
ETH Library

Integrating Pointing Gesture
Detection for enhancing
Brainstorming Meetings using
Kinect and PixelSense

Conference Paper

Author(s):
Kunz, Andreas ; Alavi, Ali; Sinn, Philipp

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010113556

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6495-4327
https://doi.org/10.3929/ethz-a-010113556
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Integrating Pointing Gesture Detection for enhancing Brainstorming Meetings
using Kinect and PixelSense

Andreas Kunz1, Ali Alavi1, Philipp Sinn1

1 Innovation Center Virtual Reality (ICVR), ETH Zurich, 8092 Zurich, Switzerland, E-Mail:
kunz@iwf.mavt.ethz.ch

Abstract
Microsoft PixelSense is able to detect multitouch input and tagged objects as well, which makes it suitable to be used in
net-based brainstorming sessions within small teams. However, any gestures above the table cannot be detected,
which makes net-based brainstorming sessions less intuitive. Thus, we present a solution how Kinect can be used
together with PixelSense to overcome this limitation without interference between the two devices.

Keywords:
Kinect; Deictic Gestures; Computer Supported Collaborative Work

The 8th International Conference on Digital Enterprise Technology (DET2014), Stuttgart, Germany 2014

1 INTRODUCTION

Nowadays, many big ideas incept from a team of individual
designers, sitting together in a brainstorming meeting. This
collaborative approach uses the collective knowledge and creativity
of the team, and is beneficial to the major stakeholders of the
meeting (the designers, the organization, and the customers) [1].
The advent of computers and digital media, and increased
availability of high speed networks, enabled remote brainstorming
sessions. Thus, members of a group, distributed among different
locations, may participate in such meetings and effectively
participate in the ideation phase of developing a product. This has
two main advantages:

Firstly, the need of commuting between different locations can be
eliminated. This is particularly interesting for international firms with
offices located around the globe.

Secondly, there are reduced social inhibitions among group
members. It has been seen that many team members, particularly
in the presence of a senior member, will withhold commenting for
fear of criticism or negative evaluation, a behavior that depresses
the ideative efficacy [2]. Moreover, in Electronic Brainstorming
Systems (EBS), “because participants do not see each other (even
if they are in the same room), attention is essentially paid to ideas
[…] helping to reduce redundancy [of ideas] and improve task
performance” [3].

In spite of these advantages, net-based brainstorming has certain
disadvantages, mainly due to the fact that available EBSs are not
capable of transmitting different forms of interaction: as depicted in
Figure 1, these interactions happen between two types of entities,
and in two different spaces (see Figure 1):

Interaction between humans and the digital media happens on the
“task space”, which can be a tabletop computer, and above it, for
example pointing to the contents on the table. This is where the
generated artifacts (forms of mindmaps, sketches or written notes)
belong to.

Interaction between team members, which according to [3] consists
of verbal (words), vocal (intonation), and visual (body language)

elements, takes place in communication space.

For an efficient net-based brainstorming, we should decide on a
subset of these communication elements to be captured, aligned,
and correctly transferred to the remote side.

While most EBSs are capable of transmitting the content of the task
space and also verbal and vocal elements of the communication
space, they come short in a proper transmission of visual parts of
human-to-human and human-to-content communication (facial
expressions, hand gestures, nodding, shrugging, and so forth).

Many approaches try to overcome this problem by delivering this
visual content using video-conferencing, which is not efficient.
Firstly, many researches in social psychology show that lack of
social cues in brainstorming meetings leads the group members to
focus on the task instead of on the people, thus improving the task
performance [3], [5]. In other words, delivering all the social content
of the meeting is not ideal. As a result, video-conferencing may
increase social inhibition among group members. Moreover, in
order to view remote collaborators, a big portion of the digital media
screen needs to be dedicated to showing other collaborators faces
and bodies, leading to either a very small task space, or the need of
additional screens. Both adversely affect the quality of the meeting.
Hence, we are interested in transmitting only the essential visual
communication elements which contribute to the meeting while not
adding much social inhibition. Additionally, it does not occupy
significant visual resources of the meeting or distracts the
participants’ attention.

