRO2, which is difficult to measure562

experimentally. Our chosen value (197 µM s−1) is almost three times as high563

as the CMRO2 in the cortex of awake rats (73.5 µM s−1), which was obtained564

using the value 420 µmol (100 g)−1 min−1 (7) and a brain density of 1.05 g565

cm−3 (22). Based on estimates by Nawroth et al. (21), the neuron density566

in the olfactory glomerulus of the rat is 6.9 · 105 cells per mm3, whereas this567

value is 1.17 · 105 in the mouse neocortex (34). The high density of neural568

elements (possibly in combination with a high steady state firing rate) in the569

olfactory glomerulus may explain why a high CMRO2 value was needed to570

reproduce the tissue Po2 observed by Parpaleix et al. (24). However, using571

a theoretical energy budget, Nawroth et al. (21) obtained a CMRO2 value of572

75 µM s−1 for the olfactory glomerulus, which is lower than our chosen value.573

Further interpretation of this discrepancy would require actual measurements574

of CMRO2 in the olfactory bulb.575

In addition to model limitations, the comparison with experimental data576

is also limited. To the author’s knowledge, only the data from (24) allowed a577

detailed comparison of simulated intracapillary Po2. A good agreement was578

obtained by adapting CMRO2 and the initial Po2 in RBCs on the arteriolar579

side, and by choosing a tapered cylinder. Further data on intracapillary Po2580

and its relationship to tissue Po2 should be obtained and compared with581

(24). The parameters mentioned above will most likely need to be modified582

to reproduce further experiments. The computational model presented in583

this study will be a useful tool to interpret possible differences between future584

experimental data.585

Although our model for oxygen transport was applied to a simple ax-586
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isymmetric geometry, the numerical algorithm is independent of the domain587

topology and can be extended to realistic capillary networks provided ve-588

locities of single RBCs are known. This can be achieved by coupling our589

method with a detailed model of RBC transport such as that of Obrist et al.590

(23). This combined approach will remove the need for separately computed591

mass transfer coefficients and is suitable for investigating unsteady scenar-592

ios. For example, Hall et al. (13) recently observed that capillary pericytes593

participate in the regulation of cerebral blood flow. Our model will enable594

quantifying the influence of capillary dilations on tissue oxygenation. There-595

fore, our present study is a first step toward an oxygen transport model that596

can capture a wide range of dynamic physiological phenomena while taking597

into account the complex properties of RBC flow.598

In conclusion, we have developed a new model of oxygen transport from599

capillaries with moving RBCs based on overlapping grids. We successfully600

validated it against experimental data acquired in the rodent brain. EATs601

and longitudinal gradients of Po2 could be reproduced using a cone-shaped602

geometry. Instantaneous variations of hematocrit were shown to cause con-603

siderable fluctuations of oxygen tension in the tissue. Further work includes604

the extension of the model to realistic capillary networks. The coupling605

of RBC dynamics with oxygen transport will eventually allow simulations of606

blood flow regulation mechanisms in health and disease with unprecedented607

detail.608
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Appendix A Time integration609

Generation of Po2 maps in realistic capillary network may require simulations610

with at least hundreds of red blood cells during several seconds. The ability611

to use large time steps is therefore crucial to keep the computational time612

sufficiently low. Special care is required to achieve this within our frame-613

work based on overlapping meshes. The nonlinear reaction term f(P, S)614

(Eq. (3 )) combined with RBC displacements prevents from using an explicit615

scheme. As observed by Clark et al. (3), the boundary layer inside erythro-616

cytes is a region of chemical nonequilibrium, such that large explicit time617

steps inevitably cause overshooting. Another requirement is that the cou-618

pling between hemoglobin and oxygen equations conserves the total of free619

and bound oxygen.620

To achieve this, we use Godunov splitting for Eq. (5 ) and linearization of621

the reaction and consumption terms using Picard’s method. While the equa-622

tion for oxygen can be integrated without Godunov splitting, this unsplit623

approach would severely limit the maximal stable time step, since the lin-624

earization of the reaction term requires Po2 values in Ω to vary moderately.625

If RBCs undergo large displacements during one time step, the resulting large626

Po2 variations would lead to instabilities.627

Let the superscript k indicate the current time tk. To integrate Eqs. (5 )628

and (6 ) from tk to tk + ∆t, an intermediate solution P ∗ is obtained by629

integrating only the advection term:630

α∗P ∗ − αkP k

∆t
+ v · ∇(α∗P ∗) = 0. (22 )
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Here, the solubility α∗ corresponds to RBC positions after their displace-631

ment. The reaction term f(P, S) and the consumption term M(P ) were632

both linearized and their linear part is treated implicitly as633

α∗
P (ν) − P ∗

∆t
= ∇ · (Dα∗∇P (ν))

