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Beiträge

Jianwen Sun*, Reto Wyss, Alexander Steinecker, and Philipp Glocker

Automated fault detection using deep belief
networks for the quality inspection of
electromotors

Automatische Fehlerdetektion mittels Deep Belief Netzwerken zur Qualitätskontrolle von
Elektromotoren

Abstract: Vibration inspection of electro-mechanical com-
ponents and systems is an important tool for automated
reliable online as well as post-process production qual-
ity assurance. Considering that bad electromotor samples
are very rare in the production line, we propose a novel
automated fault detection method named “Tilear”, based
on Deep Belief Networks (DBNs) training only with good
electromotor samples. Tilear consctructs an auto-encoder
with DBNs, aiming to reconstruct the inputs as closely as
possible. Tilear is structured in two parts: training and
decision-making. During training, Tilear is trained only
with informative features extracted from preprocessed vi-
bration signals of good electromotors, which enables the
trained Tilear only to know how to reconstruct good elec-
tromotor vibration signal features. In the decision-making
part, comparing the recorded signal from test electromo-
tor and the Tilear reconstructed signal, allows to measure
how well a recording from a test electromotor matches the
Tilear model learned from good electromotors. A reliable
decision can be made.

Keywords: Electromotor, fault detection, deep belief net-
works, vibration signals, non-desctructive testing, online
quality inspection.

Zusammenfassung: Die Analyse von Vibrationssignalen
zur Fehelerdetektion elektromechanischer Komponenten
und Systeme stellt einwichtigesWerkzeug in zuverlässiger
und automatischer Qualitätssicherung des Produktions-
prozesses dar. Davon ausgehend, dass fehlerhafte Elek-
tromotoren nur einen geringen Anteil einer Charge aus-
machen, schlagen wir einen neuen Inspektionsansatz na-
mens „Tilear” vor. Dieser Ansatz basiert auf einem De-
ep Belief Netzwerk (DBN), welches mit unterschiedlichen
Signalmustern guter Elektromotoren trainiert wurde. Ti-
lear generiert einen Auto-Encoder mittels DBNs mit dem

Ziel, die Eingangssignale so genau wie möglich zu rekon-
struieren. Tilear besteht aus zwei Teilen: (i) Training und
(ii) Entscheidung. In der Trainingsphase wird Tilear nur
mit Vibrationssignalen guter Motoren angelernt. Auf die-
se Weise kann Tilear ausschliesslich Signalmuster rekon-
struieren, die sich einem guten Motor zuordnen lassen. In
der nachfolgenden Entscheidungsphase wird ein aktuel-
les Vibrationsmuster mit der entsprechenden Rekonstruk-
tion von Tilear verglichen. Auf dieseWeisewird die Abwei-
chung vom idealen, vorab gelernten Motorsignal quantifi-
ziert und kann für eine Entscheidung in der Qualitätskon-
trolle verwendet werden.

Schlüsselwörter: Elektromotor, Fehlerdetektion, Deep Be-
lief Netzwerke, Vibrationssignal, zerstörungsfreie Prü-
fung, Echtzeit Qualitätskontrolle.
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1 Introduction
Electromotors play an important role in nowadays indus-
trial applications. Quality inspection of electromotors is
essential for manufacturers to assure their products leav-
ing the factory timely with expected quality. It is likewise
critical for users to perform early failure detection to avoid
possible malfunctions. Automated quality inspection has
always been a popular research topic for both scientists
and engineers.
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Different techniques have been proposed for electro-
motor fault detection. These techniques can be classified
as signal analysis based methods (SAMs), motor dynamic
model basedmethods (MMs), and knowledge basedmeth-
ods (KMs) [1]. SAMs directly analyze measured signals,
such as the vibration signal, without a need of accurate
motor modeling. However, the dependence of output sig-
nals on input signals is ignored, and it is difficult to repro-
duce analysis results [1]. In contrast, MMs, including e.g.
parameter estimation methods [2, 3] and state estimation
methods [4, 5], take both input and output signals into ac-
count. But an accurate model for each specific motor type
is needed.