Figure 1: Brainstorming integrates communication- and task-space.

In the following paper, we introduce a new technology for detecting
pointing gestures, relating them to the content of the task, and
informing the remote partners about it. The main part of this
process is to detect and track the pointing gestures. Since pointing
gestures are typically performed in the free space (communication
space) above the interactive table, PixelSense’s sensors cannot
detect them anymore with a sufficient resolution. Thus, an
additional tracking system is required. Although a marker-based
tracking system can accomplish this task, we are interested in a
solution that is less intrusive to the user, because wearing the
markers might neither be possible nor desirable for some of the
participants. Moreover, detecting hands and fingers with color-
based cameras is not an option neither, because of the variety of
skin tones in a large group of people, and also a large range of
colors available in the task space. Hence, we try a different
approach by tracking hands using a depth camera. Even though
tracking hands using depth data does not have the mentioned
problems of other tracking systems, a depth camera cannot be
easily used in presence of a PixelSense touch screen, since they
both work with infrared light, thus interfere with each other. This
paper offers a solution to overcome this interference problem
between the Microsoft Kinect depth camera and the Microsoft
PixelSense touch screen. Once the pointing gesture’s orientation is
detected, the remainder of the paper will describe, how the target of
the pointing gesture will be displayed to the remote partners.

2 RELATED WORK

The importance of aligning the layers from Figure 1 was already
stated in earlier work. According to Ishii et al. [6], people feel it
difficult to communicate if they cannot tell whether the remote
partner is listening carefully or not. An early example of a shared
workspace was given by Krueger [7]. However, in his setup the
shared workspace was more a shared view space, since it was not
possible to interact with the artifacts. In 1990, Tang and Minneman
[8] introduced VideoDraw, a device that allows the partners to share
a drawing surface. It consists of video cameras aiming at the
screen, whereby each camera is connected to a monitor on the
other side. As both partners draw with whiteboard markers on the
screen, the video camera captures these markers and the
accompanying hand gestures, which are then transferred to the
other side. VideoWhiteboard [9] features rear-projection of the
shared task space, and a camera which is also placed behind a 90’’
projection screen. The partners see the complete image, real and
video marks, as well as the shadows of their remote partners’
gestures and actions. Bly [10] conducted an exploratory study to
investigate the use of a drawing surface in design sessions. In one
of her settings, two designers were geographically separated and
connected via video tools. Bly observed that in the sessions that
provided visual contacts, “gestures constituted a significant portion

of the drawing actions that took place”. In order to allow designers
to work remotely by sharing a drawing surface, Bly and Minneman
developed Commune [11]. This system provides two separate
horizontal writing surfaces, each consisting of a horizontally
mounted CRT monitor, and a transparent digitizing tablet mounted
directly on top of the screen. On each writing surface, collaborators
can gesture and make marks by using a stylus. However, the
remote partner was not captured, but his gestures were restricted to
a telepointer that was transferred to the remote site.

With ClearBoard [6], Ishii et al. bring together task space and
communication space, since the system allows keeping eye contact
while working on an interactive surface. Kirk et al. [12] [13]
underlined in their study the importance of hand gestures that are in
correct relation to the task space. Stotts et al. [14] suggested using
remote collaboration groupware that displays live video
embodiments situated within the shared workspace. With “The Vis-
a-Vid (VAV) Transparent Video Facetop”, they presented a
respective user interface. It has cameras that acquire live video
embodiments showing the collaborators’ faces. The local live video
embodiment is displayed as visual feedback for controlling where
the hand is placed. Further, pointing gestures are detected to allow
controlling the computer’s mouse pointer. Due to the camera
positions, gestures must be performed in free space, making VAV
less useful for on-screen interaction.

