
ETH Library

Supersymmetric holography on
AdS3

Journal Article

Author(s):
Candu, Constantin; Gaberdiel, Matthias R.

Publication date:
2013-09

Permanent link:
https://doi.org/10.3929/ethz-b-000073956

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Journal of High Energy Physics 2013(9), https://doi.org/10.1007/JHEP09(2013)071

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000073956
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP09(2013)071
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


J
H
E
P
0
9
(
2
0
1
3
)
0
7
1

Published for SISSA by Springer

Received: June 3, 2013

Accepted: August 20, 2013

Published: September 13, 2013

Supersymmetric holography on AdS3

Constantin Candu and Matthias R. Gaberdiel

Institut für Theoretische Physik, ETH Zürich,
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1 Introduction

Theories containing an infinite number of (massless) higher spin currents are an interesting

class of theories that lie in complexity somewhere between field and string theories. The

first non-trivial examples where constructed about twenty-five years ago by Fradkin &

Vasiliev [1, 2]. Recently, these theories have gained prominence in the context of the

AdS/CFT correspondence since they are believed to be dual to free conformal theories [3–6].

This offers the hope of finding simplified versions of the AdS/CFT duality. It may also

open the way towards a proof of the AdS/CFT correspondence, at least in a specific regime;

for first attempts in this direction see [7–10].

About ten years ago it was conjectured by Klebanov & Polyakov [11] (see also [12]

for a subsequent refinement) that a specific higher spin theory on AdS4 [13] (see for ex-

ample [14–17] for reviews) is dual to the large N limit of the O(N) vector model in 3

dimensions; actually, there are four different versions of this duality, depending on whether

one considers the free or interacting O(N) theory, and whether it is based on fermions or

bosons. During the last two years, highly non-trivial evidence in favour of this conjecture

has been found. In particular, Giombi & Yin managed to calculate some 3-point functions
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of the higher spin theory on AdS4, and showed that they reproduce precisely those of the

dual O(N) vector model in the large N limit [18–20]. For the interacting theory, the higher

spin symmetry gets broken at finite N [21], but the symmetry may still play a useful role

in determining the correlators of the theory.

The argument of [21] only applies to 3d conformal field theories, whereas in 2 dimen-

sions it is known that interacting higher spin theories (even with a finite number of degrees

of freedom) exist, for example, the WN minimal models. A little while ago, it was shown

that the asymptotic symmetry algebra of higher spin theories on AdS3 [22, 23] lead to

classical WN or W∞ symmetry algebras [24–27], and a 1-loop calculation [28] suggested

that the corresponding statement would also be true for the quantum theory. A concrete

proposal was then made in [29], relating the large N ’t Hooft like limit of the WN level k

minimal models to a family of bosonic higher spin theories on AdS3. By now quite some

evidence has been found in favour of this proposal [30–36]. The proposal is the natural

analogue of the Klebanov-Polyakov duality since, for vanishing ’t Hooft coupling, the CFT

can be described as the singlet sector of a free theory [37]. There have also been interesting

results concerning the construction of black holes for these higher spin theories, as well as

their dual CFT interpretation [38–41].

The proposal of [29] was generalised to the case where instead of the su(N) based W -

algebras, one considers the so(2N) series [42, 43]. More recently, a N = 2 supersymmetric

generalisation has been proposed [44], relating a family of Kazama-Suzuki models [45, 46]

to the supersymmetric higher spin theory of [22, 23]. It is the aim of this paper to give

substantial evidence in favour of this proposal; in particular, we shall give the supersym-

metric generalisation of the calculation of [30], establishing the agreement between the

1-loop partition function of the supersymmetric higher spin theory on AdS3, and the par-

tition function of the dual N = 2 superconformal field theories in the large N limit. While

the general strategy is similar to what was done in [30], there is one new ingredient in

our analysis: unlike the bosonic WN case, explicit formulae for the coset characters of the

Kazama-Suzuki models do not appear to be readily available. In this paper we therefore

calculate them from first principles in the ’t Hooft limit. The basic idea is to relate them

to the branching functions of the free (λ = 0) theory which can be determined by combi-

natorial methods. We first apply this approach to the bosonic case, thereby reproducing

the results of [30], and then use it for the supersymmetric Kazama-Suzuki models.

The paper is organised as follows. In section 2 we review the bosonic duality; in

particular, we explain in detail how the partition function of the minimal models can be

calculated from first principles in the ’t Hooft limit, using a combinatorial approach (see

section 2.4). In section 3 we then apply the same techniques to the ’t Hooft limit of the

Kazama-Suzuki models. Finally, section 4 contains our conclusions and an outlook towards

future directions. We have relegated some of the technical arguments for the calculation of

the branching and restriction rules for gl(∞|∞)+ (that play a role for the supersymmetric

analysis) to an appendix.

– 2 –
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2 Non-supersymmetric duality

In this section we briefly review the non-supersymmetric duality and rederive the relation

between the partition functions. Our strategy follows essentially [30], but we employ a

somewhat different technique for extracting explicit formulae for the coset characters in

the ’t Hooft limit. This method will generalise directly to the supersymmetric case.

2.1 The higher spin gravity theory

Let us begin by fixing some conventions. We parametrise the Euclidean AdS3 space with

coordinates (r, z) ∈ R × C, for which the metric takes the form

ds2 =
dr2 + dzdz̄

r2
, (2.1)

and the boundary is located at r = 0. In thermal AdS the points (r, z + Z + Zτ) are

identified, and the boundary becomes a torus with modular parameter q = e2πiτ . We shall

first consider the non-supersymmetric truncation of Vasiliev’s higher spin theory [22, 23] on

AdS3. This theory has massless gauge fields of spin s = 2, 3, . . .. Assuming periodic bound-

ary conditions around the thermal circle, a real gauge field with integer spin s contributes

to the 1-loop partition function the factor

Zsgauge =
∞
∏

n=s

1

|1− qn|2 . (2.2)

This was first calculated for the graviton (s = 2) in [47]; the general result was then derived

in [28] using the techniques of [48].

In addition to these massless higher spin gauge fields, the theory that is proposed to

be dual to the ’t Hooft limit of the minimal model also contains two massive complex

scalar fields [29]. A complex scalar field φ of mass squared M2 contributes to the partition

function the factor [47]

Z∆
scalar =

∞
∏

m,n=0

1

(1− qh+mq̄h+n)2
, (2.3)

provided its asymptotic behaviour near the AdS boundary is fixed to be φ(r, z, z̄) ∼
a(z, z̄)r∆. Here ∆ = 2h is related to the mass squared M2 by the familiar relation

(∆− 1)2 = 1 +M2 . (2.4)

In the duality of [29] M2 = −1 + λ2, and then there are two solutions for ∆,

∆B
±(λ) = 1± λ . (2.5)

According to the proposal of [29], one complex scalar is quantised with (+) boundary con-

ditions, the other with (−) boundary conditions. Then the total 1-loop partition function

of the higher spin theory equals

Zλ1-loop = Z
∆B+(λ)

scalar × Z
∆B

−
(λ)

scalar ×
∞
∏

s=2

Zsgauge . (2.6)

It was conjectured in [29] that this higher spin theory is dual to a specific limit of minimal

model CFTs that we shall now review.

– 3 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
1

2.2 The coset point of view

Consider the coset conformal field theory

su(N)k ⊕ su(N)1
su(N)k+1

(2.7)

for integer level k. Its chiral algebra is the WN algebra of central charge

c = (N − 1)

(

1− N(N + 1)

(N + k)(N + k + 1)

)

, (2.8)

which we denote as WN,k. The primaries of the coset CFT (2.7) can be described in the

usual manner [49, 50].

In order to do so explicitly, let us introduce the following notation. We denote by Y the

set of all Young diagrams, and by YN ⊂ Y the subset of diagrams with less than N rows; as

is well known the elements of YN label the representations of su(N). The representations

of the affine algebra su(N)k at level k are then described by the diagrams YN,k ⊂ YN that

have in addition less or equal to k columns.

