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Abstract 
Microsoft PixelSense is able to detect multitouch input and tagged objects as well, which makes it suitable to be used in 
net-based brainstorming sessions within small teams. However, any gestures above the table cannot be detected, 
which makes net-based brainstorming sessions less intuitive. Thus, we present a solution how Kinect can be used 
together with PixelSense to overcome this limitation without interference between the two devices. 
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1 INTRODUCTION 

Nowadays, many big ideas incept from a team of individual 
designers, sitting together in a brainstorming meeting. This 
collaborative approach uses the collective knowledge and creativity 
of the team, and is beneficial to the major stakeholders of the 
meeting (the designers, the organization, and the customers) [1]. 
The advent of computers and digital media, and increased 
availability of high speed networks, enabled remote brainstorming 
sessions. Thus, members of a group, distributed among different 
locations, may participate in such meetings and effectively 
participate in the ideation phase of developing a product. This has 
two main advantages:  

Firstly, the need of commuting between different locations can be 
eliminated. This is particularly interesting for international firms with 
offices located around the globe.  

Secondly, there are reduced social inhibitions among group 
members. It has been seen that many team members, particularly 
in the presence of a senior member, will withhold commenting for 
fear of criticism or negative evaluation, a behavior that depresses 
the ideative efficacy [2]. Moreover, in Electronic Brainstorming 
Systems (EBS), “because participants do not see each other (even 
if they are in the same room), attention is essentially paid to ideas 
[…] helping to reduce redundancy [of ideas] and improve task 
performance” [3]. 

In spite of these advantages, net-based brainstorming has certain 
disadvantages, mainly due to the fact that available EBSs are not 
capable of transmitting different forms of interaction: as depicted in 
Figure 1, these interactions happen between two types of entities, 
and in two different spaces (see Figure 1):  

Interaction between humans and the digital media happens on the 
“task space”, which can be a tabletop computer, and above it, for 
example pointing to the contents on the table. This is where the 
generated artifacts (forms of mindmaps, sketches or written notes) 
belong to. 

Interaction between team members, which according to [3] consists 
of verbal (words), vocal (intonation), and visual (body language) 

elements, takes place in communication space. 

For an efficient net-based brainstorming, we should decide on a 
subset of these communication elements to be captured, aligned, 
and correctly transferred to the remote side.  

While most EBSs are capable of transmitting the content of the task 
space and also verbal and vocal elements of the communication 
space, they come short in a proper transmission of visual parts of 
human-to-human and human-to-content communication (facial 
expressions, hand gestures, nodding, shrugging, and so forth).  

Many approaches try to overcome this problem by delivering this 
visual content using video-conferencing, which is not efficient. 
Firstly, many researches in social psychology show that lack of 
social cues in brainstorming meetings leads the group members to 
focus on the task instead of on the people, thus improving the task 
performance [3], [5]. In other words, delivering all the social content 
of the meeting is not ideal. As a result, video-conferencing may 
increase social inhibition among group members. Moreover, in 
order to view remote collaborators, a big portion of the digital media 
screen needs to be dedicated to showing other collaborators faces 
and bodies, leading to either a very small task space, or the need of 
additional screens. Both adversely affect the quality of the meeting. 
Hence, we are interested in transmitting only the essential visual 
communication elements which contribute to the meeting while not 
adding much social inhibition. Additionally, it does not occupy 
significant visual resources of the meeting or distracts the 
participants’ attention.  



 

Figure 1: Brainstorming integrates communication- and task-space.  

