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Abstract. Single-particle mass-spectrometric measurements
were carried out in the high Arctic north of 80◦ during sum-
mer 2008. The campaign took place onboard the icebreaker
Odenand was part of the Arctic Summer Cloud Ocean Study
(ASCOS). The instrument deployed was an aerosol time-of-
flight mass spectrometer (ATOFMS) that provides informa-
tion on the chemical composition of individual particles and
their mixing state in real time. Aerosols were sampled in the
marine boundary layer at stations in the open ocean, in the
marginal ice zone, and in the pack ice region. The largest
fraction of particles detected for subsequent analysis in the
size range of the ATOFMS between approximately 200 and
3000 nm in diameter showed mass-spectrometric patterns,
indicating an internal mixing state and a biomass burning
and/or biofuel source. The majority of these particles were
connected to an air mass layer of elevated particle concentra-
tion mixed into the surface mixed layer from the upper part of
the marine boundary layer. The second largest fraction was
represented by sea salt particles. The chemical analysis of the
over-ice sea salt aerosol revealed tracer compounds that re-
flect chemical aging of the particles during their long-range
advection from the marginal ice zone, or open waters south
thereof prior to detection at the ship. From our findings we
conclude that long-range transport of particles is one source
of aerosols in the high Arctic. To assess the importance of
long-range particle sources for aerosol–cloud interactions
over the inner Arctic in comparison to local and regional
biogenic primary aerosol sources, the chemical composition
of the detected particles was analyzed for indicators of ma-

rine biological origin. Only a minor fraction showed chemi-
cal signatures of potentially ocean-derived primary particles
of that kind. However, a chemical bias in the ATOFMS’s
detection capabilities observed during ASCOS might sug-
gest the presence of a particle type of unknown composition
and source. In general, the study suffered from low counting
statistics due to the overall small number of particles found
in this pristine environment, the small sizes of the prevailing
aerosol below the detection limit of the ATOFMS, and its low
hit rate. To our knowledge, this study reports on the first in
situ single-particle mass-spectrometric measurements in the
marine boundary layer of the high-Arctic pack ice region.

1 Introduction

The Arctic pack ice region is undergoing dramatic changes
due to global warming (e.g.,IPCC, 2007; Jeffries and
Richter-Menge, 2012). These changes affect not only the ex-
tent and thickness of the Arctic sea ice (Lindsay et al., 2009)
but also the influence of physical and chemical processes of
the aerosols on the regional climate (e.g.,Curry et al., 2000;
Prenni et al., 2007). Herein, radiative effects of aerosol par-
ticles and aerosol–cloud interactions play a substantial role:
aerosols interact with solar radiation directly by scattering
or absorbing sunlight. Also, certain aerosols have the abil-
ity to serve as cloud condensation nuclei (CCN) and/or ice
nuclei (IN); in other words, they activate to water droplets
and/or ice crystals to form clouds. This process determines
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the microphysical structure and lifetime of clouds with pos-
sible consequences for the planetary albedo and the surface
energy budget and thus for the melting and freezing of the
perennial sea ice (Intrieri et al., 2002; Sedlar et al., 2011;
Tjernström et al., 2005). Both the radiative effects of aerosols
and their role in cloud forming processes depend on the num-
ber, size, chemical properties, and mixing state of the parti-
cles. The latter parameters are determined by the source of
the particles and atmospheric gas-phase and aerosol dynami-
cal processes acting on the particles during their atmospheric
lifetime. As a consequence, a better understanding of Arc-
tic climate change involves, among other things, the charac-
terization of the Arctic aerosol. This includes measuring the
particles’ physicochemical properties in situ and elucidating
their atmospheric history, i.e., assigning particle sources and
understanding the processes shaping the aerosols during their
residence time in the atmosphere.

Information on the chemical composition and sources of
the aerosol in subarctic regions is plentiful; information on
the chemical composition and sources of the high-Arctic
(> 80◦ N) aerosol over the pack ice area is, however, scarce.
In the past, attention has mainly been directed towards the
investigation of aerosols that play a role in the phenomenon
known as “Arctic haze”: during winter and early spring, high
concentrations of sulfate and black carbon (BC) containing
particles from continental, anthropogenic sources are trans-
ported into the central Arctic, leading to a substantial de-
crease in visibility and enhanced air pollution (Heintzenberg,
1980). During these periods, air masses from continental
source regions located at lower latitudes influence the central
Arctic, which mainly explains the high atmospheric burden
of anthropogenic aerosols in this remote area (Quinn et al.,
2007). During summer, the central Arctic region, however, is
largely isolated from long-range-transported air from lower
latitudes (Stohl, 2006; Law and Stohl, 2007; Heintzenberg
and Leck, 2004), causing local aerosol sources to become
important.

A large portion of our knowledge of the in situ measured
properties of the summertime high-Arctic aerosol north of
80◦ stems from three research expeditions all carried out on
the icebreakerOden in 1991, 1996, and 2001 (Leck et al.,
1996, 2001, 2004; Tjernström et al., 2004) as well as from the
most recent experiment in 2008: the Arctic Summer Cloud
Ocean Study (ASCOS;Tjernström et al., 2013), the latter
being the focus of this publication. The overriding aim of
these expeditions was to improve our understanding of low-
level stratiform cloud formation and evolution in summer
over the high-Arctic pack ice area north of 80◦ in order to
clarify processes between the surface, cloud layers, and free
troposphere. In these studies, particle nucleation (e.g.,Covert
et al., 1996; Wiedensohler et al., 1996; Leck and Bigg, 1999;
Karl et al., 2013), large-scale advection of aerosols from
lower latitudes into the inner part of the pack ice area (e.g.,
Bigg, 1996; Heintzenberg and Leck, 2004; Shupe et al.,
2013), and particles ejected from the open leads due to bub-

ble bursting (e.g.,Leck and Bigg, 2005a) have been identified
to contribute to the atmospheric burden of particles during
summertime. The high-Arctic open leads can be described
as ever-changing open water channels comprising 10–30 %
of the ice pack ice area, ranging from a few meters up to
a few kilometers in width. From ASCOS, measurements of
open lead particle emissions and bubble size spectra within
the near-surface waters of open leads were analyzed byHeld
et al. (2011) andNorris et al.(2011), respectively, and fur-
ther discussed inTjernström et al.(2013). Nevertheless, the
source strengths of the primary biogenic particles, their rel-
ative abundances, and their physical and chemical proper-
ties are still unknown. The question of whether the source of
aerosol particles for the omnipresent summer central Arctic
low-level clouds (Curry and Ebert, 1992; Tjernström et al.,
2005; Shupe et al., 2005, 2011) is local or whether aerosols
are imported by long-range transport from the free tropo-
sphere or by advection in the marine boundary layer from
the marginal ice zone (MIZ), or south thereof, is critical for
understanding Arctic climate and climate change processes.
Since CCN and IN number concentrations in the central Arc-
tic are very low, small changes can substantially alter the
clouds and their impacts on the surface – that is, melting or
freezing of the ice (Intrieri et al., 2002; Tjernström, 2005;
Mauritsen et al., 2011).

In situ measurements of the bulk chemical composition
of the non-refractory, submicron high-Arctic aerosol during
ASCOS was carried out byChang et al.(2011) using an
aerosol mass spectrometer (AMS). The particles collected
in the marine boundary layer were mainly composed of or-
ganics and sulfate. A source-apportionment study based on
the AMS data revealed the influence of predominantly ma-
rine biogenic and continental sources. A type of purely or-
ganic aerosol was detected whose source could not be unam-
biguously identified. The authorsChang et al.(2011) suggest
that these particles originate from primary marine sources or
biomass burning and oxidized continental sources. The ob-
served high degree of oxygenation of the organic compo-
nents was interpreted as an indication of the presence of at-
mospherically processed aerosol. Directly emitted, primary
marine organic particles of similar oxidation state as pro-
posed byLeck and Bigg(2005b), however, could also have
explained this observation. The primary organic particles de-
scribed inLeck and Bigg(2005b) refer to marine polymer
gels or marine gels (Verdugo, 2012) produced by biologi-
cal secretions of phytoplankton and sea-ice algae and were
hypothesized to originate from the sea surface microlayer of
the open leads (e.g.,Bigg et al., 2004; Leck and Bigg, 2005b,
2010; Bigg and Leck, 2008). Orellana et al.(2011) verified
the presence of airborne marine gels in aerosols and fog and
cloud water, demonstrating their origin as being injected into
the atmosphere by bubble bursting. The gels are water insolu-
ble and show thermally stable (Decho, 1990), i.e., refractory,
properties which cannot be resolved by the AMS. Aerosol
mass spectrometers employing a laser desorption ionization
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technique such as the one used in this study, the so-called
aerosol time-of-flight mass spectrometer (ATOFMS;Gard
et al., 1997), are capable of detecting refractory material; uti-
lizing an ATOFMS over the eastern Pacific Ocean, Indian
Ocean, and the western Pacific Ocean,Gaston et al.(2011)
detected a unique ocean-derived particle type in the marine
atmosphere whose mass-spectrometric pattern and correla-
tion with sea salt aerosol showed a connection to the marine
gels as described inLeck and Bigg(2005b).