For Λ ∈ YN,k and ω ∈ YN,1 consider the decomposition of the tensor product in terms

of representations Ξ ∈ YN,k+1 of su(N)k+1

Λ⊗ ω =
⊕

Ξ

(Λ; Ξ)⊗ Ξ , (2.9)

where su(N)k+1 is diagonally embedded into su(N)k ⊕ su(N)1, and (Λ; Ξ) denotes the

corresponding multiplicity space. It is clear that only those Ξ ∈ YN,k+1 can appear in (2.9)

for which the weights satisfy

Λ + ω − Ξ ∈ QN , (2.10)

where QN is the root lattice of su(N). For su(N), this equation determines ω uniquely in

terms of Λ and Ξ. The multiplicity spaces (Λ; Ξ) can thus be labelled by just Λ and Ξ, and

they carry, by construction, an action of the coset CFT (2.7). The coset CFT is rational and

all its highest weight representations can be obtained in this manner; however, not all pairs

(Λ; Ξ) define inequivalent coset representations, since there are field identifications [51–53].

Let us denote the characters of the su(N)k and WN,k representations as

chN,kΛ (q, eH) = trΛ q
L0eH , bN,kΛ;Ξ(q) = tr(Λ;Ξ) q

L0 . (2.11)

Here L0 is the zero mode of the energy momentum tensor in the corresponding chiral

algebra, while H is an element of the Cartan subalgebra of su(N). As a consequence

of (2.9), we have the basic relation

chN,kΛ (q, eH) chN,1ω (q, eH) =
∑

Ξ

bN,kΛ;Ξ(q) ch
N,k+1
Ξ (q, eH) , (2.12)

which we will use below in order to compute the characters of the coset theory.

The simplest coset CFT is the usual charge-conjugation theory, whose Hilbert space

consists of

HN,k =
⊕

[Λ;Ξ]

(Λ; Ξ)⊗ (Λ; Ξ) , (2.13)

– 4 –
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ΛN→∞

Λl

Λr

N → ∞

Figure 1. Young diagrams that are finite only in the horizontal direction, and that have a single

infinite vertical step label su(N) representations generated by the tensor product of finitely many

fundamental and dual representations in the limit N → ∞.

where the two tensor factors are representations of the left- and right-moving coset CFT, re-

spectively, and the sum is taken over isomorphism classes [Λ; Ξ] of representations identified

by the field identification. The corresponding modular invariant torus partition function

is then

ZN,k(q) = |q− c
24 |2

∑

[Λ;Ξ]

|bN,kΛ;Ξ(q)|2 . (2.14)

It was proposed in [29] that the non-supersymmetric higher spin theory of Vasiliev is

dual to the ’t Hooft like large N, k limit of the coset CFTs (2.13),

N, k → ∞ with
N

N + k
= λ held fixed. (2.15)

A strong argument in favour of this proposal is the fact that the partition function (2.6)

can be reproduced from the dual CFT in this limit. The way this happens is however

quite intricate, since the naive limit of the partition function (2.14) diverges. In order to

make sense of the limit theory it was proposed in [29] to restrict the Hilbert space (2.13)

to those coset representations for which both Λ and Ξ are contained in the N → ∞ limit

of finite tensor powers of the fundamental representation of su(N) and its dual. Intuitively

this means that in the limit both Λ and Ξ are described by a pair of Young diagrams,

see figure 1.

In order to explain this more precisely, it is convenient to think of these labels in

terms of u(N) representations. Recall that irreducible (tensorial) representations of u(N)

are labelled by pairs of Young diagrams Λ = (Λl,Λr) of the form represented in figure 2.

Every u(N) tensor Λ defines an su(N) tensor labelled by a single Young diagram in YN ,

which we denote by ΛN = (Λl,Λr)N . Since we can move the position where we separate

ΛN into Λl and Λr, there are many u(N) tensors Λ that restrict to the same su(N) tensor

ΛN , but differ in their u(1) charge |Λ|− = |Λr| − |Λl|, where |Λl,r| is the number of boxes

in the corresponding diagrams.

The representations we are interested in are those where we keep Λl and Λr fixed as we

take the N → ∞ limit; the resulting su(N) representation becomes then an infinite Young

– 5 –
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replacemen

1

1

2

2

3

−1−2 0· · ·

· · ·

· · ·

N

N − 1

ΛlΛN

Λr

Figure 2. A u(N) representation is labelled by a pair of (finite) Young diagrams Λ = (Λl,Λr) such

that the sum of their rows is at most N . The corresponding su(N) dominant weight is represented

by the Young diagram with a bold contour, denoted by ΛN .

diagram depicted in figure 1. As can be seen from this figure, one can unambiguously

recover back from this infinite Young diagram the original pair of finite Young diagrams

Λ. From now on we shall identify the set of these infinite Young diagrams Λ∞ = (Λl,Λr)∞
with the set Y = Y ×Y of pairs of Young diagrams, and denote its elements by bold upper

case Greek letters (such as Λ).

Returning to the limit theory of (2.13), it was proposed in [29] that the Hilbert space

reproducing the partition function of the dual AdS3 theory in the limit (2.15) is

Hλ =
⊕

Λ,Ξ∈Y

(Λ;Ξ)⊗ (Λ;Ξ) , (2.16)

where the two pairs of Young diagrams Λ = (Λl,Λr) and Ξ = (Ξl,Ξr) label representations

(Λ; Ξ) = lim
N,k→∞

(

ΛN ;ΞN

)

(2.17)

of the limit algebra W∞[λ] [26].

The second complication comes from the fact that the representations (2.17) generically

become reducible in the limit (2.15), at least if both Λ and Ξ are non-trivial. Another way

of saying this is that new null states appear in the limit that have to be removed in order to

calculate the partition function. Subtracting out these contributions, it was argued in [30]

that the resulting partition function of (2.16) reproduces precisely (2.6).

We would now like to give a modified version of the proof and then generalise it to the

supersymmetric case.

2.3 The character identity

In order to make contact with eq. (2.16), the first step of the argument is to rewrite the bulk

partition function (2.6) as a sum over finite Young diagrams. Let us begin by introducing

– 6 –
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a little bit of notation. Let gl(∞)+ be the Lie algebra of infinite-dimensional matrices

for which only finitely many diagonals adjacent to the main diagonal are non-zero. These

matrices have a natural action on the infinite-dimensional vector space CN 0 = ⊕∞
j=0Cej ,

where ej denotes a basis and N0 are the non-negative integers. This is the ‘fundamental’

representation of gl(∞)+, and the representations we are interested in are those that are

contained in finite tensor powers of this fundamental representation. All of these tensor

products are completely decomposable, and hence we can label these representations by

finite Young diagrams Λ.

We shall need to calculate the character of the representation Λ. In general, a char-

acter can be evaluated on an arbitrary element of the Cartan subgroup of the associated

group GL(∞)+. The Cartan subgroup consists of the diagonal matrices, and the Cartan

subalgebra of gl(∞)+ can thus also be identified with the diagonal matrices; a natural basis

for the Cartan subalgebra is Hi = Eii, where i ∈ N0 and Eii is the matrix with a single

non-zero entry in position (i, i). The dual to the Cartan subalgebra is the weight space,

and it is generated by the weights ǫi with

ǫi(Hj) = δij . (2.18)

With these preparations we can now describe the character of the representation Λ. A

basis for the vector space associated to Λ is labelled by the different Young tableaux TabΛ
of shape Λ. Here a Young tableaux of shape Λ is a Young diagram Λ together with a filling

of the boxes of Λ by elements from N0, where, as usual, within each row the entries of the

boxes do not decrease, while within each column they increase. The weight wt(T ) of the

basis element associated to T ∈ TabΛ is the sum of the associated weights ǫj , where j runs

over the entries of the boxes in the tableau T . Then the character of Λ equals

chΛ(e
H) =

∑

T∈TabΛ

ewt(T )(H) , (2.19)

where H is an arbitrary element of the Cartan subalgebra of of gl(∞)+. In the following

we shall mainly evaluate this character on the specific elements

U(h) =
∏

j∈N
0

e2πiτ(h+j)Hj , q = e2πiτ (2.20)

of the Cartan subgroup of GL(∞)+ with matrix elements

U(h)jj = qh+j , (2.21)

where h is some real number, and q has modulus less than one. In this case the charac-

ter (2.19) takes the form

chΛ(U(h)) =
∑

T∈TabΛ

∏

j∈T

qh+j . (2.22)

With the help of the matrix U(h), we can now write the partition function of a real

scalar field on thermal AdS3 as the determinant

∞
∏

m,n=0

1

1− qh+mq̄h+n
=

1

det(1− U(h)⊗ U(h)∗)
, (2.23)

– 7 –
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where U(h)∗ is obtained from U(h) upon replacing q 7→ q̄. This can be decomposed into

gl(∞)+ characters by performing the same manipulations as in [30]1

1

det(1− U(h)⊗ U(h)∗)
=
∑

Λ

chΛ(U(h)) chΛ(U(h)) . (2.24)

The partition function (2.6) can thus be written as

Zλ1-loop = Zgauge

∑

Λl,Λr,Ξl,Ξr

| chΛl(U+) chΛr(U+) chΞl(U−) chΞr(U−)|2 , (2.25)

where Λl,Λr,Ξl,Ξr are finite Young diagrams, and we have defined

Zgauge =
∞
∏

s=2

Zsgauge , (2.26)

with Zsgauge given in (2.2). Finally, U± ≡ U(h±), with h± = 1
2(1± λ).