In the following paper, we introduce a new technology for detecting 
pointing gestures, relating them to the content of the task, and 
informing the remote partners about it. The main part of this 
process is to detect and track the pointing gestures. Since pointing 
gestures are typically performed in the free space (communication 
space) above the interactive table, PixelSense’s sensors cannot 
detect them anymore with a sufficient resolution. Thus, an 
additional tracking system is required. Although a marker-based 
tracking system can accomplish this task, we are interested in a 
solution that is less intrusive to the user, because wearing the 
markers might neither be possible nor desirable for some of the 
participants. Moreover, detecting hands and fingers with color-
based cameras is not an option neither, because of the variety of 
skin tones in a large group of people, and also a large range of 
colors available in the task space. Hence, we try a different 
approach by tracking hands using a depth camera. Even though 
tracking hands using depth data does not have the mentioned 
problems of other tracking systems, a depth camera cannot be 
easily used in presence of a PixelSense touch screen, since they 
both work with infrared light, thus interfere with each other. This 
paper offers a solution to overcome this interference problem 
between the Microsoft Kinect depth camera and the Microsoft 
PixelSense touch screen. Once the pointing gesture’s orientation is 
detected, the remainder of the paper will describe, how the target of 
the pointing gesture will be displayed to the remote partners. 

 

2 RELATED WORK 

The importance of aligning the layers from Figure 1 was already 
stated in earlier work. According to Ishii et al. [6], people feel it 
difficult to communicate if they cannot tell whether the remote 
partner is listening carefully or not. An early example of a shared 
workspace was given by Krueger [7]. However, in his setup the 
shared workspace was more a shared view space, since it was not 
possible to interact with the artifacts. In 1990, Tang and Minneman 
[8] introduced VideoDraw, a device that allows the partners to share 
a drawing surface. It consists of video cameras aiming at the 
screen, whereby each camera is connected to a monitor on the 
other side. As both partners draw with whiteboard markers on the 
screen, the video camera captures these markers and the 
accompanying hand gestures, which are then transferred to the 
other side. VideoWhiteboard [9] features rear-projection of the 
shared task space, and a camera which is also placed behind a 90’’ 
projection screen. The partners see the complete image, real and 
video marks, as well as the shadows of their remote partners’ 
gestures and actions. Bly [10] conducted an exploratory study to 
investigate the use of a drawing surface in design sessions. In one 
of her settings, two designers were geographically separated and 
connected via video tools. Bly observed that in the sessions that 
provided visual contacts, “gestures constituted a significant portion 

of the drawing actions that took place”. In order to allow designers 
to work remotely by sharing a drawing surface, Bly and Minneman 
developed Commune [11]. This system provides two separate 
horizontal writing surfaces, each consisting of a horizontally 
mounted CRT monitor, and a transparent digitizing tablet mounted 
directly on top of the screen. On each writing surface, collaborators 
can gesture and make marks by using a stylus. However, the 
remote partner was not captured, but his gestures were restricted to 
a telepointer that was transferred to the remote site. 

With ClearBoard [6], Ishii et al. bring together task space and 
communication space, since the system allows keeping eye contact 
while working on an interactive surface. Kirk et al. [12] [13] 
underlined in their study the importance of hand gestures that are in 
correct relation to the task space. Stotts et al. [14] suggested using 
remote collaboration groupware that displays live video 
embodiments situated within the shared workspace. With “The Vis-
a-Vid (VAV) Transparent Video Facetop”, they presented a 
respective user interface. It has cameras that acquire live video 
embodiments showing the collaborators’ faces. The local live video 
embodiment is displayed as visual feedback for controlling where 
the hand is placed. Further, pointing gestures are detected to allow 
controlling the computer’s mouse pointer. Due to the camera 
positions, gestures must be performed in free space, making VAV 
less useful for on-screen interaction. 

Wellner presented the Digital Desk [15] and the Double Digital Desk 
[16]. The Digital Desk consists of a normal office desk with a 
projector and a camera above it, both pointing to the desk’s surface. 
The projector allows superimposing digital artifacts on physical 
ones lying on the desk. The user can interact with the system using 
a mouse, a digitizing tablet and a stylus, or by pointing with his bare 
finger that is tracked through image processing of the acquired 
camera images. Agora [17] is a remote collaboration groupware 
system that supports shared desktop artifact activities and remote 
gesturing. However, the task space is shared as video only, 
entailing all associated drawbacks. VideoArms [18] [19] is an 
elaborate conferencing system that supports collaborators’ natural 
use of hand gestures. The system acquires people interacting on 
shared task spaces by means of a camera that is on-axis with the 
display device. Therefore, the context of hand gestures is 
preserved, e.g. deictic gestures pointing out a shared artifact can be 
correctly interpreted by the remote collaborator. To improve the 
recognition of users, CollaBoard [20][21], exploiting polarized LC 
light emission, uses polarizing filters in front of the camera in order 
to segment a person in front of a highly dynamic background on an 
LC-screen. 

