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bICREA at IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
cTheory Division, Physics Department, CERN, Geneva, Switzerland
dInstitute for Theoretical Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
ePaul Scherrer Institut, CH–5232 Villigen PSI, Switzerland

E-mail: roberto.contino@roma1.infn.it,

margherita.ghezzi@roma1.infn.it, christophe.grojean@cern.ch,

milada.muehlleitner@kit.edu, michael.spira@psi.ch

Abstract: We reconsider the effective Lagrangian that describes a light Higgs-like boson

and better clarify a few issues which were not exhaustively addressed in the previous

literature. In particular we highlight the strategy to determine whether the dynamics

responsible for the electroweak symmetry breaking is weakly or strongly interacting. We

also discuss how the effective Lagrangian can be implemented into automatic tools for the

calculation of Higgs decay rates and production cross sections.

Keywords: Higgs Physics, Beyond Standard Model, Technicolor and Composite Models

ArXiv ePrint: 1303.3876

Open Access doi:10.1007/JHEP07(2013)035

mailto:roberto.contino@roma1.infn.it
mailto:margherita.ghezzi@roma1.infn.it
mailto:christophe.grojean@cern.ch
mailto:milada.muehlleitner@kit.edu
mailto:michael.spira@psi.ch
http://arxiv.org/abs/1303.3876
http://dx.doi.org/10.1007/JHEP07(2013)035


J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

Contents

1 Introduction 1

2 Effective Lagrangian for a light Higgs doublet 3

2.1 Current bounds on flavor-preserving operators 7

3 Estimates of the effects on physics observables 10

3.1 Operators sensitive to a strongly-interacting Higgs boson 10

3.2 Operators sensitive to the scale of New Physics 12

3.3 Operators generated at the one-loop level 14

3.4 Fermionic operators 16

3.5 Non-linear Lagrangian for a Higgs-like scalar 17

3.6 Implications of custodial symmetry 18

4 Implementing the Higgs effective Lagrangian beyond the tree level 20

4.1 RG evolution of the Wilson coefficients 21

4.2 Decay rates at the loop level with the effective Lagrangian 23

5 Discussion 28

A SM Lagrangian: notations and conventions 31

B Electroweak Chiral Lagrangian in non-unitary gauge 32

C Relaxing the CP-even hypothesis 34

D Current bounds on dimension-6 operators 35

1 Introduction

The exploration of the weak scale has marked an important step forward with the discovery

by the ATLAS [1] and CMS [2] collaborations of a boson with mass mh ' 125 GeV,

whose production cross section and decay rates are compatible with those predicted for

the Higgs boson of the Standard Model (SM). At the same time, no hint of the existence

of additional new particles has emerged yet, which might shed light on the origin of the

electroweak symmetry breaking (EWSB). One is thus faced with the problem of which is

the best strategy to describe the properties and investigate the nature of the new boson

h, beyond the framework of the Standard Model. In absence of a direct observation of

new states, our ignorance of the EWSB sector can be parametrized in terms of an effective

Lagrangian for the light boson. Such an effective description is valid as long as New Physics
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(NP) states appear at a scale M � mh, and is based on an expansion in the number of

fields and derivatives [3]. The detailed form of the effective Lagrangian depends on which

assumptions are made. Considering that the observation made by the LHC experiments

is in remarkable agreement with the SM prediction, although within the current limited

experimental precision, it is reasonable to assume that h is a CP-even scalar that forms

an SU(2)L doublet together with the longitudinal polarizations of the W and Z, so that

the SU(2)L × U(1)Y electroweak symmetry is linearly realized at high energies. Under

these assumptions the effective Lagrangian can be expanded into a sum of operators with

increasing dimensionality, where the leading NP effects are given by dimension-6 operators.

The parametrization of the deviations of the Higgs couplings in terms of higher-

dimension operators started more than two decades ago. The experimental observation

of the Higgs boson, however, calls for a more detailed analysis. First, a compilation of

a complete and updated list of constraints on the various Wilson coefficients is in need.

Second, the rather precise estimation of the Higgs mass below the gauge boson thresholds

necessitates a careful computation including off-shell effects that have not been incorpo-

rated up-to-now when the SM Lagrangian is supplemented by higher-dimensional operators.

It is the purpose of this paper to perform such an updated analysis. We will also discuss in

detail the implications of the custodial symmetry on the generalized Higgs couplings and

clarify a few other issues which were not exhaustively addressed in the previous literature,

like for example the connection with the effective Lagrangian for a non-linearly realized

electroweak symmetry. Finally, a precise comparison of the Higgs couplings with the SM

predictions can only be done when higher-order effects are included in a consistent way,

and we will develop a strategy to this end.

The paper is structured as follows. In section 2 we review the construction of the

effective Lagrangian for a light Higgs doublet. By means of a naive power counting we

estimate the coefficients of the various operators and review the most important bounds

set on them by present experimental results on electroweak (EW) and flavor observables.

Focusing on Higgs physics, we then discuss in section 3 the relative effect of the various

operators on physical observables. Such an analysis, first proposed in ref. [4], will allow

us to identify which operators can probe the Higgs coupling strength to the new states

and which instead are sensitive only to the mass scale M . This is of key importance to

distinguish between weakly-coupled UV completions of the Standard Model, like Super-

symmetric (SUSY) theories, and theories where the EW symmetry is broken by a new

strongly-interacting dynamics which forms the Higgs boson as a bound state [4–13]. These

are the two most compelling scenarios put forward to solve the hierarchy problem of the

Standard Model. We conclude the section by discussing how the assumption of a Higgs

doublet and linearly-realized SU(2)L ×U(1)Y can be relaxed. We illustrate the non-linear

effective Lagrangian valid for the case of a generic CP-even scalar h and discuss the impli-

cations of custodial invariance. Section 4 is devoted to clarify a few issues related to the

use of the effective Lagrangian beyond the tree level. We present our concluding discussion

in section 5. In the appendices A–C we collect useful formulas and give further details on

the construction of the effective Lagrangian. The details of how we derived the bounds on

the dimension-6 operators are reported in appendix D.
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As an illustration of our analysis and to better demonstrate how the effective La-

grangian can be implemented into automatic tools for the computation of physical quan-

tities like Higgs production cross sections and decay rates, we have written eHDECAY,1 a

modified version of the program HDECAY [14, 15], which includes the full list of leading

bosonic operators. We will describe the program in a separate companion paper [16].

2 Effective Lagrangian for a light Higgs doublet

The most general SU(3)C ×SU(2)L×U(1)Y -invariant Lagrangian for a weak doublet H at

the level of dimension-6 operators was first classified in a systematic way in refs. [17–19].

Subsequent analyses [20–25] pointed out the presence of some redundant operators, and

a minimal and complete list of operators was finally provided in ref. [26]. As recently

discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming

that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)

and the baryon and lepton numbers are conserved, is the following:

L = LSM +
∑
i

c̄iOi ≡ LSM + ∆LSILH + ∆LF1 + ∆LF2 (2.1)

with

∆LSILH =
c̄H
2v2

∂µ
(
H†H

)
∂µ

(
H†H

)
+

c̄T
2v2

(
H†
←→
DµH

)(
H†
←→
D µH

)
− c̄6 λ

v2

(
H†H

)3

+
(( c̄u

v2
yuH

†Hq̄LH
cuR+

c̄d
v2
ydH

†Hq̄LHdR+
c̄l
v2
ylH

†HL̄LHlR

)
+h.c.

)
+
ic̄W g

2m2
W

(
H†σi

←→
DµH

)
(DνWµν)i +

ic̄B g
′

2m2
W

(
H†
←→
DµH

)
(∂νBµν)

+
ic̄HW g

m2
W

(DµH)†σi(DνH)W i
µν +

ic̄HB g
′

m2
W

(DµH)†(DνH)Bµν

+
c̄γ g

′2

m2
W

H†HBµνB
µν +

c̄g g
2
S

m2
W

H†HGaµνG
aµν ,

(2.2)

∆LF1 =
ic̄Hq
v2

(q̄Lγ
µqL)

(
H†
←→
D µH

)
+
ic̄′Hq
v2

(
q̄Lγ

µσiqL
) (
H†σi

←→
D µH

)
+
ic̄Hu
v2

(ūRγ
µuR)

(
H†
←→
D µH

)
+
ic̄Hd
v2

(
d̄Rγ

µdR
) (
H†
←→
D µH

)
+

(
ic̄Hud
v2

(ūRγ
µdR)

(
Hc †←→D µH

)
+ h.c.

)
+
ic̄HL
v2

(
L̄Lγ

µLL
) (
H†
←→
D µH

)
+
ic̄′HL
v2

(
L̄Lγ

µσiLL
) (
H†σi

←→
D µH

)
+
ic̄Hl
v2

(
l̄Rγ

µlR
) (
H†
←→
D µH

)
,

(2.3)

1eHDECAY is available at the following URL: http://www-itp.particle.uni-karlsruhe.de/˜maggie/ eHDE-

CAY/.

– 3 –

http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/
http://www-itp.particle.uni-karlsruhe.de/~maggie/eHDECAY/


J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

∆LF2 =
c̄uBg

′

m2
W

yuq̄LH
cσµνuRBµν +

c̄uW g

m2
W

yuq̄Lσ
iHcσµνuRW

i
µν +

c̄uGgS
m2
W

yuq̄LH
cσµνλauRG

a
µν

+
c̄dBg

′

m2
W

ydq̄LHσ
µνdRBµν +

c̄dW g

m2
W

ydq̄Lσ
iHσµνdRW

i
µν +

c̄dGgS
m2
W

ydq̄LHσ
µνλadRG

a
µν

+
c̄lBg

′

m2
W

ylL̄LHσ
µν lRBµν +

c̄lW g

m2
W

ylL̄Lσ
iHσµν lRW

i
µν + h.c.

(2.4)

The SM Lagrangian LSM and our convention for the covariant derivatives and the gauge

field strengths are reported for completeness in appendix A. In particular, λ is the Higgs

quartic coupling and the weak scale at tree level is defined to be

v ≡ 1

(
√

2GF )1/2
= 246 GeV . (2.5)

By iH†
←→
DµH we denote the Hermitian derivative iH†(DµH) − i(DµH)†H, and σµν ≡

i[γµ, γν ]/2. The Yukawa couplings yu,d,l and the Wilson coefficients c̄i in eq. (2.3) are

matrices in flavor space, and a sum over flavors has been left understood. Note that the

assumption of a CP-even Higgs implies that the coefficients c̄u, c̄d and c̄l are real. As

specified in eq. (2.1), we will denote as Oi the dimension-6 operator whose coefficient is

proportional to c̄i.

Our higher-dimensional Lagrangian, which is supposed to capture the leading New

Physics effects, counts 12 (∆LSILH) + 8 (∆LF1) + 8 (∆LF2) = 28 operators. Five extra

bosonic operators,

c̄3W g3

m2
W

εijkW i ν
µ W j ρ

ν W k µ
ρ ,

c̄3G g
3
S

m2
W

fabcGa νµ Gb ρν G
c µ
ρ ,

c̄2W

m2
W

(DµWµν)i (DρW
ρν)i ,

c̄2B

m2
W

(∂µBµν) (∂ρB
ρν) ,

c̄2G

m2
W

(DµGµν)a (DρG
ρν)a ,

(2.6)

which affect the gauge-boson propagators and self-interactions but with no effect on Higgs

physics, should also be added to complete the operator basis, as well as 22 four-Fermi

baryon-number-conserving operators.2 A comparison with ref. [26] shows that two of our

operators are actually redundant. As we shall explain in more detail in section 3 (see

eqs. (3.5), (3.6)), it is well known [25, 28] that two particular linear combinations of the

fermionic operators in ∆LF1 are equivalent to pure oblique corrections parametrized by

the operators OT , OW and OB:

OYHΨ ≡
∑
ψ

Yψ OHψ ∼ OT , OB and O′Hq +O′HL ∼ OW , (2.7)

where the sum runs over all fermion representations, ψ = qL, uR, dR, LL, lR, whose hyper-

charge has been denoted as Yψ. These two linear combinations have then to be excluded

2Notice that the last three operators in eq. (2.6) can be rewritten in favor of three additional independent

four-Fermi operators, as in the basis of ref. [26]. The coefficients c̄2W , c̄2B contribute respectively to the W

and Y parameters defined in ref. [27].
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from ∆LF1 , and we end up with exactly 53 linearly-independent operators as in ref. [26].3

Any other dimension-six operator can be obtained from these 53 operators by using the

equations of motion, or equivalently by performing appropriate field redefinitions.4

Even though our basis (2.2)–(2.4) is equivalent to the one proposed in ref. [26], we ad-

vocate that it is more appropriate for Higgs physics for at least three reasons [4]: i) Generic

models of New Physics generate a contribution to the oblique Ŝ parameter [27, 29] at tree-

level, which in the basis of ref. [26] would have to be encoded in the two fermionic operators

OYHψ and O′Hq +O′HL even in the absence of direct couplings between the SM fermions and

the New Physics sector. There is an advantage in describing the oblique corrections in terms

of the operators in (2.2) rather than in terms of the operators with fermionic currents, which

generate vertex corrections and modify the Fermi constant. ii) The basis (2.1) isolates the

contributions to the decays h→ γγ (from Oγ) and h→ γZ (from Oγ and OHW−OHB) that

occur only at the radiative level in minimally coupled theories. iii) Our basis of operators

is more appropriate to establish the nature of the Higgs boson and determine the strength

of its interactions. For example, as we shall explain momentarily, if the Higgs boson is a

pseudo Nambu-Goldstone boson (pNGB) the coefficient of the operator Oγ , hence the rate

h→ γγ, is suppressed, while in the basis of ref. [26] this reflects into a cancellation in the

linear combination 4c̄γ + (c̄WW − c̄WB) (cf. footnote 4).