The next step is to reproduce eq. (2.25) from the coset point of view. To this end we

need to evaluate the coset characters up to powers of qk or qN , which become irrelevant

in the ’t Hooft limit. We want to determine the coset characters from (2.12), and thus we

first need to understand the characters of affine representations associated to Λ ∈ YN,k. It

follows from the Kac-Weyl formula (see e.g. [30, 55]) that we have

chN,kΛ (q, eH) =
qh

N,k
Λ [chNΛ (eH) +O(qk−Λ1+1)]

∏∞
n=1

[

(1− qn)N−1
∏

α∈∆N
(1− qneα(H))

] , (2.27)

where ∆N denotes the roots of su(N), and Λ1 is the length of the first row of Λ. Here

we have used that, for large k, only the elements of the finite Weyl group contribute to

the dominant term, thus making the finite su(N) character chNΛ appear. The conformal

dimension of the affine primary field labelled by Λ equals

hN,kΛ =
Cas(Λ)

2(k +N)
=

N |Λ|
2(k +N)

− |Λ|2
2N(k +N)

+
∑

ε∈Λ

col(ε)− row(ε)

k +N
, (2.28)

where |Λ| is the number of boxes in Λ, and the sum in the last term runs over the individual

boxes of the Young diagram Λ, where row(ε) and col(ε) is the row and column number of

the box ε ∈ Λ, respectively.

Using (2.27) for the different characters in (2.12) we thus obtain

chNΛ (eH) chN,1ω (q, eH) =
∑

Ξ∈YN

aNΛ;Ξ(q) ch
N
Ξ (eH) , (2.29)

where we have defined the k independent function aNΛ;Ξ(q); it is related to the coset character

in the k → ∞ limit as

bN,kΛ;Ξ(q) = qh
N,k
Λ

−hN,k+1

Ξ

[

aNΛ;Ξ(q) +O(qk−Λ1+1) +O(qk−Ξ1+2)
]

. (2.30)

1This expansion formally defines the Schur functions (with an infinite number of variables) in the theory

of symmetric functions [54]. Their explicit expression as a sum over monomials labelled by Young tableaux

of fixed shape and, thus the identification with gl(∞)+ characters, is then an a posteriori fact.

– 8 –
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Next we observe that for Λ = 0 eq. (2.29) simplifies to

chN,1ω (q, eH) =
∑

Ξ∈YN

aN0;Ξ(q) ch
N
Ξ (eH) , (2.31)

i.e. aN0;Ξ(q) is the branching function of an su(N)1 affine representation into representations

of the zero mode algebra su(N). In order to describe the general case, recall that the

decomposition of su(N) tensor products implies that

chNΛ1
chNΛ2

=
∑

Λ3∈YN

c
(N) Λ3

Λ1Λ2
chNΛ3

, (2.32)

where c
(N) Λ3

Λ1Λ2
are the Clebsch-Gordan coefficients. Multiplying (2.31) by chNΛ we thus

conclude that

aNΛ;Ξ(q) =
∑

Π∈YN

c
(N) Ξ
ΛΠ aN0;Π(q) =

∑

Π∈YN

c
(N) Π̄

ΛΞ̄
aN0;Π(q) , (2.33)

where the bar denotes the conjugate representation and for the second equality we have

used the symmetries of the Clebsch-Gordan coefficients.

Up to now all the equations are valid for finite k and finite N . As we have mentioned

in section 2.1, in the large N, k limit (2.15) we shall restrict Λ and Ξ to the set of those

special infinite Young diagrams that can be identified with pairs of finite Young diagrams,

see figure 1. Using a free fermion construction, we will show in section 2.4 that the power

series expansion of aN0;Ξ(q) stabilises in the large N limit to

a0;0(q) = lim
N→∞

aN0;0(q) =

∞
∏

s=2

∞
∏

n=s

1

1− qn

a0;Ξ(q) = lim
N→∞

aN0;ΞN (q) = chΞt
l
(U0) chΞtr(U0) a0;0(q) ,

(2.34)

where Ξ = (Ξl,Ξr) and U0 = U
(

h = 1
2

)

. Note that |a0;0(q)|2 = Zgauge(q). It follows by a

direct calculation (see e.g. eq. (2.7) in [56]) that

Cas(ΛN ) = Cas(Λl) + Cas(Λr) +
2|Λl||Λr|

N
. (2.35)

Thus, for large N the conformal dimensions of the affine primaries behave as

hN,k
ΛN

=
N
(

|Λl|+ |Λr|
)

2(k +N)
+O

(

1

N

)

, (2.36)

where Λ = (Λl,Λr) is a pair of finite Young diagrams. Hence the exponent of the prefactor

in eq. (2.30) becomes in the ’t Hooft limit

lim
k,N→∞

(

hN,k
ΛN

− hN,k+1
ΞN

)

=
λ

2

(

|Λ| − |Ξ|
)

, (2.37)

where we have defined |Λ| = |Λl| + |Λr| and similarly |Ξ|. Thus, the branching functions

corresponding to the W∞[λ] modules (2.17) have the explicit form

bλΛ;Ξ(q) = q
λ
2
(|Λ|−|Ξ|)a0;0(q)

∑

Π∈Y

c Π̄
ΛΞ̄

chΠt
l
(U0) chΠtr(U0) , (2.38)

where for Π = (Πl,Πr) the conjugate representations is Π̄ = (Πr,Πl).
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It was argued in [30] that subtracting out the null-states (see the discussion at the

end of section 2.2) is equivalent to restricting Π in eq. (2.38) to those Young diagrams

that satisfy

|Λ|+ |Ξ| = |Π| . (2.39)

Note that this is similar to what happens for the tensor product decomposition for su(N)

in the large N limit. For example, in the tensor product of the fundamental and anti-

fundamental representation of su(N), the projector onto the su(N) invariant state is

of the form
N
∑

j=1

1

N
ej ⊗ ej , (2.40)

where ej and ej are a basis and the dual basis for the fundamental and anti-fundamental

representation, respectively. In the large N limit (2.40) vanishes, and the tensor product

is no longer completely decomposable. In our case, the analogue of (2.40) are the states

where |Λ| + |Ξ| < |Π|, and they vanish in the large N limit as demonstrated (in some

simple examples) in [30]. In terms of the Clebsch-Gordan coefficients, (2.39) implies that

c Π̄
ΛΞ̄

= lim
N→∞

c (N) Π̄N

ΛN Ξ̄N
= c Πr

ΛlΞr
c Πl
ΛrΞl

. (2.41)

We have furthermore used that the Clebsch-Gordan coefficients on the right hand side

stabilise in the large N limit.2 Putting everything together we then obtain for the trace

over Hλ

TrHλqL0 q̄L̄0 =Zgauge

∑

Λ,Ξ

∣

∣

∣
q
λ
2
(|Λ|−|Ξ|)

∑

Πl,Πr

c Πr
ΛlΞr

c Πl
ΛrΞl

chΠt
l
(U0) chΠtr(U0)

∣

∣

∣

2

=Zgauge

∑

Λ,Ξ

∣

∣

∣
q
λ
2
(|Λ|−|Ξ|) chΛt

l
(U0) chΞtr(U0) chΛtr(U0) chΞt

l
(U0)

∣

∣

∣

2

=Zgauge

∑

Λl,Λr
Ξl,Ξr

∣

∣

∣
chΛt

l
(U+) chΞtr(U−) chΛtr(U+) chΞt

l
(U−)

∣

∣

∣

2
, (2.42)

where we have used that the Clebsch-Gordan coefficients are invariant under taking trans-

poses. This then agrees with (2.25).

2.4 Free field realisation

Finally we come to the proof of the two fundamental eqs. (2.34); this is where our analysis

differs from [30]. Recall that we can realise su(N)1⊕u(1)N in terms ofN free Dirac fermions.