Like with the CollaBoard, many of the systems mentioned before 
use a tracking system in order to detect the interaction devices’ 
positions. For a vision-based capturing of hand-gestures in the work 
space, resistive or inductive touch screens for interactive devices in 
the task space do not interfere with the camera. Even IR-based 
touch screens can be used in the task space, as long as the IR-
emission is not in the camera’s viewing direction. However, today’s 
active tables such as PixelSense [22] actively emit non-polarized 
IR-light. Moreover, cameras are usually very sensitive to infrared 
light and thus are driven into saturation, resulting in the fact that 
RGB-cameras can hardly see different colors anymore. Thus, the 
technology proposed in CollaBoard cannot be used anymore. In 
addition, all setups so far only detect a rough pointing direction (in 
regard to screen coordinates x and y), neglecting that deictic 
gestures also have an orientation, which requires additional depth 
information. 

To further improve the close coupling between task and work 
space, we propose a solution which uses PixelSense together with 



a Kinect’s depth sensing camera to reliably track gestures above 
the table. 

 

3 APARATUS AND ENVIRONMENT 

Our study focuses on brainstorming meetings happening around a 
tabletop computing system. Microsoft PixelSense is such a system, 
with a wide set of features, which enables the users to run the 
extended set of Microsoft Windows software and applications. The 
table is also capable of detecting multi-touch interaction, enabling 
the users to interact with the computer system in a natural way. We 
use PixelSense because of its wide availability, and also because of 
the ease of software development on this platform. 

We decided to use Kinect also because of its availability, 
reasonable pricing and its available programming libraries and 
frameworks which facilitates realization of the 
experiments.

 

Figure 2: Brainstorming around PixelSense. Most gestures happen 
above the screen. 

As depicted in Figure 2, users employ different forms of hand 
gestures around the surface. Because of the physical positioning of 
the users around the table, the pointing gestures happen directly 
above the table’s screen. This is confirmed by a preliminary user 
study we performed, which showed that most of the relevant 
gestures above the table are in a height of up to 465 mm and within 
the screen area. The Kinect has to have a bird’s eye view onto the 
PixelSense in order to have an unobstructed view of the scene 
regardless of the number of users. Taking the height of the 
PixelSense table and Kinect’s aperture into account results in the 
following setup (see Figure 3). The setup is designed in such a way 
that Kinect’s field of view exactly covers the interactive region of 
PixelSense. 

This setup causes frequent unwanted touches appearing on 
PixelSense, completely disturbing the normal interaction of users 
with PixelSense. This is due to the fact that both PixelSense and 
Kinect use infrared emitters and sensors, working with similar 
wavelengths (830 nm). Thus, the interference between these two 
devices is a major problem. This interference has less impact on 
Kinect than on PixelSense, meaning that depth sensing by the 
Kinect still works, while the PixelSense cannot be used anymore for 
touch detection. 

 

 

 

Figure 3: Realized setup for the Kinect & PixelSense tracking 
system. 

The Kinect’s depth sensing is based on a structured light approach. 
Its IR projector emits a dot pattern into the room, while its IR 
camera observes the scene and compares the disparity between 
the dot pattern and a reference. Thus, the depth at each dot’s 
location can be determined. Depth detection fails if the Kinect 
cannot see its dots anymore. Common causes are reflective 
surfaces, which cause disturbances, too large distances or high 
levels of IR intensity in the scene. In the latter case, the dots are 
insignificantly brighter than the rest of the environment (low 
contrast) and cannot be detected in the IR image reliably. 