Other monitoring or campaign data on the chemical com-
position of the Arctic aerosol were collected at lower lati-
tudes, different seasons, or in the free troposphere and thus
are not directly comparable to the marine boundary layer
measurements performed on the icebreakerOdenduring the
summertime expeditions.Kuhn et al.(2010) report on AMS
measurements performed during a summer study in 2006
at the Polar Environment Atmospheric Research Labora-
tory (PEARL) located in the Canadian High Arctic (80◦ N).
Long-term measurement of the Arctic’s aerosol chemical
composition from several research sites (63 to 82◦ N) are
summarized inQuinn et al.(2007). These studies draw a con-
clusive picture of the seasonality of sulfate and biomass burn-
ing aerosol in the Arctic which is consistent with results from
the ARCPAC (Aerosol, Radiation, and Cloud Processes af-
fecting Arctic Climate) project of spring 2008 (Brock et al.,
2011). Their findings concerning the influence of continen-
tal sources on the Arctic aerosol will be discussed in context
with our findings from ASCOS. The listed studies, however,
refer to data mainly collected south of 80◦ N and do not in-
clude the characterization of the aerosol sampled in the ma-
rine boundary layer over the pack ice area.

Recapitulating the measurements of the chemical compo-
sition of high-Arctic aerosol, the need for more in situ data
collected at locations north of 80◦ is obvious. Herein, we
report on the first in situ single-particle mass-spectrometric
measurements in the marine boundary layer of the central
Arctic pack ice region, performed during the ASCOS exper-
iment in summer 2008 on the icebreakerOden. The main
objective of the campaign was to investigate the formation of
low-level stratiform clouds and its connection to meteorol-
ogy and aerosol–cloud interactions (Tjernström et al., 2012,
2013). The focus was on the biologically active period of
the Arctic summer in order to improve our understanding of
aerosol sources from the ocean-surface microlayer and the
potential of those particles to act as CCN and/or IN. Our
online chemical mapping of individual single particles uti-
lized an ATOFMS (TSI Inc., St. Paul, USA). The analysis of
aerosol particles on a single-particle basis allows us to elu-
cidate specific aerosol types and to identify aerosol sources
based on their mixing state and chemical constituents. In
contrast to the AMS, the ATOFMS analyzes refractory ma-
terial that allows, for example, the speciation of elemental
carbon, mineral material, and alkaline metals, and to iden-
tify their origins: for example, particles from fossil fuel com-
bustion, dust, or of biological origin (e.g.,Pratt and Prather,

2010; Creamean et al., 2013), such as primary marine par-
ticles (Gaston et al., 2011; Prather et al., 2013). Herein, the
chemical composition of the single particles will be analyzed
and compared to the results from the bulk analysis presented
in Chang et al.(2011) and other studies as listed above.

2 Methods

2.1 Area and time of operation

The ASCOS field experiment (Tjernström et al., 2013) took
place in the high-Arctic region from 2 August to 9 Septem-
ber 2008. The data discussed in this study were collected
onboard the Swedish icebreakerOden. The research cruise
started and ended at Longyearbyen, Svalbard. Data collected
during three sampling periods at different locations are pre-
sented: firstly, data from an open water station (OW) at 0:00
to 12:00 UTC on 3 August 2008 (78.2◦ N, 7.5◦ E); secondly,
from a marginal ice zone station (MIZ) on 4 August 2008
12:00 to 5 August 12:00 UTC (79.9◦ N, 6.1◦ E); and thirdly,
measurements taken at an ice floe station (IF) in the pack
ice (> 87◦ N) when the icebreaker was moored to an ice floe
and drifted passively. The latter period from 12 August to 2
September represents the longest sampling period, 22 days
in total. A map of the route including the ice drift period is
shown in Fig.1.

2.2 Aerosol sampling

The largest part of the aerosol instrumentation was in a labo-
ratory container located on the deck of theOden. The sample
air was drawn in from about 25 m above sea level into the lab-
oratory container via pipes of a two-masted gas- and particle-
sampling manifold that extended at an angle of 45◦ to about
3 m above the roof of the container. Each mast was equipped
with a horizontally oriented commercial PM1 and PM10 inlet,
but the PM1 inlet mast also served as fixture for the gas-phase
sampling lines. The ATOFMS and most of the other aerosol
instrumentation were connected to the PM10 inlet through
the main pipe, which had an inner diameter of 9 cm and was
pumped with a total flow of approximately 1140 L min−1.
Inside the container, aerosol samples were collected isoki-
netically from the main flow using forward-pointing inlets
located in the center of the main pipe. The ATOFMS was
connected to the main pipe via 3/8 in. steel tubing (230 cm
in length) and 6 mm conductive tubing (55 cm in length) that
was branched from the steel tubing. A Reynolds number of
∼ 1700 in the distribution line ensured laminar flow condi-
tions and short residence times of the particles before being
analyzed. The ATOFMS sample flow was 0.1 L min−1. The
RH of the sample flow was assumed to be less than 30 %
based on the residence time of the air inside the flow system
and the temperature difference between ambient and labora-
tory temperature. During one of the past expeditions the RH
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Figure 1. Map of the ASCOS route. O1 represents the open water
station (named OW station in this paper), M1 the marginal ice zone
station (named MIZ station in this paper), and the “ice drift” (named
ice floe (IF) station in this paper). The blue and black lines describe
the extent of the ice at the time of entry and exit. The inset shows
details of the ice drift period. For instrument safety reasons, the
ATOFMS was not measuring during the traverse between the MIZ
and IF station, nor was it during the return cruise.

was measured to be 20 % in a similar setting to that of AS-
COS.

The construction and location of the sampling manifold
was designed to optimize the distance from the sea and from
the ship’s superstructure. Direct contamination from the ship
was excluded by using a pollution control mechanism based
on a threshold signal from an ultrafine particle counter. The
inlet system was already in use onboard theOdenduring the
first of the icebreaker campaigns in 1991. Provided that the
wind was within± ∼70◦ of the direction of the bow and
stronger than 2 m s−1, no pollution reached the sample inlets
(Leck and Persson, 1996). To maximize the sampling time,
it was necessary to face the ship into the wind. For the ice
drift this necessitated finding, or making, a “harbor” in the
ice where the ship could be moored in several main orienta-
tions and turned as the wind direction changed. More details
of the setup for the sampling of aerosol particles are given in
Leck et al.(2001) andTjernström et al.(2013).

2.3 Aerosol time-of-flight mass spectrometry

The chemical composition of the individual particles was
obtained in real time using an ATOFMS (model 3800; TSI
Inc., St. Paul, MA, USA); a detailed description of this
can be found elsewhere (Gard et al., 1997, 1998). Particles

are drawn into the instrument through an aerodynamic lens
working in the size range of between approximately 200 and
3000 nm in diameter. Downstream of the lens the particles
enter a differentially pumped vacuum stage where they are
accelerated to their terminal velocity. They pass two contin-
uous wave laser beams (532 nm) with a known fixed distance
and are detected by their scattering pulses (in the following
termed “sized” or “detected” particles). The vacuum aerody-
namic diameter of each individual particle can then be deter-
mined from the transit time between the two lasers after cal-
ibrating the measured speed and the aerodynamic diameter
using polystyrene latex spheres of known size and density. In
the mass spectrometer source region, the sized particles are
irradiated directly by a laser pulse of a 266 nm Nd:YAG laser
with an energy of about 1 mJ to desorb sample-related ions.
Positive and negative ions are then simultaneously detected
in unit mass resolution using a dual-reflectron time-of-flight
mass spectrometer (in the following termed “hit” or “chemi-
cally analyzed” particles). The mass calibration of the time-
of-flight signal is obtained by analyzing particles of known
composition.

Zero-particle measurements were performed regularly
during the cruise by installing a filter upstream of the
ATOFMS to check for false particle counts or instrumental
noise. No false particle counts were detected during these
“blank” measurements.

During the traverse through the pack ice, no data were col-
lected, as the mass spectrometer was turned off for safety
reasons. Also, the ATOFMS was not operational most of the
time from 15 to 18 August (to be more exact, day of year
(DoY) 228.125 to 231.125 as used later on) and from 18 to
19 August (DoY 231.292 to 232.250) for instrument mainte-
nance.

2.4 ATOFMS data processing and analysis

Basic mass spectra analysis, e.g., mass and size calibrations
applied to the data sets, was done using the TSI firmware
MS-Analyze. For cluster analysis, the single-particle mass
spectra generated by the ATOFMS were imported into the
software system ENvironmental CHemistry through InteL-
ligent Atmospheric Data Analysis (ENCHILADA;Gross,
2011). ENCHILADA enables the analysis of mass spectra by
providing a variety of data-mining and visualization tools. In
ENCHILADA, the aerosol particle data were clustered based
on the mass spectral peaks and intensities through an ART-
2a algorithm. The produced centers of the individual clus-
ters represent an average of all the particles in that cluster,
and each cluster represents a grouping of particles with mass
spectral similarities. Thus, this particle classification method
is indicative of particle chemistry and sources. Peak identifi-
cation within the analysis corresponds to the most probable
ions for a givenm/zratio.

Atmos. Chem. Phys., 14, 7409–7430, 2014 www.atmos-chem-phys.net/14/7409/2014/



B. Sierau et al.: Single-particle characterization of high-Arctic aerosol 7413

The ATOFMS itself is a semi-quantitative instrument. This
means that the peak intensities or peak areas of the diverse
ions depicted in the mass spectrum do not reflect the actual
mass fractions of the components of the respective particles.
This is a consequence of several effects: particle transport in-
side the instrument, the influence of particle properties on the
mass-spectrometric detection (e.g., particle size, shape, and
morphology), the laser wavelength used, and the laser des-
orption and ionization process (LDI). Typically, mass spectra
of LDI instruments are dominated – if present – by ions with
low ionization energy (Zelenyuk and Imre, 2005) such as al-
kali metals, and the ion intensities of components can vary
depending on the chemical matrix of the particle itself (Reilly
et al., 2000; Bhave et al., 2002). Additionally, particles can
be partially ablated and ionized so that only information on
the surface components is obtained (Ge et al., 1998). A clear
size and composition bias of the detection efficiency for ul-
trafine particles using laser desorption mass spectrometry has
also been described byKane and Johnston(2000).