Here u(1)N is the chiral u(1) algebra [Jm, Jn] = Nδm,−n that is extended by two fields of

conformal dimension h = N
2 and u(1)-charge ±N , (see [57], section 14.4.4). (Incidentally,

u(1)N is also the chiral algebra of a compact boson compactified at R =
√
N where R =

√
2

2In the theory of symmetric functions the numbers c Π
ΛΞ are known as the Littlewood-Richardson coeffi-

cients, (see [54], chapter 1). Essentially, these are the Clebsch-Gordan coefficients of gl(∞)+.
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describes the self-dual radius, i.e. u(1)2 ∼= su(2)1.) The irreducible representations of u(1)N
are labelled by l ∈ ZN , and their characters are

ΘN
l (q, w) = Trl

(

qL0wJ0
)

=
∑

m∈Z

wl+Nm
q

1

2N
(l+Nm)2

∏∞
n=1(1− qn)

. (2.43)

On the level of characters, the relation between the free fermion theory and su(N)1⊕u(1)N
amounts then to

∞
∏

n=0

N
∏

i=1

(1 + wviq
n+ 1

2 ) (1 + w̄v̄iq
n+ 1

2 ) =
N−1
∑

l=0

ΘN
l (q, w) ch

N,1
ωl

(q, v) , (2.44)

where ωl is the l-th fundamental weight of su(N), w ∈ U(1) and vi are the diagonal

entries of an element v of the Cartan torus of SU(N). In terms of the branching functions

introduced in eq. (2.31), this then becomes

∞
∏

n=0

N
∏

i=1

(1 + wviq
n+ 1

2 ) (1 + w̄v̄iq
n+ 1

2 ) =
∑

Λ∈YN

ΘN
[Λ](q, w) a

N
0,Λ(q) ch

N
Λ (v) , (2.45)

where [Λ] ∈ ZN denotes the congruence class of an su(N) representation Λ, (see [57],

section 13.1.9). For the following it is more convenient to decompose this partition function

into characters of u(N) rather then su(N), i.e. to absorb the w-dependent factor of ΘN
[Λ]

into the u(N) character as

chNΛN (v)w
|Λr|−|Λl| = chNΛ(vw) . (2.46)

Recall that u(N) representations are parametrised by pairs of Young diagramsΛ = (Λl,Λr),

see figure 2; alternatively, we may label them by a single Young diagram ΛN together

with an integer |Λ|− = |Λr| − |Λl| determining the u(1)-charge of the representation. Us-

ing (2.46), we can now rewrite (2.45) as

∞
∏

n=0

N
∏

i=1

(1 + wviq
n+ 1

2 ) (1 + w̄v̄iq
n+ 1

2 ) =
∑

Λ∈Y

dNΛ(q) chNΛ(vw) , (2.47)

where

dNΛ(q) =
q

1

2N
(|Λr|−|Λl|)

2

∏∞
n=1(1− qn)

aN0,ΛN (q) (2.48)

counts the number of u(N) tensors Λ which appear in the free fermion theory. In the

following we shall compute (2.48) combinatorially. Note that the prefactor in the numerator

will become irrelevant for N → ∞.

Let us denote by ψ1, . . . , ψN the N Dirac fermions, with ψ̄1, . . . , ψ̄N their complex

conjugates. The vector space whose character is the left-hand-side of (2.47) is spanned by

the vectors of the form
nψ̄
∏

j=1

ψ̄
aj

−rj−
1

2

nψ
∏

k=1

ψbk
−sk−

1

2

Ω , (2.49)
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where aj , bk ∈ {1, . . . , N}, rj , sk ∈ N0, and Ω is the vacuum. These states fall into repre-

sentations of the two commuting Lie algebras: u(N) acting on the indices aj and bk; and

gl(∞)+ acting on the mode numbers rj , sk.
3 The branching function dNΛ in (2.47) counts

the multiplicity with which the u(N) representation Λ appears in the Fock space, and

because of the commuting gl(∞)+ action, it will naturally be a character of gl(∞)+.

More precisely, a u(N) tensor of shape Λ appears ‘for the first time’ (i.e. with multi-

plicity at most one) in the states of the form (2.49) if nψ̄ = |Λl| and nψ = |Λr|. For a given

choice of mode numbers rj and sk, the multiplicity is precisely one if the {rj} and {sk}
define an allowed filling of the Young diagram Λtl and Λtr, respectively, where Λ

t denotes the

transposed Young diagram — this just keeps track of the fact that, because of Fermi-Dirac

statistics, the product of two identical fermionic modes vanishes. If we sum over all such

mode numbers (while keeping nψ̄ = |Λl| and nψ = |Λr| fixed), it follows from (2.22) that

the branching function equals

chΛt
l
(U0) chΛtr(U0) , (2.50)

where U0 = U
(

h = 1
2

)

.

In order to complete the argument we only need to count the multiplicities with which

the u(N) representations Λ appear. As we have explained above, a given Λ appears ‘for the

first time’ if nψ̄ = |Λl| and nψ = |Λr|. However, it will continue to appear if nψ̄ = |Λl|+m

and nψ = |Λr| +m with m ∈ N, i.e. the state can be a product of a state with minimal

number of factors, times a u(N) invariant state. Thus we need to count also the u(N)

invariants; according to the first fundamental theorem of classical invariant theory (see

e.g. [58]), all u(N) invariant states are linear combinations of the ‘basic’ ones

∞
∏

r,s=0

(

∑

a

ψ̄a
−r− 1

2

ψa
−s− 1

2

)Mrs

, (2.51)

where only finitely many multiplicities Mrs are non-zero. Note that not all of these states

are non-trivial; indeed, (2.51) vanishes if
∑

r

Mrs > N or
∑

s

Mrs > N . (2.52)

Furthermore, the states corresponding to different choices of {Mrs} are not all linearly

independent; for example, for N = 1 the two states whose non-zero multiplicities are

{M00 = 1,M11 = 1} and {M01 = 1,M10 = 1} are in fact linearly dependent. If we ignore

these issues we can easily count the invariant tensors as

d0(q) =
∞
∏

r,s=0

∞
∑

Mrs=0

q(r+s+1)Mrs =
∞
∏

r,s=0

1

1− qr+s+1
=

∞
∏

s=1

∞
∏

n=s

1

1− qn
. (2.53)

This result is exact in the N → ∞ limit because for finite N the overcounting starts at

order qN+1 with the state
(

∑

a

ψ̄a
− 1

2

ψa
− 1

2

)N+1

. (2.54)

3Note that the action of gl(∞)+ on the modes of ψa, and on the modes of ψ̄a is in both cases the

fundamental representation of gl(∞)+.
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Combining this result with (2.50), and ignoring the subtlety that the product of a non-

vanishing scalar and a state of the form (2.49) in some representation Λ can also vanish

— again this can be ignored in the N → ∞ limit — then leads precisely to (2.34). (Recall

that the relation between aN0,Λ and dNΛ is given in (2.48).)

3 Supersymmetric duality

In the following we want to generalise the above argument to the supersymmetric setting.

We begin by reviewing the structure of the supersymmetric higher spin theory.

3.1 Higher spin supergravity

The N = 2 supersymmetric higher spin supergravity theory of Prokushkin and

Vasiliev [22, 23] has two (real) bosonic gauge fields of each spin s = 2, 3, . . ., together

with a single current of spin s = 1. In addition there are two (real) fermionic gauge fields

for each spin s = 3
2 ,

5
2 , . . .. As in the bosonic case above, the structure of the theory depends

on a real parameter 0 ≤ λ ≤ 1. However, this parameter does not affect the quadratic part

of the action, and the total 1-loop contribution of the gauge fields equals

Zgauge = Z1
gauge

∞
∏

s=2

(

ZsgaugeZ
s− 1

2

gaugino

)2

, (3.1)

where the contribution of a real gauge field of half-integer spin s

Zsgaugino =
∞
∏

n=s− 1

2

|1 + qn+
1

2 |2 (3.2)

was calculated in [44]. We have assumed here that these half-integer spin gauge fields have

anti-periodic boundary conditions around the thermal circle; from the dual CFT point of

view, we shall therefore only consider the NS-sector. We also note that we can write Zgauge

in a manifestly supersymmetric way as

Zgauge =
∞
∏

s=1

Zs
gauge , where Zs

gauge = Zsgauge

(

Z
s+ 1

2
gauge

)2

Zs+1
gauge , (3.3)

with Zs
gauge the contribution of the N = 2 gauge multiplet of integer spin s.