While a complete classification of the operators is essential, having a power counting

to estimate their impact on physical observables, hence their relative importance, is equally

crucial. In this sense a simple yet consequential observation was made in ref. [4]: when

expanding the effective Lagrangian in the number of fields and derivatives, any additional

power of H is suppressed by a factor g∗/M ≡ 1/f , where g∗ ≤ 4π denotes the coupling

strength of the Higgs boson to New Physics states and M is their overall mass scale; any

additional derivative instead costs a factor 1/M . If the light Higgs boson is a composite

state of the dynamics at the scale M , it is natural to expect g∗ � 1, hence f � M ,

which implies that operators with extra powers of H give the leading corrections to low-

energy observables. On the other hand, in weakly-coupled completions of the Standard

Model where g∗ ∼ g, all operators with the same dimension can be equally important. A

proper analysis of the experimental results through the language of the effective Lagrangian

can thus give indication on whether the dynamics at the origin of electroweak symmetry

breaking is weakly or strongly interacting. According to the power counting of ref. [4], one

3For completeness we collect in appendix C also the extra 6 bosonic operators of dimension-six that are

CP-odd.
4In particular, the following identities hold:

g2

4m2
W

H†HW i
µνW

i µν ≡ OWW = OW −OB +OHB −OHW +
1

4
Oγ

gg′

4m2
W

H†σiHW i
µνB

µν ≡ OWB = OB −OHB −
1

4
Oγ .

(2.8)
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naively estimates (ψ = u, d, l, q, L)5

c̄H , c̄T , c̄6, c̄ψ ∼ O
(
v2

f2

)
, c̄W , c̄B ∼ O

(
m2
W

M2

)
, c̄HW , c̄HB, c̄γ , c̄g ∼ O

(
m2
W

16π2f2

)
c̄Hψ, c̄

′
Hψ ∼ O

(
λ2
ψ

g2
∗

v2

f2

)
, c̄Hud ∼ O

(
λuλd
g2
∗

v2

f2

)
, c̄ψW , c̄ψB, c̄ψG ∼ O

(
m2
W

16π2f2

)
,

(2.9)

where λψ denotes the coupling of a generic SM fermion ψ to the new dynamics. It should be

stressed that these estimates are valid at the UV scale M , at which the effective Lagrangian

is matched onto explicit models. Renormalization effects between M and the EW scale mix

operators with the same quantum numbers, and give in general subdominant corrections

to the coefficients. We shall comment on these renormalization effects in section 4. Notice

that the estimates of c̄W,B, c̄Hψ, c̄′Hψ and c̄T apply when these coefficients are generated

at tree-level. However, specific symmetry protections which might be at work in the UV

theory, like for example R-parity in SUSY theories, can force the leading corrections to

arise at the 1-loop level.

Equation (2.9) suggests that in the case of a strongly-interacting light Higgs boson

(SILH) the leading New Physics effects in Higgs observables are parametrized by the op-

erators OH,T,6,ψ, and, if the SM fermions couple strongly to the new dynamics, by the

fermionic operators of eq. (2.3) [4]. Notice that, compared to the naive counting, c̄HW,HB,g,γ
are suppressed by an additional factor (g2

∗/16π2). This is because the corresponding op-

erators contribute to the coupling of on-shell photons and gluons to neutral particles and

modify the gyromagnetic ratio of the W , and are thus generated only at the loop level in a

minimally coupled theory. Similarly, the dipole operators of eq. (2.4) are generated at the

loop-level only, hence their estimates have an extra loop factor.

A special and phenomenologically motivated case is represented by theories where the

Higgs doublet is a composite Nambu-Goldstone (NG) boson of a spontaneously-broken

symmetry G → H of the strong dynamics [4–13]. For these models the scale f must be

identified with the decay constant associated with the spontaneous breaking, and the naive

estimate of the Wilson coefficients c̄i is modified by the request of invariance under G in

the limit of vanishing explicit breaking. At the level of dimension-6 operators, Oγ , Og,

O6, Ou,d,l and the dipole operators of eq. (2.4) violate the shift symmetry H i → H i + ζi

(ζi = const.) that is included as part of the G/H transformations. This means that they

cannot be generated in absence of an explicit breaking of the global symmetry. It follows,

in particular, that the naive estimates of the operators Oγ and Og carry in this case an

additional suppression factor [4],

c̄γ , c̄g ∼ O
(

m2
W

16π2f2

)
×
g2
6G
g2
∗
, (2.10)

5Notice that our normalization differs from the one of ref. [4], and it is more convenient than the latter

for a model-independent implementation of eq. (2.2) in a computer program. The factor multiplying each

operator in the effective Lagrangian has been conveniently defined such that the dependence on M and g∗
is fully encoded in the dimensionless coefficients c̄i.

– 6 –
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where g6G denotes any weak coupling that breaks the Goldstone symmetry (one of the SM

weak couplings in minimal models, i.e. the SM gauge couplings or the Yukawa couplings).

The operators O6, Oψ, OψG, OψW , OψB have been defined so that their prefactor already

includes one spurion coupling, precisely the Higgs quartic coupling λ in O6, and the Yukawa

coupling yψ in the other operators — indeed, both these couplings vanish for an exact NG

boson. The estimates of the corresponding coefficients c̄6, c̄ψ, c̄ψG, c̄ψW , c̄ψB are thus not

modified.

In writing eq. (2.2) we have assumed that each of the operators Ou,d,l is flavor-aligned

with the corresponding fermion mass term, as required in order to avoid large Flavor-

Changing Neutral Currents (FCNC) mediated by the tree-level exchange of the Higgs

boson (see for example ref. [30] for a natural way to obtain this alignment). This implies

one coefficient for the up-type quarks (c̄u), one for down-type quarks (c̄d), and one for the

charged leptons (c̄l), i.e. the c̄u,d,l are proportional to the identity matrix in flavor space.

2.1 Current bounds on flavor-preserving operators

It is useful to review some of the most important constraints on the coefficients c̄i that follow

from current experimental results, such as electroweak precision tests, flavor data and low-

energy precision measurements. For simplicity, we focus on the bounds on flavor-conserving

operators, keeping in mind that they can come also from flavor-changing processes. For a

discussion of the bounds on flavor-violating operators see for example the recent review of

ref. [31] as well as ref. [32].

Among the strongest bounds are those on operators that modify the vector-boson

self-energies. The operator OT , for example, violates the custodial symmetry [33] and

contributes to the EW parameter ε1 [34, 35]. From the EW fit performed in ref. [36], it

follows, with 95% probability,

∆ε1 ≡ ∆ρ = c̄T (mZ) , −1.5× 10−3 < c̄T (mZ) < 2.2× 10−3 . (2.11)

Such a stringent bound can be more naturally satisfied by assuming that the dynamics at

the scale M possesses an (at least approximate) SU(2)V custodial invariance. In this case

cT (M) = 0, and a non-vanishing value will be generated through the renormalization-group

(RG) flow of this Wilson coefficient down tomZ in the presence of an explicit breaking of the

custodial symmetry, as due for example to the Yukawa or hypercharge couplings. We will

discuss these renormalization effects in more detail in section 4. Notice that all the other

dimension-6 operators in the effective Lagrangian are (formally) custodially symmetric and

their coefficients will not be suppressed at the scale M .6 The electroweak precision tests

also imply a strong bound on OW + OB [4], since this linear combination contributes to

the parameter ε3 [34, 35]. With 95% probability, one has [36]:

∆ε3 = c̄W (mZ) + c̄B(mZ) , −1.4× 10−3 < c̄W (mZ) + c̄B(mZ) < 1.9× 10−3 . (2.12)

6More precisely, for all the other operators the only violation of the custodial symmetry comes from

the explicit breaking due to the gauging of hypercharge. As such, this breaking is external to the EWSB

dynamics, since it comes from the weak gauging of its global symmetries. Formal invariance of the operators

can be restored by uplifting the hypercharge gauge field to a whole triplet of SU(2)R. The top Yukawa

coupling is another source of explicit custodial breaking.

– 7 –
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From the tree-level estimate of c̄W,B reported in eq. (2.9), and assuming an approximate

custodial invariance to suppress c̄T as explained above, it follows that eqs. (2.11) and (2.12)

set a lower bound M & a few TeV. This bound is quite robust and can be avoided only

in weakly-coupled UV completions where an extra symmetry protection suppresses the

leading contribution to c̄W,B by an additional loop factor. Notable examples are SUSY

theories with R-parity.

The fermionic operators in eq. (2.3) are strongly constrained by Z-pole measurements,

as they modify the couplings of the Z to quarks and leptons:

δgLψ
gLψ

=
1

2

(−c̄HΨ + 2T3L c̄
′
HΨ)

T3L −Q sin2θW
,

δgRψ
gRψ

=
1

2

c̄Hψ

Q sin2θW
, (2.13)

where T3L and Q are respectively the SU(2)L and electric charges of the fermion ψ, and

Ψ = {L, q} is the SU(2)L doublet to which ψL belongs. We used the results of ref. [36] to

perform a fit on the coefficients c̄Hψ, c̄HΨ, c̄′HΨ. The details of our analysis can be found

in appendix D (see also ref. [37]). In the case of light quarks (u, d, s) we find the following

bounds

− 0.02 < c̄Hq1 < 0.03 , − 0.002 < c̄′Hq1 < 0.003 ,

− 0.003 < c̄Hq2 < 0.006 , − 0.003 < c̄′Hq2 < 0.006 ,

− 0.008 < c̄Hu < 0.02 , − 0.03 < c̄Hd < 0.02 , −0.03 < c̄Hs < 0.02 ,

(2.14)

while a fit on leptons and heavy quarks (c, b) gives

− 0.0003 < c̄HL + c̄′HL< 0.002 , − 0.002 < c̄HL−c̄′HL< 0.004 , − 0.0009 < c̄Hl< 0.001 ,

− 0.003 < c̄Hq2 − c̄′Hq2 < 0.01 , − 0.01 < c̄Hc < 0.02 ,

− 0.008 < c̄Hq3 + c̄′Hq3 < 0.002 , − 0.06 < c̄Hb < −0.009 .

(2.15)

All the above bounds have 95% probability and by the various coefficients we mean their

values at the scale mZ . The weakest constraint is that on the operator OHb, which modifies

the coupling of bR to the Z boson. The operator involving two right-handed top quarks,

OHt, is unconstrained by EW data, but it is also not relevant for the Higgs decays and will

be neglected in the following. The coefficient c̄Htb is severely constrained by the b → sγ

rate. Indeed, the expansion of OHtb around the vacuum contains a vertex of the type

WtRbR, which at 1-loop gives a chirally-enhanced contribution to the rate (see for example

ref. [38]). We find, with 95% probability:

− 0.4× 10−3 < c̄Htb(mW ) < 1.3× 10−3 . (2.16)

For a given (v/f), the above bounds set a limit on the couplings of the SM fermions to

the new dynamics, see eq. (2.9). Unless the scale of New Physics is very large, or some

specific symmetry protection is at work in the UV theory (see for example the discussion

in ref. [37]), it follows that the SM fermions must be very weakly coupled to the new

dynamics, with the exception of the top quark.

The constraints on the dipole operators of eq. (2.4) come from the current experimental

limits on electric dipole moments (EDMs) and anomalous magnetic moments. The bounds
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on the neutron and mercury EDMs for example strongly constrain the dipole operators

with u and d quarks. By using the formulas of ref. [39] we find, with 95% probability, that:

− 7.01× 10−6 < Im(c̄uB + c̄uW ) < 7.86× 10−6 ,

− 9.42× 10−7 < Im(c̄dB − c̄dW ) < 8.40× 10−7 ,

− 1.62× 10−6 < Im(c̄uG) < 2.01× 10−6 ,

− 7.71× 10−7 < Im(c̄dG) < 5.70× 10−7 ,

(2.17)

where the coefficients are evaluated at the low-energy scale µ ∼ 1 GeV. According to the

naive estimate (2.9), for O(1) CP-violating phases these results imply a bound on (v/f)2

at the level of 10−3. In natural extensions of the SM, such a strong limit clearly points to

the need of a symmetry protection mechanism. For a discussion, see for example ref. [37]

for the case of composite Higgs theories, and ref. [40] for the case of SUSY theories.

Among the heavier quarks the most interesting bounds are those on dipole operators

with top quarks [41]. These come from the experimental limit on the neutron EDM,

− 1.39× 10−4 < Im(c̄tG) < 1.21× 10−4 , (2.18)

the b→ sγ and b→ sl+l− rates,

− 0.057 < Re(c̄tW + c̄tB)− 2.65 Im(c̄tW + c̄tB) < 0.20 , (2.19)

and the tt̄ cross sections measured at the Tevatron and LHC,

− 6.12× 10−3 < Re(c̄tG) < 1.94× 10−3 . (2.20)

All these bounds have 95% probability and have been derived by making use of the formulas

reported in ref. [41].7 It is worth noting that the bounds of eqs. (2.19) and (2.20) are still

about one order of magnitude weaker than the size of c̄tG, c̄tW and c̄tB expected from the

naive estimate (2.9) with (v/f)2 ∼ 0.1. Additional weaker constraints arise from the limits

on anomalous top interactions based on top decays and single top production. From the

results of ref. [42] we find that, with 95% probability:

− 1.2 < Re(c̄bW ) < 1.1 , −0.01 < Re(c̄tW ) < 0.02 . (2.21)

where the coefficients are evaluated at the scale µ ∼ mt.