These features of the ATOFMS and the deployed LDI
technique are partly reflected in the results presented below.
If and how the detection sensitivity of the ATOFMS was bi-
ased by matrix effects, the inlet characteristics, and the mass
spectrometer operating condition will be discussed accord-
ingly.

2.5 222Rn and 210Pb

During ASCOS, the radioactive tracers222Rn and210Pb were
measured to identify continental air masses reaching the ship.
Radon is an element in the decay chain of uranium, which
is ubiquitous in the Earth’s crust. Radon can be used as a
tracer for air masses that have been in contact with soil. For
its detection, the radioactive noble gas222Rn is separated
from the particle-laden air using a filter system. In the in-
strument, the222Rn enters a delay chamber where the gas
decays to its daughter nuclides that emit alpha radiation. The
alpha particles are then counted to infer the222Rn concentra-
tion. A more detailed description can be found inHutter et al.
(1995). The instrument for Radon detection was run by the
Finnish Meteorological Institute deploying a US Department
of Homeland Security, Environmental Measurements Labo-
ratory, instrument (Paatero et al., 2009).

210Pb is a radioactive decay product of222Rn and can
be used to determine the travel time of the collected air
mass after its last contact with land. The aerosol samples
for the 210Pb analyses were collected on glass fiber filters
(type Munktell MGA, Munktell Ahlstrom, Falun, Sweden)
using a high-volume sampler. The exposed filters and the
field blanks were analyzed in the laboratory 6 months after
the campaign for210Pb with an automatic alpha/beta ana-
lyzer (Mattsson et al., 1996) to determine the210Pb activ-
ity content. The210Pb measurements and analyses were also
performed by the Finnish Meteorological Institute (Paatero

et al., 2009). The lead data are used in Sect.3.2 to interpret
the aerosol data, i.e., to identify particle source areas.

2.6 Aerosol Mass Spectrometry and PMF

A second Aerosol Mass Spectrometer (AMS; Aerodyne Re-
search, Billerica, MA, USA) deployed onboard theOdenwas
a so-called compact time-of-flight (C-ToF) mass spectrome-
ter. The AMS measured the submicron (100–500 nm in di-
ameter) aerosol non-refractory chemical composition. The
instrument was located in the aerosol container next to the
ATOFMS and shared the same distribution line of ambient
air. Similar to the ATOFMS, the particles enter the instru-
ment through an aerodynamic lens that focusses the particles
for subsequent aerodynamic sizing and chemical analysis. In
contrast to the ATOFMS, the AMS uses flash vaporization
and electron impact ionization to produce the gaseous ions
that are detected. This allows for a quantitative approach
for the chemical mass analysis yet limits the detection to
non-refractory material. Results are presented for the aver-
age bulk aerosol composition averaged over 5 min intervals.
Details on the specific operation of the AMS during ASCOS
can be found inChang et al.(2011). The AMS was run by
the University of Toronto, Canada.

Positive matrix factorization (PMF), a statistics-based
analysis tool, was applied on the AMS data for source ap-
portionment and process studies (Ulbrich et al., 2009). The
outcome of the PMF analysis are so-called “factors” which
describe the most-robust mass spectra. These factors can
then be assigned to a certain source based on the prevailing
mass-spectrometric peaks, i.e., chemical components. For in-
stance,Chang et al.(2011) obtained four factors best describ-
ing the ambient aerosol during ASCOS: a marine biogenic
factor, a continental factor, an organic factor, and an emis-
sion/contamination factor (cf. Sect.3.2). Again, details on
the specific application of the PMF method on the ASCOS
data can be found inChang et al.(2011).

2.7 PCASP and aerosol volatility measurement

A PCASP (passive cavity aerosol spectrometer probe) op-
tical particle spectrometer combined with a programmable
tube heater (Brooks et al., 2002, 2007) instrument was used
to infer information on the chemical composition and mixing
state of the bulk aerosol. The PCASP generates a continu-
ous aerosol size spectrum in the nominal radius range from
0.05 to 1.5 µm. A tube heater preceded the PCASP, and this
heated the sampled air from ambient temperatures to 900◦C.
An increase in the heater temperature typically results in
changes in either the size and/or the number of aerosol par-
ticles based on the volatility of the particles’ constituents.
Thus, the changes in size spectra with temperature provide
information on chemical composition and mixing state. For
the analysis herein, only the information on black carbon was
used (referred to as “black” carbon since detected optically).

www.atmos-chem-phys.net/14/7409/2014/ Atmos. Chem. Phys., 14, 7409–7430, 2014
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To obtain the PCASP BC-particle concentration, the number
concentrations of particles measured in the temperature in-
terval between 620 and 650◦C were processed. For tempera-
tures greater than 620◦C the only types of particulate matter
left in the sample are BC, dust, sand, and polymer gels (Li
et al., 2013), and for temperatures greater than 650◦C only
dust and sand as well as polymer gels remain. The change in
spectral shape between these two temperatures is due to the
loss of black carbon. The PCASP was located in the aerosol
container and operated by the University of Leeds, UK.

3 Results

3.1 Particle type definitions

ATOFMS data were collected at the OW, MIZ, and IF sta-
tions. The total number of particles detected and analyzed by
the ATOFMS were 85, 864, 1762 for OW, MIZ, IF, respec-
tively. The low number of hit and chemically analyzed parti-
cles compared to other field studies deploying the ATOFMS
will be discussed in more detail in Sect.3.4.

Using ENCHILADA and ART-2a, the cluster algorithm
yielded 20, 21, and 22 particle clusters for the OW, MIZ, and
IF station, respectively. After screening and re-sorting the in-
dividual cluster types, the number of clusters was reduced
to 10 overall. This number was considered meaningful by
taking similarities of the chemical composition and peak in-
tensities into account. Certain clusters were merged because
of an instrumental issue: during some periods, the correla-
tion between ion masses and ion time of flight was unstable
from particle-to-particle measurement; that is, them/zvalues
“jumped” irregularly from spectrum to spectrum by approx-
imately one atomic mass. As a consequence, cluster types
were redundant after applying the algorithm. As an exam-
ple, the most prominent negative peak atm/z−97 appeared
sometimes atm/z−96 or at−98 in three different clusters,
with all other ion masses shifted accordingly. This behav-
ior was most obvious in the negative spectra of the carbona-
ceous types with equidistant elemental carbon ions. Other
low- or singly populated clusters were partly re-sorted and
combined based on the mass-spectrometric pattern. A simi-
lar method was used for the “outliers”, i.e., particles that were
not sorted into a cluster by ENCHILADA. Finally, the num-
ber of particles in each type was obtained from the clustering
process, evaluating these clusters, and adding single-particle
mass spectra manually when necessary. The procedure was
possible due to the overall low numbers of particles analyzed;
therefore mass spectra could be screened and sorted individ-
ually. The obtained particle types are listed in Table1 and
described in the following.

Inorganic carbonaceous types

Here, four particle types (1a, b, c, and d) obtained from
the clustering procedure are presented. They all show sim-
ilar mass-spectrometric pattern but can still be distinguished
by some minor peaks and different peak intensities. Pro-
nounced peaks of these four types include elemental car-
bon (EC), potassium, sulfate, ions of minor intensities repre-
senting organic carbon (OC) mass fragments, nitrate, multi-
ple PAHs (polycyclic aromatic hydrocarbons) found at large
mass-to-charge ratios (m/z> 100), and metal elements. The
mass spectra of three carbonaceous particle types/clusters are
shown in Fig.2. The upper panel depicts the most promi-
nent particle type detected, in the following termedECOC-
K-sulfate type. The positive center of the cluster contains
a dominant potassium peak atm/z +39 (39K+ or 39/41K+

when including its isotope). Moreover, this type is charac-
terized by carbon clusters ions at12nC+

n (e.g.,12C+, 24C+

2 ,
36C+

3 , etc.); hydrocarbons such as12nCnH+, 27C2H+

3 , and
29C2H+

5 ; and a peak at43C2H3O+, a marker for oxidized or-
ganics. Hydrocarbons and the oxidized organic ion are used
as tracers for OC (Silva and Prather, 2000; Pastor et al.,
2003). The negative center is dominated by sulfate ions at
97HSO−

4 , 195H(HSO2−

4 ), 80SO−

3 , and96SO−

4 , as well as the
marker for ocean-derived biogenic sulfur: methanesulfonic
acid (MSA, 95CH3SO−

3 ). The characteristic pattern of EC
fragments12nC−

n are displayed in the negative center as well.
Particle type 1b,ECOC-K-sulfate-CN, can be distinguished
from type 1a by peaks that are more pronounced at26CN−

and42CNO− but of minor intensity compared to theK-CN-S
type as discussed below. Particle type 1c (see Supplement
Fig. S1) is characterized by repetitive peaks from hydro-
carbons/OC; oxygenated high-molecular-mass compounds;
indicators of strong aromatic signatures (51C4H+

3 , 63C5H+

3 ,
77C6H+

5 ; McLafferty and Turecek, 1993); and PAHs found at
higher atomic masses (Gross et al., 2000; Silva and Prather,
2000; Dall’Osto et al., 2012), termedECOC-PAHs. Type 1d,
in contrast, shows a similar inorganic ECOC pattern com-
pared to type 1a and 1b but contains additional metal ions
mainly detected at7Li+, and/or27Al+/C2H+

3 , and/or51V+,
and its oxide67VO+, and/or54/56Fe+, and/or Mo (cluster
aroundm/z +98), and/or107/109Ag+, and/or138Ba+. This
type is termedECOC-K-sulfate-metals.