PixelSense features an array of IR sensors in the screen for touch 
detection. Additionally, IR light is homogeneously emitted through 
the entire screen. In the IR image of the Kinect, the PixelSense 
screen appears as a bright rectangle due to its IR emission (see 
Figure 4, top). Consequently, the Kinect cannot see its own pattern 
anymore (contrast issue) in this region and returns the depth value 
“-1”, which means “error” (errors are output as black in the depth 
map). See Figure 4, bottom. 



 

 

Figure 4: Kinect’s view (bird’s eye view) on the PixelSense with a 
user sitting left of it and stretching his hand out above the screen. 

Top: Kinect’s IR image. The Kinect’s dot pattern can be seen on the 
user and faintly on the floor. Bottom: Kinect’s calculated depth 
image. The PixelSense’s screen and glossy frame cannot be 
detected (black pixels) but the user and partially the floor are 

detected. 

In addition, the frame around the screen is glossy. This causes 
specular reflections which disturb Kinect as well. Essentially, neither 
the PixelSense screen nor its frame can be detected by the Kinect. 
However, detecting gestures above the PixelSense is not a 
problem. Any object, e.g. a hand and forearm, on or above the 
PixelSense can still be detected reliably, since the dots are visible 
there (see Figure 4, top). However, due to Kinect’s resolution, it is 
not possible to detect individual fingers continuously (see Figure 5). 

 

 

Figure 5: Ten consecutive frames of PixelSense depth data based 
on Figure 3 (cropped to only show hands). A stretched out hand 

can be seen from above. The fingers are irregularly detected. 

While Kinect is still able to detect objects above PixelSense without 
any modification, it causes noticeable distortions on the PixelSense. 
This is due to the PixelSense’s touch detection principle. It relies on 
the IR light emitted through the screen to detect inputs. If objects 
are close to the screen, the IR light is reflected into the sensors. 
Based on this data, PixelSense detects touches, tags, and blobs. 

The Kinect projects its IR dots (which have several different 
diameters due to the tracking procedure of Kinect) onto the 
PixelSense (see Figure 6). 

 

Figure 6: Raw sensor data of a hand on the PixelSense screen, 
with a part magnified. Top: Kinect off. Only the hand and some 
smudges are visible (the smudges are not interpreted). Bottom: 

Kinect on. Many small dots are visible in the raw data. 

These dots are above PixelSense’s detection threshold and are 
thus erroneously detected as inputs. Depending on the size of the 
dots, they are either interpreted as blobs or as touches. While blobs 
can be easily filtered out by the PixelSense’s software, touch inputs 
should not be filtered, since they are required for the interaction. 
However, this results in unwanted click events. Typically such an 
event is active as long as the object rests on the screen. It is 
independent of time, changes in size and position (as long as the 
change in position is smooth). Most of the Kinect’s click events 
have durations below 50 ms, but can go up to a few seconds in rare 
cases (see Figure 7). 

 

Figure 7: Top: Histogram of the duration of individual events (please 
note: events active during one timeframe have duration 0). Bottom: 
Histogram of registered sizes per timeframe independent of event. 

Figure 7 shows the unwanted touch events occurring in a 15-
minutes observation interval. In total, 9361 touch events were 
triggered by the Kinect, which corresponds to 624 Kinect touches 
per minute. These numbers show that without any additional 
modification of the system, the PixelSense cannot be used 
anymore. These touch events appear to be the same size 
independent of the room illumination, i.e. whether the fluorescent 
lights were switched on or off, and Kinect’s distance to PixelSense. 

Another peculiarity is that the dots are not detected continuously, 
hence the short durations, despite a static pattern. Also, most 
events grew bigger in the sensor readings in discrete steps or 
remained at one specific size. 



To be able to design more sophisticated filters, ‘real’ finger touches 
were also recorded (see Figure 8). They consisted of clicking, 
double clicking and dragging actions with one or more fingers. 