Recently, methods based on artificial intelligence al-
gorithms, a subdomain of the KMs [1], have been widely
studied. Most of these readily available techniques are
on the basis of discriminative learning model. A certain
amount of fault samples are required to perform the fault
type classification [6–8]. However, in practical applica-
tions, for a well-designed product model, it is extremely
difficult to get fault samples in abundance for discrim-
inative learning purpose. What makes matters worse is
that even a single type of defect typically has many dif-
ferent sensory manifestations. Alternatively, some previ-
ous studies [9–11] treated the fault detection problem as
an anomaly detection problem. The core of anomaly detec-
tion is to recognize the inputs that differ from those under
normal conditions. Thus, it is possible to perform fault de-
tections without the need of collecting a large amount of
failure data.

Being a very popular research topic in machine learn-
ing society recently, Deep Belief Network’s (DBN) genera-
tive nature enables itself a strong feature learning ability.
It has shown promise in many tasks, such as hand writ-
ten digit recognition [12] and speech recognition [13]. In-
dustrial applications based on DBN have also appeared,
e.g. CSEM’s quality inspection application of complex sur-
faces [14].

The objective of this work is to develop a new auto-
mated fault detection system for electromotor quality in-
spection. Treating the fault detection as an anomaly de-
tection problem, this system is based on a Deep Belief
Network (DBN) auto-encoder. It learns the sensory signals
only fromgood samples, andmakes decisions for test sam-
ples with the trained model.

The content of this paper is organized in the following
way: In Section 2, theoretical basis and the architecture of
the proposed system are introduced. In Section 3, the vi-
bration signal dataset used in experiments is described.
In Section 4, the experiment to prove the feasibility of pro-
posed system is presented and discussed. In addition, the

performance of the proposed method is compared with
a state-of-the-art method, Support Vector Machine (SVM).
Finally, conclusions and future directions of this work are
given in Section 5.

2 Automated fault detection using
DBNs

Anomaly detection (also called “novelty detection” or
“outlier detection”) has been a mature and active field
within diverse research areas [15]. There are many other
proposed anomaly detection techniques [16], such as clas-
sification based anomaly detection techniques or statis-
tical anomaly detection techniques. DBN is selected be-
cause of its strong abilities to model high-dimensional
data and to reconstruct the input signal as closely as pos-
sible [17, 18].

2.1 Deep belief networks

DBN is a probabilistic generative model, which employs
a hierarchical structure constructed by stacking Restricted
BoltzmannMachines (RBMs) [17, 19]. As shown in Figure 1,
RBM contains two layers of neurons: a binary visible layer
and a binary hidden layer.𝑊𝑠 are the symmetric weights
between visible units v and hidden units ℎ. 𝑐 and 𝑏 are bi-
ases to 𝑣 andℎ respectively. Eachunit is fully connected to
units in the other layer, but there is no connection between
units in the same layer.

An energy function is used in RBM to model the joint
configuration between visible units 𝑣 and hidden units
ℎ. The energy of all possible joint configurations (𝑣,ℎ) in
a RBM is given by

𝐸 (𝑣, ℎ) = −ℎ
𝑇
𝑊𝑣 − 𝑏

𝑇
ℎ − 𝑐
𝑇
𝑣 (1)

The probability of every possible joint configuration (𝑣,ℎ)
in this energy-based model is

𝑃 (𝑣, ℎ) =
1

𝑧

𝑒
−
𝐸(𝑣, ℎ) (2)

Figure 1: Schematic representation of RBM.
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where 𝑧 = ∑
𝑣,ℎ
exp(−𝐸(𝑣, ℎ)) is a normalization constant,

also referred as the partition function. The conditional dis-
tributions of 𝑣

𝑖
and ℎ

𝑗
in a logistic RBM can be expressed

as Equations (3) and (4).

𝑃 (ℎ
𝑗
= 1|𝑣) = Sigm(−𝑏

𝑗
−∑

𝑖

𝑣
𝑖
𝑊
𝑖𝑗
) (3)

𝑃 (𝑣
𝑖
= 1|ℎ) = Sigm(−𝑐

𝑖
−∑

𝑗

ℎ
𝑗
𝑊
𝑖𝑗
) (4)

The training rule of a logistic RBM is tomaximize the prob-
ability of the observed data. Ideally, thismaximization can
be accomplished by gradient descent along the derivative
of the log probability of the data taken with respect to the
weights 𝜕log𝑃(𝑣)/𝜕𝑊