In the lepton sector, the current measurements and SM predictions of the muon [43, 44]

and electron [45, 46] anomalous magnetic moments and the limits on their EDMs [47–49]

imply the following 95% probability bounds:

−1.64× 10−2 < Re(c̄eB − c̄eW ) < 3.37× 10−3 ,

1.88× 10−4 < Re(c̄µB − c̄µW ) < 6.43× 10−4 ,
(2.22)

− 2.97× 10−7 < Im(c̄eB − c̄eW ) < 4.51× 10−7 ,

− 0.26 < Im(c̄µB − c̄µW ) < 0.29 ,
(2.23)

7The coefficients are evaluated at the following scales: µ = mt (eqs. (2.18) and (2.20)), µ = mW

(eq. (2.19)).
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where the coefficients are evaluated at the relevant low-energy scale. Notice that the non-

vanishing value of Re(c̄µB−c̄µW ) follows from the known∼ 3.5σ anomaly in the (g−2) of the

muon (see ref. [43] for an updated review). Among the bounds of eqs. (2.21), (2.22), (2.23)

only those on Im(c̄eB − c̄eW ) and Re(c̄µB − c̄µW ) have the sensitivity to probe the values

naively expected for these coefficients as reported in eq. (2.9). In particular, the first one

sets an upper bound on (v/f)2 of order 10−3 for an O(1) CP phase.

3 Estimates of the effects on physics observables

While the Lagrangian ∆L = ∆LSILH + ∆LF1 + ∆LF2 is completely general, the basis of

operators of eqs. (2.2)–(2.4) is particularly useful to characterize the interactions of the

Higgs sector. In fact, as already anticipated, one of the main results of ref. [4] is that

of identifying which operators, hence which observables, are sensitive to the strength of

the Higgs interactions, rather than merely to the value of the New Physics scale M . In

what follows we will discuss this point in greater detail and, starting from the analysis of

refs. [4, 50], we will try to highlight a possible strategy to determine whether the dynamics

behind the electroweak breaking is weak or strong. Our analysis will be based on the naive

estimates of the Wilson coefficients at the matching scale. In the next section, we will

discuss how the running from the matching scale to the weak scale affects these estimates.

3.1 Operators sensitive to a strongly-interacting Higgs boson

Let us start by considering the effects of the operators OH , OT , Ou,d,l and O6: they modify

the tree-level couplings of the Higgs boson to fermions, vector bosons and to itself. In the

unitary gauge and upon canonical normalization of the Higgs kinetic term, the Lagrangian

reads [51]

L =
1

2
∂µh ∂

µh− 1

2
m2
hh

2 − c3
1

6

(
3m2

h

v

)
h3 + . . .

+m2
W W+

µ W
−µ
(

1 + 2cW
h

v
+ . . .

)
+

1

2
m2
Z ZµZ

µ

(
1 + 2cZ

h

v
+ . . .

)
−

∑
ψ=u,d,l

mψ(i) ψ̄(i)ψ(i)

(
1 + cψ

h

v
+ . . .

)
+ . . .

(3.1)

where the Higgs couplings ci=W,Z,ψ,3, have been defined such that ci = 1 in the SM, and

v is defined by eq. (2.5). Their expressions as functions of the coefficients of the effective

Lagrangian (2.2) are given in table 1. The shifts from the SM value are of order

δci ∼
g2
∗v

2

M2
=
v2

f2
. (3.2)

Hence, measuring the Higgs couplings probes the strength of its interactions to the new

dynamics. Notice that the effective description given by ∆L neglects higher powers of

(H/f), and is thus valid only if the shifts in the Higgs couplings are small: δci ∼ (v/f)2 � 1.

If the Higgs doublet is the NG boson of a spontaneously broken symmetry G → H, on the

other hand, it is possible to resum all powers of (H/f) by making use of the invariance
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Higgs couplings ∆LSILH MCHM4 MCHM5

cW 1− c̄H/2
√

1− ξ
√

1− ξ

cZ 1− c̄H/2− 2c̄T
√

1− ξ
√

1− ξ

cψ (ψ = u, d, l) 1− (c̄H/2 + c̄ψ)
√

1− ξ 1− 2ξ√
1− ξ

c3 1 + c̄6 − 3c̄H/2
√

1− ξ 1− 2ξ√
1− ξ

cgg 8 (αs/α2) c̄g 0 0

cγγ 8 sin2θW c̄γ 0 0

cZγ
(
c̄HB − c̄HW − 8 c̄γ sin2θW

)
tan θW 0 0

cWW −2 c̄HW 0 0

cZZ −2
(
c̄HW + c̄HB tan2θW − 4c̄γ tan2θW sin2θW

)
0 0

cW∂W −2(c̄W + c̄HW ) 0 0

cZ∂Z −2(c̄W + c̄HW )− 2 (c̄B + c̄HB) tan2θW 0 0

cZ∂γ 2 (c̄B + c̄HB − c̄W − c̄HW ) tan θW 0 0

Table 1. The second column reports the values of the Higgs couplings ci defined in eq. (3.23) in

terms of the coefficients c̄i of the effective Lagrangian ∆LSILH . The last two columns show the

predictions of the MCHM4 and MCHM5 models in terms of ξ = (v/f)2; the effects of the heavy

resonances have been neglected for simplicity, so that only the couplings cW,Z,ψ,3 are non-vanishing.

The auxiliary parameter α2 is defined by eq. (3.20).

under (non-linear) G transformations. Such an improved effective Lagrangian thus relies

only on the expansion in the number of derivatives. For example, in models based on the

SO(5)/SO(4) coset [13, 52] the couplings of the Higgs boson to W and Z are predicted

to be cW = cZ ≡ cV =
√

1− ξ, where ξ ≡ (v/f)2. The couplings to fermions, on the

other hand, are not uniquely fixed by the choice of the coset, but depend on how the

SM fermions are coupled to the strong dynamics. The last two columns of table 1 report

the predictions of the Minimal Composite Higgs Model MCHM4 [13] and MCHM5 [52],

where the SM fermions couple linearly to composite operators transforming as the spinorial

and fundamental representations of SO(5), respectively. For simplicity, the predictions are

derived by including only the effects of the Higgs non-linearities, and neglecting those from
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the heavy resonances, hence only the coefficients cV , cψ and c3 are non-vanishing. The

models MCHM4 and MCHM5 will be considered as benchmarks in the rest of this work.

In general, a shift of the tree-level Higgs couplings of order (v/f)2 implies that the

theory gets strongly coupled at energies ∼ 4πf , unless new weakly-coupled physics states

set in to regulate the energy growth of the scattering amplitudes. The dominant effect

comes from the energy growth of the VLVL → VLVL (V = W±, Z0) scattering amplitudes,

which become non-perturbative at the scale Λs = 4πv/
√
|c̄H |. A modified coupling to

the top quark leads instead to strong VLVL → tt̄ scattering at energies of order Λs =

16π2v2/(mt

√
|c̄u + c̄H |). The scale of New Physics is thus required to lie below, or at, such

ultimate range of validity of the effective theory: M . Λs.

3.2 Operators sensitive to the scale of New Physics

The operators OW , OB can be generated at tree-level by the exchange of heavy particles,

for example heavy spin-1 states. In the unitary gauge they are written in terms of the

following three operators8

(DµW+
µν)W− νh , (∂µZµν)Zνh , (∂µγµν)Zνh (3.3)

plus terms with zero or two Higgs fields. The fact that there are three possible operators

in the unitary gauge indicates that their coefficients are related by one identity if the Higgs

boson belongs to an SU(2) doublet, see eq. (3.25). We will discuss this point in greater

detail in section 3.6.

It is easy to see that OW , OB give corrections to the tree-level Higgs couplings and

generate quartic interactions with one vector boson and two SM fermions that contribute

to the three-body decays h → V V ∗ → V ψψ̄.9 Indeed, by making use of the equations of

motion,10

iDµW i
µν = g H†

σi

2

←→
D νH − ig ψ̄

σi

2
γνψ , i∂µBµν =

g′

2
H†
←→
D νH − ig′ ψ̄Y γνψ , (3.4)

one can rewrite OW and OB as

OW = −2OH +
4

v2
(H†H)|DµH|2 +O′Hq +O′HL (3.5)

OB = 2 tan2θW
(
−OT +OYHΨ

)
, (3.6)

where the linear combination OYHΨ has been defined in eq. (2.7). Upon the field redefinition

H → H − 2c̄W (H†H)H/v2, the operator (H†H)|DµH|2 can be rewritten in terms of those

8Here and in the following, derivatives acting on operators in the unitary gauge are covariant under local

U(1)em transformations. Operators like (∂µZµν)γνh or (∂µγµν)γνh obviously cannot be generated since

they break the U(1)em local symmetry.
9We thank Riccardo Rattazzi for pointing this out to us.

10For simplicity we have left a sum over all fermion representations ψ understood in eq. (3.4).
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in eq. (2.2). Specifically, eq. (3.5) becomes:11

OW = −6OH + 2 ((Ou +Od +Ol) + h.c.)− 8O6 +O′Hq +O′HL . (3.8)

From the estimates of c̄W , c̄B and c̄H , c̄T , c̄ψ, c̄6 in eq. (2.9) one can see that the shifts to the

tree-level Higgs couplings due to OW , OB are of order (mW /M)2, hence subdominant in

the case of a strongly interacting Higgs boson. Notice that the couplings of the Higgs boson

to W and Z get different shifts from OB (since ∆c̄T 6= 0). In practice, the constraint (2.12)

bounds this custodial-symmetry breaking effect down to an unobservable level, unless some

fine tuning is in place in the combination c̄W + c̄B so that c̄B can be large. Notice that

despite the operator OT is generated after using the equations of motion, its contribution

to ∆ε1 (corresponding to a non-vanishing T̂ parameter [27, 29]) is exactly canceled by the

vertex correction implied by the linear combination of fermionic operators which is also

generated.12 This is of course expected, since OW , OB only contribute to ε3, and not to ε1.

In general, the contribution of OW , OB to inclusive observables, in particular to the

Higgs decay rates, is of order (m2
W /M

2):

δΓ(h→ V V )

Γ(h→ V V )

∣∣∣∣
OW ,OB

∼ O
(
m2
W

M2

)
, (3.9)

where in this case V V = W (∗)W ∗, Z(∗)Z∗, Z(∗)γ, γγ. This implies that these operators are

sensitive only to the value of the scale of New Physics M , and do not probe the coupling

strength g∗. From the quantitative side, the constraint (2.12) suggests that their effects in

inclusive Higgs decay rates is too small to be observable. For example, we find that for small

c̄W,B the tree-level correction to the WW and ZZ partial rates is well approximated by:13

Γ(h→W (∗)W ∗)

Γ(h→W (∗)W ∗)SM
' 1 + 2.2 c̄W ,

Γ(h→ Z(∗)Z∗)

Γ(h→ Z(∗)Z∗)SM
' 1 + 2.0

(
c̄W + tan2θW c̄B

)
.

(3.10)

Notice that despite its custodial invariance, the operator OW affects in a slightly different

way the decay of the Higgs boson into WW and ZZ, due to the fact that at least one of

the two final vector bosons is off-shell.14 At the one-loop level OW also contributes to the

11By means of eqs. (3.6) and (3.8) it is thus always possible to remove OW and OB provided the coefficients

of the other operators are shifted as follows: c̄i → c̄i + ∆c̄i, with

∆c̄H = −6 c̄W , ∆c̄T = −2 tan2θW c̄B , ∆c̄6 = −8 c̄W , ∆c̄ψ = 2 c̄W

∆c̄′Hq = ∆c̄′HL = c̄W

6 ∆c̄Hq =
3

2
∆c̄Hu = −3 ∆c̄Hd = −2 ∆c̄HL = −∆c̄Hl = −2 tan2θW c̄B .

(3.7)

12See for example eq. (9.10) of ref. [28].
13Here and in the following our approximated formulas have been obtained by using eHDECAY [16] with

mh = 125 GeV. QCD corrections to the decay rates are fully included. Electroweak corrections are instead

not included, since their effect on the numerical prefactor appearing in front of the coefficients c̄i is of order

(v2/f2)(α2/4π) and thus beyond the accuracy of our computation. See ref. [16] for more details.
14It is easy to check that for mh > 2mZ and on-shell decays one has:

Γ(h→WW )

Γ(h→WW )SM
' 1 + 4 c̄W ,

Γ(h→ ZZ)

Γ(h→ ZZ)SM
' 1 + 4

(
c̄W + tan2θW c̄B

)
. (3.11)

These formulas coincide with those of eqs. (79)–(80) of ref. [4], which are thus valid only for on-shell decays.
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Higgs decays into Zγ and γγ (while OB does not). We find:

Γ(h→ Zγ)

Γ(h→ Zγ)SM
' 1 + 4.2 c̄W ,

Γ(h→ γγ)

Γ(h→ γγ)SM
' 1 + 5.0 c̄W , (3.12)

which agree with eqs. (82) and (83) of ref. [4].15 For c̄W,B ∼ 10−3 the above approximate

formulas imply corrections too small to be observed at the LHC. On the other hand, one

could try to take advantage of the different predictions in terms of angular and invariant

mass distributions which are implied by the dimension-6 operators compared to the tree-

level SM prediction. The most promising strategy could be in fact that based on the

analysis of the angular distributions of the final fermions [53–55]. In the ideal case in

which one is able to kill completely the SM tree-level contribution by means of appropriate

kinematic cuts, the relative effect of NP becomes of order

dΓ(h→ V V )

dΩ

/(
dΓ(h→ V V )

dΩ

)
SM

. 1 + c̄W,B
16π2

g2
, (3.13)

which might leave room for observable effects even for c̄W,B ∼ O(10−3). Clearly, a more

precise assessment of the efficiency of such a strategy requires a dedicated analysis [56].

3.3 Operators generated at the one-loop level

Let us now focus on the operators OHW , OHB, Oγ and Og, which are generated at the

one-loop level. In the unitary gauge, OHW,HB,γ are rewritten in terms of

W+
µνW

−µνh , ZµνZ
µνh , γµνγ

µνh , Zµνγ
µνh (3.14)

plus other terms with zero or two Higgs fields. Since the coefficients of the above four

operators are functions of c̄HW , c̄HB and c̄γ , they are related by one identity, see eq. (3.24).

