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Abstract

An adaptive control algorithm for open-loop stable, constrained, linear, multiple input multiple output systems is presented.
The proposed approach can deal with both input and output constraints, as well as measurement noise and output disturbances.
The adaptive controller consists of an iterative set membership identification algorithm, that provides a set of candidate plant
models at each time step, and a model predictive controller, that enforces input and output constraints for all the plants
inside the model set. The algorithm relies only on the solution of standard convex optimization problems that are guaranteed
to be recursively feasible. The experimental results obtained by applying the proposed controller to a quad-tank testbed are
presented.

Key words: Adaptive control; Self tuning control; Learning control; Set membership identification; Model predictive control;
Control of constrained systems; Impulse response.

1 Introduction and motivation

The idea of adaptive control is to carry out real time
controller adjustments, on the basis of input-output
data collected on-line. Adaptive strategies may be used
to control time invariant systems for which the model
identification experiments are complex and expensive,
and/or when the control algorithm needs to be applied
to many copies of the system, which are affected by un-
certainty due to production variability. In these cases an
adaptive control approach can reduce or eliminate the
need for time-consuming tuning of each produced unit,
hence decreasing the production costs. In addition to
uncertainty, most real world systems have control vari-
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ables (voltage, current, flow, etc.) that are constrained
due to physical limitations of the actuators. Moreover,
many systems also require that the controlled variables
satisfy certain constraints due to safety reasons or due
to physical limitations. However, to derive an adap-
tive control approach for systems with constraints is a
non-trivial task that requires the integration of on-line
system identification and constrained control. Crucial
aspects of both fields interact and give rise to challeng-
ing issues, like the need to ensure constraint satisfaction
while the model of the plant dynamics is being updated.
Finally, despite the fact that a well established theory
for adaptive control has been developed [2], there are
few results on adaptive control of constrained multiple
input multiple output (MIMO) systems [18]. Hence,
further research in adaptive control of MIMO systems
subject to constraints could broaden the range of the
practical applications in which adaptive control may be
used.

Model predictive control (MPC) is a powerful technique
for controlling constrained MIMO systems [11]. While
the topic of MPC in the presence of constraints and fixed
model uncertainty (i.e. robust MPC) has received con-
siderable research attention (see e.g. [5] and [19]), the
topic of adaptive MPC for constrained systems has re-
ceived little attention due to difficulties in guarantee-
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ing constraint satisfaction and recursive feasibility under
adaptation [15]. Adaptive MPC for input-constrained
MIMO systems was considered in [21]. In [17] an adap-
tive MPC algorithm based on model switching was pro-
posed. However, these adaptive control approaches can
not deal with hard output constraints. In [16], an adap-
tive MPC algorithm for a class of single input multiple
output linear systems, based on modified recursive least
squares identification and tube-like robust MPC, was
proposed. The algorithm is capable of handling both in-
put and output constraints and it guarantees stability
and recursive feasibility, but the state space structure
of the plant needs to be known and noise free measure-
ments of the plant states are required. In [3], a learning
based MPC algorithm was introduced. It uses statisti-
cal learning techniques in order to improve the control
performance over time and robustly enforces input and
output constraints by using an approximate model of
the plant together with a bound on its uncertainty. The
approximate model and the uncertainty bounds are not
updated over time and therefore, a relatively good ini-
tial knowledge of the plant model is required. Nonlinear
adaptive MPC for a specific class of systems was consid-
ered in [1]. The idea of using parameter bounding and
predictive control in an adaptive context was presented
in [30], where a set of plant models is identified in order
to formulate a min-max finite horizon predictive control
problem at each time step. However, only input con-
strained SISO systems are considered and the proposed
control algorithm is very computationally intensive and
can be applied to system models of low dimension only.
More recently, set membership (SM) identification was
used for adaptive MPC of SISO systems subject to both
input and output constraints in [25], where an explicit
MPC law is repeatedly re-calculated in an off-line man-
ner, when new information on the controlled plant be-
comes available.

We propose here a new adaptive model predictive con-
trol approach for open-loop stable, linear MIMO sys-
tems. In contrast to the previously mentioned contri-
butions, our approach is capable of dealing with stable
MIMO systems in the presence of both input and hard
output constraints, as well as output disturbances and
measurement noise. Moreover, the proposed algorithm is
computationally tractable and suitable for on-line appli-
cation, as it only requires the solution of standard con-
vex optimization problems. The required initial infor-
mation on the system is given by some (eventually very
loose) bounds on its impulse response coefficients and by
bounds on the magnitudes of the output disturbance and
measurement noise. Unlike the methods in [16] and [3],
the proposed approach can not be used to control open-
loop unstable systems but, on the other hand, it can
handle systems with multiple inputs and measurement
noise and requires a smaller amount of initial knowledge
on the plant. It has to be noted that the requirement
for open-loop stability is quite common in the context
of system identification and adaptive control.

The main idea underlying the control algorithm is to re-
cursively identify the set of all the plant models (”model
set”), that are consistent with the initial available in-
formation on the plant and with the input-output data
collected during operation. Then, an MPC approach is
used to guarantee satisfaction of input and output con-
straints for all the plants inside the model set and hence
also for the real system. In addition to robust constraint
satisfaction, the approach guarantees recursive feasibil-
ity and, under a convergence assumption, it exhibits inte-
gral action which enables offset-free tracking. Although
not rigorously proved here, the mentioned convergence
property is met in practice with long enough prediction
horizons, as we show through an experimental testbed.
In addition, we comment on possible extensions of the
formulation to use a model parametrization with basis
functions in order to reduce the computational complex-
ity of the algorithm, and to include an exploring strat-
egy, which aims to select the input that yields a higher
amount of information in order to speed-up the identifi-
cation of the plant dynamics. In addition to the adaptive
approach and its theoretical properties, we present the
experimental results obtained by applying the method
to a non-minimum phase quad-tank testbed.

The paper is organized as follows. Section 2 describes the
problem we address. Sections 3 and 4 present the adap-
tive control algorithm and its properties, respectively.
Possible extensions of the approach are discussed in sec-
tion 5, finally the experimental results are reported in
section 6 and conclusions are drawn in section 7.

2 Problem Statement

We consider a MIMO, discrete time, strictly proper, lin-
ear time invariant (LTI) system with nu inputs and ny
outputs. The system is known to be stable, but the ex-
act system’s dynamics are not known. We denote the
vector of control inputs at time step t ∈ Z by u(t) =
[u1(t), . . . , unu

(t)]T , where ui(t) ∈ R, i = 1, . . . , nu are
the individual plant inputs and T stands for the matrix
transpose operator. In addition, we denote the vector
of plant outputs by y(t) = [y1(t), . . . , yny (t)]T , where
yj(t) ∈ R, j = 1, . . . , ny are the individual plant out-
puts, and we denote the vector of output disturbances
by d(t) = [d1(t), . . . , dny

(t)]T , where dj(t) ∈ R, j =
1, . . . , ny denotes the contribution of the disturbances to
the output j. The dynamic relation between each input
and output can, in general, be described by an infinite
impulse response. In order to have a tractable model,
we use finite impulse responses (FIR) of length m, i.e.
the influence of the input i to the output j can be de-
scribed by the FIR coefficients hji(k), k = 1, . . . ,m. The
approximation error induced by the truncated impulse
response coefficients is embedded into the output distur-
bance vector d(t) (see also Remark 2.2).