𝑖𝑗
[17]. However, because the gradi-

ent of the log likelihood of 𝑣 is intractable, contrastive di-
vergence [20] after𝑛 iterationsofGibbs sampling is usually
used to approximate it:

𝜕log𝑃 (𝑣)

𝜕𝑊
𝑖𝑗

= ⟨𝑣
𝑖
ℎ
𝑖
⟩
0
− ⟨𝑣
𝑖
ℎ
𝑖
⟩
𝑛
, (5)

where ⟨⋅⟩𝑛 denotes the average value of the contrastive di-
vergence after n iterations of Gibbs sampling. With 𝑛 →
∞, it approaches the maximum likelihood learning.

To construct a DBN, a number of RBMs are stacked on
top of each other. The hidden layers of lower level RBMs
are the visible layers of the adjacent higher level RBMs, as
shown in Figure 2. A greedy layer-wise training algorithm
is applied to train the DBN, which is actually training the
RBMs individually under the contrastive divergence rule.
Trained in this way, the DBN can perform a fast inference

Figure 2: Schematic representation of DBN with 2 RBM layers where
𝑣
𝑖
represents the visible units of the lowest level RBM, ℎ1

𝑗
represents

the hidden units of the lowest level RBM, and ℎ2
𝑘
represents the

hidden units of the second level RBM. The hidden layer𝐻
1
of the

𝑅𝐵𝑀 𝑙𝑎𝑦𝑒𝑟1 is the visible layer 𝑉
2
of the 𝑅𝐵𝑀 𝑙𝑎𝑦𝑒𝑟2. The number of

units and layers are just examples.

and extract high level representations, or features, of the
input data. Thorough descriptions of DBNs’ mathematical
and technical details are available elsewhere [17, 19].

2.2 DBN based auto-encoder

An autoencoder is to learn the representations for the in-
put and then to reconstruct the input based on the learned
representations as closely as possible. By unfolding the
stacked n RBMs, an auto-encoder composed by (2𝑛 − 1)
RBMs is constructed. This (2𝑛 − 1) directed auto-encoder
can be fine-tuned with backpropagation [18]. As shown in
Figure 3, the first n RBMs act as an encoder. High-level
features of the input data are extracted by this encoder
and stored at the hidden layer of the top RBM. The last n
RBMs, including the top RBM of the encoder, form a de-
coder. This decoder reconstructs the input data with the
extracted high-level features stored in the top RBM of the
encoder. The number of units in the hidden layer of the 𝑛

𝑡ℎ

RBM is an important parameter of this auto-encoder, since
it limits the number of high-level features used for recon-
struction. Thus the hidden layer of the 𝑛

𝑡ℎ
RBM is called

the bottleneck layer, shown as the blue marked layer in
Figure 3.

Generally speaking, training a DBN based auto-
encoder is to learn the weights and biases among the lay-
ers, such that the input samples can be reconstructed as
closely as possible [13].

2.3 Tilear

Taking advantage of DBN auto-encoder’s capability to re-
construct the input data as closely as possible, we propose
a novel anomaly detection model, named Tilear, used for
electromotor quality inspection.

Tilear has two functions: “Teacher” for the training
phase, “Tester” for the decision making phase. During
training phase, only input data from good samples will
be learned by the auto-encoder. Small anomalies in
the “good” data are tolerable variances. The scarcity of
anomalies prevents the DBN from learning and recon-
structing those. This property results in an additional
reconstruction error for the data containing anomalies.
Therefore, the higher the reconstruction error, the more
anomalies the data sample contains. An anomaly detector
thus can be made by using the reconstruction error with
a threshold. In Tilear, the reconstruction error 𝑆

𝑖
, also

named score, is the Root Mean Squared Error (RMSE) be-
tween the input data 𝐼

𝑖
and corresponding reconstructed
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Figure 3: Architecture of DBN based auto-encoder. Numbers in the blocks represent the number of units in each layer. Unit number in the
bottom layer represents the sampling points from the input data. Unit number of the rest layers in the encoder represents the number of
extracted high-order features for their respective input data. The number of units and layers are only examples. It is not required to have the
same numbers in the experiments, or to be 2𝑛.

data 𝑅
𝑖
, averaged over n dimensions of the data, as

expressed in Equation (6).