We will discuss this point in greater detail in section 3.6.

As implied from the naive estimates (2.9), the contribution of OHW,HB,γ to the WW

and ZZ inclusive rates is of order (V V = WW,ZZ)

δΓ(h→ V V )

Γ(h→ V V )

∣∣∣∣
Oγ ,OHW ,OHB

∼ O
(

m2
W

16π2f2

)
. (3.15)

Although such an effect depends on the Higgs interaction strength, it is suppressed com-

15The easiest way to compute the one-loop contribution of OW to the Zγ and γγ rates is by using eq. (3.5)

to rewrite this operator in terms of the others. Among the operators generated in this way, only OH gives

a contribution. Notice that if eq. (3.8) is used instead, one has to take into account also the contribution

of (Ou +Od +Ol) and the shift to the Fermi constant induced by O′Hq +O′HL.
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pared to eq. (3.9) by a loop factor. We find that the following approximate formulas hold16

Γ(h→W (∗)W ∗)

Γ(h→W (∗)W ∗)SM
' 1 + 3.7 c̄HW ,

Γ(h→ Z(∗)Z∗)

Γ(h→ Z(∗)Z∗)SM
' 1 + 3.0

(
c̄HW + tan2θW c̄HB

)
− 0.26 c̄γ .

(3.17)

While the contribution due to c̄HB and c̄γ explicitly violates the custodial symmetry and

thus differentiates WW from ZZ, the different numerical factor multiplying c̄HW in the two

formulas above is due to the off-shellness of at least one of the two vector bosons, similarly

to eq. (3.10). Although there is currently no stringent bound on the coefficients c̄HW,HB,γ ,

the estimate (2.9) suggests that their correction to inclusive rates is unobservable at the

LHC. As discussed in the previous section, on the other hand, a study of the angular

and invariant mass distributions of these decays can potentially uncover the effect of New

Physics. In particular, an estimate similar to that of eq. (3.13) can be derived also for

c̄HW,HB,γ .

The processes h→ γγ, h→ Zγ and h→ gg (or equivalently gg → h) can in principle

test the Higgs interaction strengths much more powerfully, since they arise at the one-loop

level in the SM. Naively one expects:

δΓ(h→ gg, γγ, Zγ)

Γ(h→ gg, γγ, Zγ)

∣∣∣∣
Og ,Oγ ,OHW ,OHB

∼ O
(
v2

f2

)
. (3.18)

We find that the following approximate formulas hold to good accuracy for small c̄i’s:

Γ(h→ gg)

Γ(h→ gg)SM
' 1 + 22.2 c̄g

4π

α2

Γ(h→ γγ)

Γ(h→ γγ)SM
' 1− 0.54 c̄γ

4π

αem
,

Γ(h→ Zγ)

Γ(h→ Zγ)SM
' 1 + 0.19

(
c̄HW − c̄HB + 8 c̄γ sin2θW

) 4π
√
α2αem

,

(3.19)

where we have conveniently defined

α2 ≡
√

2GFm
2
W

π
, (3.20)

and by αem we indicate the value of the running electromagnetic coupling αem(q2 = 0) in

the Thomson limit. If the Higgs boson is a NG boson, the coefficients c̄g and c̄γ are further

16For mh > 2mZ and on-shell decays, we find instead

Γ(h→WW )

Γ(h→WW )SM
' 1 + 8 c̄HW ,

Γ(h→ ZZ)

Γ(h→ ZZ)SM
' 1 + 8 (c̄HW + tan2 θW c̄HB)− 16 tan2 θW sin2 θW c̄γ .

(3.16)

Comparing with the analog formulas in eqs. (79) and (80) of ref. [4], we find that in these latter there is a

missing factor 2 and the term proportional to c̄γ was not included either. Notice also that the effect of the

off-shellness of the gauge bosons is rather large, as one can see by comparing eq. (3.16) with eq. (3.17).
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suppressed by a factor (g6G/g∗)
2, see eq. (2.10), where g 6G is a weak coupling. This implies

that in this class of theories the corrections to Γ(h→ γγ) and Γ(h→ gg) depend only on

the scale of New Physics and not on the Higgs interaction strength. In fact, in the case of

minimal models with linear couplings, like for example the MCHM4 and MCHM5, the low

energy theorem [57–59] implies that the leading contribution to the γγ and gg decay rates

from the virtual exchange of heavy fermions is additionally suppressed [60–63] due to a

cancellation between the effect parametrized by c̄g,γ and the one that follows from the shift

in the top Yukawa coupling due to c̄u and c̄H (see ref. [62] for an interesting exception). In

general, in theories with a pNGB Higgs boson the local corrections to the rates Γ(h→ γγ)

and Γ(h → gg) from Oγ and Og are expected to be small and subdominant compared to

the effect from the modified tree-level Higgs couplings.

3.4 Fermionic operators

The fermionic operators in ∆LF1 are sensitive to the strength of the couplings of the Higgs

boson and of the SM fermions to the new dynamics. They lead to contact corrections to

the three-body decays h→ V V ∗ → V ψψ which are naively of order

δΓ(h→ V ψ̄ψ)

Γ(h→ V ψ̄ψ)
∼ O

(
v2

f2

λ2
ψ

g2
∗

)
. (3.21)

Compared to the corrections from OW and OB, the effect of the fermionic operators is

potentially enhanced by a factor (λ2
ψ/g

2). In practice, the possibility of large fermionic

couplings λψ is strongly constrained by LEP, see eqs. (2.14)–(2.16). Scenarios in which a

large degree of compositeness of either the left- or right-handed quarks is not ruled out

are generically those in which the corresponding operators in ∆LF1 are not generated as

due to some protecting symmetry (see for example refs. [37, 64, 65]). Large corrections to

the inclusive rate of the three-body decays h→ V ψ̄ψ from ∆LF1 are thus excluded, while

the possibility of detecting the effects of these operators through the analysis of differential

distributions should be explored, similarly to what has been discussed for OW and OB.

Among the dipole operators in ∆LF2 , those with light fermions are already strongly

constrained by current precision data, but potentially sizable effects could still come from

the operators involving the top quark. For example, the contribution of OtG to gg → h,

gg → tt̄, gg → tt̄h is of order E2/(16π2f2), where E is the energy scale relevant in the

process. More in detail

δσ(gg → h)

σ(gg → h)
∼ ĉtG ,

δσ(gg → tt̄)

σ(gg → tt̄)
∼ ĉtG

√
s

mt
,

δσ(gg → tt̄h)

σ(gg → tt̄h)
∼ ĉtG

s

m2
t

, (3.22)

where we have defined ĉtG ≡ Re(c̄tG) (m2
t /m

2
W ) ∼ m2

t /(16π2f2) ' 3× 10−3(v2/f2). Notice

that the experimental limit on the neutron EDM puts an upper bound on the imaginary

part of ĉtG at the 10−4 level, see eq. (2.18), which indicates that this is currently the most

sensitive experiment on Im(c̄tG). Some mechanism is however required to suppress the

imaginary parts of the dipole operators involving light fermions, in order to satisfy the

stringent constraints of eq. (2.17). By the same mechanism also Im(c̄tG) could be sup-

pressed, so that the processes of eq. (3.22) are essential to probe the contribution of OtG
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due to Re(c̄tG). From eq. (3.22) and the naive estimate of ĉtG it follows that the most sensi-

tive process is perhaps gg → tt̄, in particular the events at large invariant mass, although a

precision larger than the one currently achieved is required to constrain (v/f). To this aim,

the analysis of differential distributions and spin correlations could be a successful strat-

egy [41, 66–68]. The NP contribution to the process gg → tt̄h can in principle get the largest

enhancement from a cut on
√
s, but the small rate might limit the actual sensitivity achiev-

able at the LHC [69]. Finally, additional information comes from the experimental limits on

top anomalous couplings obtained at the Tevatron and the LHC, although their sensitivity

on NP is expected to be much smaller by naive estimate. The operator OtW , in particular,

gives the largest effect and generates the anomalous coupling gR(g/mW )b̄Lσ
µνW−µνtR [42].

Naively one expects gR = (4mt/mW ) c̄tW ∼ mtmW /(16π2f2) = 1.5×10−3 (v/f)2, an effect

too small to be observed even for f of order v.

3.5 Non-linear Lagrangian for a Higgs-like scalar

Summarizing, by working in the unitary gauge and in the basis of fermion mass eigenstates,

the effective Lagrangian relevant for Higgs physics reads as follows [51]

L =
1

2
∂µh ∂

µh− 1

2
m2
hh

2 − c3
1

6

(
3m2

h

v

)
h3 −

∑
ψ=u,d,l

mψ(i) ψ̄(i)ψ(i)

(
1 + cψ

h

v
+ . . .

)

+m2
W W+

µ W
−µ
(

1 + 2cW
h

v
+ . . .

)
+

1

2
m2
Z ZµZ

µ

(
1 + 2cZ

h

v
+ . . .

)
+ . . .

+
(
cWW W+

µνW
−µν +

cZZ
2

ZµνZ
µν + cZγ Zµνγ

µν +
cγγ
2
γµνγ

µν +
cgg
2
GaµνG

aµν
) h
v

+
(
cW∂W

(
W−ν DµW

+µν + h.c.
)

+ cZ∂Z Zν∂µZ
µν + cZ∂γ Zν∂µγ

µν
) h
v

+ . . .

(3.23)

where, we recall, v is defined in eq. (2.5). We have shown only terms involving up to three

bosonic fields, and we have omitted in particular those involving fermions that follow from

∆LF1 + ∆LF2 . Their form can be easily derived from eqs. (2.3) and (2.4). The relations

between the couplings appearing in eq. (3.23) and the coefficients of the dimension-6 opera-

tors in eq. (2.2) are reported in table 1. It is worth noting that the same Lagrangian (3.23)

applies also to the case in which the electroweak symmetry SU(2)L×U(1)Y is non-linearly

realized and h is a generic CP-even scalar, singlet of the custodial symmetry, not necessarily

connected with the EW symmetry breaking. Indeed, each of the terms in (3.23), being in-

variant under local U(1)em transformations, can be dressed up with the Nambu-Goldstone

bosons that are eaten to form the longitudinal W and Z polarizations and made manifestly

SU(2)L×U(1)Y gauge invariant [70, 71] (see also ref. [72]). The explicit expression in such

a basis has been given in refs. [73, 74] at the level of four-derivative operators. In this

sense the effective Lagrangian (3.23) is a generic tool to understand the origin of the newly

discovered boson and the role it plays in the electroweak symmetry breaking dynamics. It

is valid for arbitrary values of the couplings ci appearing in eq. (3.23), and it can be used

to make computations of observable quantities at a given order in an expansion in E/M

and in αSM/4π, where by the latter we indicate the generic SM loop expansion parameter.
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That is in full analogy with other well-known effective theories, see ref. [3]. It should be

stressed that, according to a well established methodology and similarly to eq. (2.2), in

this effective Lagrangian all quantum fluctuations associated to short-length modes (high-

energy modes) have already been considered and are parametrized by local operators with

an increasing number of derivatives, while quantum fluctuations (loop diagrams) involving

the light modes still have to be taken into account. For instance, top loops will give an

additional contribution to the on-shell h-gluon-gluon coupling. While eq. (3.23) is general,

the effective Lagrangian (2.2) assumes that h is part of an SU(2)L doublet and further relies

on the expansion in powers of H/f . As such, it is valid only in the limit of small deviations

of the Higgs couplings from their SM values and up to corrections of order O(v2/f2).

3.6 Implications of custodial symmetry

Another difference between the non-linear Lagrangian (3.23) and the SILH Lagrangian (2.2)

is that the first one contains two more free parameters. This means that there are two

relations among the couplings of eq. (3.23) which hold at the level of dimension-6 operators

if the Higgs is part of a doublet. As noticed in sections (3.2) and (3.3), the first identity

relates cWW , cZZ , cZγ and cγγ , while the second relates cW∂W , cZ∂Z and cZ∂γ . They read:

cWW − cZZ cos2θW = cZγ sin 2θW + cγγ sin2θW (3.24)

cW∂W − cZ∂Z cos2θW =
cZ∂γ

2
sin 2θW . (3.25)

In fact both identities are not special to the case in which the Higgs is a doublet, but

are a general consequence of custodial symmetry. This latter is accidental in the SILH

Lagrangian if one restricts to the operators that lead to derivative couplings of the Higgs

to vector bosons. Starting at the dimension-8 order, it is possible to write cutodial-breaking

operators that lead to couplings that violate the relations (3.24) and (3.25). For instance

c̄8WW g2

m2
W v

2

(
H†W a

µνσ
aH
)(

H†W b µνσbH
)

+
ic̄8W g

v2m2
W

(
H†σaH

)
(DµWµν)a

(
H†
←→
DνH

)
(3.26)

gives rise to

cZ∂Z = −4c̄8W , cZ∂γ = −4 tan θW c̄8W ,

cZZ = 8 cos2θW c̄8WW , cZγ = 4 sin 2θW c̄8WW , cγγ = 8 sin2θW c̄8WW ,
(3.27)

and the relations (3.24) and (3.25) are not fulfilled.17

A third relation holds on the non-derivative couplings cW and cZ if one assumes that

custodial symmetry is an invariance of the Lagrangian (2.2), so that c̄T = 0; it reads:

cW = cZ . (3.28)

As said above, while all three identities (3.24), (3.25) and (3.28) are a consequence of

custodial symmetry, the first two are accidental at the level of dimension-6 operators if the

Higgs is part of a doublet.