Remark 2.1 Note that the same FIR length is assumed



here for all the input-output pairs in order to simplify the
notation. All the results can easily be extended to the case
when different FIR lengths are used.

In the described setting, each of the plant outputs
yj(t), j = 1, . . . , ny, is given by:

yj(t) =

nu∑
i=1

m∑
k=1

ui(t− k)hji(k) + dj(t)

= HT
j ϕ(t) + dj(t), j = 1, . . . , ny,

(1)

whereϕ(t) ∈ Rnum is the regressor vector:ϕ(t)
.
= [u1(t−

1), . . . , u1(t−m), . . . , unu
(t− 1), . . . , unu

(t−m)]T , and
each of the vectors Hj ∈ Rnum, j = 1, . . . , ny contains
the impulse response coefficients needed to describe the
influence of all the control inputs on the plant output yj :
Hj

.
= [hj1(1), . . . , hj1(m), . . . , hjnu(1), . . . , hjnu(m)]T .

By defining the matrix H ∈ Rny×num as H
.
=[

H1, . . . ,Hny

]T
, the dependence of the plant output on

the regressor and the disturbance vectors can be written
as:

y(t) = Hϕ(t) + d(t). (2)

The measured output available for feedback control is
corrupted by noise. In particular, the vector of measured
plant outputs is denoted by:

ỹ(t) = y(t) + v(t),

where v(t) = [v1(t), . . . , vny
(t)]T and vj(t), j =

1, . . . , ny are the individual measurement noise terms
that affect each of the measured plant outputs.

Assumption 1 (Prior assumption on disturbance and
noise) d and v are bounded as:

|dj(t)| ≤ εdj

|vj(t)| ≤ εvj
, ∀t ∈ Z, ∀j = 1, . . . , ny, (3)

where εdj and εvj are positive scalars.

We also use the noise and disturbance magnitude bounds
in the vector notation as εd = [εd1

, . . . , εdny
]T and εv =

[εv1
, . . . , εvny

]T .

Assumption 2 (Prior assumption on the system) The
plant belongs to the following model set: H ∈ F(0), with

F(0)
.
=
{
H∈Rny×num :Aj(0)Hj ≤ bj(0), j = 1, . . . , ny

}
,

(4)
where the inequalities in (4) should be interpreted as
element-wise inequalities and each matrix Aj(0) ∈
Rrj(0)×num and vector bj(0) ∈ Rrj(0) define a closed and
convex set, i.e. a polytope with rj(0) faces.

According to Assumption 2, the initial knowledge about
the impulse response coefficients is that the vectors
Hj , j = 1, . . . , ny, which form the rows of the matrix
H, belong to polytopic sets. Note that we initialized
the set F(0) in (4) at t = 0 without loss of generality,
just to indicate that this is the information available
before any measured data is collected. Hence, these ini-
tial polytopes have to be defined a priori on the basis of
the prior information on the system. If the only avail-
able information is the fact that the system is stable, a
possible approach to define the set F(0) is to impose a
maximum magnitude and an exponential decay rate on
the FIR coefficients. This can be done by selecting the
following three variables for each input i and output j:
Lji ∈ R, Lji ≥ 0, ρji ∈ R, ρji ∈ (0, 1) and µji ∈ N,
µji ≤ m, and then defining the upper and lower bounds
on the impulse response coefficients for the input-output
pair defined by i and j as:

|hji(k)| ≤ Lji if k ∈ [1, µji]

|hji(k)| ≤ Ljiρ
k−µji

ji if k ∈ [µji + 1,m].
(5)

If additional initial knowledge about the system is avail-
able, e.g. the sign of the steady state gain for some of
the input-output pairs, this can be incorporated as ad-
ditional inequalities defining the set F(0).

Under Assumptions 1 and 2, the goal is to control the
plant in order to track a desired output reference and
reject disturbances from t = 0 up to some finite time step
T , where the time horizon T can be very large (T � m).
Moreover, the controller shall enforce input and output
constraints. Assuming that the control inputs u(l), l =
−m+ 1, . . . ,−1 are known, such a control objective can
be formalized by the following optimization problem:

min
u(0),...,u(T )

T∑
t=0

(y(t)− ydes(t))
T
Q (y(t)− ydes(t))

+ u(t)TSu(t) + ∆u(t)TR∆u(t)

(6)

Subject to, ∀t ∈ [0, T ]

Cu(t) ≤ g

L∆u(t) ≤ f

Ey(t) ≤ p

(7)

where ydes(t) ∈ Rny is the desired output reference,
Q ∈ Rny×ny , S ∈ Rnu×nu and R ∈ Rnu×nu are positive
semi-definite weighting matrices selected by the control
designer, and ∆u(t) = u(t)−u(t−1) is the rate of change
of the control input. The element-wise inequalities in (7)
define convex sets through the matrices C ∈ Rni×nu ,
L ∈ Rn∆u×nu , E ∈ Rno×ny and the vectors g ∈ Rni ,
f ∈ Rn∆u , p ∈ Rno , where ni, n∆u

and no are the num-
ber of linear constraints on the inputs, input rates and
outputs, respectively. We assume that the set defining



the constraints on ∆u(t) contains the origin and that
the constraint set of u(t) is compact. This assumption is
satisfied in most practical problems.

Remark 2.2 The facts that the control inputs are
bounded and that the system is stable can be exploited to
calculate bounds on the magnitude of the contribution
of the truncated part of the impulse response for each of
the plant outputs. Such a contribution can be considered
as part of the additive output disturbance. For complete-
ness, the way to calculate these bounds is given in the
Appendix A.

3 Adaptive control algorithm

Since the true plant is not exactly known and its outputs
are subject to unknown output disturbances, the opti-
mal control problem (6) can not be solved a priori and
a suboptimal approach has to be sought. Therefore, in
order to approximately optimize the given control objec-
tive, while guaranteeing satisfaction of the constraints
(7), we propose the use of a receding horizon approach,
combined with an adaptive control scheme that aims to
improve the knowledge on the system’s dynamics over
time. In this setting, at each time step a sequence of fu-
ture control inputs is calculated and only the first ele-
ment of this sequence is applied to the plant. In particu-
lar, to guarantee output constraint satisfaction, we aim
to identify, at each time step, the set of all the models
that are consistent with the initial assumptions on the
real plant and the input-output measurements collected
up to that time step (model set). If the prior assump-
tions are valid, this set is guaranteed to contain also the
true plant’s dynamics. Then, the control computation is
carried out in such a way to ensure that the constraints
are satisfied for all the models inside this set, hence also
for the actual plant.

In order to accomplish the model set identification and
the robust control computation, we rely on a recursive
SM identification algorithm, and an MPC controller.
The identification algorithm is such that the model set
can be refined with each new output measurement. In ad-
dition to the model set, the identification algorithm also
provides a nominal model of the plant at each time step.
The control input is calculated by solving an optimal
control problem that minimizes a weighted quadratic
cost penalizing the tracking error of the nominal model
over a finite horizon, while at the same time satisfying
robustly the constraints (7). Algorithm 1 summarizes
the proposed adaptive control scheme.

In the subsections that follow, each of the components
of the proposed adaptive control algorithm is described
in detail.