+ c

[
f(P (ν−1), S

(ν−1)
Euler ) + (P (ν) − P (ν−1))

∂f

∂P

(
P (ν−1), S

(ν−1)
Euler

)]
−
(
M(P (ν−1)) + (P (ν) − P (ν−1))

∂M

∂P
(P (ν−1))

)
(23 )

and634

S(ν) − Sk

∆t
= ∇ · (DHb∇S(ν))

−
[
f(P

(ν−1)
rbc , S(ν−1)) + (S(ν) − S(ν−1))

∂f

∂S

(
P

(ν−1)
rbc , S(ν−1)

)]
,

(24 )

where ν is the iteration number and P (0) = P ∗. The coupling between both635

equations conserves the total oxygen amount, if the integral of both terms in636

square brackets are equal. Although the volume-based interpolation method637

(Eqs. (11 ) and (12 )) conserves P and S, it does not exactly conserve the638

integral of f(P, S) since the reaction term is nonlinear in P . However, this639

only causes a minimal amount of oxygen loss in the domain (less than 0.2%640

for total RBC discharge).641

The moving meshes Ωrbc are displaced during each time step by the incre-642

ment vrbc∆t. When a RBC leaves the domain Ω and no longer overlaps it,643

the corresponding mesh is moved to the front of the RBC queue and placed644

at a distance to the next RBC, which is randomly generated based on a645

log-normal distribution. In the plasma, the coefficients α and D have to be646
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updated to reflect RBC motion. In a grid cell VI , the discretized coefficients647

are given by648

DI = γIDrbc + (1− γI)Dp, (25 )

αI = γIαrbc + (1− γI)αp, (26 )

where the subscripts “rbc” and “p” refer to values in the RBCs and in the649

plasma. The algorithm is summarized in Table 3.650

The domain Ω was discretized using a Cartesian grid with constant grid651

spacing ∆x = 0.1 µm in the axial direction. In the radial direction, the grid652

cell spacing in the capillary was constant (∆y = 0.1 µm) and decreasing in653

the tissue region, since oxygen gradients decrease away from capillaries. The654

ratio between the height of the top-most grid cell to the bottom-most in the655

tissue was set to four. This results in a grid with 333 × 29 grid cells.656

The RBC domain Ωrbc consists of those Cartesian grid cells that lie en-657

tirely inside the RBC shape, which results in a “staircase” geometry (Fig. 1).658

A curvilinear shape-conforming mesh is not necessary for such an advection-659

diffusion problem. Besides, the computation of the interpolation coefficients660

defined in Eqs. (9 ) and (10 ) is easier for Cartesian grids.661

The tolerance tol in the algorithm shown on Table 3 was set to 10−4.662

A smaller tolerance affected results by less than 0.1 mmHg. Unless stated663

otherwise, the time step ∆t was set to 0.5 ms. All our simulations were664

run for four seconds. After one second, the influence of the initial condition665

disappeared. The results were collected during the following three seconds.666

The accuracy of the algorithm with a coarser Eulerian grid and larger667
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time steps was also examined. Table 4 shows absolute and relative errors668

on the capillary centerline and in the tissue against a baseline case with669

∆t = 0.1 ms and ∆x = ∆y = 0.1 µm in the capillary. The relative error670

was normalized by the maximum Po2 value in the considered longitudinal671

profile. When multiplying the grid spacing and the time step by three, the672

relative error stays below 2.5%. With a 50 times larger timestep (∆t = 5673

ms), the absolute error in the tissue is still smaller than 1 mmHg, while the674

computational time is divided by 10. This is an indication that our numerical675

algorithm is very robust in terms of time step size and grid spacing. This676

property will allow for simulations of oxygen transport in larger capillary677

networks.678
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Table 1: Model parameters