Wellner presented the Digital Desk [15] and the Double Digital Desk
[16]. The Digital Desk consists of a normal office desk with a
projector and a camera above it, both pointing to the desk’s surface.
The projector allows superimposing digital artifacts on physical
ones lying on the desk. The user can interact with the system using
a mouse, a digitizing tablet and a stylus, or by pointing with his bare
finger that is tracked through image processing of the acquired
camera images. Agora [17] is a remote collaboration groupware
system that supports shared desktop artifact activities and remote
gesturing. However, the task space is shared as video only,
entailing all associated drawbacks. VideoArms [18] [19] is an
elaborate conferencing system that supports collaborators’ natural
use of hand gestures. The system acquires people interacting on
shared task spaces by means of a camera that is on-axis with the
display device. Therefore, the context of hand gestures is
preserved, e.g. deictic gestures pointing out a shared artifact can be
correctly interpreted by the remote collaborator. To improve the
recognition of users, CollaBoard [20][21], exploiting polarized LC
light emission, uses polarizing filters in front of the camera in order
to segment a person in front of a highly dynamic background on an
LC-screen.

Like with the CollaBoard, many of the systems mentioned before
use a tracking system in order to detect the interaction devices’
positions. For a vision-based capturing of hand-gestures in the work
space, resistive or inductive touch screens for interactive devices in
the task space do not interfere with the camera. Even IR-based
touch screens can be used in the task space, as long as the IR-
emission is not in the camera’s viewing direction. However, today’s
active tables such as PixelSense [22] actively emit non-polarized
IR-light. Moreover, cameras are usually very sensitive to infrared
light and thus are driven into saturation, resulting in the fact that
RGB-cameras can hardly see different colors anymore. Thus, the
technology proposed in CollaBoard cannot be used anymore. In
addition, all setups so far only detect a rough pointing direction (in
regard to screen coordinates x and y), neglecting that deictic
gestures also have an orientation, which requires additional depth
information.

To further improve the close coupling between task and work
space, we propose a solution which uses PixelSense together with

a Kinect’s depth sensing camera to reliably track gestures above
the table.

3 APARATUS AND ENVIRONMENT

Our study focuses on brainstorming meetings happening around a
tabletop computing system. Microsoft PixelSense is such a system,
with a wide set of features, which enables the users to run the
extended set of Microsoft Windows software and applications. The
table is also capable of detecting multi-touch interaction, enabling
the users to interact with the computer system in a natural way. We
use PixelSense because of its wide availability, and also because of
the ease of software development on this platform.

We decided to use Kinect also because of its availability,
reasonable pricing and its available programming libraries and
frameworks which facilitates realization of the
experiments.

Figure 2: Brainstorming around PixelSense. Most gestures happen
above the screen.

As depicted in Figure 2, users employ different forms of hand
gestures around the surface. Because of the physical positioning of
the users around the table, the pointing gestures happen directly
above the table’s screen. This is confirmed by a preliminary user
study we performed, which showed that most of the relevant
gestures above the table are in a height of up to 465 mm and within
the screen area. The Kinect has to have a bird’s eye view onto the
PixelSense in order to have an unobstructed view of the scene
regardless of the number of users. Taking the height of the
PixelSense table and Kinect’s aperture into account results in the
following setup (see Figure 3). The setup is designed in such a way
that Kinect’s field of view exactly covers the interactive region of
PixelSense.

This setup causes frequent unwanted touches appearing on
PixelSense, completely disturbing the normal interaction of users
with PixelSense. This is due to the fact that both PixelSense and
Kinect use infrared emitters and sensors, working with similar
wavelengths (830 nm). Thus, the interference between these two
devices is a major problem. This interference has less impact on
Kinect than on PixelSense, meaning that depth sensing by the
Kinect still works, while the PixelSense cannot be used anymore for
touch detection.

Figure 3: Realized setup for the Kinect & PixelSense tracking
system.

The Kinect’s depth sensing is based on a structured light approach.
Its IR projector emits a dot pattern into the room, while its IR
camera observes the scene and compares the disparity between
the dot pattern and a reference. Thus, the depth at each dot’s
location can be determined. Depth detection fails if the Kinect
cannot see its dots anymore. Common causes are reflective
surfaces, which cause disturbances, too large distances or high
levels of IR intensity in the scene. In the latter case, the dots are
insignificantly brighter than the rest of the environment (low
contrast) and cannot be detected in the IR image reliably.