Algorithm 1 Adaptive MPC algorithm

1) At time step t, obtain ỹ(t) and update the model set
based on the past applied control inputs and measured
plant outputs;

2) Select a nominal model of the plant inside the model
set;

3) Calculate a sequence of possible future control inputs
by solving a finite horizon optimal control problem
(FHOCP) that minimizes a weighted quadratic cost
involving the tracking error of the nominal model and
enforces input and output constraints for all the mod-
els inside the model set;

4) Apply the first element of the calculated input se-
quence, set t = t+ 1, go to 1).

3.1 Real-time set membership identification

We denote the sequence of the input-output data col-
lected up to time step t as:

{ϕ(l), ỹ(l)}tl=0, (8)

where ϕ(l) ∈ Rnum is the regressor vector formed by
the control inputs applied from time l −m up to time
l − 1, and ỹ(l) ∈ Rny is the corresponding measured
plant output. Then, at a given time step t, we define the
model set F(t) as the set containing all the matrices H
that are consistent with the Assumptions 1 and 2 and
the collected input-output data (8):

F(t)
.
=

{
H∈F(0) : −εd−εv ≤ ỹ(l)−Hϕ(l) ≤ εd+εv,

∀l ∈ [0, t]

}
.

(9)
Each one of the element-wise inequalities in (9) comes
from the fact that the discrepancy between the measured
and the predicted values of the output can not exceed
the disturbance and noise bounds (3). Since the initial
model set F(0) is defined by polytopic constraints on
each row HT

j of the matrix H, and the constraints in (9)
are linear, the model set F(t) is still defined by polytopic
constraints onHT

j , j = 1, . . . ny. Each of these polytopes
can be uniquely described by a set of non-redundant in-
equalities. Therefore, at a generic time step t, the model
set F(t) can be represented as:

F(t)=
{
H∈Rny×num :Aj(t)Hj ≤ bj(t), j = 1, . . . , ny

}
,

where Aj(t) ∈ Rrj(t)×num, bj(t) ∈ Rrj(t), and rj(t) is
the number of non-redundant inequalities pertaining to
the jth row of the matrix H.

The matrices Aj(t) and the vectors bj(t) have to be up-
dated at each time step in order to account for the new
measurements. To this end, let us consider the following
polytopes:

Fj(t) = {Hj ∈ Rnum : Aj(t)Hj ≤ bj(t)}, j = 1 . . . ny.



We note that for each j, the polytope Fj(t) can be calcu-
lated recursively in time as the intersection of the poly-
tope Fj(t − 1) and the two half spaces defined by the
newly measured plant output, ỹj(t):

Fj(t) =Fj(t− 1)

∩ {Hj∈Rnum :ϕ(t)THj ≤ ỹj(t)+εdj +εvj}
∩ {Hj∈Rnum :−ϕ(t)THj ≤ −ỹj(t)+εdj +εvj}.

(10)
The matrix Aj(t) and the vector bj(t) can then be calcu-
lated by removing any redundant faces of the polytope
Fj(t). This can be done by solving an LP for each face of
the polytope, in order to determine whether it is redun-
dant or not [24]. A problem of the described recursive
update is that the number of faces of Fj(t), rj(t), can
become arbitrarily large, as in general it grows linearly
with time, and hence the memory needed to store Aj(t)
and bj(t) can become impractical. In order to overcome
this problem, we employ a polytope update algorithm
with bounded complexity, similar to the one proposed in
[31]. In this approach, the polytope Fj(t) is updated by
using (10) as long as the number of its faces is smaller
than a predefined maximum limit M1. Once this limit is
reached, each new face that is added to the polytope is
parallel to a plane that belongs to a predefined set of M2

planes, which makes the total number of faces bounded
by M1 +M2.

In particular, a set D containing a finite number M2

of num-dimensional vectors with the same magnitude,
that will determine the shape of the resulting polytope,
has to be defined. Based on this set, the update of the
polytope Fj(t) is given by the following intersection:

Fj(t) =Fj(t− 1)

∩{Hj∈Rnum :ϕ+(t)THj ≤ ỹ(t) + δ+
j (t)}

∩ {Hj∈Rnum :ϕ−(t)THj ≤ −ỹ(t) + δ−j (t)},
(11)

where the vectors ϕ+(t) and ϕ−(t) are taken as elements
of D that are “closest”, in the inner product sense, to
the vectors ϕ(t) and −ϕ(t):

ϕ+(t) = arg max
v∈D

ϕ(t)T v

ϕ−(t) = arg max
v∈D
−ϕ(t)T v,

(12)

and the scalars δ+
j (t) and δ−j (t) are selected such that

the bounded complexity polytope includes the polytope
that would be obtained by a normal update (as per (10)).
Hence, the values of δ+

j (t) and δ−j (t) can be calculated

by solving the following linear program (LP):

δ+
j (t) = max

θ
ϕ+(t)T θ − ỹj(t)

δ−j (t) = max
θ
ϕ−(t)T θ + ỹj(t)

Subject to:

Aj(t− 1)θ ≤ bj(t− 1)

ϕ(t)T θ ≤ ỹj(t) + εdj + εvj

−ϕ(t)T θ ≤ −ỹj(t) + εdj + εvj .

(13)

The set D is a fixed set of vectors that have to be chosen
beforehand; one possible way to construct D is to take
regularly distributed vectors on the unit circle (see e. g.
[23]). Algorithm 2 summarizes the above procedure for
recursive updating of the model set F(t) in our adaptive
control scheme (see step 1) of Algorithm 1).

Algorithm 2 Bounded complexity model set update

1) At time step t, compute the regressors vector ϕ(t) and
measure the plant output ỹ(t);

2) For j = 1, . . . , ny, if rj(t− 1) ≤M1 − 2, update Fj(t)
by using (10), otherwise calculate ϕ+(t) and ϕ−(t) as
in (12), find the values of δ+(t) and δ−(t) by solving
the LP (13) and update Fj(t) according to (11);

3) For j = 1, . . . , ny, calculate Aj(t) and bj(t) by remov-
ing any redundant faces from Fj(t).

The set F(t) obtained by using the Algorithm 2 is an
outer approximation of the set defined in (9): by increas-
ing M1 and M2, the tightness of such approximation can
be increased, at the cost of higher complexity. The algo-
rithm guarantees that Fj(t) ⊆ Fj(t − 1), j = 1, . . . , ny
and hence F(t) ⊆ F(t− 1), a property that is needed to
obtain recursive feasibility and output constraint satis-
faction, as we show in section 4.

In SM identification problems, an important issue that
has to be dealt with is whether the considered prior as-
sumptions are invalidated by the data or not.

Lemma 3.1 Let the Assumptions 1 and 2 hold, then
the set F(t) obtained by using the Algorithm 2 has the
following properties: F(t) 6= ∅ and H ∈ F(t), ∀t, i.e. the
model set is never empty and is guaranteed to contain the
true plant’s coefficients.

Proof 3.1 We prove the Lemma by induction. From the
Assumption 2 it holds that H ∈ F(0). Assume now that
at a generic time step t, it holds that F(t) 6= ∅ and
H ∈ F(t). This implies that Hj ∈ Fj(t), j = 1, . . . , ny.
Moreover, from Assumption 1 we have that:

ϕ(t+1)THj ≤ ỹj(t+1)+εdj +εvj

−ϕ(t+1)THj ≤−ỹj(t+1)+εdj +εvj
, ∀j = 1, . . . , ny.