While the parameter λ from above does not appear in the quadratic action for the

gauge fields, it does determine the mass of the fields in the allowed matter multiplets. In

the supersymmetric case, each matter multiplet consists of a complex scalar field of mass

M2
λ = −1 + λ2 , (3.4)

two Dirac fermions of mass

m2 =

(

λ− 1

2

)2

,
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Mλ(+) m (−) M1−λ (−)

(

1
2 + λ

2 ,
1
2 + λ

2

)

2×
(

λ
2 ,

1
2 + λ

2

)

(

1
2 + λ

2 ,
λ
2

)

(

λ
2 ,

λ
2

)

Mλ(−) m (+) M1−λ(+)

(

1
2 − λ

2 ,
1
2 − λ

2

)

2×
(

1
2 − λ

2 , 1− λ
2

)

(

1− λ
2 ,

1
2 − λ

2

)

(

1− λ
2 , 1− λ

2

)

Q±, Q̃± Q±, Q̃±

Q±, Q̃± Q±, Q̃±

Figure 3. Conformal dimensions of the scalar and spinor fields in the two short N = 2 complex

supermultiplets. Here Q± and Q̃± are the left- and right-moving N = 2 supercharges in the CFT.

Since the representation is short, one of the two supercharges of each chirality always acts trivially.

The Dirac fermions have multiplicity 2 since the scalar fields are complex.

as well as a complex scalar of mass M1−λ. These are actually short N = 2 complex

supermultiplets, and the corresponding states in the dual CFT are N = 2 chiral primaries.4

The propagation of the free (massive) scalar or spinor fields on AdS3 is unambiguously

fixed by the respective equations of motion provided one specifies the asymptotic behaviour

of the fields at the boundary, i.e. the conformal dimensions of the dual superconformal fields.

For the fields in the above mass windows, there are two natural boundary conditions one

may choose, and we shall refer to them as the (±) quantisations; for the scalar fields the

relevant dual conformal dimensions are again (h, h) with ∆ = 2h being given by (2.5),

while for a massive Dirac fermion the relevant conformal dimensions are (h + 1
2 , h) and

(h, h+ 1
2) with ∆ = 2h+ 1

2 given by

∆F
+ =

3

2
− λ , ∆F

− = λ+
1

2
i.e. hF+ =

1

2
(1− λ) , hF− =

λ

2
. (3.5)

The contribution of the complex scalar field with ∆ = 2h to the 1-loop partition function

is again given by (2.3), while that of a Dirac fermion with conformal dimensions (h+ 1
2 , h)

and (h, h+ 1
2) is [44]

Z∆
spinor =

∞
∏

m,n=0

(1 + qh+
1

2
+mq̄h+n)(1 + qh+mq̄h+

1

2
+n) . (3.6)

Notice that supersymmetry determines unambiguously the quantisation of all fields in a

supermultiplet in terms of, for instance, the quantisation of the scalar M2
λ . More precisely,

the two scalars M2
λ and M2

1−λ are quantised in an opposite fashion, while the fermions

are quantised, due to our conventions (3.5), in the same way as M2
1−λ. This is illustrated

in figure 3.

The complete matter spectrum of the higher spin theory of [44] consists of two such

N = 2 multiplets that are quantised again in the opposite fashion; altogether the 1-loop

4Notice that in 3 Euclidean dimensions the action of a supercharge on a real scalar field gives a Dirac

fermion.
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partition function Zλ
1-loop of this theory is therefore

Zλ
1-loop = Zgauge × Zscalars × Zspinors , (3.7)

where Zgauge was defined in (3.3), and the scalar and spinor contributions are

Zscalars = Z
∆B+(λ)

scalar Z
∆B

−
(λ)

scalar Z
∆B+(1−λ)

scalar Z
∆B

−
(1−λ)

scalar (3.8)

Zspinors =

(

Z
∆F+
spinorZ

∆F
−

spinor

)2

.

Note that the total partition function is invariant under λ 7→ 1 − λ. In terms of N = 2

supermultiplets, we have

Zλ
1-loop = Zgauge ×Zλ,+

matter ×Zλ,−
matter , (3.9)

where the first two factors denote the contribution of the two N = 2 matter multiplets

from above

Zλ,+
matter = Z

∆B+(λ)

scalar Z
∆B

−
(1−λ)

scalar

(

Z
∆F

−

spinor

)2

= Zλscalar

(

Z
1

2
+λ

spinor

)2

Z1+λ
scalar (3.10)

Zλ,−
matter = Z

∆B+(1−λ)

scalar Z
∆B

−
(λ)

scalar

(

Z
∆F+
spinor

)2

= Z1−λ
scalar

(

Z
3

2
−λ

spinor

)2

Z2−λ
scalar = Z1−λ,+

matter . (3.11)

Expanding them out as above, we then have explicitly

Zλ,+
matter =

∞
∏

m,n=0

(1 + q
λ
2
+ 1

2
+mq̄

λ
2
+n)2 (1 + q

λ
2
+mq̄

λ
2
+ 1

2
+n)2

(1− q
λ
2
+mq̄

λ
2
+n)2 (1− q

λ
2
+ 1

2
+mq̄

λ
2
+ 1

2
+n)2

. (3.12)

3.2 The superconformal coset

It was proposed in [44] that the above higher spin theory is dual to the ’t Hooft like limit

of a family of minimal N = 2 superconformal coset theories. In this section we want to

review the relevant superconformal field theories.

Recall that we can associate to each bosonic affine algebra su(N)k an N = 1 super-

symmetric affine algebra su(N)1k+N ; the latter is actually isomorphic to the direct sum of

the bosonic algebra su(N)k together with dim(su(N)) free Majorana fermions. In analogy

to this, we also denote by u(1)1k the direct sum of u(1)k and (the chiral superalgebra of) a

single Majorana fermion.

The cosets that are relevant for us are then

WN,k =
su(N + 1)1k+N+1

su(N)1k+N+1 ⊕ u(1)1κ
, (3.13)

where κ = N(N+1)(k+N+1) is the ‘level’ of the u(1) algebra (as defined above eq. (2.43)).

They are manifestly N = 1 supersymmetric, but according to Kazama and Suzuki [45, 46],
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the actual chiral algebra contains the N = 2 superconformal algebra. Geometrically, this

is a consequence of the fact that the coset (3.13) is associated to the homogeneous space

CP
N =

U(N + 1)

U(N)×U(1)
, (3.14)

which is actually a Hermitian symmetric space, i.e. possesses a complex structure. We

should also mention in passing that (3.13) coincides with the Drinfel’d-Sokolov reduction

of the affine superalgebra sl(N + 1|N)kDS
at level [59]

kDS = −1 +
1

k + n+ 1
. (3.15)

Given that the N = 1 superconformal algebras are actually isomorphic to direct sums

of the corresponding bosonic subalgebras and free Majorana fermions, we can reformulate

the bosonic subalgebra of WN,k in (3.13) as

W(0)
N,k =

su(N + 1)k ⊕ so(2N)1
su(N)k+1 ⊕ u(1)κ

, (3.16)

where so(2N)1 is the bosonic algebra associated to the 2N free Majorana fermions that

survive after subtracting from the N2+2N free fermions of the numerator in (3.13) the N2

free fermions of the denominator. The central charge of the coset algebra WN,k is therefore

c = (N − 1) +
kN(N + 2)

k +N + 1
− (k + 1)(N2 − 1)

k +N + 1
=

3kN

k +N + 1
. (3.17)

In the following we shall mostly use the bosonic coset description (3.16); note that this

description contains implicitly the supersymmetry generators as long as we describe the

so(2N)1 algebra in terms of 2N free Majorana fermions.