𝑆
𝑖
=
√
∑
𝑛

𝑗=1
(𝑅
𝑖𝑗
−𝐼
𝑖𝑗
)

2

𝑛

(6)

The reconstruction error threshold 𝑆
𝑡ℎ

demarcating the
anomaly boundary is another model parameter. This is
determined by searching the reconstruction error space
of a validation dataset containing labeled good samples
and defective samples with anomalies. The algorithm of
“Teacher” can be generalized as Algorithm 1.

Table 1: Generalized algorithm of Tilear’s Teacher function.

Algorithm 1 Teacher of Tilear

1: Construct a DBN with specific parameters.
2: Train the constructed DBN with training dataset which only con-

tains input data from good samples.
3: Unroll the trained DBN to construct a DBN based auto-encoder.
4: Use backpropagation to fine tune the DBN based auto-encoder.
5: Learn the statistics of the scores of the validation dataset. Deter-

mine the threshold score 𝑆threshold.

With the selected 𝑆
𝑡ℎ
, “Tester” can judge the health

status of test sample 𝑇
𝑖
by computing its reconstruction

score 𝑆
𝑖
, as explained in Algorithm 2.

Table 2: Generalized algorithm of Tilear’s Tester function.

Algorithm 2 Tester of Tilear

1: Reconstruct the test signal with the well trained DBN based auto-
encoder.

2: Calculate the reconstruction score of the test signal.
3: if 𝑆test > 𝑆threshold then
4: 𝑇

𝑖
→ bad

5 else
6: 𝑇

𝑖
→ good

7: end if

3 Datasets
Thevibrationdataset used in this paperwas collected from
two different electromotor models with gearbox, namely
RE16 and GB20, available at Maxon Motor AG. The data
acquisition system consists of one PCB accelerometer to
acquire the vibration signal, one NI9234 analog digital
converter (ADC), a computer with an i5-2400s CPU and
4G RAM, and a data acquisition software developed with
the NIDAQmx C API.



DE GRUYTER OLDENBOURG J. Sun et al., Automated fault detection using deep belief networks | 259

Figure 4: Position of the accelerometer during recording.

Table 3: Recording conditions and the composition of the samples
for two electromotor models.

Electromotor Model RE16 GB20

No
.o
fS

am
pl
es

Total 170 36
Good 120 21
1S 10 4

2x1S 10 2
2S 10 4
2x2S 10 2
1&2S 10 3

Recording Condition Changing voltage Fixed RPM=10 K
Signal Time Length 12s 5s

Figure 5: Vibration signal examples in GB20. The left column shows two signals of good electromotors, and the right column of bad ones.
The horizontal axis of these figures is the time scale, and the vertical axis represents the signal amplitude with same scale.

According to Maxon engineers’ suggestions, electro-
motors were placed on a piece of foam without any load.
The accelerometer was placed at the 12 o’clock position
at the center of the gearbox, as shown in Figure 4. Vibra-
tion signals were recorded via the NI9234 ADC with sam-
pling rate 51.2 kHz for different time lengths. Each defec-
tive sample had one fault of five different types:

– 1 missing gear on the 1st stage, 1S
– 2 missing gears on the 1st stage, 2x1S
– 1 missing gear on the 2nd stage, 2S
– 2 missing gears on the 2nd stage, 2x2S
– 1 missing gear on the 1st stage and 1 missing gear the

on 2nd stage, 1&2S

There were 170 samples in total for model RE16 consisting
of 120 good samples, and 36 samples in total for model
GB20 consisting of 21 good samples. Each sample was
recorded twice under the same recording condition. In to-
tal, 340 data samples and 72 data samples were collected
for RE16 and GB20 respectively.

Next, we split the dataset into 3 parts: training, valida-
tion and test. The training dataset consisted of 50% of the
vibration signals only of good electromotors. The valida-
tion dataset consisted of the training dataset, additional
10% of good ones and 50% of bad ones. The validation
dataset will be used to determine the reconstruction error
threshold for fault detection (as shown in Figure 7). The
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test dataset consistedof the rest40%of goodones and50%
of bad ones.