Therefore, if the polytope Fj(t) is updated according to
(10), we have that Hj ∈ Fj(t+ 1). The same holds true
also if the bounded complexity polytopic update is used,
since the solution of the LP (13) guarantees that the faces
that are added to the polytope are such that the bounded
complexity polytope contains the one that would be ob-
tained by (10). Therefore, the set F(t+1) obtained by us-
ing the Algorithm 2 is guaranteed to satisfy H ∈ F(t+1)
and hence F(t + 1) 6= 0. The lemma is then proved by
applying this result recursively from t = 0 to any t ≥ 0.�

The converse of Lemma 3.1 provides a necessary condi-
tion for Assumptions 1 and 2 to hold: if F(t) 6= ∅, then
the prior information on F(0), εd and εv is “not invali-
dated” by the collected measurements (8). In practice,
the initial set and the disturbance and noise bounds have
to be chosen by the designer in order to have non-empty
model set F(t), while at the same time avoiding exces-
sive conservativeness.

In addition to the model set, the proposed SM identifi-
cation algorithm also provides a nominal model of the
plant (step 2) of Algorithm 1). The latter is given by a
matrixHc(t) ∈ Rny×num,Hc = [Hc,1, . . . Hc,ny

]T , where
Hc,j(t) ∈ Rnum, j = 1, . . . , ny are computed as the cen-
ters of the maximum volume 2-norm balls inscribed in
the polytopes Fj(t). This can be done by solving an LP,
however the solution is not unique in general. Therefore,
we introduce a regularization term, that penalizes the
deviation of the new nominal model from the previous
one, giving rise to the following LP:

max
ξj(t),Hc,j(t)

ny∑
j=1

ξj(t)− α‖Hc,j(t− 1)−Hc,j(t)‖1

Subject to:

aji(t)Hc,j(t)+ξj(t)‖aji(t)‖2≤bji(t),
∀j = 1, . . . , ny

∀i = 1, . . . , nu
,

(14)
where ξj(t) ∈ R is the radius of the maximum volume
ball inscribed in Fj(t), α > 0 is a design variable, and
aji(t) and bji(t) stand for the ith row of the matrix Aj(t)
and the vector bj(t). Initially, at time step t = 0, the
matrix Hc(0) can be taken as an arbitrary nonzero point
inside the set F(0).

3.2 Constrained predictive controller

Let u(k|t), k ∈ [t, t+N − 1], N ≥ m, be the candidate
future control moves, where the notation k|t indicates
the prediction at step k ≥ t given the information at
the current step t. For brevity, we collect these decision
variables in vector U

.
= [u(t|t)T . . . u(t + N − 1|t)T ]T .

We also define the vectors of future input increments

∆u(k|t), k ∈ [t, t+N − 1] as:

∆u(k|t)=

{
u(t|t)−u(t− 1) if k = t

u(k|t)−u(k−1|t) if t+1 ≤ k ≤ t+N−1

Moreover, we define the future regressor vectors ϕ(k|t) ∈
Rnum, k ∈ [t+ 1, t+N ] as:

ϕ(k|t)=

{
Wϕ(t)+Zu(t|t) if k = t+ 1

Wϕ(k−1|t)+Zu(k−1|t) if t+2≤k≤ t+N,
(15)

where W ∈ Rnum×num and Z ∈ Rnum×nu are suitable
matrices, given in the Appendix B for the sake of com-
pleteness. In addition, we define the current prediction

error d̂(t) ∈ Rny as the difference between the measured
plant output and the one predicted by the nominal model
at time step t:

d̂(t)
.
= ỹ(t)−Hc(t)ϕ(t). (16)

Then, we consider the following cost function:

J(U, ỹ(t), ϕ(t))
.
=

t+N−1∑
k=t

(ŷ(k+1|t)−ydes(k+1|t))T Q(ŷ(k+1|t)

−ydes(k+1|t))+u(k|t)TSu(k|t) + ∆u(k|t)TR∆u(k|t),
(17)

where:

ŷ(k + 1|t) = Hc(t)ϕ(k + 1|t) + d̂(t). (18)

In (17), ỹ(t) and ϕ(t) are known parameters and
ydes(k|t), k ∈ [t + 1, t + N ], are the predicted values of
the desired output. The introduction of the disturbance

estimate d̂(t) in the cost function enables offset free
tracking under certain conditions (see section 4).

Satisfaction of input constraints can be enforced by the
following set of inequalities:

Cu(k|t) ≤ g

L∆u(k|t) ≤ f
∀k ∈ [t, t+N − 1]. (19)

And the robust satisfaction of the output constraints can
be achieved by enforcing them for all the plants inside
the model set F(t) and for all disturbance realizations:

EHϕ(k|t)+d ≤ p, ∀H∈F(t), ∀k ∈ [t+1, t+N ], (20)

where d = [d1, . . . , dno
]T , and dl ∈ R, l = 1, . . . , no are

given as:

dl =

ny∑
j=1

|elj |εdj ,



where elj stands for the element of the lth row and
jth column of the matrix E. However, using the con-
straints (20) would result in an infinite dimensional op-
timization problem, that is in general hard to solve.
The following result shows how (20) can be equivalently
written in the form of linear constraints. Before stating
the result, let us introduce the vector of auxiliary de-

cision variables Λ
.
=
[
ΛT1 , . . . ,Λ

T
no

]T ∈ RnoNr(t), where

Λl
.
=
[
λl(t+ 1|t)T , . . . , λl(t+N |t)T

]T
, l = 1, . . . , no,

and for each k = t + 1, . . . , t + N , λl(k|t) ∈ Rr(t) and
r(t) =

∑ny

j=1 rj(t).

Lemma 3.2 The constraints (20) are satisfied if and
only if there exist ϕ(k|t), k ∈ [t + 1, t + N ] and Λ such
that the following set of inequalities is feasible:

A(t)Tλl(k|t) =


el1ϕ(k|t)

...

elnyϕ(k|t)


b(t)Tλl(k|t) ≤ pl−dl
λl(k|t) ≥ 0


∀l = 1, . . . , no

∀k∈ [t+1, t+N ]
(21)

with

A(t) =


A1(t) 0 . . . 0

0 A2(t) . . . 0

...
...

. . .
...

0 0 . . . Any (t)



b(t) =


b1(t)

...

bny (t)

 ,
where 0 represents zero matrices of appropriate dimen-
sions and pl is the lth element of the vector p.

Proof 3.2 We first note that, from the definition of the
set F(t), it follows that constraints (20) are satisfied if
and only if the following set of inequalities is satisfied:

γl(k) ≤ pl−dl,
∀l = 1, . . . , no

∀k ∈ [t+ 1, t+N ]
(22)

where

γl(k) = max
Aj(t)Hj≤bj(t)

ny∑
j=1

eljϕ(k|t)THj . (23)

For each value of l and k and for fixed values of the vec-
tors ϕ(k|t), k ∈ [t+1, t+N ], by using the fact that the in-
equalitiesAj(t)Hj ≤ bj(t), j = 1, . . . , ny form nonempty
(from Lemma 3.1), closed and bounded convex sets (i.e.
polytopes), we can write the dual of the LP (23) as:

γ̃l(k) = min
λl(k|t)

b(t)Tλl(k|t) (24)

Subject to:

A(t)Tλl(k|t) =


el1ϕ(k|t)

...

elny
ϕ(k|t)

 (25)

λl(k|t) ≥ 0. (26)

According to the strong duality theorem for LPs [6], it
holds that: γl(k) = γ̃l(k). Therefore, for any λl(k|t)
that satisfies the constraints (25) and (26), it holds that
γl(k) ≤ b(t)Tλl(k|t). Hence the existence of U and Λ that
satisfy the set of constraints (21) guarantees that the con-
straints (22) are also satisfied, which implies the satisfac-
tion of the original constraints (20). On the other hand if
the constraints (20) are satisfied, then there exists γl(k)
satisfying (22). Then, by the strong duality theorem for
LP, γ̃l(k) = γl(k) exists and hence the constraints (25)
and (26) have to be feasible, which implies the feasibility
of (21). �

In order to be able to recursively satisfy the input and
output constraints (see e.g. Theorem 4.1 below), we in-
troduce an additional constraint on the terminal stage:

ϕ(t+N |t) = Wϕ(t+N |t) + Zu(t+N − 1|t). (27)

This means that we require the terminal regressor to
correspond to a steady state (i.e. a constant control input
is kept for the last m predicted steps).