17The two operators in (3.26) give rise to the oblique parameter Û , see for instance ref. [27]: Û =

−c̄8W − 2c̄8HW while Ŝ = c̄8HW .
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To show that eqs. (3.24), (3.25) and (3.28) follow from custodial invariance, let us

consider the case in which the EWSB dynamics has a global SU(2)L × SU(2)R symmetry,

and imagine to fully gauge this group by enlarging the hypercharge to a whole triplet of

SU(2)R. In this case the diagonal custodial SU(2)V is exact even though g′ 6= g. The left

and right gauge fields couple to the conserved currents of SU(2)L × SU(2)R and the inter-

actions among two gauge fields and the Higgs boson are fully characterized in momentum

space by three form factors:

(ΓLL)µνij (p1, p2)LiµL
j
νh+ (ΓLR)µνij (p1, p2)LiµR

j
νh+ (ΓRR)µνij (p1, p2)RiµR

j
νh . (3.29)

Here p1, p2 are the momenta of the gauge fields and each form factor can be computed

in terms of a Green function with two conserved currents, Γµνik = 〈Jµi Jνk |h〉. In addition

to the usual massive W and Z bosons, which form a triplet V̂ i
µ of the custodial group,

in this case there is a whole triplet of massless SU(2)V gauge fields (the photon plus its

charged companion), V i
µ. The mass eigenstates Vµ and V̂µ are related to the left and

right gauge fields through a rotation by an angle θW , where tan θW = g′/g. Their cubic

interactions with the Higgs boson are thus characterized by three form factors, which are

linear combinations of those in eq. (3.29):

ΓV V = sin2θW ΓLL +
sin 2θW

2
(ΓLR + ΓRL) + cos2θW ΓRR

ΓV̂ V =
sin 2θW

2
ΓLL +

(
cos2θ ΓLR − sin2θ ΓRL

)
− sin 2θW

2
ΓRR

ΓV̂ V̂ = cos2θW ΓLL −
sin 2θW

2
(ΓLR + ΓRL) + sin2θW ΓRR ,

(3.30)

where we have defined ΓµνRL(p1, p2) ≡ ΓνµLR(p2, p1). Notice, in particular, that in this case

the same form factor ΓV̂ V̂ describes the interaction of two W ’s and two Z’s to the Higgs

boson, as due to custodial invariance.

The physical limit where only SU(2)L×U(1)Y is gauged is obtained by simply switching

off the unphysical R1,2
µ fields. The interactions of two neutral vector bosons to the Higgs

are still described by the relations of eq. (3.30), where ΓZZ = ΓV̂ V̂ , Γγγ = ΓV V and

ΓZγ = ΓV̂ V . In the charged sector, instead, the W corresponds to a pure left gauge field,

since it has no mixing with right-handed ones. This implies that its form factor is given by

the last formula of eq. (3.30) with θW = 0, that is: ΓWW = ΓLL. The four physical form

factors are linear combinations of the three defined in eq. (3.29), and are thus related by

one identity:

ΓµνWW (p1, p2)− ΓµνZZ(p1, p2) cos2 θW =
(

ΓµνZγ(p1, p2) + ΓνµZγ(p2, p1)
) sin 2θW

2

+ Γµνγγ(p1, p2) sin2 θW .
(3.31)

Notice that this relation is a consequence of our initial assumption of SU(2)L × SU(2)R
invariance of the EWSB dynamics. The custodial SU(2)V is broken in this case only by

the gauging of hypercharge. For g′ = 0 the custodial symmetry is unbroken and eq. (3.31)

implies ΓWW = ΓZZ . It is straightforward to derive the relations (3.24), (3.25) and (3.28)
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from eq. (3.31). At quadratic order in the momenta, the form factors can be computed

from the effective Lagrangian (3.23); one has:

ΓµνWW (p1, p2) = 2m2
W cW ηµν − 2cWWP

µν
12 − cW∂W (Pµν1 + Pµν2 )

ΓµνZZ(p1, p2) = 2m2
ZcZ η

µν − 2cZZP
µν
12 − cZ∂Z (Pµν1 + Pµν2 )

ΓµνZγ(p1, p2) = − 2cZγP
µν
12 − cZ∂γP

µν
2

Γµνγγ(p1, p2) = − 2cγγP
µν
12 ,

(3.32)

where we have defined Pµν1 ≡ ηµνp2
1−p

µ
1p

ν
1 , Pµν2 ≡ ηµνp2

2−p
µ
2p

ν
2 and Pµν12 ≡ ηµνp1·p2−pν1p

µ
2 .

This is in fact the most general decomposition which follows at the O(p2) level for an on-

shell Higgs boson by assuming CP invariance and requiring that: i) the ΓWW , ΓZZ and

Γγγ form factors are symmetric under the exchange {p1, µ} ↔ {p2, ν}; ii) the Γγγ and ΓZγ
form factors satisfy the Ward identities implied by U(1)em local invariance:

p1µΓµνγγ(p1, p2) = 0 = p2νΓµνγγ(p1, p2) , p2νΓµνZγ(p1, p2) = 0 . (3.33)

Additional structures proportional to p1µ and p2ν can be omitted since they give vanishing

contributions both when the vector bosons are on-shell and when they decay into a pair of

fermions by coupling to the corresponding conserved current. Inserting eq. (3.32) into (3.31)

one then obtains the identities (3.24), (3.25) and (3.28).

From the above discussion it follows that if custodial symmetry is an invariance of

the EWSB dynamics, the effective Lagrangians (3.23) and (2.2) have the same number

of free parameters, in terms of which all observables can be computed. This is true also

if one considers the fermionic operators (for a Higgs doublet these are listed in eqs. (2.3)

and (2.4)), as long as one focuses on terms with one Higgs boson. This means that by using

single-Higgs processes alone, one cannot distinguish the case in which the Higgs boson is

part of a doublet from the more general situation. The only possible strategy to this aim

is exploiting the connection among processes with zero, one and two Higgs bosons which

is implied by the Lagrangian (2.1) at O(v2/f2) and does not hold in the case of the more

general non-linear Lagrangian. As a consequence of such connection, the bounds that EW

and flavor data set on operators with zero Higgs fields severely constrain the size of the NP

effects in Higgs processes, as discussed in section (2.1). If one were to find that single-Higgs

processes violate these constraints, this would be an indication that the Higgs is not part

of a doublet. Furthermore, processes with double Higgs boson production can be predicted

to a certain extent in terms of single-Higgs couplings, and can thus be used to probe the

nature of the Higgs boson [75].

4 Implementing the Higgs effective Lagrangian beyond the tree level

In this section we address a few issues related to the use of the effective Lagrangians (2.1)

and (3.23) beyond the tree level, as required to make Higgs precision physics without

assuming the validity of the Standard Model. While the methodology is well established

and various examples of its application exist in several different contexts, we think that a

dedicated discussion can be useful to better clarify some specific points (see also ref. [76]
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for a recent discussion). As an illustrative though important example, we will consider the

calculation of the Higgs partial decay widths, and show how the corrections from dimension-

6 operators can be incorporated in a consistent way. As a by-product of our analysis and to

better demonstrate its applicability, in a companion paper [16] we will present a modified

version of the program HDECAY [14, 15] that features a full implementation of the effective

Lagrangian ∆LSILH , eq. (2.2), as well as its generalization to the case of a non-linearly

realized EW symmetry, eq. (3.23).

A first difficulty which arises when using either eq. (2.1) or (3.23) is the presence of

multiple expansion parameters. For generic values of the Higgs couplings ci, the validity

of the effective Lagrangian (3.23) is based on a double perturbative expansion in the SM

couplings, αSM/4π, and in powers of E/M . The effective Lagrangian (2.1) further assumes

(v/f) � 1, which implies small shifts in the Higgs couplings: ci = 1 + δci, with δci .
O(v2/f2). All these expansion parameters must be properly taken into account when

performing calculations. Furthermore, the non-renormalizability of the effective theory

implies the presence of additional divergences compared to the SM case which must be

absorbed by a renormalization of the Wilson coefficients of local operators.

4.1 RG evolution of the Wilson coefficients

Let us discuss the issue of the renormalization and RG evolution of the Wilson coefficients

first. As done in the previous sections, we will assume that the Higgs boson is part of an

SU(2)L doublet and use the Lagrangian (2.1). Since we are only interested in the divergent

structure of the diagrams, it is convenient to work in the limit of unbroken SU(2)L×U(1)Y
and compute the Green functions in terms of the Higgs doublet H. The only 1-loop

diagrams which generate additional logarithmic divergences are those featuring one inser-

tion of the effective vertices from dimension-6 operators. By dimensional analysis, further

insertions of the effective vertices lead to power-divergent contributions to dimension-6

operators (which are irrelevant to determine the RG running) and log-divergent contribu-

tions to higher-dimensional operators. The same counting holds also at higher loop level:

the only log-divergent contribution to dimension-6 operators comes from diagrams with

one insertion of the effective couplings, and is thus suppressed by extra powers of the SM

expansion parameter αSM/4π. This is in analogy with the renormalization of the pion

effective Lagrangian in the chiral limit, see ref. [77]. It thus follows that the RG equation is

linear and homogeneous in the c̄i, and different operators with the same quantum numbers

will in general mix with each other. At leading order in αSM , with αSM = αem, α2, αs,

respectively, in the case of electromagnetic, weak and QCD corrections, one has

c̄i(µ) =

(
δij + γ

(0)
ij

αSM (µ)

4π
log
( µ
M

))
c̄j(M) , (4.1)

where γ
(0)
ij is the leading-order coefficient of the anomalous dimension. Some elements of

the anomalous dimension matrix γ
(0)
ij have been recently computed in refs. [78, 79].

In the case in which the Higgs boson and possibly the SM quarks (in particular the

top and the bottom) are strongly coupled to the new dynamics, the leading RG run-

ning effect comes from loops of these particles and can be as large as ∆c̄i/c̄i(M) ∼
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(a) (b)

Figure 1. One-loop diagrams relevant for the RG running of c̄W and c̄B . Dashed, continuous

and wiggly lines denote, respectively, a weak doublet H, a fermion and a vector field V = W,B.

The symbol ⊗ denotes the insertion of the effective vertex from OH (in diagram (a)) or OHψ (in

diagram (b)).

(g2
∗/16π2) log(M/µ) or (λ2

ψ/16π2) log(M/µ). This must be compared to the effects of order

(g2
SM/16π2) log(M/µ) from loops of gauge fields. For example, the insertion of c̄H in the

diagram (a) of figure 1 leads to a renormalization of OW+B ≡ OW +OB:

c̄W+B(µ) = c̄W+B(M)− 1

6

α2

4π
log
( µ
M

)
c̄H(M) , (4.2)

where α2 has been defined in eq. (3.20). It is well known that this RG running is associated

with the IR contribution to the ε3 parameter, and the same coefficient γ
(0)
W+B,H = −1/6

can indeed be extracted from self-energy diagrams [80]. From the estimates of eq. (2.9),

c̄H(M) ∼ O(v2/f2), c̄W,B(M) ∼ O(m2
W /M

2), it follows that the correction to c̄W+B from

its RG evolution down to the scale µ is of order ∆c̄W+B/c̄W+B(M) ∼ (g2
∗/16π2) log(M/µ)

as anticipated. Similarly, the insertion of c̄Hψ into a loop of fermions, like in diagram (b)

of figure 1, leads to a renormalization of c̄W and c̄B:

∆c̄W,B ≈ Nc
α2

4π
log
( µ
M

)
c̄Hψ(M) , (4.3)

whereNc = 3 is a color factor. In this case the RG correction is of order (λ2
ψ/16π2) log(M/µ)

compared to the UV value of the coefficients, as one can immediately verify by using the

estimates (2.9).

Loops of EW gauge fields give corrections which are suppressed by a weak loop factor

(g2/16π2), and the associated RG evolution is therefore generically small. An important

exception is the case in which the Wilson coefficient has a value suppressed at the scale M .

For example, if the dynamics behind the EW symmetry breaking is custodially invariant,

then c̄T (M) = 0. The insertion of c̄H into a loop of hypercharge gauge bosons, as in

diagram (a) of figure 2, renormalizes c̄T and gives

c̄T (µ) =
3

2
tan2θW

α2

4π
log
( µ
M

)
c̄H(M) . (4.4)

Compared to the naive estimate of eq. (2.9), c̄T (M) ∼ O(v2/f2), valid in absence of custo-

dial symmetry, the above correction is further suppressed by a factor (g′ 2/16π2) log(M/µ).

Although small, such a low-energy value of c̄T has a strong impact on the EW precision

tests performed at LEP [80].18 On the other hand, it is too small to be observable through

18For example, c̄T (mZ) ∼ 10−3 for c̄H(M) ∼ 0.1.
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(a) (b)

Figure 2. One-loop diagrams relevant for the RG running of c̄T . Dashed, continuous and wiggly

lines denote, respectively, a weak doublet H, a fermion and a hypercharge field B. The symbol ⊗
denotes the insertion of the effective vertex from OH (in diagram (a)) or OHψ (in diagram (b)).

a measurement of the Higgs couplings at the LHC. A similar renormalization of c̄T also

follows from loops of SM fermions through the insertion of c̄Hψ, as illustrated by diagram

(b) of figure 2. The explicit calculation for the case of a composite right- and left-handed

top quark was performed for example in ref. [81]. Naively, the effect goes like

∆c̄T ≈ Nc

y2
ψ

16π2
log
( µ
M

)
c̄Hψ(M) , (4.5)

and is of order (yψ/g
′)2(λψ/g∗)

2 compared to the one from loops of hypercharge.19

In general, although small, the RG evolution of the Wilson coefficients due to EW loops

must be properly taken into account in order to precisely match the experimental results

obtained at low energy with the theory predictions at high energy. This is even more true

in the case of QCD loop corrections, which can be large and will affect the coefficients of

the dimension-6 operators with quarks and gluon fields.20 The effect of the running of the

Wilson coefficients can be easily incorporated in programs for the automatic calculation

of production cross sections and decay rates by using the effective Lagrangian (2.1) and

identifying the coefficients appearing there as their values at the relevant low-energy scale.