Sea salt types

The sea salt clusters are grouped into three different par-
ticle types. Cluster 2a ispure sea salt, NaxCly, where al-
most all of the peaks are attributable to sodium chloride.
The positive cluster centers show23Na+, 39K+, 46Na+

2 ,
81/83Na2Cl+, and 139/141Na3Cl+2 . In the negative cluster,
peaks are present for35/37Cl−, 58/60NaCl−, 93/95/97NaCl−2 ,
and151/153/155Na2Cl−3 (see, for example,Pastor et al., 2003;
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Table 1.Most prominent particle types obtained using ENCHILADA and ART-2a. Bold-face letters mark the main aerosol types.

Cluster number Cluster type Cluster characteristics

1 Inorganic carbonaceous types

1a ECOC-K-sulfate pronounced12nC+/−
n , OC ions,39K+, 97HSO−

4
1b ECOC-K-sulfate-CN pronounced26CN− and minor42CNO−; compare to 1a
1c ECOC-PAHs multiple hydrocarbons and peaks atm/z> 100
1d ECOC-K-sulfate-metals similar to 1a and 1b, including diverse metal ions
2 Sea salt types
2a NaCl pure pure Na and Cl
2b NaCl mixed NaClxNOy
2c NaCl aged NaNO3
3 K-CN-sulfate type major peaks at39K+ and26CN−

4 Metal type distinct peaks representing Li/Fe/Ba/V/Al
5 Soil dust type distinct peaks representing Ca, Al, or Fe

and biological markers
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Figure 2. Mass spectra of the inorganic carbonaceous particles types obtained using the cluster algorithm ENCHILADA. The upper panel
depicts the most prominentECOC-K-sulfatetype 1a. The middle one depicts theECOC-K-sulfate-CNtype 1b subject to more pronounced
peaks at12nC+

n , 12nC−
n , 26CN−, and42CNO−. The lower panel shows type 1d with similar mass-spectrometric pattern including traces of

metals. The relative peak areas of the HSO−

4 ion are 0.83 (upper panel), 0.63 (middle panel), and 0.79 (lower panel), and those of K+ are

0.31 (upper panel) and 0.37 (middle panel). A peak atm/z−195 assigned to H3(SO4)−2 appears in all three spectra but, for clarity, is not
shown.

Dall’Osto et al., 2004). Chemical aging changes the compo-
sition of atmospheric sea salt aerosols as it can react with
acidic gases such as HNO3(g) and H2SO4(g) to form nitrate
and sulfate and release hydrogen chloride to the gas phase
(Harrison et al., 1994; Pakkanen et al., 1996; Gard et al.,
1998). Cluster 2b represents amixed sea salttype, NaxCly-
nitrate-sulfate, that, in addition to the sodium chloride peaks,
contains peaks from nitrate, sulfur and sulfate (e.g.,46NO−

2 ,
62NO−

3 , 80SO−

3 , 96SO−

4 ), and (NaCl)NOx clusters. Further

aging replaces the Cl molecules in the latter compounds
with nitrate, resulting in NaxNOy combinations atm/z+108,
−131, and−141 (Gard et al., 1998; Dall’Osto et al., 2004).
These ions were present in cluster type 2c:aged sea salt,
NaxCly-nitrate-NaxNOy-sulfate. The mass spectra of the sea
salt clusters are presented in Fig. S5 in the Supplement.
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K-CN-sulfatetype

Cluster type 3 represents a particle type with a dominant peak
at 26CN− (sometimes including42CNO−), including a pro-
nounced peak at97HSO−

4 and less significant peaks at the
sulfur markersm/z−48,−64,−80, and−96. No additional
nitrate is present in the form of46NO−

x . The only peak in
the positive spectrum is39K+ with the possibility of40Ca+

being masked (see below). None or only minor fragments of
EC and OC are present in the negative spectrum. For ref-
erence, Fig. S2 in the Supplement depicts an example of a
single-particle mass spectrum of this type.

Metal type

Cluster type 4 represents a particle type with multiple pro-
nounced metal peaks much more dominant than found in
type 1d. The metal ions represent the elements Li, Al, V, Fe,
Mo, Ag, and Ba. Al and AlO atm/z+27 and+43 interfered
with the OC markers27C2H+

3 and43C2H3O+ and cannot be
unambiguously identified. For reference, Fig. S3 in the Sup-
plement depicts an example of a single-particle mass spec-
trum of this type.

Soil dust type

Cluster type 5 represents a particle type containing pro-
nounced peaks at40Ca+, 56CaO+, and57CaOH+ along with
traces of sodium, magnesium, aluminum, and nitrates. Ca-
dominated dust particles could be distinguished from Al-
Si-dominated dust particles; however, they were not sorted
exclusively into different subgroups because of the small
number of particles detected. Most of the mass spectra also
contained potential markers for biological material, i.e., ion
peaks representing26CN−, 42CNO−, and79PO−

4 (Creamean
et al., 2013). For reference, Fig. S4 in the Supplement depicts
an example of a single-particle mass spectrum of this type.

Unidentified particles

Particles that were not clustered into any of the types listed
above remained in this group. A large fraction of these parti-
cles are characterized by mass spectra only showing a posi-
tive ion signal.

3.2 Particle types, their relative abundance, and
potential sources

In this section we discuss the abundance of the particle types
detected during ASCOS and described in the section above.
Emphasis is placed on the results from the ice floe station as
this measurement period represents the longest of the three
stations with the highest number of analyzed particles. More-
over, the measurements at the ice floe station are novel.
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Figure 3. Number-based pie chart of the aerosol clusters for the IF,
MIZ and OW station. A fraction of less than 1 % is not labeled in
the figure for clarity.

The pie charts in Fig.3show the abundance of the different
particle types sorted according to the three measurement sta-
tions, i.e., ice floe, marginal ice zone, and open water station.
The percentage given represents the number-based fraction
of the respective particle type and relates to the total number
of “hit” particles at each station (IF: 1762; MIZ: 864; OW:
85). For clarity, a fraction of less than 1 % is not labeled in
the figure.

3.2.1 Ice floe station

The dominant particle type measured at the ice floe was the
ECOC-K-sulfatetype (1a) with a fraction of 47 % of all par-
ticles analyzed in the size range covered by the ATOFMS.
The sum of the fractions of all inorganic carbonaceous types
(1a–1d) is about 80 %. Sea salt particles made up a frac-
tion of approximately 16 %. Almost all of the sea salt parti-
cles acquired secondary compounds such as nitrate (62NO−

3 )
and sulfate (97HSO−

4 ) in place of chloride, indicating an at-
mospheric aging process of the particles prior to reaching
the ship (9 % type 2b and 6 % type 2c; see Sect.3.1). Only
a fraction of less than 2 % showed signatures of “fresh” or
“pure” sea salt. Less than 1 % of the analyzed particles were
metal containing. About 2 % remained unidentified. Particles
of type 1c (ECOC-PAHs) show a similar pattern to particles
sampled and analyzed from theOden’s exhaust and occurred
during a short and confined time interval. Therefore we as-
sume that type 1c contains pollution particles from our own
ship that have not been screened out correctly. These parti-
cles will not be discussed any further.
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of hourly averaged ASCOS 2008 in-ice data. Plotted are the total
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25 and 75 %, and larger than 75 %. Image modified fromHeintzen-
berg and Leck(2012).

It has to be noted in general that the majority of the par-
ticles in the marine boundary layer during ASCOS were too
small to be detected by the ATOFMS. Figure4 depicts the
median number size distribution of the 2008 data collected
within the central pack ice (Heintzenberg and Leck, 2012).
Shown are the percentiles of the total number concentration
that are less than 25 %, between 25 and 75 %, and larger
than 75 %. The approximate size range of the ATOFMS is
marked by the grey shaded area (not accounting for the up-
per size limit). The lower size threshold is derived from con-
verting the lower cut-off diameter of∼ 200 nm into its mo-
bility equivalent (for more details see Sect.3.4). Based on
this graph, the ATOFMS would only have detected the tail of
the accumulation-mode particles (80–1000 nm diameter size
range with a maximum at∼ 150 nm) and none of the smaller,
Aitken-mode particles.

The similarities of the basic mass-spectrometric pattern of
type 1a, 1b, and 1d concerning their inorganic sulfate, potas-
sium, and EC/OC-related peaks generally point to a common
source of the particles. This is also supported by the analysis
of the temporal trends of the 1a and 1b cluster type parti-
cles as outlined in Sect. 3 and Fig. S6 if the Supplement.
The differences in peak intensities of the EC and OC mark-
ers between the clusters probably stem from a combination
of real differences in the masses of the particle constituents
combined with matrix effects resulting from the laser abla-
tion/ionization process as outlined above. The variable ratios
in the spectral peaks of the particles within one cluster indi-
cate an internal mixture of these components. Based on the
characteristic ion signals of the carbonaceous particle type 1,
its source likely is biomass or biofuel burning, either of an-
thropogenic or natural origin. Combustion processes are the
major source of primary elemental carbon particles in the at-
mosphere. The elemental carbon series are apparent in the
inorganic ECOC-type spectra in peaks at12nC−

n and12nC+
n ,

with n up to 6, and often more pronounced withn up to 12
(mainly type 1b). The difference in the intensities of the ele-
mental carbon core signatures could be an indication of vari-
able coating thicknesses by secondary material, and thus dif-
ferent atmospheric aging times. The organic carbon content
is either primary or secondary due to internal mixing with
OC particles or organic gas-phase components condensed on
the preexisting particles during atmospheric processing. The
peak atm/z+43 is commonly used as a marker ion C2H3O+

representing aged organics (Qin and Prather, 2006; Qin et al.,
2012); however, it can also be due to C3H+

7 or C2H5N+. An-
other tracer for highly oxidized organics, oxalate (C2O4H−

2
at m/z−89), is periodically present in the spectra as well.
The potassium peak is a typical marker for biomass burn-
ing aerosol and/or wood smoke (Silva et al., 1999; Qin and
Prather, 2006; Friedman et al., 2009), and can be found in
either of the particle clusters of type 1a, b, and d. Marker
peaks for levoglucosan, another biomass burning indicator
and typically represented by the characteristic ions for for-
mate45CHO−

2 and acetate59C2H3O−

2 (Silva et al., 1999; Qin
and Prather, 2006), were, however, not present.