For fixed values of N , Q, S and R, we can now define the
finite horizon optimal control problem (FHOCP) to be
solved at each time step t (see step 3) of Algorithm 1):

min
U,Λ

J(U, ỹ(t), ϕ(t))

Subject to: (19), (21), (27),
(28)

which is a quadratic program (QP), that can be effi-
ciently solved in general. The number of decision vari-
ables and constrains of the QP (28) depends on the cho-
sen prediction horizon N and the number of faces de-
scribing the polytopes of the model set F(t). Therefore,
the computational complexity of (28) can be decreased
by reducing the bound M1 + M2 on the faces’ number,
at the cost of higher conservativeness as discussed in sec-
tion 3.1.
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4 Properties of the proposed adaptive control
algorithm

The described control algorithm guarantees recursive
feasibility and robust satisfaction of both input and out-
put constraints, as shown by the following result.

Theorem 4.1 Let the Assumptions 1–2 hold, and as-
sume that the problem (28), solved under the Algorithm
1, is feasible at time t = 0. Then the problem (28) is re-
cursively feasible and the closed-loop system obtained by
applying the Algorithm 1 is guaranteed to satisfy input
and output constraints ∀t ≥ 0.

Proof 4.1 We first prove that if the Assumptions 1–2
hold and the problem (28) is feasible at time t = 0, then
the problem (28) solved under the Algorithm 1 remains
feasible ∀t ≥ 0. To this end we use induction.

The problem (28) is feasible for t = 0 by assumption.
Assume that the problem (28) is feasible at a generic time
step t and let the optimal control sequence be U∗(t) =
[u∗(t|t)T , . . . , u∗(t+N − 1|t)T ]T , and its corresponding
sequence of predicted regressor vectors be ϕ∗(k|t), k = t+
1, . . . , t+N . Then, a possible feasible control sequence at
t+1 isU(t+1) = [u∗(t+1|t)T , . . . , u∗(t+N−1|t)T , u∗(t+
N −1|t)T ]T . This sequence satisfies constraints (19) and
(27). In addition, we note that the predicted regressor
vectors ϕ(k|t+1), k = t+2, . . . , t+N+1 that correspond
to the input sequence U(t+1), by construction satisfy the
equalities ϕ(k|t+ 1) = ϕ∗(k|t), for k ∈ [t+ 2, t+N ] and
that from (27) it follows that ϕ(t+N + 1|t+ 1) = ϕ∗(t+
N |t). Since Algorithm 2 guarantees that F(t+1) ⊆ F(t),
the sequence of inputs U(t + 1) satisfies the constraints
(20). Lemma 3.2 then implies that also the constraints
(21) have a feasible solution and hence the problem (28)
is feasible at t+ 1. From this result and Lemma 3.1, the
other claim of the Theorem follows directly. �

In practice, feasibility at time t = 0 means that the initial
assumptions are such that there exists a nonzero (even-
tually very small) input sequence that does not violate
the input and output constraints for all the plants in the
initial model set F(0), which is a reasonable condition.
Note that the key property that is needed for guarantee-
ing the recursive feasibility is that F(t) ⊆ F(t−1). How-
ever, in practice, due to faults and outliers it may hap-
pen that noise and/or output disturbances temporarily
violate the bounds (3), which may cause the actual plant
model to be outside the model set, or the model set to
be empty (see e.g. Lemma 3.1). In such cases, normal
operation could be recovered by removing the outliers
with techniques such as the ones described in [26] and
[28]. Removing the outliers might cause the model set to
expand, which may lead to infeasibility of (28). In such
cases, feasibility could be recovered by temporarily soft-
ening the output constraints.

The next result is concerned with offset-free tracking in
the presence of constant disturbance and zero measure-
ment noise. Before stating the result, the following tech-
nical assumption is needed:

Assumption 3 The steady state gain matrix of the
nominal model obtained by solving (14), that we denote
by:

Hc,ss =


m∑
l=1

hc,11(l) . . .
m∑
l=1

hc,1nu(l)

...
. . .

...
m∑
l=1

hc,ny1(l) . . .
m∑
l=1

hc,nynu
(l)

 ,

satisfies the condition: rank(Hc,ss) = ny, at each time
step.

Remark 4.1 Note that if the steady state gain matrix of
the actual system has rank ny, then (from Lemma 3.1)
there is always a model inside the model set F(t) with
the same property. Although the algorithm for selecting
the nominal model does not guarantee that the latter has
always this property, this does not represent a problem
for the control computation itself. However, the technical
Assumption 3 is needed to prove the offset-free property.
In order to formally satisfy this requirement, the algo-
rithm could be modified such that the rank of the steady
state gain matrix of the nominal model is checked, and
if it were different from ny, the nominal model could be
slightly perturbed in order to satisfy the rank condition of
the steady state gain matrix.

Lemma 4.1 Let Assumption 3 hold and suppose that
the tuning matrices in the cost function (17) are selected
such that S = 0 and Q and R are positive definite. In ad-
dition, assume that the vector of the output references is
constant: ydes(t) = ydes,∀t, that the output disturbances
are constant : d(t) = d, ∀t, and that there is no mea-
surement noise: v(t) = 0,∀t. Then, if the input and the
output of the closed loop system converge to constant vec-
tors, uss and yss respectively, for which no constraints
are active, it holds that yss = ydes .

Proof 4.2 First, we show that if the control input and
the output of the closed loop system converge to con-
stant vectors, the output disturbances are constant and
the measurement noise is equal to zero, the model setF(t)
becomes constant in time and so does the FHOCP (28).
To this end, we note that since the control input vector
converges to a constant value, the applied regressor vector
will also converge to a fixed value, that we denote by ϕss.
Since the output disturbances are constant and the mea-
surement noise is assumed to be zero, the measured plant
outputs correspond to the actual ones and by assumption
they have constant values: ỹss = yss = [yss,1 . . . yss,ny

]T .
Now, recall that the update of the polytopes Fj(t), j =



1, . . . , ny under the Algorithm 2 has in general the fol-
lowing form (see section 3.1):

Fj(t) =Fj(t− 1)

∩ {Hj∈Rnum :ϕ′(t)THj ≤ yss,j+δ′(t)}
∩ {Hj∈Rnum :ϕ′′(t)THj ≤ −yss,j+δ′′(t)}.