4.2 Decay rates at the loop level with the effective Lagrangian

In addition to the short-distance effects discussed above, which are parametrized in terms

of the evolution of the coefficients of local operators, one-loop diagrams also lead to

long-distance corrections to the observables under consideration. Specifically, while short-

distance effects are related to the divergent terms, the long-distance contributions corre-

spond to the finite parts and are defined in a given renormalization scheme. In general,

19Notice that in case of a sizable fermion coupling λψ, a numerically larger contribution to c̄T comes from

fermionic loops with two insertions of c̄Hψ. The corresponding diagram is quadratically divergent, so that

it gives a threshold correction to c̄T at the scale M , but does not contribute to its running. An explicit

calculation can be found in ref. [81] for the case of a composite top quark. Naively the effect is of order

∆c̄T ∼ Nc(v/f)2(λψ/16π2)(λψ/g∗)
2, and can be numerically large. For example, if both tL and tR couple

with the same strength λtL = λtR ∼
√
g∗yt to the new dynamics, then it follows ∆c̄T ∼ Nc(v/f)2(y2t /16π2).

20Notice that g2s c̄g is not renormalized at one-loop by QCD corrections. This follows from the RG-

invariance of the operator (β(gs)/gs)GµνG
µν which contributes to the trace of the energy-momentum ten-

sor [82–84]. See also the recent discussion in ref. [78].
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the decay amplitude can be expanded as follows:21

A = ASM0 +ASM1 + ∆A0 + ∆A1 + . . . (4.6)

where ASM0 (ASM1 ) is the tree-level (one-loop) SM amplitude, and ∆A0 (∆A1) is the tree-

level (one-loop) contribution from the dimension-6 operators of the effective Lagrangian in

eqs. (2.2)–(2.4). The dots denote higher-loop contributions as well as the corrections due

to higher-order operators.

Let us consider for example the decay h → W (∗)W ∗. In this case the operators that

can contribute at tree-level are OH , OW , OHW , OψW , O′Hψ, as well as OHud in the case

in which the off-shell W decays into a pair of quarks. Based on the naive estimates of

eq. (2.9) and according to the discussion of section 3, we can quantify the various effects

encoded by ∆A0 as follows:

∆A0

ASM0

(W (∗)W ∗) = ĉH ×O
(
v2

f2

)
+ ĉW ×O

(
E2

M2

)
+ ĉHW ×O

(
E2

16π2f2

)
+ ĉHud ×O

(
v2

f2

λuλd
g2
∗

)
+ ĉ′Hψ ×O

(
v2

f2

λ2
ψ

g2
∗

)
+ ĉψW ×O

(
Emψ

16π2f2

)
.

(4.7)

Here E = mh is the relevant energy of the process and we have conveniently defined each

of the O(1) parameters ĉi to be equal to c̄i(mh) divided by its naive estimate in eq. (2.9):

ĉi =
f2

v2
c̄i(mh), i = H,T, 6, ψ, ĉi =

M2

m2
W

c̄i(mh), i = W,B ,

ĉi =
16π2f2

m2
W

c̄i(mh), i = HW,HB, γ, g, ψW,ψB,ψG ,

ĉi =
g2
∗
λ2
ψ

f2

v2
c̄i(mh), ĉ′i =

g2
∗
λ2
ψ

f2

v2
c̄′i(mh), i = Hψ , ĉHud =

g2
∗

λuλd

f2

v2
c̄Hud(mh) .

(4.8)

When the Higgs boson is pNGB, the two parameters ĉg and ĉγ are not of order one but are

further suppressed by a factor g2
6G/g

2
∗. From eq. (4.7) one can see that the contribution of

the dipole operators OψW is suppressed by (mψ/mh) compared to that of OHW , while that

of OHud and O′Hψ is expected to be small given the existing constraints on the couplings

λψ (see the discussion in section 2.1). The dominant NP contribution thus comes from

the terms in the first line of eq. (4.7), among which the one proportional to c̄H is the

leading effect for g∗ > g. The 1-loop electroweak amplitude ASM1 gives a contribution of

order ASM1 /ASM0 ∼ (α2/4π). We thus see explicitly that ∆A0 and ASM1 encode the NLO

corrections in the three expansion parameters which we are considering: α2/4π (electroweak

21 In the strict sense this equation is valid for the genuine EW corrections only, while for simplicity we

include the (IR-divergent) virtual QED corrections to the SM amplitude in the same way. The corresponding

real photon radiation contributions to the decay rates are treated in terms of a linear novel contribution

to the Higgs coupling for the squared amplitude in order to obtain an infrared finite result. Pure QED

corrections factorize as QCD corrections in general so that their amplitudes scale with the modified Higgs

couplings. However, they cannot be separated from the genuine EW corrections in a simple way.
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expansion), E2/M2 (derivative expansion) and v2/f2. The contribution due to 1-loop

diagrams with one insertion of the effective vertices has not been computed yet, but we

can easily estimate its size:

∆A1

ASM0

(W (∗)W ∗) = ĉH ×O
(
v2

f2

α2

4π

)
+ ĉu ×O

(
v2

f2

α2

4π

)
+ ĉ6 ×O

(
v2

f2

α2

4π

)
+ . . . (4.9)

where the dots denote the subleading terms due to the other operators. The terms shown

in eq. (4.9) arise from the same 1-loop diagrams that give the SM amplitude ASM1 , where

each of the Higgs couplings gets shifted by c̄H , c̄u and c̄6. By neglecting the unknown ∆A1

one is omitting terms of order (v2/f2)(α2/4π), that is, of the same size of the tree-level

contribution due to the operator OHW , see eq. (4.7), since E = mh ≈ mW . This latter

contribution can be easily computed and it is included in the formula of the decay rate to

WW (and similarly that of OHW and OHB to ZZ is also included) implemented in the

program eHDECAY discussed in ref. [16]. The addition of the tree-level correction from OHW
is clearly the first step towards a full inclusion of the O[(v2/f2)(α2/4π)] corrections, where

the missing part will have to be computed from 1-loop diagrams featuring one insertion of

OH , Ou and O6. It is worth noting that these diagrams, in general, contain logarithmic

divergences which must be reabsorbed by a renormalization of the Wilson coefficients and

contribute to their RG evolution as explained in the previous section. The finite part is

the contribution to ∆A1 which awaits to be computed.

By approximating the amplitude as A ' ASM0 +ASM1 + ∆A0 one obtains the following

formula for the decay rate:22

Γ(W (∗)W ∗) = ΓSM0 (W (∗)W ∗)

{
1 +

2

|ASM0 |2
Re
[(
ASM0

)∗ (
ASM1 + ∆A0

)]
+O

((
v2

f2

)2

,

(
α2

4π

v2

f2

)
,
(α2

4π

)2
)}

,

(4.10)

where ΓSM0 (W (∗)W ∗) denotes the tree-level SM decay rate. For simplicity, we have not

shown terms involving powers of E2/M2 among the neglected contributions, since for

E = mh ≈ mW one has E2/M2 . v2/f2 if g∗ & g. As mentioned, this formula incorporates

the O(v2/f2), O(α2/4π) and O(m2
h/M

2) corrections (NLO in the perturbative expansion),

and can be easily implemented in existing codes for the automatic computation of the decay

rate. The inclusion of the O(m2
h/M

2) tree-level correction due to OW is justified as long

as g∗ < 4π, since it is parametrically larger than the neglected O[(v2/f2)(α2/4π)] terms

by a factor (16π2/g2
∗). Notice that in the limit of large deviations of the Higgs couplings

from their SM values, (v/f)2 ∼ O(1), the neglected terms of O[(v2/f2)(α2/4π)] become

as important as those included through ASM1 . In other words, a proper inclusion of the

EW corrections in the limit v ∼ f requires a complete 1-loop calculation where each of the

diagrams is rescaled by the appropriate coupling factor.

22The same remark as in footnote 21 applies.
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A similar discussion applies to the Higgs decay into a pair of fermions, h → ψ̄ψ. In

this case only OH and Oψ (ψ = u, d, l) contribute at tree level,

∆A0

ASM0

(ψ̄ψ) =

(
ĉH
2

+ ĉψ

)
×O

(
v2

f2

)
, (4.11)

while the one-loop EW diagrams featuring one effective vertex give a correction of order

∆A1

ASM0

(ψ̄ψ) = ĉH ×O
(
v2

f2

α2

4π

)
+ ĉψ ×O

(
v2

f2

α2

4π

)
+ ĉ6 ×O

(
v2

f2

α2

4π

)
+ . . . (4.12)

where the dots indicate the subleading terms due to the other operators. The calculation

of ∆A1 has not been performed yet, while the 1-loop EW corrections are known in the

SM, ASM1 . Their inclusion is thus possible as long as (v/f) � 1, so that the neglected

terms in ∆A1 are subleading. The case of QCD radiative corrections is different, since at

leading order they factorize with respect to the expansion in the number of derivative and

fields and can thus be resummed up to higher orders. In the case of the Higgs decay into

a pair of quarks one can for example approximate A ' ASM0 +ASM1 + ∆A0 and obtain the

following formula for the decay rate:23

Γ(q̄q) = ΓSM0 (q̄q)κQCD

{
1 +

2

|ASM0 |2
Re
[(
ASM0

)∗ (
ASM1 + ∆A0

)]
+O

((
v2

f2

)2

,

(
α2

4π

v2

f2

)
,
(α2

4π

)2
)}

,

(4.13)

where ΓSM0 (q̄q) is the SM tree-level rate and κQCD encodes the QCD corrections. This

formula includes the leading O(v2/f2), O(α2/4π) and QCD corrections. Mixed electroweak

and QCD corrections can also be included by assuming that they factorize, as the non-

factorizable terms are known to be small. Compared to the decay rate into WW , eq. (4.13)

apparently does not include corrections of order m2
h/M

2. While there is indeed no oper-

ator whose contribution starts at that order, such corrections can arise from subleading

contributions to c̄H and c̄ψ. For example, the tree-level exchange of heavy fermions can

lead to a wave-function renormalization of the SM ones, which can be re-expressed in our

notation as a contribution to c̄ψ of order λ2
ψv

2/M2.

A similar resummation of the QCD corrections also works for the decay h → gg. In

this case the SM tree-level amplitude vanishes, ASM0 = 0, while the leading contribution

arises from the 1-loop exchange of top quarks. The two-loop EW corrections are known

in the SM and give a correction of order ASM2 /ASM1 ∼ α2/4π. Among the dimension-6

operators, only Og contributes at tree-level,

∆A0

ASM1

(gg) = ĉg ×O
(
v2

f2

)
. (4.14)

As discussed in section 2 (see eq. (2.10)), the above estimate is suppressed by an additional

factor (g2
6G/g

2
∗) in the case of a NG Higgs boson. At the one-loop level one has

∆A1

ASM1

(gg) =

(
ĉH
2

+ ĉu

)
×O

(
v2

f2

)
+ ĉtG ×O

(
v2

f2

y2
t

16π2

)
. (4.15)

23The same remark as in footnote 21 applies.
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Thus, the one-loop effect of OH and Ou is expected to be as important as the tree-level

one from Og, and even larger if the Higgs is a NG boson, as discussed in section 3.3. This

is in fact not surprising, since c̄g arises at the 1-loop level in minimally coupled theories,

while c̄H and c̄u can be generated at tree level. The contribution from the dipole operator

OtG is suppressed by a factor y2
t /16π2 compared to that from OH and Ou, as expected

from the fact that c̄tG is generated at the 1-loop level in minimally coupled theories. For

this reason it can be neglected. It should be noted that without a complete computation

of the NLO EW corrections of order (α2/4π)(v2/f2), the LHC data on Higgs physics are

not sensitive to the range of values of c̄tG expected using the naive estimate (2.9) with

(v/f)2 ∼ 0.1. Furthermore, we stress that in order to distinguish the effect of OtG from

that of Og, the tt̄h channel should be measured [69] (single top production in association

with the Higgs could also provide complementary information [85]). Also in this case,

there are no operators giving m2
h/M

2 corrections, although these terms will in general

appear as subleading contributions to c̄g, c̄H and c̄u, as discussed above. It is well known

that higher-order αs corrections are large, so they must be included consistently in our

perturbative expansion. This can be done easily in the approximation mh � 2mt, which is

reasonably accurate for mh = 125 GeV. In such a limit one can integrate out the top quark

and match its one-loop contribution to that of the local operator Og. Then it trivially

follows that the QCD corrections associated to the virtual exchange and real emissions of

gluons and light quarks below the scale mt factorize in the rate, the multiplicative factor

being the same for both the top quark and New Physics terms. By approximating A '
ASM1 +ASM2 + ∆A0 + ∆A1, one arrives at the following formula for the h→ gg decay rate:

Γ(gg) = ΓSM1 (gg)κsoft

{
c2

eff +
2 ceff

|ASM1 |2
Re
[(
ASM1

)∗ (
ASM2 ceff + ∆A0 + ∆A1 ceff

)]
+O

((
v2

f2

)2

,

(
α2

4π

v2

f2

)
,
(α2

4π

)2
)}

,

(4.16)

where ΓSM1 (gg) is the 1-loop SM decay width. The factor ceff includes all the dependence

on mt and accounts for virtual QCD corrections to ASM1 above that scale, while κsoft
parametrizes the soft radiative effects. By using eq. (4.16), the existing four-loop calcula-

tions of ceff [86–89] and κsoft [90–94] allow one to include the QCD corrections up to N3LO.