PixelSense features an array of IR sensors in the screen for touch
detection. Additionally, IR light is homogeneously emitted through
the entire screen. In the IR image of the Kinect, the PixelSense
screen appears as a bright rectangle due to its IR emission (see
Figure 4, top). Consequently, the Kinect cannot see its own pattern
anymore (contrast issue) in this region and returns the depth value
“-1”, which means “error” (errors are output as black in the depth
map). See Figure 4, bottom.

Figure 4: Kinect’s view (bird’s eye view) on the PixelSense with a
user sitting left of it and stretching his hand out above the screen.

Top: Kinect’s IR image. The Kinect’s dot pattern can be seen on the
user and faintly on the floor. Bottom: Kinect’s calculated depth
image. The PixelSense’s screen and glossy frame cannot be
detected (black pixels) but the user and partially the floor are

detected.

In addition, the frame around the screen is glossy. This causes
specular reflections which disturb Kinect as well. Essentially, neither
the PixelSense screen nor its frame can be detected by the Kinect.
However, detecting gestures above the PixelSense is not a
problem. Any object, e.g. a hand and forearm, on or above the
PixelSense can still be detected reliably, since the dots are visible
there (see Figure 4, top). However, due to Kinect’s resolution, it is
not possible to detect individual fingers continuously (see Figure 5).

Figure 5: Ten consecutive frames of PixelSense depth data based
on Figure 3 (cropped to only show hands). A stretched out hand

can be seen from above. The fingers are irregularly detected.

While Kinect is still able to detect objects above PixelSense without
any modification, it causes noticeable distortions on the PixelSense.
This is due to the PixelSense’s touch detection principle. It relies on
the IR light emitted through the screen to detect inputs. If objects
are close to the screen, the IR light is reflected into the sensors.
Based on this data, PixelSense detects touches, tags, and blobs.

The Kinect projects its IR dots (which have several different
diameters due to the tracking procedure of Kinect) onto the
PixelSense (see Figure 6).

Figure 6: Raw sensor data of a hand on the PixelSense screen,
with a part magnified. Top: Kinect off. Only the hand and some
smudges are visible (the smudges are not interpreted). Bottom:

Kinect on. Many small dots are visible in the raw data.

These dots are above PixelSense’s detection threshold and are
thus erroneously detected as inputs. Depending on the size of the
dots, they are either interpreted as blobs or as touches. While blobs
can be easily filtered out by the PixelSense’s software, touch inputs
should not be filtered, since they are required for the interaction.
However, this results in unwanted click events. Typically such an
event is active as long as the object rests on the screen. It is
independent of time, changes in size and position (as long as the
change in position is smooth). Most of the Kinect’s click events
have durations below 50 ms, but can go up to a few seconds in rare
cases (see Figure 7).

Figure 7: Top: Histogram of the duration of individual events (please
note: events active during one timeframe have duration 0). Bottom:
Histogram of registered sizes per timeframe independent of event.

Figure 7 shows the unwanted touch events occurring in a 15-
minutes observation interval. In total, 9361 touch events were
triggered by the Kinect, which corresponds to 624 Kinect touches
per minute. These numbers show that without any additional
modification of the system, the PixelSense cannot be used
anymore. These touch events appear to be the same size
independent of the room illumination, i.e. whether the fluorescent
lights were switched on or off, and Kinect’s distance to PixelSense.

Another peculiarity is that the dots are not detected continuously,
hence the short durations, despite a static pattern. Also, most
events grew bigger in the sensor readings in discrete steps or
remained at one specific size.

To be able to design more sophisticated filters, ‘real’ finger touches
were also recorded (see Figure 8). They consisted of clicking,
double clicking and dragging actions with one or more fingers.

Figure 8: The touch events caused by typical finger touches. Please
note that only the bottom histogram has a logarithmic y-scale.