If the number of faces of the polytope Fj(t−1) is smaller
than M1 − 2, then the polytope is updated according to
(10) and therefore ϕ′(t) = ϕss, ϕ

′′(t) = −ϕss and δ′(t) =
δ′′(t) = εdj + εvj . In this case, the faces that are added
to the polytope Fj(t) are the same at each time step, and
therefore the polytope remains unchanged. If the number
of faces of the polytope Fj(t − 1) is larger than M1 − 2,
then ϕ′(t) and ϕ′′(t) are calculated as (see Algorithm 2):

ϕ′(t) = arg max
v∈D

ϕTssv

ϕ′′(t) = arg max
v∈D
−ϕTssv,

which means that also in this case the directions of the
faces that are added to the polytope Fj(t), j = 1, . . . , ny
remain the same. The solutions of the LP (13) are con-
stant over time, too, resulting in δ′(t−1) = δ′(t) = δ′ and
δ′′(t− 1) = δ′′(t) = δ′′. Therefore, the faces added to the
polytopes Fj(t), j = 1, . . . , ny under the Algorithm 2 are
the same at each time step, resulting in a constant model
set F(t). Thus, the nominal model of the plant obtained
by solving (14) converges to a fixed value, that we denote
by Hc, and the FHOCP (28) becomes time invariant.

Next, we show that the FIR plant model with constant pre-
diction error term that is used to formulate the FHOCP
(28) is equivalent to a velocity form state space model. To
this end, we introduce a differential form of the predicted
regressor vectors as: ∆ϕ(k|t) = ϕ(k|t)−ϕ(k− 1|t), k =
t+2, . . . , t+N and ∆ϕ(t+1|t) = ϕ(t+1|t)−ϕ(t). From
(16) and (18) it holds that:

ŷ(t+ 1|t) = Hc∆ϕ(t+ 1|t) + ỹ(t). (29)

Moreover, from (18) it follows that:

ŷ(k+1|t) = Hc∆ϕ(k+1|t)+ ŷ(k|t), k = t+1, . . . , t+N−1.
(30)

In addition, if we define the predicted tracking error as
e(k|t) .

= ŷ(k|t) − ydes, k ∈ [t + 1, t + N ] and e(t|t) .
=

ỹ(t)− ydes, from (18) and (29) it holds that:

e(k+1|t) = Hc∆ϕ(k+1|t)+e(k|t), k ∈ [t, t+N−1]. (31)

From (31) it follows that the cost function (17) is equiv-

alent to:

J(U, ỹ(t),∆ϕ(t))
.
=

t+N−1∑
k=t

e(k + 1|t)TQe(k + 1|t) + ∆u(k|t)TR∆u(k|t),

Subject to:[
∆ϕ(k+1|t)
e(k+1|t)

]
=

[
W 0

HcW I

][
∆ϕ(k|t)
e(k|t)

]
+

[
Z

HcZ

]
∆u(k|t)

e(k|t) =
[

0 I
] [∆ϕ(k|t)

e(k|t)

]
,

(32)
where 0 and I denote the matrix of all zeros and an
identity matrix of appropriate dimensions. The form (32)
corresponds to a velocity form state space model as in
[27].

From Assumption 3, it follows that the linear system
in (32) is controllable [7]. Since, by assumption, control
inputs and outputs converge to constant values and no
constraints are active in the steady state, we can con-
sider the solution of the optimization problem given by
the cost function (32) with the underlying velocity state
space model and the constraint (27), without consider-
ing the input and output constraints. In this case, the
MPC control law can be derived explicitly, and it has the
form: ∆u(t) = Ke(t|t), where K ∈ Rnu×ny has rank
equal to ny, since the system in (32) is controllable and
Q and R are positive definite [34]. Therefore, since by
assumption the system reaches a steady state, we have
∆u(t) = 0, which implies that the tracking error satisfies
e(t|t) = yss − ydes = 0. �

Note that the condition for having a zero tracking er-
ror is that the reference ydes is feasible with respect to
input and output constraints. If this is not the case, a
closest possible feasible reference could be calculated by
solving a QP. Another possibility would be to follow the
approach in [20] and reformulate the cost function of the
problem (28) such that the output reference value would
be an additional optimization parameter.

5 Possible extensions of the algorithm

In this section, we comment on possible extensions of
the described adaptive control approach. These include
the possibility of using basis functions instead of an FIR
parametrization of the underlying plant model, in order
to reduce the computational requirements of the algo-
rithm, and the possibility of introducing an ”exploring”
property in order to speed up the identification of the
plant dynamics, while retaining the guarantees for sat-
isfaction of input and output constraints. For the sake
of brevity, we will describe only the main concepts here,
referring to other documents for the technical details.



5.1 Model parametrization with orthonormal basis
functions

FIR models have the advantage of being simple and
straightforward to use, however, depending on the spe-
cific application, the required number of coefficients can
be quite large, which can make the proposed adaptive
control algorithm computationally demanding. It is rea-
sonable to expect that if some additional information on
the system to be controlled is available, such as the ap-
proximate location of the dominant poles, the number
of coefficients that are needed to model the system can
be significantly reduced. This kind of information can be
captured well by using model representations given by
orthonormal basis functions, like Laguerre [32], Kautz
[33] or generalized orthonormal basis functions [8].
By using the basis function model, each of the plant out-
puts yj(t), j = 1, . . . , ny can be written as:

yj(t) =

nu∑
i=1

m∑
k=1

hji(k)ζ (Lk(a, q), ui(t)) + dj(t)

= HT
j ϕ(t) + dj(t),

where Lk(a, q) are the basis transfer functions defined
by parameter a that is selected by the control designer,
q is the time shift operator (qu(t)

.
= u(t + 1)) and the

operator ζ (Lk(a, q), ui(t)) denotes the output of the lin-
ear system represented by the transfer function Lk(a, q)
at time step t, when the signal u is applied as its input.
The value of a should be chosen such that it captures the
dominant dynamic behavior of the plant [32,33], while
the functional form of the (stable and strictly proper)
functions Lk, k = 1, . . . ,m depend on the chosen basis
function family. Hence, in this case the dependence of
the plant output on the regressor vector and the distur-
bance can still be written as in (2), the only difference
being that the regressor vector now contains the outputs
of the individual basis transfer functions and is given by:
ϕ(t)

.
= [ζ (L1(a, q)u1(t)) , . . . , ζ (Lm(a, q)u1(t)) , . . . ,

ζ (L1(a, q)unu(t)) , . . . , ζ (Lm(a, q)unu(t))]T . The evolu-
tion of the regressor vector can be described by the fol-
lowing recursive equation:

ϕ(t+ 1) = WLϕ(t) + ZLu(t), (33)

where the matrices WL ∈ Rnum×num and ZL ∈
Rnum×nu depend on the selected type of the basis func-
tions and the parameter a.

In this framework, by using equation (33) to update the
regressor vector ϕ(t), the already described SM identifi-
cation algorithm can be used with minor modifications
to recursively update the model set F(t) and calculate
the nominal model of the plant Hc(t). The control com-
putation part of the adaptive algorithm has the same
form as before, with the only difference that WL and ZL
are used instead of W and Z in (15) and (27). All the
results presented in the section 4 still hold.

The main challenge when using a basis function
parametrization is the computation of the initial model
set F(0) and of the bounds on the contribution of the
truncated part of the basis function sequence to the
plant output. To this end we propose a tractable ap-
proach in section 3 of [29].