The contributions to the decay h→ γγ follow a similar pattern as for h→ gg. At tree

level:
∆A0

ASM1

(γγ) = ĉγ ×O
(
v2

f2

)
. (4.17)

At one loop:

∆A1

ASM1

(γγ) = ĉH ×O
(
v2

f2

)
+ ĉu ×O

(
v2

f2

)
+ ĉW ×O

(
m2
W

M2

)
+ ĉHW ×O

(
m2
W

16π2f2

)
+ (ĉtW + ĉtB)×O

(
v2

f2

y2
t

16π2

)
.

(4.18)

The 2-loop electroweak corrections have been computed in the SM and can be included for

(v2/f2)� 1, so that unknown O[(v2/f2)(α2/4π)] effects arising from 2-loop diagrams with
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one effective vertex are negligible. From eq. (4.18) one can see that the 1-loop contribution

due to OHW is of the same order as such neglected terms. The 1-loop correction from

OW , on the contrary, is parametrically larger by a factor (16π2/g2
∗) and should be included

for g∗ < 4π. The easiest way to compute it is by rewriting OW in terms of the other

operators through the equations of motion [4], see eq. (3.8). The 1-loop correction due to

the dipole operators is suppressed by a factor y2
t /16π2 and can be neglected. Approximating

A ' ASM1 +ASM2 + ∆A0 + ∆A1 one finds:

Γ(γγ) = ΓSM1 (γγ)

{
1 +

2

|ASM1 |2
Re
[(
ASM1

)∗ (
ASM2 + ∆A0 + ∆A1

)]
+O

((
v2

f2

)2

,

(
α2

4π

v2

f2

)
,
(α2

4π

)2
)}

,

(4.19)

Finally, the estimate of the corrections to h→ γZ is the following:

∆A0

ASM1

(Zγ) = ĉγ×O
(
v2

f2

)
+ (ĉHW − ĉHB)×O

(
v2

f2

)
, (4.20)

∆A1

ASM1

(Zγ) = ĉH×O
(
v2

f2

)
+ ĉu×O

(
v2

f2

)
+ ĉW×O

(
m2
W

M2

)
+ ĉHW×O

(
m2
W

16π2f2

)
+ ĉtW×O

(
v2

f2

y2
t

16π2

)
+ ĉtB×O

(
v2

f2

y2
t

16π2

)
.

(4.21)

In this case the 1-loop electroweak corrections are not known in the SM, so that the formula

for the decay rate reads:

Γ(Zγ) = ΓSM1 (Zγ)

{
1 +

2

|ASM1 |2
Re
[(
ASM1

)∗
(∆A0 + ∆A1)

]
+O

((
v2

f2

)2

,
(α2

4π

))}
,

(4.22)

where only the contributions from OH , Ou and OW should be retained in ∆A1 for consis-

tency.

Through the above discussion we sketched how the effective Lagrangian can be imple-

mented beyond the tree level in the calculation of physical quantities. In the case of the

Higgs partial decay widths, in particular, we have seen how the EW and QCD corrections

can be included consistently with the expansion in the number of fields and derivatives.

As a more concrete illustration of these considerations, we have written a modified version

of the program HDECAY, which we dub eHDECAY, where the corrections from all the local

operators of the effective Lagrangians (2.2) and (3.23) are included at NLO. A detailed

description of the code is given in ref. [16], where more explicit formulas for each of the

Higgs partial widths are provided.

5 Discussion

The discovery of a resonance with a mass around 125 GeV similar to the long-sought

Standard Model Higgs boson brings the exploration of the electroweak symmetry breaking
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sector under quantitative scrutiny. The LHC experiments, together with those at the

Tevatron, report the signal strengths, i.e. the product of the Higgs production cross section

times its decay branching ratio, for various final state channels. The main task of the

community is now to interpret these data and understand the implications for the theory

of New Physics that is expected to lie beyond the weak scale.

The EW oblique parameters provide a bound on the scale of New Physics but do not

give detailed information about the nature of the NP sector. In order to understand how the

weak scale is stabilized at the quantum level, i.e. how the hierarchy problem is solved, one

crucial question is whether EW symmetry breaking proceeds by weak or strong dynamics.

The direct observation of new degrees of freedom would provide a straightforward answer.

But a glimpse of New Physics can also be caught from a dedicated study of the Higgs

boson itself, and in particular from a measurement of its couplings, if a departure from the

SM predictions is ever observed. It is useful to parametrize the deviations from the SM by

the effective Lagrangian of eq. (2.1). By measuring its Wilson coefficients c̄i one can infer

what kind of UV theory completes the SM.

If the coupling strength of the Higgs boson to the NP sector is of the order of the SM

weak couplings, g∗ ≈ g, then our power counting (2.9) shows that the coefficients of the

operators that can be generated at tree-level, OH , Ou,d,l, OW and OB, are expected to be

all of the same order, m2
W /M

2, where M is the typical mass scale of the NP spectrum,

unless some special selection rule suppresses some of them. It is instructive to examine

the predictions of the archetypal example of weakly-coupled UV completions: the Minimal

Supersymmetric Standard Model (MSSM). First, R-parity protects the EW oblique pa-

rameters from any tree-level contributions, hence c̄W and c̄B are of order (m2
W /M

2)(α2/4π)

and thus small. Second, the couplings of the lightest Higgs boson to the massive gauge

bosons are given by cV = sin(β − α), where α is the rotation angle to diagonalize the CP-

even mass matrix and tanβ is the ratio of the vacuum expectation values of the two neutral

CP-even Higgs bosons. In the decoupling limit, α→ β−π/2, one has cV = 1+O(m4
Z/m

4
H),

where mH is the mass of the heaviest CP-even scalar (for a general treatment of the de-

coupling limit see for example ref. [95]). This means that at tree-level the deviations of the

Higgs-gauge boson couplings are generated by dimension-8 operators [96], while c̄H arises

only through loop effects and is naively of order (m2
W /M

2)(α2/4π). At the same time, the

couplings to up- and down-type quarks read, respectively,

cu = +
cosα

sinβ
= 1 + 2

m2
Z

m2
H

cos2β cos 2β +O

(
m4
Z

m4
H

)
cd =− sinα

cosβ
= 1− 2

m2
Z

m2
H

sin2β cos 2β +O

(
m4
Z

m4
H

)
.

(5.1)

For moderately large tanβ this implies c̄d ∼ m2
Z/m

2
H , while c̄u is further suppressed by

a factor ∼ 1/ tan2 β (see for example refs. [97, 98] and the recent discussion in ref. [99]).

A pattern with small values of c̄H , c̄W , c̄B and c̄u but with a ∼ 15% enhancement of the

Higgs coupling to down-type quarks due to c̄d, for example, would be indicative of the

MSSM with large tanβ and the additional Higgs bosons around 300 GeV. Generic two-

Higgs doublet models lead to a similar pattern of couplings, while models where the Higgs
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boson mixes with a scalar that is singlet under the SM gauge group can generate c̄H at

the tree level. In the MSSM, loops of light stops or staus as well as charginos can also

give sizable contributions to the effective couplings of the light Higgs boson to photons and

gluons, with c̄g, c̄γ satisfying the naive estimates (2.9). For example, loops of stops lead to

c̄g ∼ (g2
∗/16π2)(m2

W /m
2
t̃
), where g∗ = yt or At/mt̃.

This situation has to be contrasted with the case of strongly coupled theories. There,

our power counting (2.9) singles out c̄H , c̄u,d as the dominant Wilson coefficients (c̄6 controls

only the Higgs self-interaction and measuring it at the LHC will be challenging), while c̄W
and c̄B are suppressed by the ratio (g/g∗)

2. Furthermore, a composite Higgs boson can

be naturally light if it is the pseudo Nambu-Goldstone boson associated to the dynamical

breaking of a global symmetry of the strong dynamics. This implies that the coefficients

c̄g and c̄γ will also be suppressed by a factor (g6G/g∗)
2, where g6G is some weak spurion

breaking the Goldstone symmetry. The modifications in the gluon-fusion production cross

section and in the decay rate to photons are thus controlled by c̄H and c̄u.

The harvest of data collected by the LHC certainly calls for a definite theoretical

framework to describe the Higgs-like resonance and compute production and decay rates

accurately in perturbation theory without restricting to the SM hypothesis. Effective

Lagrangians are one of the tools at our disposal to achieve this goal. Elaborating on the

operator classification of ref. [4], we estimated the present bounds on the Wilson coefficients

and provided accurate expressions for the Higgs decay rates including various effects that

were previously omitted in the literature. Assuming that the observed Higgs-like resonance

is a spin-0 and CP-even particle, we discussed two general formulations of the effective

Lagrangian, one of which relies on the linear realization of SU(2)L×U(1)Y at high energies.

One of the questions that can be addressed by considering these two parametrizations is

whether the theory of New Physics flows to the SM in the infrared, that is, whether the

Higgs-like resonance is part of an EW doublet. If all the Higgs signal strengths measured

at the LHC converge towards the SM prediction, it would be a very suggestive indication

that indeed the Higgs boson combines together with the longitudinal components of the

W and Z to form an EW doublet, since any other alternative requires some tuning to fake

the SM rates. On the other hand, the doublet nature of the Higgs boson would be less

obvious to establish if the signal strengths exhibit deviations from their SM predictions

(but note that some deviations in the signal strenghts could unambiguously indicate that

the Higgs boson is not part of a doublet, this is in particular the case if a large breaking

of the custiodial symmetry is observed in conflict with the strong bound already existing

from EW precision data). We have pointed out that, if the EWSB dynamics is custodially

symmetric, it is not possible to test whether the Higgs boson is part of a doublet by

means of single-Higgs processes alone. A direct proof can come only from processes with

multi-Higgs bosons in the final states [75], which are however challenging to study at the

LHC. Precisely establishing the CP nature of the Higgs boson is another question that also

requires accurate computations. If there is little doubt that the observed resonance has

a large CP-even component, the possibility of a small mixing with a CP-odd component

remains alive, and dedicated analyses will have to be performed to bound the mixing angle

between the two components. To this aim too, an effective Lagrangian including the CP-
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odd operators listed in appendix C provides the theoretical framework where this question

can be addressed quantitatively.

The absence so far of direct signals of New Physics at the LHC indicates that the road

to unveil the origin of the electroweak symmetry breaking might be long and go through

precision analyses rather than copious production of new particles. For such a task, the

well established technology of effective field theories is the most powerful and general tool

we have to analyze the Higgs data and put them into a coherent picture together with the

existing experimental information without assuming the validity of the Standard Model.

There is still time for the LHC to disprove this pessimistic eventuality by reporting the

discovery of new light particles or large shifts in some of the Higgs couplings. It is clear,

however, that if the New Physics continues to remain elusive, a precise investigation of the

Higgs properties will become the most urgent programme in high-energy physics both for

the experimental and the theoretical community.
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A SM Lagrangian: notations and conventions

In this appendix, we collect the conventions used throughout this paper. The field content

decomposes under SU(3)C × SU(2)L ×U(1)Y as

H = (1, 2, 1/2), LiL = (1, 2,−1/2), liR = (1, 1,−1), (A.1)

qiL = (3, 2, 1/6), uiR = (3, 1, 2/3), diR = (3, 1,−1/3), (A.2)

where the hypercharge is defined as Y = Q−T3L, and i = 1, 2, 3 is a flavor index. The action

of the gauge group is fully characterized by the conventions used to define the covariant

derivative. For instance, for the left-handed quark doublet, we have

DµqL =

(
∂µ −

i

2
gSλ

agaµ −
i

2
gσiW i

µ −
i

6
g′Bµ

)
qL (A.3)
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where λa, a = 1 . . . 8, and σi, i = 1 . . . 3, are the usual Gell-Mann and Pauli matrices.

Accordingly, the gauge-field strengths are defined as

Gaµν = ∂µg
a
ν − ∂νgaµ + gSf

abcgbµg
c
ν , (A.4)

where fabc are the SU(3) structure constants.

The Yukawa interactions of the up-type quarks involve the Higgs charge-conjugate

doublet defined as

Hc = iσ2H∗. (A.5)

The renormalizable Lagrangian of the SM thus reads:

LSM = − 1

4
GaµνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν + (DµH)†(DµH)

+ i
(
L̄Lγ

µDµLL + l̄Rγ
µDµlR + q̄Lγ

µDµqL + ūRγ
µDµuR + d̄Rγ

µDµdR
)

+ µ2
HH

†H − λ(H†H)2 + (yu q̄LH
cuR + yd q̄LHdR + yl L̄LHlR + h.c.)

(A.6)

B Electroweak Chiral Lagrangian in non-unitary gauge

We report here the expression of the EW chiral Lagrangian valid in a generic gauge and in

the most general case in which the SU(2)L×U(1)Y is non-linearly realized. For simplicity,

we will restrict to the case in which the EWSB dynamics has a custodial invariance. The

scalar h is assumed to be CP-even and a singlet of the custodial symmetry, and does not

necessarily belong to an SU(2)L doublet. The Lagrangian can be expanded in terms with

an increasing number of derivatives

L = L0 + LEWSB , LEWSB = −V (h) + L(2) + L(4) + . . . (B.1)

where L0 contains the kinetic terms of the SU(3)c×SU(2)L×U(1)Y gauge fields and of the

SM fermions, LEWSB describes the sector responsible for EWSB, and V (h) is the potential

for h [51]:

V (h) =
1

2
m2
hh

2 + c3
1

6

(
3m2

h

v

)
h3 + . . . (B.2)

Under the request of SU(2)V custodial symmetry, the longitudinal W and Z polarizations

correspond to the NG bosons of the global coset SU(2)L×SU(2)R/SU(2)V and are described

by the 2× 2 matrix

Σ(x) = exp (iσaχa(x)/v) , (B.3)

where σa are the Pauli matrices. SU(2)L ×U(1)Y (local) transformations read as

Σ(x)→ ULΣ(x)U †Y , UL = exp(iαaLσ
a) , UY = exp(iαY σ

3) (B.4)

and the covariant derivative is defined by

DµΣ = ∂µΣ− i g

2
W a
µ σ

a Σ +
i g′

2
Bµ Σσ3 . (B.5)
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At the level of two derivatives one has [51]:

L(2) =
1

2
(∂µh)2 +

v2

4
Tr
(
DµΣ†DµΣ

)(
1 + 2cV

h

v
+ · · ·

)
− v√

2
λuij
(
ū

(i)
L , d̄

(i)
L

)
Σ
(
u

(i)
R , 0

)T (
1 + cu

h

v
+ · · ·

)
+ h.c.