We shall also need to understand how the denominator of (3.16) is embedded into the

numerator. The embedding of su(N) ⊕ u(1) into the first factor (i.e. into su(N + 1)) is

determined by the usual embedding of SU(N)×U(1) →֒ SU(N + 1),

ı1(v, w) =

(

wN 0

0 w̄v

)

∈ SU(N + 1) , (3.18)

where v ∈ SU(N) and w ∈ U(1). Let us denote by K ∈ su(N + 1) the image of the u(1)

Lie algebra generator (i.e. K is the diagonal matrix with entries (N,−1, . . . ,−1)); its OPE

is then of the form

K(z1)K(z2) =
kN(N + 1)

(z1 − z2)2
+O(1) . (3.19)

In order to understand the embedding into the so(2N) factor, recall that we can think of

so(2N) as the Lie algebra of the Lie group SO(N,N) of 2N × 2N matrices M satisfying

MGM t = G with

G =

(

0 1N

1N 0

)

. (3.20)
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We then embed SU(N) × U(1) →֒ SO(N,N) (the scaling of the U(1) embedding relative

to (3.18) is fixed by N = 1 supersymmetry, see (3.44) below) as

ı2(v, w) =

(

w̄(N+1) v 0

0 w(N+1)v̄

)

∈ SO(N,N) , (3.21)

where v̄ denotes the complex conjugate matrix to v ∈ SU(N). Again we denote by j ∈
so(2N) the image of the u(1) Lie algebra generator (whose first N diagonal entries are

−(N + 1), with the remaining diagonal entries being equal to N + 1); its OPE is then

j(z1)j(z2) =
N(N + 1)2

(z1 − z2)2
+O(1) . (3.22)

Together with (3.19) it then follows that the current

J =
1

k +N + 1

(

K − k

N + 1
j

)

(3.23)

is primary with respect to the denominator algebra; it therefore describes a u(1)-current

of the coset algebra WN,k. It can be identified with the u(1)-current of the N = 2 su-

perconformal subalgebra, and with the above normalisation of K and j it is canonically

normalised so that

J(z1)J(z2) =
c

3(z1 − z2)2
+O(1) , (3.24)

where c is given in (3.17).

The irreducible representations of WN,k can again be described in the usual manner.

Let us denote by NS the Neveu-Schwarz representation of the 2N Majorana fermions.

(From the point of view of so(2N)1, NS is therefore the direct sum of the vacuum and the

vector representation.) For any integrable representation Λ ∈ YN+1,k of su(N+1)k we then

consider the decomposition of the tensor product

Λ⊗NS =
⊕

Ξ,l

(Λ; Ξ, l)⊗ Ξ⊗ l (3.25)

with respect to su(N)k+1⊕u(1)κ. Here Ξ ∈ YN,k+1 labels the representations of su(N)k+1,

while l ∈ Zκ describes the representations of u(1)κ. In order to understand which repre-

sentations of su(N)k+1⊕u(1)κ appear in this decomposition, let us write Λ and Ξ in terms

of the usual orthogonal basis as

Λ =
N
∑

j=0

Λjεj −
|Λ|

N + 1

N
∑

j=0

εj and Ξ =
N
∑

j=1

Ξjεj −
|Ξ|
N

N
∑

j=1

εj , (3.26)

where Λj and Ξj are the number of boxes in the j’th row of Λ and Ξ, respectively. (For

the case of su(N + 1) the first row is the zero’th row, while for su(N), the rows are

labelled by 1, . . . , N .) Given the structure of the embedding (3.18), the weight of the u(1)κ
representation labelled by l in eq. (3.25) is then of the form

ωl =
l

N(N + 1)

(

Nε0 −
N
∑

j=1

εj

)

so that ωl(K) = l , (3.27)
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while ωl vanishes on all generators of su(N)k+1 under the embedding ı1. The root lattice

of su(N + 1) is generated by the vectors εj , and hence the selection rule that Λ − Ξ − ωl
lies in the root lattice of su(N + 1) simply means that the coefficients of all εj are integer;

for j 6= 0 this is precisely the condition that

|Λ|
N + 1

− |Ξ|
N

− l

N(N + 1)
≡ 0 mod 1 , (3.28)

and it is easy to see that then also the coefficient of ε0 is integer. Note that (3.28) determines

l in terms of Λ and Ξ only modulo N(N +1); since l is defined modulo κ = N(N +1)(N +

k + 1), it is not completely fixed by (3.28).5

The multiplicity spaces labelled by (Λ; Ξ, l) satisfying (3.28) then define representations

of WN,k. In fact, all representations of WN,k can be described in this manner. However,

not all triplets (Λ; Ξ, l) lead to inequivalent representations; the relevant identification rules

are worked out in [51].

The character of 2N Neveu-Schwarz Majorana fermions equals

θ(q, u) = trNS q
L0u =

∞
∏

n=0

N
∏

i=1

(1 + uiq
n+ 1

2 )(1 + ūiq
n+ 1

2 ) , (3.29)

where u is an SO(N,N) group element with eigenvalues {ui, ūi}Ni=1. Together with the

affine characters defined in (2.11) and (2.43) we then have the identity

chN+1,k
Λ (q, ı1(v, w)) θ(q, ı2(v, w)) =

∑

Ξ,l

bN,kΛ;Ξ,l(q) ch
N,k+1
Ξ (q, v)Θκ

l (q, w) , (3.30)

where

bN,kΛ;Ξ,l(q) = tr(Λ;Ξ,l) q
L0 , (3.31)

is again the coset character.

The simplest CFT is as before the charge conjugation theory whose full space of states

is of the form

HN,k
s =

⊕

[Λ;Ξ,l]

[Λ; Ξ, l]⊗ [Λ; Ξ, l] , (3.32)

where [Λ; Ξ, l] denotes again the equivalence classes of coset representations. The corre-

sponding torus partition function

ZN,k(q) = |q− c
24 |2

∑

[Λ;Ξ,l]

|bN,kΛ;Ξ,l(q)|2 (3.33)

is then modular invariant with respect to the appropriate modular group (namely the con-

gruence subgroup that is generated by S and T 2). Here we have restricted ourselves to the

(unprojected) NS-NS sector. The R-sector representations do not, in any case, contribute

to the perturbative spectrum in the ’t Hooft limit since their conformal dimensions are

proportional to c (which goes to infinity in the limit).

5The level of the u(1) algebra is the central term in the current-current OPE where the current has

been normalised so that the spectrum of its zero mode consists of the integers. In our case the correctly

normalised current is K + j, and the level can then be read off from (3.19) and (3.22).
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i
k

j
i ≤ j, k

i < j if i and j are odd

i < k if i and k are even

Figure 4. A supertableau of shape Λ and type gl(∞|∞)+ is a filling of the boxes of a Young

diagram Λ with elements from N0 such that the entries of the boxes are ordered as indicated in the

figure.

3.3 The duality

As was already mentioned above, it was proposed in [44] that the higher spin theory of

section 3.1 is dual to the large N, k limit (2.15) of the above N = 2 minimal model

superconformal field theories. In order to define the limit, we restrict, as in the bosonic

case of section 2, the spectrum of (3.32) to those representations (Λ; Ξ, l) for which both Λ

and Ξ can be labelled by pairs of Young diagrams Λ and Ξ as in figure 1. We want to show

in the following that with this restriction (and after removing the relevant null-vectors,

see below) the partition functions between the two descriptions agree. This provides again

very non-trivial evidence in favour of this duality.

3.3.1 The higher spin partition function

Let us begin by rewriting the higher spin partition function (3.9) as in the bosonic case,

see eq. (2.25), except that now the relevant algebra is gl(∞|∞)+, rather than gl(∞)+. In

order to do so we need to fix some conventions.

Recall that, as a vector space, the algebras gl(∞)+ and gl(∞|∞)+ are isomorphic. The

only difference is that for the superalgebra gl(∞|∞)+ we distinguish between the bosonic

generators Eij for which i + j is even, and the fermionic generators Eij for which i + j is

odd. Correspondingly we then define commutation and anti-commutation relations. It is

clear from this description that we have again a representation of gl(∞|∞)+ on CN 0 .

The tensor products of this fundamental representation are completely decomposable

into irreducible representations, and these are again labelled by Young diagrams [60, 61].