The particles referred to as biomass burning aerosol con-
tained sulfur, as indicated by the presence of sulfate ions
at m/z−64, −80, −96, −97, and−195 (SO−

2 , SO−

3 , SO−

4 ,
HSO−

4 , and H3(SO4)
−

2 , respectively). These particles either
exhibited atmospheric aging and/or coagulation and agglom-
eration with sulfur-containing particles at the point of com-
bustion or the sulfur stems from the burned biomass it-
self. Potassium sulfate has been detected as a typical con-
stituent of emission from wood combustion (Pagels et al.,
2003, 2013). Another indicator of atmospheric aging is the
presence of a minor peak atm/z+213 that corresponds to
K3SO+

4 . For combustion-related particles,Gaudichet et al.
(1995) report an evolution from KCl to K3SO+

4 with increas-
ing distance from the emission source; however the presence
of chlorine and sulfate depends on the combustion tempera-
ture itself. K3SO+

4 could be identified in approximately 13 %
of the IF particle spectra. None or only small traces of ni-
trate were found in the type 1 particles. This is consistent
with past findings (Leck and Persson, 1996) and ASCOS
results from the aerosol mass spectrometer (Chang et al.,
2011) showing very low particulate nitrate mass concentra-
tions around or below the detection limit of the instrument
of approximately 0.008 µgm−3 for most of the ice floe mea-
surement period. Particle type 1b looks similar in nature to
type 1a; however, the mass spectra show an elevated signal
of 26CN− and42CNO−. Silva et al.(1999) report on single-
particle mass spectra of biomass burning aerosol that include
peaks of variable intensity of CN− and CNO−. The pres-
ence of CN− and CNO− could be an indicator of the si-
multaneous occurrence of carbon and nitrogen in the parti-
cle (Mauney et al., 1984; Kolaitis et al., 1989), or it could
also result from amines and amino groups due to fragmen-
tation of biological material. Intense peaks of26CN− and
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Figure 5. Timeline of 12 h-averaged ATOFMS type 1 particle counts and210Pb activity concentration (upper panel), AMS-derived conti-
nental PMF factor (middle panel), and PCASP BC-particle concentration (lower panel). Time periods when the ATOFMS was not or only
partially operational are depicted as grey shaded boxes in the upper panel.

42CNO− have been found in particles of biological origin
(Fergenson et al., 2004; Pratt et al., 2009; Creamean et al.,
2013) and are discussed in Sect.3.3. Particle type 1b could
then represent an internal mixture of type 1a particles and
type K-CN-S, or other, non-identified C- and N-dominated
particles. Some fraction of the type 1 particles contained
methanesulfonic acid (MSA, indicated by a peak atm/z−95
(CH3SO−

3 )), a photooxidation product of dimethyl sulfide
(DMS). MSA has no known anthropogenic source, making
it a useful tracer for ocean-derived biogenic sulfur. MSA was
also detected byChang et al.(2011), with its mass mainly
connected to a “marine biogenic factor” obtained from PMF
analysis (cf. Sect.2.6). The internal mixing of MSA with the
inorganic ECOC types suggests that the measured air masses
passed over biologically active waters where they incorpo-
rated the MSA-precursor gases such as DMS. These were
then oxidized to MSA and sulfate, which subsequently con-
densed on the particles before being detected at the location
of the ship. The marine biogenic factor ofChang et al.(2011)
was present for most of the time during the IF measurement
period, which is consistent with our findings (for a more de-
tailed discussion please refer to the cited publication). Note
that the assignment ofm/z−95 to MSA is ambiguous as the
ion peaks of NaCl−2 and PO−

4 potentially interfere.

Time series of inorganic ECOC type 1 particles

To explore the air mass source of type 1 particles in more
detail, the time series of ATOFMS counts (i.e., the number
of obtained mass spectra with time) was evaluated. The time
series of type 1 particle counts was compared to that of (a)
210Pb, (b) the AMS continental factor obtained from PMF
analysis (Chang et al., 2011), and (c) BC-particle counts de-
duced from PCASP measurements (cf. Sects.2.5 and2.7).
The tracer210Pb is used as an indicator of air that has had
contact with land/soil (and the age of the air since contact).
The AMS continental factor is assigned to aerosols with typ-
ical mass-spectrometric fingerprints of continental regions
(Zhang et al., 2007). The time series from DoY 226 (13
August 2008) to DoY 244 (31 August 2008) of the inor-
ganic ECOC type is shown in the upper panel of Fig.5 to-
gether with the210Pb data. The measurement points of the
ATOFMS data depict the 12 h sum of type 1a, 1b, and 1d
particle counts (the individual 1 h time series can be found
in the Supplement). The ATOFMS time series shows an ele-
vated number of type 1 cluster counts after DoY 238. Due to
the generally low number of counts and the large averaging
time of 12 h applied, only a tendency of increasing particle
counts from the beginning of the IF measurement period to
the end can be stated. This includes four peak periods around
DoY 238.5, 240.5, 241.5, and 242.5. Periods of low counts
are between DoY 227 and 228, 234 and 234.5, and 243.5
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Figure 6. Footprint potential emission sensitivity for 14 Au-
gust 2008 (DoY 227) obtained from FLEXPART. The receptor,
i.e., Oden, is marked with an asterisk. The numbers (in days back-
ward) plotted on top of the map represent a daily retroplume product
that roughly indicates the transport speed. The emission sensitivity
(in units of s kg−1) is proportional to the particle residence time in
a grid cell of the “footprint layer” and measures the simulated mix-
ing ratio at the receptor that a source of unit strength (1 kg s−1) in
the cell would produce.

and 244. The210Pb measurements show a period of elevated
concentration between DoY 239 and 243, slightly increasing
from DoY 233. In general, the progressions of both curves
are comparable. The peak period of the210Pb activity con-
centration around DoY 241 correlates with the period of in-
creased ATOFMS cluster type 1 counts starting from DoY
238.5. The minimum ATOFMS count number at the begin-
ning of the time period shown is reflected by a low210Pb-
activity concentration.

The time series of the AMS PMF continental factor shows
a high signal between DoY 239.2 and 243.5, with a signif-
icant peak around DoY 242.5–243.5. This period of high
signal correlates more closely with the ATOFMS period of
increased type 1 count number from DoY 238.5 to 243, and
the maximum occurs in both time series at the end of the high
signal period around DoY 243. The similarities between the
ATOFMS type 1 particles’ time series and that of the conti-
nental factor supports the assumption that the type 1 cluster
particles stem from biomass burning/biofuel burning sources
of continental origin.

Additionally, BC-particle concentrations were deduced
from PCASP measurements that were performed on the same
inlet system. Since the ATOFMS type 1 cluster particles
include a clear signature of EC, the BC-particle concen-
tration measured by the PCASP is ideal for intercompari-
son. The BC-particle concentration was deduced from the
PCASP data as described in Sect.2.7. Note that the peri-

Figure 7. Footprint emission sensitivity for 28 August 2008 (DoY
241) obtained from FLEXPART.

ods in Fig.5 with no PCASP data do not necessarily indi-
cate that the instrument was not operating – it was operat-
ing but the aerosol composition was such that no BC sig-
nal (the detection limit of the PCASP BC-core size corre-
sponds to a particle size of approximately 100 nm) was de-
tected. The PCASP, however, was not operational during the
high signal period seen in the ATOFMS, the210Pb, and the
AMS data (DoY> 242.7), and also not during the time win-
dow DoY 239.25–241 (B. Brooks, personal communication,
2013). The only period of PCASP data available during the
period of elevated ATOFMS counts between DoY 239 and
243 covers a period around DoY 241 with observed BC-
particle concentrations of up to 5 mL−1. This value is sig-
nificantly larger than those of the periods with minimal con-
centrations< 1 mL−1 (e.g., DoY 233–236). The maximum
BC concentration was observed on DoY 226 (∼ 250 mL−1).
This period, however, correlates with neither a maximum
in the AMS continental factor nor with the210Pb data and
is due to pollution from the ship, as confirmed by the pol-
lution record (B. Brooks, personal communication, 2013).
In contrast, a second maximum on DoY 228 (∼ 10 mL−1)
correlates with a peak in the AMS continental factor. Un-
fortunately, the ATOFMS did not measure during the latter
peak periods of the PCASP’s BC-particle concentrations due
to instrumental problems. Nevertheless, low BC concentra-
tions observed by the PCASP are reflected in low numbers
of ATOFMS type 1 particle counts.