Figure 5 displays selected examples of vibration sig-
nals from either good or bad electromotors of model GB20.
Although anomalous vibration signals of bad electromo-
tors showed relatively high amplitudes (as shown in the
red marked area in the top right panel in Figure 5), it is
observed that some bad electromotors’ vibration signals
look close to that fromgood electromotors (as shown in the
bottom right panel in Figure 5). Thus a simple amplitude
threshold is not reliable to distinguish these two classes.

4 Experimental results
The proposed DBN based automated fault detection ap-
proach for electromotor quality inspection is first demon-
strated. The performance of this proposed method is com-
pared with SVM classification technique.

4.1 Feasibility of Tilear for electromotor
quality inspection

Cepstrum analysis is widely used for machinery fault de-
tection and diagnosis especially for gearbox analysis [21].
Cepstrogram, consisting of cepstrums of consecutive win-
dowed vibration signal clips, was used as the signal fea-
ture for Tilear’s training and testing.

To verify the feasibility of using a DBN auto-encoder
for fault detection, experimentswere conductedwithGB20
and RE16 datasets respectively. Cepstrograms of vibration

Figure 6: Cepstrograms of electromotor samples from GB20. The left
column displays the original cepstrograms, and the right one
displays the reconstructed ones. The horizontal axis is the time
scale, and the vertical is the quefrency.

signals were the feature put into Tilear. Tilear was first
trained with the training set. Reconstruction error thresh-
old was selected with the validation set. Tilear’s detection
ability was verified with the test set.

Figure 6 shows the input and output of the DBN auto-
encoder, which are the original and reconstructed cepstro-
grams of either good (g2b) or bad (b4b) electromotor sam-
ples from GB20. The green-yellow colored block in recon-
structed cepstrograms represents the area where a recon-
struction error occurs. The stronger the color is, the higher
the reconstruction error is. With high enough error, the
block can be turned into red. It is observed that the recon-
structed cepstrograms look close to the original ones with
the first look. This firstly proves that Tilear can reconstruct
the input as closely as possible, which is one cornerstone
for our proposedmethod. On top of that, it is also observed
that the reconstructed cepstrogram of b4b has more and
larger yellow marked areas than that of g2b. This means
that vibration signal containing more anomalies was re-
constructed with a higher error, which is another corner-
stone for our proposed method.

Figure 7 shows the reconstruction error cumulative
distributions of the validation and test sets of GB20. The
cumulative distribution of good samples is marked with
green, while that of bad samples with red, which is flipped
vertically to help examine the overlap between the twodis-
tributions. The less overlapped they are, the better perfor-
mance Tilear has. No overlap means the detector can al-
ways make the right decision. The threshold used to val-
idate unlabeled samples is shown as a red dashed line
along with its actual value.

It is observed that there is an overlap between good
and bad samples for both validation and test sets, but
the overlap doesn’t cover the whole reconstruction error
range. The appearance of overlap can be explained as fol-
lows: Ideally, the bad samples should have higher recon-
struction error than good samples. However, since there
are some bad electromotors having “good-looking” vibra-
tion signals, as shown in Figure 5 (bottom-right), it is pos-
sible that enough anomalies were present in the training
set. DBN then learned not only to represent common pat-
terns of the normal signals, but also to represent these pre-
sented anomalies reasonably well. This reduces the recon-
struction errors of “good-looking” samples. What’s more,
if the good sample contains too many anomalies, like the
“defective-looking” sample in Figure 5 (bottom-left),Tilear
cannot reconstruct it very well, resulting in a larger recon-
struction error than other good ones. These deviations of
the reconstruction errors make the overlap between the
two classes. A good point of this overlap is that it doesn’t
cover the whole reconstruction error range, which sug-
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Figure 7: Reconstruction error cumulative distribution of the validation (left) and test (right) sets of GB20.

Figure 8: Reconstruction error cumulative distribution of the validation (left) and test (right) sets of RE16.

gests that it is still possible to fully sort out bad samples
with the penalization of a decreased true positive rate.
From this point, we can conclude that the fault detection
for electromotor quality inspection is feasible.

Tilear with same parameters was applied to dataset
RE16, which has much more samples of both classes. Ex-
periment results for RE16 are shown in Figure 8. As for
GB20, overlap can be found in the cumulative distribution
for both sets. Likewise, the overlap doesn’t cover thewhole
reconstruction error range. The feasibility of using DBN
auto-encoder for fault detection is verified again.