Parameter Description Value Units Reference

αrbc O2 solubility in RBCs 3.38 · 10−5 mlO2 mmHg−1 cm−3 (5)
αp O2 solubility in the plasma 2.82 · 10−5 mlO2 mmHg−1 cm−3 (5)
αw O2 solubility in the capillary wall 3.89 · 10−5 mlO2 mmHg−1 cm−3 (5)
αt O2 solubility in the tissue 3.89 · 10−5 mlO2 mmHg−1 cm−3 (5)
Drbc O2 diffusivity in RBCs 9.5 · 10−6 cm2 s−1 (5)
Dp O2 diffusivity in the plasma 2.18 · 10−5 cm2 s−1 (5)
Dw O2 diffusivity in the capillary wall 8.73 · 10−6 cm2 s−1 (5)
Dt O2 diffusivity in the tissue 2.41 · 10−5 cm2 s−1 (5)
DHb hemoglobin diffusivity in RBCs 1.44 · 10−7 cm2 s−1 (5)
k− dissociation rate constant 44 s−1 (5)
Lrbc RBC length 7.27 µm based on (30), (32)
M0 maximal O2 consumption rate 5 · 10−3 mlO2 cm−3 s−1 fitted
µLD mean linear density 0.36 – (24)
n Hill exponent 2.64 – fitted from (38)
NHb total heme density 2.03 · 10−5 mol cm−3 (5)
P50 Po2 at hemoglobin half-saturation 47.9 mmHg fitted from (38)
Pcrit critical Po2 in the tissue 1.0 mmHg (8)
Pp,in plasma Po2 at the capillary entrance 40 mmHg based on (24)
Prbc,in RBC Po2 at the capillary entrance 90 mmHg based on (24)
σLD standard deviation of linear density 0.1 – based on (2)
rp radius of capillary lumen 2.0 µm (34)
rw − rp capillary wall thickness 0.6 µm (1)
rt,a tissue radius on arteriolar side 19 µm based on (20)
rt,v tissue radius on venular side 13 µm based on (20)
vrbc RBC velocity 5.7 · 10−2 cm s−1 (2)
Vmol,O2

O2 molar volume at 36.9◦C 2.54 · 104 mlO2 mol−1 ideal gas law
Vrbc RBC volume 59.0 µm3 (32)
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Table 2: Longitudinal variation of capillary Po2

cone cylinder experiment (24)
art. ven. art. ven.

∆RBC Po2 25.7 14.3 25.6 16.4 14.1 ± 9.2
∆mean Po2 12.0 6.4 16.9 12.4 4.6 ± 2.4

∆inter-RBC Po2 8.0 4.3 14.4 11.3 3.0 ± 2.7

Longitudinal variation of time-averaged Po2 over 50 µm in the cone and
cylinder geometries, compared with experimental data. The columns with
the heading “art.” (“ven.”) show the averaged Po2 variation between x =
10 µm (x = 40 µm) and x = 60 µm (x = 90 µm). Last column: mean ±
s.e.m.
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Table 3: Time integration algorithm

1: move all RBCs by vrbc∆t
2: update interpolation coefficients (Eq. (9 ) and (10 ))
3: update D and α (Eq. (25 ) and (26 ))
4: solve advection equation for P ∗ (Eq. (22 ))
5: P (0) ← P ∗, S(0) ← Sk

6: R(0) ←∞
7: ν ← 0
8: while R(ν) > tol do
9: for all RBCs that overlap Ω do

10: interpolate P (ν) to P
(ν)
rbc using Eq. (11 )

11: interpolate S(ν) to S
(ν)
Euler using Eq. (12 )

12: end for
13: solve for P (ν+1) (Eq. (23 ))
14: R(ν+1) ← initial residual of Eq. (23 )
15: for all RBCs that overlap Ω do
16: solve for S(ν+1) (Eq. (24 ))
17: end for
18: ν ← ν + 1
19: end while

Time integration of oxygen and hemoglobin equations for one time step ∆t
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Table 4: Convergence study

Parameters Centerline Tissue (10 µm)
∆t ∆x abs. L∞ rel. L∞ abs. L∞ rel. L∞

0.3 ms 0.3 µm 1.65 2.00 % 0.431 2.11%
5 ms 0.3 µm 3.51 4.26 % 0.717 3.51%

Algorithm accuracy with coarse time steps and grid cells. The grid cell size
is given in the capillary, where ∆x = ∆y. The errors were measured against
longitudinal profiles computed with ∆t = 0.1 ms and ∆x = ∆y = 0.1 µm in
the capillary.
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