5.2 Adding an exploring property to the control algo-
rithm

The proposed adaptive control algorithm relies on the
idea that the discrepancy between the nominal and the
actual models of the plant results in control inputs that
are informative, such that over time the collected input-
output data will reduce the size of the model setF(t) and
therefore improve the accuracy of the identified plant
model. Formally, the approach does not require a persis-
tence of excitation assumption to avoid numerical prob-
lems, unlike other approaches based on least squares
[12]. Nevertheless, in order to achieve good performance,
the applied control inputs should be informative enough
such that the model set F(t) becomes small as quickly
as possible.

Following the idea of dual control [9] that a good balance
between identification and control should be achieved
by an adaptive controller, we propose a method to add
an exploring property to the proposed algorithm. In the
context of MPC, the need of enforcing the persistence of
excitation has been addressed by introducing additional
constraints (see e.g. [22,10]). Our approach is different
as it relies on splitting the calculation of the control in-
put in two stages. In the first stage, the FHOCP (28) is
solved as usual. The computed optimal input and out-
put sequences and the knowledge of the model set F(t)
are then used to calculate the upper bounds, along the
chosen prediction horizon, on the absolute difference be-
tween all the possible future outputs of the plant and the
nominal optimal output trajectory. In the second stage,
by allowing these bounds to be inflated by a factor se-
lected by the control designer, the sequence of control
inputs can be recalculated in order to improve the re-
duction in size of the model set while at the same time
enforcing input and output constraints.

With this approach, the relative importance of reference
tracking and identification is automatically linked to the
amount of information available on the system, which is
represented by the size of the model set. In fact, if the
model setF(t) is large, the input and output trajectories
computed at the second stage will be allowed to signifi-
cantly deviate from the ones calculated in the first stage,
in order to generate a control input that is informative
and reduces the size of the model set F(t). On the other
hand, if the uncertainty is small, the future plant output
will be allowed to change only slightly from the first to
the second stage.



To be more specific, let us consider the solution of the
FHOCP (28), which constitutes the first stage of the
described approach. We denote the predicted regressor
vectors and plant outputs obtained by solving (28) by
ϕ∗(k|t) and ŷ∗(k|t), k ∈ [t+1, t+N ]. Then for the second
stage, we compute the following quantities:

εj(k|t) = max
{
yj(k|t)− ŷ∗j (k|t), ŷ∗j (k|t)− y

j
(k|t)

}
,

k ∈ [t+ 1, t+N ], j = 1, . . . , ny,
(34)

where ε(k|t) = [ε1(k|t), . . . , εny
(k|t)]T , εj(k|t) ≥ 0 de-

notes the maximal possible difference between the fu-
ture output of the plant and the predicted output of the
nominal model at time step k, and

yj(k|t) = max
Aj(t)Hj≤bj(t)

HT
j ϕ
∗(k|t)

y
j
(k|t) = min

Aj(t)Hj≤bj(t)
HT
j ϕ
∗(k|t).

In addition, we define the matrix Φ(t+1|t) ∈ Rnum×num

that depends on the num past regressor vectors and the
first future regressor vector as:

Φ(t+ 1|t) =
[
ϕ(t− num+ 1) . . . ϕ(t) ϕ(t+ 1|t)

]
.

This matrix can be indirectly related to the size of the
polytopes that will form the model set at the next time
step F(t+ 1), as indicated by the following result.

Lemma 5.1 (Theorem 3.2 in [4]) Each of the polytopes
Fj(t + 1), j = 1, . . . , ny obtained by using the polytopic
update of the form (10) for a sequence of regressor vectors
forming the matrix Φ(t+1|t) is guaranteed to have volume

smaller than
(2(εdj +εvj ))

num

|det(Φ(t+1|t))| .

The input to be applied to the plant is then selected
within the set of all the control inputs that satisfy input
and output constraints and that keep all of the possible
predicted output trajectories inside an interval obtained
by scaling up the values of ε(k|t), centered at the trajec-
tory ŷ∗(k|t), k ∈ [t + 1, t + N ]. In order to improve the
knowledge on the system, we need a suitable criterion
that is linked to the size of the model set. Considering
Lemma 5.1, we choose to use |det(Φ(t+ 1|t))| as an in-
dicator and we compute an input aimed at increasing its
value (hence decreasing the volume of the model set).
Therefore, the optimization problem to be solved at the

second stage of the control input calculation is given as:

max
U
|det Φ(t+ 1|t)|

Subject to:

(19), (27),

Hϕ(k|t) ≤ ŷ∗(k|t)+βε(k|t)
Hϕ(k|t) ≥ ŷ∗(k|t)−βε(k|t)
EHϕ(k|t)+d≤p


∀H ∈ F(t)

∀k ∈ [t+1, t+N ]

(35)
where β ∈ R, β ≥ 1 is a design parameter that indicates
by how much the bounds (34) are allowed to be inflated.
Problem (35) is a non convex, infinite dimensional pro-
gram that is in general difficult to solve. However, in this
specific case the problem can be solved by solving two
additional LPs. For more details, the interested reader
is referred to [29] (section 5).

6 Experimental results

The performance of the proposed adaptive control al-
gorithm is illustrated by experiments on a quad-tank
testbed.

Fig. 1. Quad tank system consisting of 4 water tanks that are
mutually connected by a network of pipes and valves. Water
is injected into the system from a reservoir by two pumps.

The experimental setup consists of four identical, mutu-
ally connected water tanks as in Fig. 1. The water level
of each of the tanks is denoted by τi, i = 1, . . . , 4 and
can be measured by a pressure sensor located at the bot-
tom of the tank. Each tank has a water inlet on top and
an outlet at the bottom. We denote the cross section of
the tanks by Aa and the cross section of the outlets by
Ao. Water from the reservoir is injected into the tanks
by a system of pumps, valves and pipes as in Fig. 1. The
water flows generated by the pumps P1 and P2 are pro-
portional to the voltages v1 and v2 applied to the pumps



Table 1
Physical parameters of the quad-tank system.

Aa [cm2] Ao [cm2] kp [cm3/sV] γ1 γ2

15.52 0.178 3.3 0.3 0.32

with a constant factor that we denote by kp. The valves
V1 and V2 distribute the water injected by the pumps to
the upper and the lower tanks. They can be modeled by
introducing constants γ1 and γ2 that denote the ratio of
the flow that is directed into the lower tanks. The nu-
merical values of the quad-tank physical parameters are
listed in Table 1

The described plant is a nonlinear system. However, we
regulate it in proximity of a steady state, whose corre-
sponding water levels are denoted by τ i, i = 1, . . . , 4.
As plant outputs, we take the differences between the
water levels of the two lower tanks with respect to their
steady state values: y(t) = [τ1(t)− τ1, τ2(t)− τ2]T . Sim-
ilarly, the control inputs are defined as the differences
of the pump voltage levels from the steady state values,
denoted by v1 and v2: u(t) = [v1(t)− v1, v2(t)− v2]T . In
all the experiments the operating point was the one that
corresponds to the pump steady state voltages v1 = 8 V
and v2 = 7.25 V. Note that for the selected values of
γ1 and γ2, the plant is MIMO non-minimum phase (see
e.g. [14]). Therefore, the plant that is being controlled
exhibits both nonlinear and non-minimum phase behav-
iors, which makes it a challenging testbed for an adap-
tive control algorithm.