In order to describe the associated character of gl(∞|∞)+, we need to introduce su-

pertableaux. A supertableau is a filling of the Young diagram Λ by elements from N0,

where the entries do not decrease along rows and columns, and the direction in which

they strictly increase depends on the parity of the corresponding entries; the precise rule

is explained in figure 4. We can label the basis elements of Λ by the different Young su-

pertableaux T ∈ STabΛ of shape Λ, and the weight of T is the sum of the fundamental

weights ǫi associated to T , i.e. wt(T ) =
∑

i∈T ǫi. (Note that the Cartan subalgebra of

gl(∞|∞)+ can again be taken to consist of the diagonal matrices, and ǫi is then as be-

fore defined by eq. (2.18).) The supercharacter of the gl(∞|∞)+ representation labelled

– 19 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
1

by Λ is then

schΛ(e
H) =

∑

T∈STabΛ

ewt(T )(H)
∏

j∈T

(−1)j . (3.34)

The generalisation of eq. (2.23) that is relevant for us is now

1

sdet(1− U(h)⊗ U(h)∗) =
∞
∏

m,n=0

(1 + qh+
1

2
+mq̄h+n)(1 + qh+mq̄h+

1

2
+n)

(1− qh+mq̄h+n)(1− qh+
1

2
+mq̄h+

1

2
+n)

=
∑

Λ

schΛ(U(h)) schΛ(U(h)∗) , (3.35)

where sdet denotes the superdeterminant, and U(h) is a GL(∞|∞)+ diagonal matrix with

matrix elements

U(h)jj = (−1)j qh+
j

2 . (3.36)

On these group elements the supercharacter reads explicitly

schΛ(U(h)) =
∑

T∈STabΛ

∏

i∈T

qh+
i
2 , (3.37)

since the parity signs in eq. (3.36) cancel against those in eq. (3.34). Using exactly the

same arguments as for the bosonic case, see eq. (2.24), this allows us to write the partition

function (3.9) (see in particular (3.12)) in the form

Zλ
1-loop = Zgauge

∑

Λl,Λr,Ξl,Ξr

∣

∣schΛl(U+) schΛr(U+) schΞl(U−) schΞr(U−)
∣

∣

2
, (3.38)

where U+ = U
(

h = λ
2

)

and U− = U
(

h = 1−λ
2

)

.

3.3.2 The superconformal partition function

Now we come to the CFT partition function in the ’t Hooft limit. Using the form of (3.18),

we can express the character of su(N + 1)k in the large k limit as

chN+1,k
Λ

(

q, ı1(v, w)
)

=
qh

N+1,k
Λ [chN+1

Λ (ı1(v, w)) +O(qk−Λ1+1)]
∏∞
n=1(1− qn)N

∏N
i 6=j=0(1− viv̄jqn)

, (3.39)

where {vi}Ni=1 are the eigenvalues of v ∈ SU(N) and we have defined v0 = wN+1. For the

other characters in (3.30) we have similarly

chN,k+1
Ξ (q, v) =

qh
N,k+1

Ξ [chNΞ (v) +O(qk−Ξ1+2)]
∏∞
n=1(1− qn)N−1

∏N
i 6=j=1(1− viv̄jqn)

(3.40)

Θκ
l (q, w) =

qh
κ
l

∏∞
n=1(1− qn)

[

wl +O
(

q
κ
2
−|l|
)]

, hκl =
l2

2κ
. (3.41)

If we define the leading term of the coset character via

bN,kΛ;Ξ,l(q) = qh
N+1,k
Λ

−hN,k+1

Ξ
−hκ

l

[

aNΛ;Ξ,l(q) +O(qk−Λ1+1) +O(qk−Ξ1+2)
]

, (3.42)
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it follows from eq. (3.30) that we have the k-independent identity

chN+1
Λ (ı1

(

v, w)
)

ϑ
(

q, ı2(v, w)
)

=
∑

Ξ,l

aNΛ;Ξ,l(q) ch
N
Ξ (v)wl , (3.43)

where the sum runs over all Ξ ∈ YN and l must obey the selection rule (3.28). Note that the

denominators of (3.39), (3.40) and (3.41) cancel among each other, except for the factors

with i = 0 or j = 0 in (3.39); because of (3.21), these combine with the contribution of the

N Dirac fermions from θ (see (3.29)) to the supersymmetric combination

ϑ(q, u) =
∞
∏

n=0

N
∏

i=1

(1 + uiq
n+ 1

2 ) (1 + ūiq
n+ 1

2 )

(1− uiqn+1) (1− ūiqn+1)
, (3.44)

where u is an SO(N,N) matrix with eigenvalues {ui, ūi}Ni=1.

The next step of the argument consists of parametrising the different solutions for l

satisfying (3.28) in terms of U(N+1) and U(N) representations. Recall that the U(N) rep-

resentations are labelled by pairs of Young diagrams Ξ = (Ξl,Ξr), where the corresponding

U(1) charge is given by |Ξ|− = |Ξr| − |Ξl|. For a given SU(N) representation Ξ, there are

different U(N) representations Ξ that restrict to Ξ; the U(1) charge of the various choices

for Ξ differ by integer multiples of N . Since we may in particular take Ξ = (0,Ξ) and

Λ = (0,Λ), it follows that a solution to (3.28) is given by taking

l = N |Λ|− − (N + 1)|Ξ|− . (3.45)

The different possible solutions for l are then accounted for by the different choices for lifting

Λ and Ξ to U(N + 1) and U(N) representations Λ and Ξ, respectively, and thus (3.45)

describes the most general solution. Actually, there is now a redundancy in our description

since ‘shifting’ the separation between Λl and Λr in Λ, and between Ξl and Ξr in Ξ by the

same amount does not affect l. However, this redundancy disappears in the large N limit,

as there is then a unique way of identifying the two finite Young diagrams.

With this parametrisation in mind, we now define the k-independent function as

saNΛ;Ξ = aNΛN+1;ΞN ,N |Λ|−−(N+1)|Ξ|−
, (3.46)

so that (3.43) becomes

chN+1
Λ

(

ı1(v, w)
)

ϑ
(

q, ı2(v, w)
)

=
∑

Ξ

saNΛ;Ξ(q) ch
N
Ξ (vw̄N+1) . (3.47)

Note that for Λ = 0 this identity is just

ϑ
(

q, ı2(v, w)
)

=
∞
∏

n=1

N
∏

i=1

(1 + viw̄
N+1qn−

1

2 ) (1 + v̄iw
N+1qn−

1

2 )

(1− viw̄N+1qn) (1− v̄iwN+1qn)
(3.48)

=
∑

Ξ

saN0;Ξ(q) ch
N
Ξ (vw̄N+1) . (3.49)

– 21 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
1

In order to describe the general case from this, let us introduce the restriction coefficients

r
(N)
ΛΦ

as the multiplicities with which the U(N) characters appear in the decomposition of

U(N + 1) characters

chN+1
Λ

(

ı1(v, w)
)

=
∑

Φ

r
(N)
ΛΦ

chNΦ(vw̄N+1) , (3.50)

as well as the U(N) Clebsch-Gordan coefficients

chNΛ chNΞ =
∑

Π

c
(N)Π
ΛΞ

chNΠ . (3.51)

Then it follows from eq. (3.47) that we have

saNΛ;Ξ(q) =
∑

Φ,Ψ

r
(N)
ΛΦ

c
(N)Ξ
ΦΨ

saN0;Ψ(q) =
∑

Φ,Ψ

r
(N)
ΛΦ

c
(N) Ψ̄

ΦΞ̄
saN0;Ψ(q) . (3.52)

Generalising the combinatorial calculation of section 2.4, we shall show in section 3.4 that

the large N limit of the branching functions equals

sa0;0(q) = lim
N→∞

saN0;0(q) =
∞
∏

n=1

(1 + q
n
2
+1)2n

(1− qn)2n−1
(3.53)

sa0;Ξ(q) = lim
N→∞

saN0;Ξ(q) = sa0;0(q) schΞt
l
(U1) schΞtr(U1) , (3.54)

where the GL(∞|∞)+ supercharacters schΞ were defined in (3.37) and U1 = U
(

h = 1
2

)

.

Notice that |sa0;0(q)|2 = Zgauge(q).

In the final step of the argument we have to remove the null states that appear in the

limit. By analogy with the bosonic case, we propose that this amounts to replacing the

restriction and Clebsch-Gordan coefficients by

lim
N→∞

c
(N) Ψ̄

ΦΞ̄
→ c Ψr

ΦlΞr
c Ψl
ΦrΞl

(3.55)

lim
N→∞

r
(N)
ΛΦ

→ rΛlΦl rΛrΦr . (3.56)

Here c Ξ
ΦΨ are the Clebsch-Gordan coefficients of gl(∞)+ that already appeared in section 2;

as is explained in appendix A, we can also interpret them as gl(∞|∞)+ Clebsch-Gordan

coefficients, i.e. they satisfy

schΛ schΞ =
∑

Π∈Y

c Π
ΛΞ schΠ . (3.57)

The coefficients appearing on the right hand side of eq. (3.56) are the restriction coefficients

for gl(∞)+ that can be expressed in terms of the Clebsch-Gordan coefficients as [62]

rΛΞ = c
Λ

Ξ|Λ/Ξ| , (3.58)

where |Λ/Ξ| denotes the Young diagram with a single row of |Λ|− |Ξ| boxes. In particular,

eq. (3.58) implies that rΛΞ can only be either 0 or 1. The coefficients rΛΞ also define
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restriction coefficients for gl(∞|∞)+, since we have the identity (see appendix A for a

detailed derivation)

schΛ(U0) =
∑

Ξ∈Y

rΛΞ schΞt(U1) , (3.59)

were U0 = U(h = 0). Note that we are considering here the branching rules of gl(∞|∞)+-

representations into representations of the subalgebra of infinite matrices whose first row

and column is zero; the latter algebra is again gl(∞|∞)+, but with a shifted definition of

parity, and this is the origin of the transposition of Ξ on the right-hand-side.