Origin of particles

In summary, the analysis of the particle type 1a, b, d pre-
sented herein (mass spectrometric pattern, elevated occur-
rence during the time period DoY 239.5–243 (26 August
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2008–30 August 2008), elevated signals in the AMS con-
tinental factor and the210Pb activity concentration) sug-
gests that the air originates from continental sources.222Rn
observations also support this interpretation. Between DoY
241 22:00 UTC and DoY 242 10:00 UTC the222Rn activ-
ity concentration doubled from a background level of about
0.1 Bq m−3 and reached a maximum value of 0.32 Bq m−3.
A detailed analysis of the meteorological conditions during
the period of DoY 240 to DoY 243 byShupe et al.(2013)
andKupiszewski et al.(2013) further supports this interpre-
tation. The authors of both papers report on the co-concurrent
presence of continentally sourced air of elevated particle con-
centration in the upper boundary layer (400–700 m altitude;
Kupiszewski et al., 2013) and meteorological conditions al-
lowing for this air to be mixed down to the surface. During
DoY 242 (29 August) our sampling coincided with the re-
coupling and turbulent mixing between a shallow (∼ 150 m
deep) surface-based mixed layer in the lower part of the
boundary layer with a separate mixed layer located in the
upper part of the boundary layer – the upper half of which
contained stratocumulus clouds. Back trajectories analyzed
by the authors using the Hybrid Single Particle Lagrangian
Integrated Trajectory Model (HYSPLIT;Draxler and Rolph,
2011) suggest that the air in the upper boundary layer had
come from the Canadian Archipelago whereas that in the
lowest 100 m had been over the ice for at least 10 days. In
this way, air probably containing biomass burning aerosols
became entrained into the top of the clouds and mixed into
the surface mixed layer, allowing for it to be observed at the
ship. A meteorological setting that resulted in such a “pollu-
tion event” was observed only once during the entire ice drift
period.

Only limited support for an enhanced influence of con-
tinental aerosol during that time period is given by back-
ward simulations of the Lagrangian particle dispersion model
FLEXPART (Stohl et al., 1998; Stohl, 2006; Law and Stohl,
2007) analyzed herein. One FLEXPART product, the “foot-
print potential emission sensitivity”, accounts for the air par-
cel’s origin and its source strength averaged over the low-
est 100 m above the surface, including aerosol-like removal
by dry and wet deposition. Therefore, this product gives a
good indication of where anthropogenic particle emissions
may have accumulated in an air mass and transported to the
ship because these emissions are mainly emitted in the sur-
face layer of continents. Figures6 and 7 depict the foot-
print potential emission sensitivity for two different situa-
tions: the first shows a simulation ending on DoY 227.5 (14
August) with low or no influences of air from land masses.
The second, in comparison, shows a simulation ending on
DoY 241.92 (28 August 21:52:01 UTC), i.e., a day that falls
into the above-discussed period of elevated type 1 cluster par-
ticles. The footprint depicted on the simulation for DoY 241
is larger on the continents but includes only small parts of
Greenland, northernmost Canada, Alaska, and Russia as pos-

sible source regions for the observed carbonaceous aerosol
type.

In summary, aerosol particles or their precursors in upper
air layers could potentially be advected over long distances
and later be entrained into the surface mixed layer of the
boundary layer through the cloud top by cloud-induced mix-
ing (e.g.,Shupe et al., 2013). If present, such a process could
help explain “residual” particles of inorganic carbonaceous
type 1 particles detected before DoY 239.Kupiszewski et al.
(2013) summarized the results from aerosol profiling using
a helicopter stationed onboard theOden for a number of
episodes during ASCOS. For instance, one episode involved
an elevated plume aloft in the free troposphere with high
concentrations of accumulation-mode particles that they sug-
gest to have been caused by Siberian forest fires and subse-
quent long-range transport. The authors, however, conclude
that these long-range-transported plumes are unlikely to be
mixed down to the boundary layer.

Furthermore, aged sea salt particles were detected while at
the ice drift station, which is in agreement with results from
the previous icebreaker expeditions (Leck et al., 2002). The
temporal trends of type 2b (mixed NaCl) and type 2c (aged
NaCl) particle counts show strong similarities (see Fig. S5
in the Supplement), indicating a common transport path and
origin of the particles of both types before reaching the ship.
The advanced “chemical age” of type 2c suggests that these
particles resided and thus aged for a longer time over the pack
ice before being detected at theOden. Sea salt particles are
generated at the sea–air interface by bubble-bursting mech-
anisms (Blanchard and Woodcock, 1957), typically in the
upper accumulation and lower supermicrometer range. Ad-
dressing the possibility of advection of aged aerosols from
more distant sources, such as the MIZ,Heintzenberg and
Leck(2012) used statistics of modal aerosol number concen-
trations from all fourOden-based expeditions. The scaveng-
ing of aerosol particles in fog and low clouds in low-level air
entering the pack ice from the MIZ in summer is discussed.
Herein, the MIZ as a sink region for particles in the sub-
micrometer size range, within< 2 days of travel time from
the ice edge (Nilsson and Leck, 2002), was confirmed. For
ASCOS in general, the cumulative probability distribution of
the travel time of air over ice since its last contact with the
open sea suggests that 50 % of the air traveled longer than
three days (Heintzenberg and Leck, 2012). The conversion
time of fresh sea salt to aged sea salt, establishing itself by
chloride displacement, depends, among others things, on the
concentration of trace gases such as N2O5(g), HNO3(g), and
H2SO4(g). This conversion was observed via single-particle
mass spectrometry to take place in less than one day in a pol-
luted atmosphere (Gard et al., 1998). Song and Carmichael
(1999) modeled a substantial decrease in chloride levels of
sea salt particles in less than 48 h for the Yellow Sea. How-
ever, the pollution levels from both studies cannot be ap-
plied to the atmospheric situation during ASCOS, and a de-
tailed analysis of the chloride displacement is difficult due
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to the semi-quantitative ATOFMS data output and the de-
ficient statistics of analyzed sea salt particles. As a conse-
quence, quantitative relationships between the time of ad-
vection/aging times and the chloride ion intensities measured
with the ATOFMS were not established.

In addition to sea salt and inorganic ECOC particles, mi-
nor fractions of metal-dominated and mineral-dust-like par-
ticles were detected (type 4 and 5, respectively). A detailed
source characterization study for these small numbers of an-
alyzed particles was not conducted as the lack of statistics
made a further analysis infeasible. The particles contained in
both classes did not occur during a confined time period but
were instead distributed over the entire IF measurement pe-
riod. As a consequence, a source was not apportioned to type
4 and 5 particles. The metal-containing particles showed dis-
tinct traces of Li, Pb, Ba, V, Mo, Ag, and Al in various com-
binations. In general, particles with dominant metal peaks
are an indication of fuel combustion (e.g., V as a marker for
ship emissions), industrial emissions, particles from incin-
erators, fly ash, or mineral dusts (e.g.,Moffet et al., 2008;
Spencer et al., 2008; Qin et al., 2012; Dall’Osto et al., 2013).
The more dust-like compositions including traces of40Ca+,
28Si+, 27Al+, and their oxides clearly separate particles of
type 4 from those of type 5. Since some of the mineral-dust-
like particles show distinct ion peaks at26CN−, 42CNO−,
and/or contained phosphate (see example in the Supplement),
an assignment to soil dust particles is plausible. The occur-
rence of peaks assigned to metal compounds in theECOC-
K-sulfatemetals type 1d are either a consequence of coagula-
tion processes between particles of type 1a and 1b at the time
of combustion with metal-containing particles (e.g., such as
type 4) or are related to primary, metal-containing sources of
the particles. Particles of type 3 will be discussed in Sect.3.3.

Besides those from ASCOS and the previousOden-based
expeditions, no chemical composition measurements of the
summertime Arctic aerosol exist from a location as remote
as the ice floe station. Information on the particles’ compo-
sition is restricted to aerosols collected at different locations
and south of 82◦ N, and thus its comparability to the AS-
COS data set is very limited. The only mass-spectrometric
data stem from a ground-based study carried out at the Po-
lar Environment Atmospheric Research laboratory (PEARL;
80◦ N, 86◦ W; 610 m a.s.l. in the free troposphere) in sum-
mer 2006 (Kuhn et al., 2010). Another publication byQuinn
et al.(2007) reports on long-term measurements of the Arc-
tic aerosol and uses data from several Arctic research sites
(63 to 82◦ N) and of all seasons of the year (1980s to 2004).
Both studies have in common that particles of anthropogenic
origin and/or biomass burning were observed in the Arc-
tic boundary layer during summertime conditions. However,
forest fires had much less impact on the Arctic surface sites
in summertime than in winter or spring (Quinn et al., 2007).
Our observations are consistent with both of these studies
in that we have observed elevated biomass burning/biofuel
particle numbers at a remote Arctic location outside of the

“Arctic haze” period. Furthermore, their findings help ex-
plain the presence of residual particles from biomass burn-
ing/biofuel plumes at very low concentrations throughout the
entire ATOFMS measurement period of ASCOS.

3.2.2 Marginal ice station

The dominant particle type detected at the MIZ station was
the ECOC-K-sulfate-CNtype (1b) with a fraction of 53 %
from all particles analyzed in the size range covered by the
ATOFMS. Here, the sum of the fractions of all inorganic
ECOC types (1a–1d) is 55 %. Excluding the inorganic car-
bonaceous aerosol types, sea salt particles made up a frac-
tion of approximately 38 %. Almost 80 % of all the sea salt
particles contained nitrates and sulfates of the form that indi-
cates atmospheric aging of the particles prior to reaching the
ship. Only a fraction (less than 3 %) of all particles showed
a signature of “fresh” or “pure” sea salt. Less than 1 % of
the particles were metal containing, and about 6 % remained
unidentified.