 

Figure 8: The touch events caused by typical finger touches. Please 
note that only the bottom histogram has a logarithmic y-scale. 

Comparing the diagrams from Figure 7 and Figure 8, it becomes 
obvious that both – Kinect “touches” and real touch events – have 
the same duration and thus cannot be distinguished in this manner. 

Another obvious approach would be to filter out touch events 
regarding their size. As it can be seen from Figure 7, most of the 
touch events are triggered by dots of 32 x 32 (1024) pixels in size. 
However, such a simple size filtering is not feasible, because many 
‘real’ touch events from human interaction generate inputs of the 
same size (see Figure 8).  

More complex filtering approaches (e.g. based on “growth” of the 
touch resulting from increasing touch pressure) could not be applied 
either because some ‘real’ and some Kinect touches had the same 
size for the entire event duration, which made them essentially 
indistinguishable. 

Within a research work by Butler et al. [23], the interference by 
multiple overlapping Kinect patterns was reduced by shaking the 
Kinects. A similar approach was realized in our setup, hoping that 
due to the Kinect’s moving dots on PixelSense’s sensors, the 
sensors’ exposure time would be too slow and thus no event would 
be triggered. However, shaking the Kinect did not deliver the 
expected results, as shown in Figure 9. 

 

Figure 9: The touch events triggered by the shaking Kinect. 

The data in Figure 9 was acquired in a 120-seconds time interval. It 
shows that the most prominent size of 32 x 32 pixels remains but 
the duration of all touches is below 100 ms. However, touch events 
are generally more frequent and still indistinguishable from ‘real’ 

touches based on size and duration. Thus, shaking is no feasible 
solution to reduce the amount of misinterpretations. 

Within another approach, we take benefit from the fact that Kinect 
and PixelSense have different sensitivity levels for IR light. Since 
Kinect also has to detect reflected dot patterns in 3 m distance, its 
sensor is more sensitive than the ones from PixelSense. This 
means, if the Kinect’s IR projector intensity could be reduced, the 
projected dots’ intensities would be below the detection threshold of 
PixelSense, while Kinect could still detect objects in shorter 
distance, which is the case in our setup (see Figure 3). 

Since it was the goal to avoid any internal modification of Kinect or 
PixelSense, only external optical IR-attenuators were evaluated. 
Several optical filters, such as diffusion films, LC-matrices, and 
Plexiglas were tested. They either provided insignificant 
attenuation, deformed the dot pattern structure, or blocked the IR 
light completely. The only good results were achieved with a linear 
polarization filter for visible light, which was attached in front of 
Kinect’s IR projector (see Figure 10). 

 

Figure 10: A linear polarization filter is used to attenuate the 
Kinect’s IR-light. A piece of cardboard holds it in place. 

The linear polarization filter successfully reduced the intensity 
without detrimental effects on depth data. Furthermore, the filter 
allowed some fine tuning of the attenuation by turning it, since 
Kinect’s IR light seems to be polarized already. 

In addition to the correct orientation of the filter in front of the IR 
projector, Kinect and PixelSense must also be aligned correctly. 
Since the sensors in PixelSense are behind the linear polarization 
filter of the screen, they are also sensitive to the polarization of the 
incoming IR-light. If the long side of the Kinect is parallel to the long 
side of PixelSense, the attenuation is maximal (see Figure 11). 

 

Figure 11: The long sides of Kinect and PixelSense have to be 
aligned for the filter to work correctly. 

With the filter position set to cause best possible attenuation, 
measurements were taken again regarding touch events triggered 
by the Kinect. For a 15-minutes time interval, the following results 
were achieved (see Figure 12). 



 

Figure 12: Kinect-triggered touch events with the attenuated IR-
projector. 

Within 15 minutes, there was only a total of 281 triggered touch 
events, which corresponds to 18 touch events per minute. These 
touch events only occurred when the fluorescent ambient 
illumination in the lab was still switched on, which resulted in 
increased total illumination of the sensors (see Figure 13). 