Comparing the diagrams from Figure 7 and Figure 8, it becomes
obvious that both – Kinect “touches” and real touch events – have
the same duration and thus cannot be distinguished in this manner.

Another obvious approach would be to filter out touch events
regarding their size. As it can be seen from Figure 7, most of the
touch events are triggered by dots of 32 x 32 (1024) pixels in size.
However, such a simple size filtering is not feasible, because many
‘real’ touch events from human interaction generate inputs of the
same size (see Figure 8).

More complex filtering approaches (e.g. based on “growth” of the
touch resulting from increasing touch pressure) could not be applied
either because some ‘real’ and some Kinect touches had the same
size for the entire event duration, which made them essentially
indistinguishable.

Within a research work by Butler et al. [23], the interference by
multiple overlapping Kinect patterns was reduced by shaking the
Kinects. A similar approach was realized in our setup, hoping that
due to the Kinect’s moving dots on PixelSense’s sensors, the
sensors’ exposure time would be too slow and thus no event would
be triggered. However, shaking the Kinect did not deliver the
expected results, as shown in Figure 9.

Figure 9: The touch events triggered by the shaking Kinect.

The data in Figure 9 was acquired in a 120-seconds time interval. It
shows that the most prominent size of 32 x 32 pixels remains but
the duration of all touches is below 100 ms. However, touch events
are generally more frequent and still indistinguishable from ‘real’

touches based on size and duration. Thus, shaking is no feasible
solution to reduce the amount of misinterpretations.

Within another approach, we take benefit from the fact that Kinect
and PixelSense have different sensitivity levels for IR light. Since
Kinect also has to detect reflected dot patterns in 3 m distance, its
sensor is more sensitive than the ones from PixelSense. This
means, if the Kinect’s IR projector intensity could be reduced, the
projected dots’ intensities would be below the detection threshold of
PixelSense, while Kinect could still detect objects in shorter
distance, which is the case in our setup (see Figure 3).

Since it was the goal to avoid any internal modification of Kinect or
PixelSense, only external optical IR-attenuators were evaluated.
Several optical filters, such as diffusion films, LC-matrices, and
Plexiglas were tested. They either provided insignificant
attenuation, deformed the dot pattern structure, or blocked the IR
light completely. The only good results were achieved with a linear
polarization filter for visible light, which was attached in front of
Kinect’s IR projector (see Figure 10).

Figure 10: A linear polarization filter is used to attenuate the
Kinect’s IR-light. A piece of cardboard holds it in place.

The linear polarization filter successfully reduced the intensity
without detrimental effects on depth data. Furthermore, the filter
allowed some fine tuning of the attenuation by turning it, since
Kinect’s IR light seems to be polarized already.

In addition to the correct orientation of the filter in front of the IR
projector, Kinect and PixelSense must also be aligned correctly.
Since the sensors in PixelSense are behind the linear polarization
filter of the screen, they are also sensitive to the polarization of the
incoming IR-light. If the long side of the Kinect is parallel to the long
side of PixelSense, the attenuation is maximal (see Figure 11).

Figure 11: The long sides of Kinect and PixelSense have to be
aligned for the filter to work correctly.

With the filter position set to cause best possible attenuation,
measurements were taken again regarding touch events triggered
by the Kinect. For a 15-minutes time interval, the following results
were achieved (see Figure 12).

Figure 12: Kinect-triggered touch events with the attenuated IR-
projector.

Within 15 minutes, there was only a total of 281 triggered touch
events, which corresponds to 18 touch events per minute. These
touch events only occurred when the fluorescent ambient
illumination in the lab was still switched on, which resulted in
increased total illumination of the sensors (see Figure 13).

Figure 13: With the room lights switched on, the PixelSense’s
sensors receive a higher amount of IR.

When switching off the room illumination or by using LED-based
light sources, no touch events were triggered anymore by the
Kinect. Alternatively, the PixelSense’s sensitivity can be
recalibrated (but is undesirable because it decreases
responsiveness).