3.2.3 Open water station

At the open water station, the total number of particles ana-
lyzed was only 85 during the 12 h measurement period. Here,
the dominant particle type was theECOC-K-sulfate-metals
type 1d with metal ions representing V, Ba, and Mo. The sum
of the fractions of all inorganic carbonaceous types was more
than 80 %. The combination of metal ions like V with inor-
ganic components, mainly sulfate and EC/OC fragments, is
typically found in particles stemming from fossil fuel com-
bustion. Ship exhaust is a possible source for these particles
(Ault et al., 2009, 2010). The presence of Ba could point to
incineration and refuse burning (Moffet et al., 2008). Mo was
observed via ATOFMS in individual particles from automo-
bile emissions (Silva et al., 1999). In nature, Mo can be found
in various oxidation states in minerals as well as in enzymes
of living organisms. The combination of the trace elements
observed while at the OW station suggest diverse particle
sources of anthropogenic origin. The particles arrived at the
ship internally mixed, suggesting a coagulation of the parti-
cles at the location of combustion. The fraction of sea salt
particles was relatively low compared to the two other sta-
tions. As the generation rate of sea salt aerosol has a shown
positive wind speed dependence (Lewis and Schwartz, 2004;
de Leeuw et al., 2011), this finding is consistent with a lower
wind speed of 2 m s−1 averaged over the 12 h measurement
period for the OW station compared to 6 m s−1 averaged over
24 h for the MIZ station. The sea salt particles were either
mixed or aged, again suggesting an aged marine air mass en-
countered while at the OW station.
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Figure 9.ATOFMS-measured aerodynamic size distribution of par-
ticles that were “sized” (blue bars) and subsequently “hit” (red bars)
by the ionization laser, i.e., particles that produced a mass spectrum
and were chemically analyzed. All particles measured at the IF sta-
tion are combined.

3.3 K-CN-sulfatetype particles – proxies of
ocean-derived biological particles?

As outlined in the Introduction, the abundance and chem-
ical properties of ocean-derived particles of biogenic origin
(polymer gels), as well as their potential to act as CCN and/or
IN, were some of the main research topics of the ASCOS
project. The identification of a unique particle type in the
marine environment byGaston et al.(2011) during periods
of elevated DMS and/or phytoplankton biomass revealed the
interaction of ocean chemistry and the marine atmosphere
based on single-particle mass spectrometry data. This parti-
cle type was found during several field campaigns to be en-
riched in organic carbon with additional intense peaks rep-
resenting24Mg+, 39K+, and40Ca+. Dall’Osto et al.(2005)
report on a similar finding from the North Atlantic Ma-
rine Boundary Layer Experiment (NAMBLEX) where ma-
rine, Mg2+-rich particles detected via ATOFMS correlated

with high organic mass concentrations detected via AMS. As
sources of Mg-rich particles, viruses, bacteria, cell debris, or-
ganics released from lysed cells, or marine polymer gels are
suggested. These polymer gels are polysaccharide molecules
interbridged with divalent ions (Ca2+, Mg2+), to which other
organic compounds, such as proteins and lipids, are readily
bound (Verdugo, 2012, gives a review). Also, a most recent
study on laboratory-generated, “realistic” sea spray aerosol
reports on ATOFMS-detected, primary biological-containing
particles with fractions possibly linked to microgel formation
(Prather et al., 2013). The in situ detection of primary, ocean-
derived particles in a bioactive marine atmosphere as pre-
sented inGaston et al.(2011) supports the findings ofOrel-
lana et al.(2011), Leck and Bigg(2005a), andLeck et al.
(2013), who observed polymer gels in atmospheric samples
and cloud water collected over the high-Arctic pack ice area.

When using the ATOFMS or similar LDI-based mass-
spectrometric techniques, ion peaks of potassium, sodium,
calcium, organic fragments, nitrate (a combination of both
is often reflected in peaks at26CN− and 42CNO−), and
phosphate are typically used as tracers for airborne conti-
nental/marine biological material such as bacteria, fungal
spores, or pollen. As a large fraction of these elements can
also be found in mineral dust (e.g.,Gallavardin et al., 2008)
the absence of dust markers such as silicon, aluminum, and
iron is used to distinguish between both (Pratt et al., 2009;
Pratt and Prather, 2010; Cahill et al., 2012; Cziczo et al.,
2013). Ca, K, Na, and N are well known to be essential el-
ements for living cells, and phosphates occur in endospore
nucleic acids, adenosine di- and triphosphates, and cell mem-
branes, as shown byFergenson et al.(2004). Nevertheless,
the clear identification of airborne biological material by the
ATOFMS is still a challenge due to spectral similarities to
other, non-biological particle types (Cziczo et al., 2013; Pratt
et al., 2009; Creamean et al., 2013). Other single-particle
mass-spectrometric methods can in that sense be more spe-
cific due to the application of different or modified ion-
ization methods (e.g.,Fergenson et al., 2004; Frank et al.,
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2011; Kleefsman et al., 2007). These methods show, how-
ever, consistent signatures in the elemental composition with
the ATOFMS.

The ATOFMS data collected during the ASCOS cruise
were screened for particle candidates of biological origin.
Based on the ENCHILADA results, only two clusters (a to-
tal of 36 particles) were detected during the IF station
which show slight similarities to the above-described mass-
spectrometric features. The most prominent cluster of the ob-
servedK-CN-sulfatetype is shown in Fig.8 and depicts an
intense and single peak of39K+ in the positive mode and
a dominant26CN− peak in the negative mode (see cluster-
type description above). A sulfate peak of smaller intensity
can be found in the negative mode as well. The second cluster
(not shown) has indications of carbonaceous material.

In accordance with the findings ofOrellana et al.(2011)
andLeck et al.(2013) and the unique sea spray particle type
observed via ATOFMS (Gaston et al., 2011), we would ex-
pect to detect Mg- and/or Ca- and/or K-rich particles char-
acterizing the local aerosol sources in the Arctic pack ice re-
gion. In the pack ice, the particles of interest, i.e., the above-
mentioned polymer gels, are assumed to stem from organic
material in the surface microlayer of open leads and to be
released into the atmosphere due to bubble bursting. Our
chemical results, however, are ambiguous in this regard since
39K+ is clearly present in the particle type presented here but
the most specific peak23Mg+ is absent. Instead, a high inten-
sity of 26CN− is evident, which was not observed by neither
Gaston et al.(2011) nor by Dall’Osto et al.(2005) but was
named as an indicator of biological aerosols in other studies
(Fergenson et al., 2004; Pratt et al., 2009; Creamean et al.,
2013). Pronounced ion peaks at26CN− and 42CNO− have
also been found in particle type 1b, which could indicate an
internal mixing of the inorganic carbonaceous and biological
particles.

It has to be noted that for this cluster type the intensity of
the K+ cation current was extremely high, and thus the signal
from it routinely saturated the detector and/or the dynamic
range of the data acquisition system. As a consequence, the
peak area extends over the unit mass resolution of the mass
spectra. When using ENCHILADA, the enlarged peak area
resulted in an attribution of the39K+ ion peak to anm/zvalue
of +40, as seen in Fig.8. As a further consequence, the pres-
ence of low-intensity40Ca+ ions as an additional signature
for the sea spray particles could be masked.

Based on the biogenic particle sizes, the prerequisite
for detection of those by means of ATOFMS should have
been given.Leck et al.(2013) report that marine biogenic
polysaccharide-containing polymer gels were detected on fil-
ter samples in all particle sizes ranging from 0.035 to 10 µm
in diameter collected during the 2008 ASCOS campaign.
For the entire cruise, approximately 60 wt% of the polysac-
charides were found in the submicrometer and 40 % in the
supermicrometer range. During the IF period, on average
53± 24 % of the detected polysaccharides were apportioned

in the Aitken and accumulation mode. Based on these find-
ings, the size range of the biogenic particulate matter and
that of the ATOFMS should have overlapped to some extent,
but the peak polysaccharide mass in the Aitken – and small
accumulation modes for long advection times over the pack
ice – could not be seen by the ATOFMS. The differences
of the K-CN-sulfatetype from the other four types indicate
a different source which could be of marine biogenic origin.
In general, taking the overall lack of single-particle mass-
spectrometric reference data from this measurement location
of ASCOS into consideration, the mass-spectrometric trac-
ers for ocean-derived biological particles as reported in the
literature do not necessarily have to be universal. However,
the similarities in biogenic marker ions compared to litera-
ture data are limited, as indicated by the lack of Mg2+, Na+,
phosphate, oftentimes transition metals (Prather et al., 2013),
and less intense organic ions as, for example, observed by
Gaston et al.(2011). Also, as outlined in the Supplement,
the temporal trend of theK-CN-sulfatetype particles shows
similarities with those of the type 1 particles (note that the
temporal trend analysis is only based on 36 particles). Alto-
gether, these findings make assignment of these clusters to
a biogenic, ocean-derived primary particle source rather un-
likely and prevented us from clear source apportionment of
this particle type.

Finally, we investigated the temporal trend of type 3 par-
ticles in the context of particle nucleation as, for example,
observed byDall’Osto et al.(2012) for marine aerosol: the
occurrence of type 3 particles did not coincide with the only
nucleation event observed on 2 September (not shown; for
details on the event please refer toKarl et al.(2012, 2013)).
This finding excludes the freshly nucleated particles from
being a direct source of theK-CN-sulfatetype. However,
nucleation-mode particles cannot be seen by the ATOFMS
due to their small size. Thus, only sufficiently large particles
can be detected and indirectly linked to particle nucleation
events after particle growth over a certain time span.