  

Figure 13: With the room lights switched on, the PixelSense’s 
sensors receive a higher amount of IR. 

When switching off the room illumination or by using LED-based 
light sources, no touch events were triggered anymore by the 
Kinect. Alternatively, the PixelSense’s sensitivity can be 
recalibrated (but is undesirable because it decreases 
responsiveness). 

Within a next step, it had to be verified whether objects in maximum 
interaction distance to the Kinect – which is on the tabletop – could 
still be detected reliably. For this, a thin paperback book was placed 
on the PixelSense’s screen and the visual as well as the IR-image 
were captured (see Figure 14). 

 

 

 

 

 

Figure 14: Top: The RGB image of Kinect looking at the 
PixelSense. Bottom: Corresponding IR-image. The IR-dots can be 

clearly seen on the booklet. 

With this setup, the depth data was recorded for 100 frames with 
the following four settings: 

• Filter off, room lights on  

• Filter off, room lights off 

• Filter on, room lights on 

• Filter on, room lights off 

The depth values were examined near all four corners of the 
booklet. For each of the above conditions, 100 frames were 
recorded (see Figure 15). 

As it can be seen from Figure 15, the Kinect can still reliably track 
objects on the table, while PixelSense keeps fully operational. 
Fluctuations in the depth data between the four different conditions 
can be attributed to normal fluctuations inherent in the system. 

 

 

 

 

 

 

 

 



Filter off, lights on 

 

Filter off, lights off 

 

Filter on, lights on 

 

Filter on, lights off 

 

Figure 15: Histograms of the depth values for 100 frames for one 
corner. The differences when the filter is on and off can be 

attributed to normal fluctuations of the Kinect. 

Lastly the effect of the filter on hand detection above the 
PixelSense was tested (Figure 16). Detection was largely 
unaffected. The finger detection is only slightly worse compared to 
the results without the filter. Thus, it is also possible now to detect 
deictic gestures in the communication space, which makes the 

whole setup consisting of Kinect and PixelSense suitable for net-
based brainstorming sessions in small workgroups. 

 

 

Figure 16: Ten consecutive frames of Kinect depth data similar to 
Figure 4 but with the filter. The arm and hand are reliably detected, 

fingers are not. 

 

4 REPRESENTATION OF POINTING GESTURES 

With the depth data available, the hand orientation, relative to the 
PixelSense screen, can be determined. Thus, calculating the 
intersection of the pointing gesture's vector with the screen is 
possible. We use this intersection point to calculate the nearest 
possible object in the task space. As a visual feedback, this object 
starts to be highlighted on the screen. The initiator of the gesture 
can correct its target by changing the pointing direction. If a user 
points on a target for more than 1 second, the object is fully 
highlighted, and the information regarding the pointing gesture is 
also transmitted to the remote location, where the target object gets 
highlighted also. 

 

Figure 17: Representation of pointing gestures in a net-based 
collaboration: The pointing gesture is detected at one side and the 

corresponding target is highlighted on the other side. 

 



5 CONCLUSION AND FUTURE WORK 

This paper showed how a Kinect depth sensing camera could be 
used for tracking gestures in the communication space above the 
PixelSense tabletop computer. The main technical challenge, i.e. 
the interference between two devices’ infrared sensors and 
emitters, is solved using a linear polarization filter in front of the 
Kinect’s IR-emitter. Using this technique, the interference on the 
PixelSense could be avoided while the Kinect still can detect any 
gesture above the table. Thus, no electrical modifications of the 
devices are necessary, which allows an easy adaptation of the 
existing equipment. Moreover, the measurements showed that 
Kinect-generated fake touch events could be completely eliminated, 
if an LED room illumination was used. 

Future work will focus on improving the detection quality of gestures 
in the workspace by improving the current technology as well as 
employing other technologies such as IR-stereovision or IR-shadow 
casting. 
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