To sum up, Tilear can reconstruct the input as closely
as possible. Since there is indeed a reconstruction error
difference between good and bad samples, the feasibility
of fault detection using DBN is verified. How to reduce the
overlap and how to find the best boundary for discrimina-
tion are topics to be studied. In addition to that, influences
of different parameters on Tilear’s performance will be in-
vestigated.

4.2 Comparison between Tilear and SVM

Our DBN based anomaly detector Tilear was compared to
the SVM, a commonly used technique. SVM is to map the

Table 4: Comparison between Tilear and SVM.

Model GB20 RE16

Method Tilear SVM Tilear SVM
Validation 0.986 0.979 0.962 0.938
Test 0.867 0.912 0.951 0.944
Average 0.927 0.946 0.960 0.941

input data, which is not linearly separable, into a high-
dimensional space, where a hyperplane can separate the
mapped data. Thorough descriptions about SVM and SVM
classifier are available elsewhere [14, 22, 23]. In this exper-
iment, LIBSVM [23] was used to construct the SVM.

Due to the imbalanced class distribution in dataset
RE16, Area under the Curve (AUC) obtained from the Re-
ceiver Operating Characteristics (ROC) curve plot is em-
ployed to be the detector performance evaluation met-
ric [24]. With the false positive rate being 𝑥-axis and
true positive rate being 𝑦-axis, ROC is a plot to illus-
trate how a binary classifier’s performance changes with
the variation of its discriminative threshold. It reflects
the cost/benefit tradeoff in the detector decision making.
AUC is used to quantitatively assess the classifier’s perfor-
mance. Generally speaking, a random classier would be
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expected to have an AUC number of 0.5. The larger the
AUC, the better the classifier is.

We used the cepstrograms of the train set as the input
data for both Tilear and SVM. AUC is used to evaluate de-
tectors’ performances.

As shown in Table 4, AUC values of Tilear on the two
motor types RE16 and GB20 are higher than those of SVM.
This indicates that, compared with SVM, Tilear has com-
parable or evenbetter performances on these twodatasets.
Furthermore, it is observed that AUC of RE16 test set is
higher than that of GB20 test set, and that of validation set
for both models are close. This may have resulted from the
difference of the training sample number.Number of train-
ing samples for GB20 and RE16 is respectively 21 and 120.
With more training samples, trained DBN can cover more
diverse good samples, and has better generalization abil-
ity, which can improve the performance on test set. Never-
theless, a thorough experiment needs to be made regard-
ing the influence of training sample number on Tilear’s
performance.

Training and testing time of Tilear and SVM is not
compared here, because Tilear was developed to use
the Graphical Processing Unit (GPU) while LIBSVM not.
A comparison of computational cost between these two
methods on GPU platform will be investigated in the fu-
ture. However, it is worth pointing out that the training
time of Tilear for these two datasets was 29 minutes and
40 minutes respectively, with the help of NVIDIA GeForce
GTX 560 Ti graphic card. It is observed that the train-
ing and test time of Tilear varies with the change of in-
put data size. The training dataset size increased 13.7
times from 21 samples * 256 000 data points to 120 sam-
ples * 614 400 data points, while the training time only in-
creased37.9%. This increaseof training time is acceptable.

As for the average query time, which represents the deci-
sion making time for one recorded signal, it was 0.73 sec-
ond and 1.62 second for RE16 and GB20 respectively. It is
fast enough for industrial applications.

5 Conclusions
We have developed a new automated fault detection
method for electromotor quality inspection based on Deep
Belief Network auto-encoder. This method, named Tilear,
makes use of Deep Belief Network’s strong capabilities of
modeling high-dimensional data and reconstructing in-
puts to construct an anomaly detector. The feasibility of
fault detection using Tilear is verifiedwith our acquired vi-
bration signal datasets. It is shown that Tilear has compa-
rable performancewith the state-of-art technique, Support
VectorMachine, using the Area under the Curve as the per-
formance metric. Tilear’s training time increases with the
data size within an acceptable range; query time of Tilear
is very fast regardless of the data size. The experiments in
this paper show the possibility of online fast fault detec-
tion for electromotors. It is believed that DBN not only can
beused for fault detection, but also has the potential in the
fault classification area.
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