3.4 ATOFMS particle detection during ASCOS

As mentioned earlier, the hit rate of the ATOFMS when mea-
suring ambient particles was exceptionally low. Although an
unfavorable outcome, this aspect is still of interest for data in-
terpretation. This is due to the fact that the hit rate was found
in a typical range when the instruments’ aerodynamic lens
and lasers were aligned and optimized during size and mass
calibration measurements performed during the campaign.

The low ATOFMS hit rate during ASCOS is demonstrated
in Fig. 9. Herein, the aerodynamic size distribution of sized
and hit particles merged for the entire IF period is presented.
The hit rate was on average< 1 % for the entire cruise, with
decreasing hit rates from the OW to the IF station. Typically,
hit rates of the ATOFMS are on the order of 10 to several
tens of percent in the size range below 1 µm. Thus, the low
hit rate might give us an indication of the properties of the
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missed fraction of particles; known factors to reduce the hit
rate of the ATOFMS are (i) particles composed of material
that does not absorb the 266 nm radiation of the ionization
laser (e.g., pure ammonium sulfate particles;Spencer et al.,
2008; Wenzel et al., 2003); (ii) particles that still contain wa-
ter as wet particles divert the energy that would go to ionizing
the molecules into evaporating the water, thus suppressing
ionization; (iii) particles whose flight path is affected by their
shape and/or morphology such that the calculated “hit posi-
tion” for the ionization laser deviates from the actual one;
and (iv) charged particles that deviate from the ATOFMS
source region due to the voltages applied at the source plates
(Shields, 2008).

Unfortunately, the reason for the low hit rates observed
during ASCOS cannot be clearly attributed to one of the
above mentioned factors. General instrumental problems
cannot be ruled out completely, although the instrument hit
rates observed during the regular ATOFMS mass and size-
calibration measurements were in the expected range of op-
eration. As the relative humidity (RH) was not measured di-
rectly upstream of the ATOFMS inlet, and no additional, ac-
tive drying of the ATOFMS sample flow was performed, the
possibility that the particles still contained water is given as
well. Although the RH was assumed to be< 30 % at the exit
of the inlet system as noted above, the short residence time of
the particles within the flow system of approximately 4–5 s
might have been insufficient for complete efflorescence. The
mass spectra did not contain a signal atm/z +19 (H3O+),
which is an indication of the absence of wet particles. An-
other indicator of wet particles is the deficiency of nega-
tive ion spectra (Neubauer et al., 1997, 1998), which has
only been observed on occasion (< 2 % at IF). No neutral-
izer to minimize charge effects was employed upstream of
the ATOFMS’s inlet during the ambient measurements. Con-
sequently, a combination of particle losses due to charge ef-
fects and a chemical bias are the most prominent factors to
take into consideration herein. In terms of a chemical bias,
one could speculate that particles of biological origin as pro-
posed byLeck and Bigg(2005a) and ATOFMS measured by
Gaston et al.(2011) make up the fraction of sized but non-
chemically analyzed particles since they are partly composed
of mono/polysaccharides. We do not expect pure sugars to
absorb well as their monosaccharide subunits do not have
any aromaticity (which is usually required for organic chem-
icals to absorb at 266 nm). Also,Gaston et al.(2011) ob-
served the ATOFMS hit rate plummeted in bioactive marine
regions where the discussed Mg-type particles were present.
This finding supports the idea of a chemical bias. However,
as we have no information on the 266 nm absorbance prop-
erties of the marine gel particles, but ocean-derived particles
from a potentially similar gel source as discussed herein were
detected byGaston et al.(2011) using an ATOFMS, no clear
conclusion from the low hit rate can be drawn.

4 Conclusions

Data are presented from the ASCOS field campaign carried
out on the icebreakerOdenin the high-Arctic pack ice area
north of 80◦ through the seasonal transition from sea-ice melt
to freeze-up in summer 2008. The chemical composition of
individual aerosol particles in the size range between ap-
proximately 200 nm and 3 µm in diameter was measured in
the marine boundary layer with a single-particle mass spec-
trometer at three different stations: at an open water station,
at a marginal ice station, and at an ice floe station in the
pack ice region. In that size range, the dominant fraction of
the ATOFMS-detected aerosol showed a common elemental
and organic carbon pattern along with pronounced ion traces
of potassium and sulfate that indicate the presence of parti-
cles originating from biomass or biofuel burning. The inor-
ganic carbonaceous particles were internally mixed with ox-
idized organics and partly with metals, which suggests long-
distance transport of the particles from lower latitudes into
the high Arctic. The majority of these particles most likely
stem from continental sources undergoing atmospheric aging
and mixing on their way into the Arctic. At the ice floe sta-
tion, the highest frequency of detection of this particle type
occurred during a meteorological period of a cloud-driven
mixed layer in the upper part of the boundary layer coupled
to the mixed layer at the surface that allowed upper-level
aerosol particles to reach the surface. Trajectory analysis of
this period (Shupe et al., 2013; Leck et al., 2013) suggests
that the air in the upper boundary layer had come from the
Canadian archipelago whereas that in the lowest 100 m had
been over the ice for at least 10 days. Several studies from
ASCOS support this finding and indicate the presence of
continental-sourced air in the boundary layer during the same
time period (Paatero et al., 2009; Chang et al., 2011; Leck
et al., 2013; Kupiszewski et al., 2013). However, particles of
the biomass/biofuel burning type were also observed outside
the above-described period, suggesting that residuals of such
continental air represent a fraction of the aerosol detected by
the ATOFMS at the location of the ship, with its significance
still to be determined. Sea salt particles made up the second
largest fraction of classified particles with variable contribu-
tions at the three different measurement locations. Certain
tracer compounds found in the sea salt particles support the
interpretation of atmospherically aged particles. A compari-
son to mass-spectrometric data of the bulk aerosol measured
using an aerosol mass spectrometer (AMS) revealed some-
what contrasting results.Chang et al.(2011) observed a large
mass fraction of 31 % attributed almost purely to organic,
which was not observed by the ATOFMS. However, Chang
et al.(2011) also report on a continental factor deduced from
their source-apportionment study that correlates in time with
the inorganic carbonaceous particle type measured by the
ATOFMS (note that the AMS and ATOFMS have different
particle size ranges, with the AMS starting at 100 nm in di-
ameter aerodynamic size).
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An interesting feature observed in the ASCOS data set
concerns the low number of analyzed particles. The so-
called “hit rate” of the ATOFMS, i.e., the percentage of
particles (per time interval) that were hit by the ionization
laser, desorbed its energy and produced a mass spectrum
that was exceptionally low during the entire cruise. Only
∼ 1 % of the particles sized by the ATOFMS could be chem-
ically analyzed. This can be attributed to instrumental fea-
tures or insufficiently dried (i.e., wet) particles whose wa-
ter fraction diverts the laser energy when hit. A chemical
bias, however, is also possible due to particles mainly con-
sisting of material transparent at the 266 nm wavelength of
the desorption/ionization laser. Acting on the latter assump-
tion, one could hypothesize that these non-ionized, “missing”
particles represent ocean-derived primary organic aerosols
from the ocean-surface microlayer as observed byLeck and
Bigg (2005a), Bigg and Leck(2008), Orellana et al.(2011),
andLeck et al.(2013) and potentially detected via ATOFMS
by Dall’Osto et al.(2005) andGaston et al.(2011). Monosac-
charides as major building blocks of polymer gels, one of
those ocean-derived material types that have been found in
the Arctic atmosphere, would fulfill the requirement of being
scarcely ionized by the ATOFMS. These particles, however,
do not necessarily consist of pure saccharides as they read-
ily bond proteins and lipids (Facchini et al., 2008; Hawkins
and Russell, 2010; Leck and Bigg, 2005a) when ejected into
the atmosphere from the ocean-surface microlayer by bubble
bursting. In this study, only a small fraction of particles, less
than 2 % analyzed from the ice floe station, showed a mass-
spectrometric pattern that potentially indicates a biological
source.

In general, only a minor fraction of the total aerosol could
be sampled by the ATOFMS. In 2008, the dominant num-
ber of aerosols were found in the nucleation and accumula-
tion mode, which seems to be a fundamental feature of the
high-Arctic summer aerosol (Heintzenberg and Leck, 2012).
As a consequence, the information gathered on individual
aerosols was limited by the particle size range covered by
the ATOFMS. Due to the overall low number of particles
that produced a mass spectrum, a robust statistical analy-
sis of the ATOFMS data was restricted. Hence, it is ques-
tionable how representative our data are for the summertime
high-Arctic aerosol. In addition to measurement statistics,
this also concerns more general aspects like the representa-
tiveness of an aerosol sampled at the ship at a certain loca-
tion and at a certain time compared to the aerosol present at
higher altitudes, and the spatial and temporal occurrence of
long-range-transported air introducing aerosol particles from
continental sources into the marine boundary layer compared
to advection of air over the pack ice. During ASCOS, pollu-
tion or biomass burning plumes, which we did see aloft in
the free troposphere on occasion (Kupiszewski et al., 2013),
was/were detected at the ship only once: about a few days
out of the 7 weeks of the expedition indicate a continen-
tal source within the boundary layer. In order to gain more

knowledge on such occasions so as to assess their importance
for aerosol–cloud interactions in the Arctic in comparison to
local biogenic primary aerosol sources or advected aerosols
from the marginal ice zone or open sea south thereof – as
well as how they influence the chemical composition, the
mixing state, the sources and the abundances of the high-
Arctic aerosol – more comprehensive in situ data have to be
collected north of 80◦.

The Supplement related to this article is available online
at doi:10.5194/acp-14-7409-2014-supplement.
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