Within a next step, it had to be verified whether objects in maximum
interaction distance to the Kinect – which is on the tabletop – could
still be detected reliably. For this, a thin paperback book was placed
on the PixelSense’s screen and the visual as well as the IR-image
were captured (see Figure 14).

Figure 14: Top: The RGB image of Kinect looking at the
PixelSense. Bottom: Corresponding IR-image. The IR-dots can be

clearly seen on the booklet.

With this setup, the depth data was recorded for 100 frames with
the following four settings:

• Filter off, room lights on

• Filter off, room lights off

• Filter on, room lights on

• Filter on, room lights off

The depth values were examined near all four corners of the
booklet. For each of the above conditions, 100 frames were
recorded (see Figure 15).

As it can be seen from Figure 15, the Kinect can still reliably track
objects on the table, while PixelSense keeps fully operational.
Fluctuations in the depth data between the four different conditions
can be attributed to normal fluctuations inherent in the system.

Filter off, lights on

Filter off, lights off

Filter on, lights on

Filter on, lights off

Figure 15: Histograms of the depth values for 100 frames for one
corner. The differences when the filter is on and off can be

attributed to normal fluctuations of the Kinect.

Lastly the effect of the filter on hand detection above the
PixelSense was tested (Figure 16). Detection was largely
unaffected. The finger detection is only slightly worse compared to
the results without the filter. Thus, it is also possible now to detect
deictic gestures in the communication space, which makes the

whole setup consisting of Kinect and PixelSense suitable for net-
based brainstorming sessions in small workgroups.

Figure 16: Ten consecutive frames of Kinect depth data similar to
Figure 4 but with the filter. The arm and hand are reliably detected,

fingers are not.

4 REPRESENTATION OF POINTING GESTURES

With the depth data available, the hand orientation, relative to the
PixelSense screen, can be determined. Thus, calculating the
intersection of the pointing gesture's vector with the screen is
possible. We use this intersection point to calculate the nearest
possible object in the task space. As a visual feedback, this object
starts to be highlighted on the screen. The initiator of the gesture
can correct its target by changing the pointing direction. If a user
points on a target for more than 1 second, the object is fully
highlighted, and the information regarding the pointing gesture is
also transmitted to the remote location, where the target object gets
highlighted also.

Figure 17: Representation of pointing gestures in a net-based
collaboration: The pointing gesture is detected at one side and the

corresponding target is highlighted on the other side.

5 CONCLUSION AND FUTURE WORK

This paper showed how a Kinect depth sensing camera could be
used for tracking gestures in the communication space above the
PixelSense tabletop computer. The main technical challenge, i.e.
the interference between two devices’ infrared sensors and
emitters, is solved using a linear polarization filter in front of the
Kinect’s IR-emitter. Using this technique, the interference on the
PixelSense could be avoided while the Kinect still can detect any
gesture above the table. Thus, no electrical modifications of the
devices are necessary, which allows an easy adaptation of the
existing equipment. Moreover, the measurements showed that
Kinect-generated fake touch events could be completely eliminated,
if an LED room illumination was used.

Future work will focus on improving the detection quality of gestures
in the workspace by improving the current technology as well as
employing other technologies such as IR-stereovision or IR-shadow
casting.

6 ACKNOWLEDGMENTS

This work was part of the research project “Computer Support for
Brainstorming Meetings with Blind and Seeing Persons” and funded
by the Swiss National Science Foundation (SNF).

7 REFERENCES

[1] Sutton, R. I.; Hargadon, A. (1996): “Brainstorming Groups in
Context: Effectiveness in a Product Design Firm”,
Administrative Science Quarterly, Vol. 41, No. 4, p. 685-718.

[2] Osborn, A.F.: ”Applied imagination: Principles and procedures
of creative problem solving (Third Revised Edition)”; Charles
Scribner’s Sons.

[3] Michinov, N. (2012): "Is Electronic Brainstorming or
Brainwriting the Best Way to Improve Creative Performance
in Groups? An Overlooked Comparison of Two Idea-
Generation Techniques", Journal of Applied Social
Psychology 42.S1, p. E222-E243.