− v√
2
λdij
(
ū

(i)
L , d̄

(i)
L

)
Σ
(
0, d

(i)
R

)T (
1 + cd

h

v
+ · · ·

)
+ h.c.

− v√
2
λlij
(
ν̄

(i)
L , l̄

(i)
L

)
Σ
(
0, l

(i)
R

)T (
1 + cl

h

v
+ · · ·

)
+ h.c.

(B.6)

where the dots stand for terms with two or more Higgs fields and an implicit sum over flavor

indices i, j = 1, 2, 3 has been understood. After rotating to the fermion mass eigenbasis

and by choosing the unitary gauge Σ(x) = 1, the sum of (B.2) and (B.6) coincides with

the first two lines of eq. (3.23) with cW = cZ = cV .

At the level of four derivatives, there are 6 independent bosonic operators which affect

cubic vertices with one h field:24

L(4) = c′WW W a
µνW

µν a h

v
+ c′WB Tr

(
Σ†W a

µνσ
a ΣBµνσ

3
) h
v

+ c′BB BµνB
µν h

v

+
c′W
mW

DµW a
µν Tr

(
Σ†σai

←→
D νΣ

)
h−

c′B
mW

∂µBµν Tr
(

Σ†i
←→
D νΣσ3

)
h

+
cgg
2
GaµνG

aµν h

v
+ . . .

(B.8)

The dots stand for terms which have two or more h fields or do not lead to cubic vertices,

see refs. [73, 74] for the complete list of bosonic operators in L(4). In the unitary gauge,

eq. (B.8) coincides with the last three lines of eq. (3.23). More specifically, the coefficients

cWW , cZZ , cZγ , cγγ can be written as linear combinations of c′WW , c′BB, c′WB,

cWW = 2 c′WW

cZZ = 2(cos2θW c′WW − 2 sin θW cos θW c′WB + sin2θW c′BB)

cγγ = 2(sin2θW c′WW + 2 sin θW cos θW c′WB + cos2θW c′BB)

cZγ = 2(sin θW cos θW c′WW + cos 2θW c′WB − sin θW cos θW c′BB) ,

(B.9)

while cW∂W , cZ∂Z can be expressed in terms of c′W , c′B:

cW∂W = 4c′W

cZ∂Z = 4 c′W + 4 tan θW c′B

cZ∂γ = 4 tan θW c′W − 4 c′B .

(B.10)

24Another convenient basis, which can be more easily compared to eq. (3.23), is one in which the first

two operators of eq. (B.8) are replaced by

W a
µν Tr

[
Σ†σai

←→
D µΣ

]
∂νh , Bµν Tr

[
Σ†i
←→
D µΣσ3

]
∂νh . (B.7)

This is in fact the basis adopted in ref. [73].

– 33 –



J
H
E
P
0
7
(
2
0
1
3
)
0
3
5

Notice that eqs. (B.9) and (B.10) are directly implied by eq. (3.30), which follows from

custodial invariance. It is simple to verify that the identities (3.24) and (3.25) are satisfied

by the couplings appearing on the left-hand sides of respectively eq. (B.9) and (B.10).

The above discussion shows explicitly that every operator in eq. (3.23) can be dressed

up with NG bosons and made manifestly invariant under local SU(2)L × U(1)Y transfor-

mations.25

The part of eq. (B.1) which does not depend on the Higgs field h coincides with the

non-linear chiral Lagrangian for SU(2)L ×U(1)Y [100–102], in the limit of exact custodial

symmetry. This latter assumption can be relaxed by specifying the sources of explicit

breaking of the custodial symmetry, i.e. its spurions, in terms of which one can construct

additional operators formally invariant under SU(2)L × U(1)Y local transformations. For

example, the list of operators that follows in the case in which custodial invariance is broken

by a field with the EW quantum numbers of hypercharge has been recently discussed in

ref. [74]. Since the choice of quantum numbers of the spurions is model-dependent (and

in fact the strongest effects are expected to arise from the breaking due to the top quark,

rather than hypercharge), we do not report here any particular list of operators, and prefer

to refer to the existing literature for further details.

C Relaxing the CP-even hypothesis

If one relaxes the hypothesis that h is CP-even, there are six extra dimension-6 operators

that need to be added to the effective Lagrangian (2.2):

∆LCP =
ic̃HW g

m2
W

(DµH)†σi(DνH)W̃ i
µν +

ic̃HB g
′

m2
W

(DµH)†(DνH)B̃µν

+
c̃γ g

′2

m2
W

H†HBµνB̃
µν +

c̃g g
2
S

m2
W

H†HGaµνG̃
aµν

+
c̃3W g3

m2
W

εijkW i ν
µ W j ρ

ν W̃ k µ
ρ +

c̃3G g
3
S

m2
W

fabcGa νµ Gb ρν G̃
c µ
ρ ,

(C.1)

where the dual field strengths are defined as F̃µν = 1
2εµνρσF

ρσ for F = W,B,G (ε is the

totally antisymmetric tensor normalized to ε0123 = 1). Furthermore, the coefficients of the

operators involving fermions will be in general complex numbers.

In the case of the effective chiral Lagrangian with SU(2)L×U(1)Y non-linearly realized,

there are four additional operators, to be added to those of eq. (B.8), which can affect cubic

vertices with one h field:

∆L(4)
CP = c̃′WW W̃ a

µνW
µν a h

v
+ c̃′WB Tr

[
Σ† W̃ a

µνσ
a ΣBµνσ

3
] h
v

+ c̃′BB B̃µνB
µν h

v
+
c̃gg
2
G̃aµνG

aµν h

v
.

(C.2)

25Notice that h is invariant under SU(2)L × SU(2)R (hence SU(2)L × U(1)Y ) transformations. In the

case in which h belongs to an SU(2)L doublet H, this follows from the fact that h parametrizes the norm

of the doublet: H†H = (v + h)2/2.
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In the unitary gauge, both Lagrangians ∆LCP and ∆L(4)
CP are matched onto:

∆L(4)
CP =

(
c̃WW W+

µνW̃
−µν +

c̃ZZ
2

ZµνZ̃
µν + c̃Zγ Zµν γ̃

µν +
c̃γγ
2
γµν γ̃

µν +
c̃gg
2
GaµνG̃

aµν

)
h

v

+ . . . (C.3)

When the EW symmetry is linearly realized, the coefficients of eq. (C.3) are related to the

Wilson coefficients of eq. (C.1) through the same relations reported in table 1 with the

simple exchange ci → c̃i (and with cW = cB = 0). In the non-linear case, c̃WW , c̃ZZ , c̃γγ
and c̃Zγ are given in terms of the Wilson coefficients of eq. (C.2) by relations identical to

the ones of eq. (B.9) (with ci → c̃i and c2 = 0). Notice that the Bianchi identities ensure

that DµṼ
µν = 0 and therefore there are no CP-odd analog to the operators OV ∂V .

Finally, it should also be noted that when the CP-invariance assumption in the Higgs

sector is relaxed, the couplings cu,d,l are allowed to take some complex values.

D Current bounds on dimension-6 operators

In this appendix we explain how we derived the bounds on the coefficients of the dimension-

6 operators reported in section 2.1. For a given observable we construct a likelihood for

the coefficients c̄i as follows:

L(c̄i) ∝ exp
[
−(OSM + δO(c̄i)−Oexp)2/(2 ∆O2

exp)
]
, (D.1)

where Oexp±∆Oexp is the experimental value of the observable, OSM denotes its SM pre-

diction and δO(c̄i) is the correction due to the effective operators. If several observables

constrain the same coefficients c̄i, the global likelihood is constructed by multiplying those

of each observable. We include the theoretical uncertainty on the SM prediction by in-

tegrating over a nuisance parameter whose distribution is appropriately chosen. We then

quote the bound on a given coefficient by marginalizing over the remaining ones.

Let us consider for example the bounds of eqs. (2.14) and (2.15). To derive them

we used the EW fit performed in ref. [36] by the GFitter collaboration, and constructed

a likelihood for the various coefficients by computing their contributions to the Z-pole

observables. For the latter, we used the SM predictions and experimental inputs reported in

table 1 of ref. [36], treating the uncertainties on the SM predictions as normally distributed.

We performed two separate fits: one on the coefficients of the operators involving the light

quarks (u, d, s), and one on those with charged leptons and heavy quarks (c, b). We thus

neglected, for simplicity, the correlations between these two sets of coefficients. The relevant

observables in the first fit are Γtot, σhad and Rl. They depend on the Wilson coefficients

only through the following linear combination:

l =

(
−1

4
+

1

3
sin2θW

)
(c̄Hq1 − c̄′Hq1) +

(
1

4
− 1

6
sin2θW

)
(c̄Hq1 + c̄′Hq1 + c̄Hq2 + c̄′Hq2)

+
1

3
sin2θW c̄Hu −

1

6
sin2θW (c̄Hd + c̄Hs) ,

(D.2)
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which with 95% probability is constrained to lie in the interval

− 0.63× 10−3 < l < 1.2× 10−3 . (D.3)

Although there are no further observables at the Z-pole which can resolve the degeneracy

implied by this result, we thought it useful to report the limits that one obtains from

eq. (D.3) by turning on one coefficient at the time. These are the bounds reported in

eq. (2.14).

The second fit, performed on the coefficients of the operators with leptons and heavy

quarks, makes use of all the observables at the Z pole and counts 7 unknowns, specifically:

xi = {(c̄Hq2 − c̄′Hq2), c̄Hc, (c̄Hq3 + c̄′Hq3), c̄Hb, c̄Hl, (c̄HL + c̄′HL), (c̄HL − c̄′HL)}. For simplicity

we assume lepton universality, and thus take the coefficients c̄Hl, c̄HL, c̄′HL to be the

same for all the leptonic generations. In terms of the above variables, the result of the

fit is summarized by their central values x̄i, standard deviations σi and by the correlation

matrix ρij :

c̄Hq2 − c̄′Hq2 = (5.8± 4.4)× 10−3

c̄Hc = (5.9± 8.5)× 10−3

c̄Hq3 + c̄′Hq3 = (−3.1± 2.7)× 10−3

c̄Hb = (−3.5± 1.3)× 10−2

c̄Hl = (1.6± 5.4)× 10−4

c̄HL + c̄′HL = (7.6± 5.2)× 10−4

c̄HL − c̄′HL = (5.5± 15)× 10−4

(D.4)

ρ =



1.0 0.74 −0.037 −0.072 0.24 −0.057 −0.14

0.74 1.0 −0.078 −0.085 0.11 0.15 0.030

−0.037 −0.078 1.0 0.85 −0.40 −0.21 0.068

−0.072 −0.085 0.85 1.0 −0.40 −0.33 −0.0024

0.24 0.11 −0.40 −0.40 1.0 0.11 0.28

−0.057 0.15 −0.21 −0.33 0.11 1.0 −0.35

−0.14 0.030 0.068 −0.0024 0.28 −0.35 1.0


(D.5)

The limits of eq. (2.15) have been obtained by making use of the above formulas and

marginalizing over all the coefficients except the one on which the bound is reported.

For the limits of eqs. (2.11) and (2.12) we have used the fit on S and T performed in

ref. [36], by marginalizing on one parameter to extract the bound on the other.

To derive eq. (2.17) we have used the theoretical predictions of the EDM of the neutron

and mercury given in ref. [39] in terms of the dipole moments of the quarks (see eqs. (2.12),

(3.65) and (3.71) of ref. [39]), and the experimental results for these observables given

respectively in ref. [103] and ref. [104]. We included the theoretical errors by assuming that

they are uniformly distributed within the stated intervals. Only two linear combinations of
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the coefficients c̄i can be constrained in this way, since two are the observables at disposal:

l1 =− 2md

m2
W

[Im(c̄dG) + 1.3 Im(c̄dB − c̄dW )]− mu

m2
W

[Im(c̄uG)− 0.64 Im(c̄uB + c̄uW )]

l2 =− 2mu

m2
W

Im(c̄uG) +
2md

m2
W

Im(c̄dG) .

(D.6)

Using mu = 2.3 MeV and md = 4.8 MeV we obtain, with 95% probability:

− 1.59× 10−12 GeV−1 < l1 < 1.78× 10−12 GeV−1

− 1.82× 10−12 GeV−1 < l2 < 1.37× 10−12 GeV−1 .
(D.7)

From the above result, by turning on one coefficient at the time, one obtains the limits

given in eq. (2.17). The bound on Im(c̄tG) of eq. (2.18) has been similarly derived from the

neutron and mercury EDMs by following ref. [41] and making use of the formulas given

there.

The limits of eq. (2.22) have been obtained from the experimental measurements of the

electron [45] and muon [43] anomalous magnetic moments and their SM predictions (taken

respectively from ref. [46] and refs. [43, 44]). In this case we have included the theoretical

errors by assuming that they are normally distributed. All the remaining bounds reported

in section 2.1, namely those of eqs. (2.19)–(2.21) and eq. (2.23) have been obtained by

simply translating into our notation the results given in the references quoted in the text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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