A sampling time of 8 seconds was used to control the
system. In order to comply with the physical limitations
imposed by the water pumps, the input amplitude is
required to satisfy the following constraints:[

−u
−u

]
≤ u(t) ≤

[
u

u

]
, ∀t ,

where u = 2.5 V. In addition, in order to prevent any
damage to the setup that may be caused by overflowing
the tanks, the following output constraints are required
to be satisfied during the control experiment:

y(t) ≤

[
y

y

]
, ∀t,

where y = 5.2 cm.

The initial model set F(0) is formed by assuming an
upper and a lower bound on each impulse response
coefficient. From the structure of the system model,
it is reasonable to assume the lower bound on each of
the impulse response coefficients to be 0. The upper
bounds are constructed by selecting the same values of
the parameters L, µ and ρ for each input-output pair

(see section 2). The bounds on the measurement noise
and output disturbance are selected to be equal for
both outputs. Table 2 lists the values of the chosen de-
sign parameters. The employed values are identical for
all the input-output pairs. The weighting matrix R is
selected as an identity matrix, Q is selected as 2 times
the identity matrix and S is taken to be a zero matrix.
The ratio between the weights in Q and R reflects the
balance between aggressiveness of the control action,
and saving of input energy, as increasing Q results in
a more aggressive control. The bound on the measure-
ment noise εv was determined from sensor readings for
constant tank water levels. The selection of the output
disturbance bound εd is not so straightforward, however,
unless taken too small or overly conservative, it was not
observed to have a significant influence on the controller
performance. The initial plant model was formed by
selecting a random nonzero point inside the set F(0).

Table 2
Design parameters of the controller.

εv [cm] εd [cm] L µ ρ m α N

0.25 0.35 1.8 2 0.78 12 0.01 18

The model setF(t) is updated according to Algorithm 2,
where the face number limits where chosen as M1 = 200
and M2 = 48. The set of predefined face directions D
was constructed by the vectors that form an ∞-norm
ball. The adaptive control algorithm was implemented
in Matlab and run on a laptop with Intel i7-36667U pro-
cessor. The solver Gurobi [13] was used in order to solve
the LPs and the QP required by the algorithm. With
this configuration, the maximal execution time of the al-
gorithm, at each sampling instant, was not greater than
4 seconds.

The set F(0) was selected quite conservatively, which is
illustrated in Fig. 2 that compares the initial model set
with the impulse response coefficient values of the nom-
inal model at the end of a typical experiment. Despite
this, the experimental results of Fig. 3 show that good
reference tracking is obtained. As predicted by the the-
oretical analysis, output constraints are satisfied, also
during the adaptation transient. In addition, the control
performance improves over time as more information is
gathered and the model set is reduced. The contraction
of the model set over time is illustrated by the fact that
the gap between the maximal and minimal values of the
outputs, computed by considering all possible plants in
the model set, decreases over time (see e.g. Fig. 3, gray
lines).

In order to illustrate the effectiveness of the proposed ap-
proach in satisfying the output constraints, we compare
the performance of the proposed controller with that of
a certainty equivalence adaptive controller, which uses
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Fig. 2. Initial model set F(0) (grey area) compared with the
impulse response coefficients of the nominal model at the
end of the experiment. The top left plot shows the transfer
function from u1 to y1, the top right plot from u2 to y1, the
bottom left from u1 to y2 and the bottom right from u2 to y2.
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Fig. 3. Experimental results obtained by applying the pro-
posed adaptive control algorithm to the quad-tank testbed.
The desired output references ydes (dashed black lines) are
compared with the measured plant outputs ỹ(t) (solid black
lines), for output y1 (upper plot) and y2 (lower plot). The
uncertainty intervals of the outputs for all the plants in the
model set (solid gray lines) are also shown, as well as the
output constraints (solid black lines with ×).

recursive least squares to identify the nominal model of
the plant and a receding horizon optimal control algo-
rithm similar to (28) in order to control the system out-
puts. Since this modified algorithm uses only a point
estimate of the plant model, instead of robustly enforc-
ing output constraints, soft output constraints are used
in order to avoid feasibility problems. Apart from this
difference, the same tuning parameters and initial guess
for the plant model were used. The experimental results
obtained with this adaptive controller are shown in Fig.
4. As it can be seen, the output constraints are violated
during the adaptation transient in this case. However,
due to a more aggressive control action in the initial
phase, which results in a more informative collection of
input/output data, the adaptation is faster.

On the other hand, in order to robustly satisfy the out-
put constraints, the newly proposed adaptive control al-

gorithm introduces conservativeness during the adapta-
tion transient, since it makes sure that the outputs of
all the plants inside the model set satisfy output con-
straints. This results in quite cautious control at the be-
ginning, when the model uncertainty is large. However,
as the uncertainty is reduced, the tracking performance
of the controller improves, as it can be seen in Fig. 3.
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Fig. 4. Experiment results obtained by applying a controller
that uses a recursive least squares point estimate of the plant
model to the quad-tank testbed. The desired output refer-
ences ydes (dashed black lines) are compared to the mea-
sured plant output ỹ(t) (solid black lines) and the maximal
allowed values of the plant outputs (solid black lines with
×), for output y1 (upper plot) and y2 (lower plot).

7 Conclusion

We proposed an adaptive model predictive control algo-
rithm for open-loop stable, linear, time invariant MIMO
systems subject to both input and output constraints.
The method relies on real-time SM identification to pro-
vide guaranteed bounds on any linear combination of
predicted system outputs. These bounds are used to de-
sign a receding horizon controller able to robustly satisfy
output constraints. The proposed adaptive control algo-
rithm exhibits integral action. It requires the solution
of standard convex programs (LPs and QPs) which are
guaranteed to be recursively feasible. We also described
the possibility to consider various model parameteriza-
tions and to add an active exploring capability. We re-
ported the experimental results obtained by testing the
approach on a non-minimum phase quad-tank system.
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A Bounds on the unmodeled dynamics

We denote the contribution of the unmodeled dynamics to
each of the outputs j by ηj(t), j = 1, . . . , ny, where:

ηj(t) =

nu∑
i=1

∞∑
k=m+1

hji(k)ui(t− k).

Since the constraint set of the control input magnitudes is
bounded, the upper bound and the lower bound on each of
the control inputs i = 1, . . . nu is given by:

ui = max
Cu≤g

ui

ui = min
Cu≤g

ui
, i = 1, . . . , nu.

If, in addition we assume that the bounds on the impulse
response coefficients, given by (5), can be extended to the
case of an infinite impulse response, then the upper bound
on the contribution of the truncated part of the impulse
response, |ηj(t)| ≤ ηj , ∀t, is given by:

ηj =

nu∑
i=1

max(|ui|, |ui|)Ljiρ
m−µji

ji

ρji
1− ρji

, j = 1, . . . , ny.

This formula can be used to calculate the joint bounds on the
contribution of the output disturbances and the unmodeled
dynamics to the plant outputs in (3).



B Definition of the matrices in (15)

We first define the matrix w ∈ Rnu×nu with the following
structure:

w =



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0


∈ Rm×m.

Based on this, the matrix W is given by:

W =


w 0 . . . 0

0 w . . . 0

...
...

. . .
...

0 0 . . . w

 ∈ Rnum×num,

where 0 denotes the matrix of all zeros with appropriate di-
mension. In addition, let z = [1, 0, . . . , 0]T ∈ Rm, the matrix
Z is given as:

Z =


z 0 . . . 0

0 z . . . 0

...
...

. . .
...

0 0 . . . z

 ∈ Rnum×nu .