[4] Mehrabian, A.; Wiener, M. (1967). "Decoding of Inconsistent
Communications". Journal of Personality and Social
Psychology 6 (1): p. 109–114.

[5] Walther, J. B.; Anderson, J. F.; Park, D. W.: "Interpersonal
effects in computer-mediated interaction a meta-analysis of
social and antisocial communication" Communication
Research 21.4 (1994): 460-487.

[6] Ishii, H.; Kobayashi, M. (1992): “Clearboard: A Seamless
Medium for Shared Drawing and Conversation with Eye
Contact”; in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ‘92; p. 525 – 532;

[7] Krueger, M.W. (1983): “Artificial Reality”; Addison Wesley.

[8] Tang, J.; Minneman, S. (1990): “VideoDraw: A Video
Interface for Collaborative Drawing”; in: Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems Empowering People; p. 313 – 320.

[9] Tang, J.; Minneman, S. (1991): “VideoWhiteboard: Video
Shadows to Support Remote Collaboration”; in: Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems: Reaching Through Technology; p. 315 – 322.

[10] Bly, S. A. (1988): “A Use of Drawing Surfaces in Different
Collaborative Settings”; in: Proceedings of CSCW; p. 250 –
258; ACM Press.

[11] Bly, S. A.; Minneman, S. L. (1990): “Commune: A Shared
Drawing Surface”; in: Proceedings of OIS; p. 184 – 192; ACM
Press.

[12] Kirk, D.; Stanton Fraser, D. (2006): “Comparing Remote
Gesture Technologies for Supporting Collaborative Physical
Tasks”; in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06; p. 1191 – 1200.

[13] Kirk, D.; Rodden, T.; Fraser, D. (2007): “Turn it this way:
grounding collaborative action with remote gestures”; in:
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’07; p. 1039 – 1048.

[14] Stotts, D.; Smith, J.; Jen, D. (2003): “The Vis-a-Vid
Transparent Video Facetop”; in: Proceedings of the UIST
2003; p. 57 – 58; ACM Press.

[15] Wellner, P. (1993): “Interacting with Paper on the Digital
Desk”; in: Communications of the ACM 36(7); p. 87 – 96.

[16] Wellner, P.; Freeman, S. (1993): “The Double Digital Desk:
Shared Editing of Paper Documents”; XEROX Euro PARC
Technical Report EPC-93-108; Cambridge/UK; Xerox
Corporation.

[17] Kuzuoka, H.; Yamashita, J.; Yamazaki, K.; Yamazaki, A.
(1999): “Agora: A Remote Collaboration System that Enables
Mutual Monitoring”; in: Proceedings of CHI 1999; p. 190 –
191; ACM Press.

[18] Tang, A.; Neustaedter, C.; Greenberg, S. (2006): “VideoArms:
Embodiments for Mixed Presence Groupware”; in:
Proceedings of HCI 2006; p. 85 – 102; ACM Press.

[19] Tang, A.; Neustaedter, C.; Greenberg, S. (2004): “VideoArms:
Supporting Remote Embodiment in Groupware”; in: Video
Proceedings CSCW 2004; ACM Press.

[20] Kunz, A.; Nescher, T.; Küchler, M. (2010): “CollaBoard: A
Novel Interactive Whiteboard for Remote Collaboration with
People on Content”; in: Proceedings of the 2010 International
Conference on Cyberworlds, CW 2010; p. 430 – 437.

[21] Nescher, T.; Kunz, A. (2011): “An interactive whiteboard for
immersive telecollaboration”; in: The Visual Computer:
International Journal of Computer Graphics, Vol. 27, No. 4, p.
311 – 320.

[22] Microsoft PixelSense; http://www.microsoft.com/en-
us/PixelSense/default.aspx; accessed 23.10.2013

[23] Butler, A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Hodges, S.;
Kim, D. (2012): “Shake’n’Sense: Reducing Interference for
Overlapping Structured Light Depth Cameras”; in:
Proceedings of CHI 2012; p. 1933 – 1936; ACM.