With these preparations we can now finally compute the partition function for the

Hilbert space

Hλ
s =

⊕

Λ,Ξ∈Y

(Λ;Ξ)s ⊗ (Λ;Ξ)s (3.60)

of the Kazama-Suzuki coset (3.16) in the ’t Hooft limit (2.15), where we have denoted by

(Λ;Ξ)s the large N , k limit of the WN,k representations

(Λ;Ξ)s = lim
N,k→∞

(

ΛN+1 ; ΞN ,
[

N |Λ|− − (N + 1)|Ξ|−
]

)

(3.61)

using the same notation as in (3.46). Their characters can be computed from (3.42), and

dropping the null-states as in (3.56) and (3.55) we obtain

Tr(Λ;Ξ)sq
L0 = q

λ
2
(|Λ|−|Ξ|)

∑

Φ,Ψ

rΛlΦlrΛrΦrc
Ψr

ΦlΞr
c Ψl
ΦrΞl

sa0;0(q) schΨt
l
(U1) schΨtr(U1)

= q
λ
2
(|Λ|−|Ξ|)sa0;0(q) schΛl(U0) schΛr(U0) schΞt

l
(U1) schΞtr(U1)

= sa0;0(q) schΛl(U+) schΛr(U+) schΞt
l
(U−) schΞtr(U−) , (3.62)

where the GL(∞|∞)+ matrices U± have been defined in (3.36), and we have used that

lim
N,k→∞

[

hN+1,k
Λ − hN,k+1

Ξ − (N |Λ|− − (N + 1)|Ξ|−)2
2N(N + 1)(N + k + 1)

]

=
λ

2

(

|Λ| − |Ξ|
)

. (3.63)

Finally, summing over the different representations, we get

TrHλ
s
qL0 q̄L̄0 = Zgauge

∑

Λ,Ξ

∣

∣schΛl(U+) schΛr(U+) schΞt
l
(U−) schΞtr(U−)

∣

∣

2
, (3.64)

which reproduces indeed the partition function (3.38) of the higher spin theory.

3.4 Free field realisation

Thus we are left with proving the combinatorial identities (3.53) and (3.54); this can be

done as in the bosonic case using free fields.

First we note that the right-hand-side of (3.48) equals the partition function of N

complex fermions and N complex bosons, transforming in the fundamental and anti-

fundamental representations of U(N). More specifically, let us denote by ψ1, . . . , ψN and

1, . . . , N the fermionic and bosonic modes in the fundamental representation of U(N),
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respectively; their complex conjugates, ψ̄1, . . . , ψ̄N and ̄1, . . . , ̄N then transform in the

anti-fundamental representation. The full Fock space is spanned by the states of the form

nψ̄
∏

j=1

ψ̄
aj

−rj−
1

2

nψ
∏

k=1

ψbk
−sk−

1

2

n̄
∏

l=1

̄cl−tl−1

n
∏

m=1

dm−um−1Ω , (3.65)

where the mode numbers rj , sk, tl, um are non-negative integers. In order to deter-

mine (3.53) and (3.54) we need to count the multiplicities with which a specific U(N)

representation appears in the Fock space.

We begin again by counting the states that transform in the trivial representation. By

the fundamental theorem of classical invariant theory [58], these states are linear combina-

tions of the ‘basic’ invariants

∞
∏

r,s=0

(

N
∑

a=1

ψ̄a
−r− 1

2

ψa
−s− 1

2

)Krs ∞
∏

t,u=0

(

N
∑

a=1

̄a−t−1
a
−u−1

)Ltu

×
∞
∏

t,s=0

(

N
∑

a=1

̄a−t−1ψ
a
−s− 1

2

)Pts ∞
∏

r,u=0

(

N
∑

a=1

ψ̄a
−r− 1

2

a−u−1

)Qru

Ω , (3.66)

where only finitely many multiplicities Krs, Ltu, Pts, Qru are non-zero. Note that each Pts
and Qru can only be 0 or 1 because the fermionic invariants

∑

a ̄
aψa and

∑

a ψ̄
aa square

to zero. In the N → ∞ limit all the states in (3.66) are linearly independent, and it is

straightforward to count them, leading to eq. (3.53)

sa0;0(q) =
∞
∏

r,s=0

∞
∑

K=0

q(r+s+1)K
∞
∏

t,u=0

∞
∑

L=0

q(t+u+2)L
∞
∏

t,s=0

1
∑

P=0

q(t+s+
3

2
)P

∞
∏

r,u=0

1
∑

Q=0

q(r+u+
3

2
)Q

=
∞
∏

n=1

1

1− qn

∞
∏

i,j=0

(1 + qi+j+
3

2 )2

(1− qi+j+2)2
(3.67)

=
∞
∏

n=1

1

1− qn

∞
∏

s=2

∞
∏

n=s

(1 + qn−
1

2 )2

(1− qn)2
=

∞
∏

n=1

(1 + qn+
1

2 )2n

(1− qn)2n−1
. (3.68)

Finally, we need to count the multiplicity with which a specific Ξ representation of

U(N) appears; again, the argument follows the same logic as in the bosonic calculation in

section 2.4. Let us consider the subspace of states of the form (3.65) with a fixed number of

modes nψ, nψ̄, n, n̄. Then a U(N) tensor of shape Ξ = (Ξl,Ξr) such that |Ξl| = nψ̄ + n̄
and |Ξr| = nψ+n will appear with multiplicity 0 or 1. The multiplicity will be precisely 1

if there is (i) a Young supertableau of shape Ξl with bosonic or even entries from {2tl+2},
and fermionic or odd entries from {2rj + 1}; and (ii) a Young supertableau of shape Ξr
with bosonic or even entries from {2um+2}, and fermionic or odd entries from {2sk+1}.6
This is equivalent to the requirement that there are Young supertableaux of shape Ξtl and

Ξtr with entries from {2rj} ∪ {2tl + 1} and {2sk} ∪ {2um + 1}, respectively. Summing

over all possible mode numbers and different nψ, nψ̄, n, n̄ such that nψ + n = |Ξr| and
6The form of these entries is twice the conformal dimension of the modes in (3.65).
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nψ̄ +n̄ = |Ξl|, their contribution to the branching function (3.54) can be written with the

help of (3.37) in the compact form

schΞt
l
(U1) schΞtr(U1) . (3.69)

Multiplying these minimal states with all the invariant states (3.66), one generates all

states transforming in Ξ in the Fock space. Thus the branching function (3.54) is indeed

just the product of (3.69) with (3.68).

4 Conclusions

In this paper we have given strong evidence in favour of the supersymmetric higher spin

duality that was proposed in [44]. In particular, we have shown that the 1-loop partition

function of the supersymmetric higher spin theory on AdS3 can be reproduced from the

’t Hooft limit of the dual N = 2 Kazama-Suzuki models. Our analysis follows in spirit

closely [30], where the corresponding consistency check for the original bosonic duality

of [29] was performed. The main technical advance is that we have managed to determine

the branching functions (both in the bosonic as well as the supersymmetric case) from

first principles, using a free field description. This point of view also sheds light on the

origin of the underlying gl(∞) symmetry (resp. gl(∞|∞) for the supersymmetric case) of

the partition function.

In order to make sense of the limit theory (and to match with the AdS gravity answer)

we have assumed by analogy with the bosonic case that certain CFT states become null

and decouple in the ’t Hooft limit. It would be interesting to check this directly (at least for

the first few cases) by performing a similar analysis to what was done in [30]. In order to be

able to perform this analysis, it will be important to understand the underlying symmetry

algebra — i.e. the supersymmetric analogue of W∞[λ], see [26] — in more detail. This

would also allow for a more detailed test of the correspondence by comparing eigenvalues

of the various higher spin zero modes. We hope to come back to these issues elsewhere.
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A Identities for gl(∞|∞)+

In this appendix we want to prove (3.57) as well as (3.58) and (3.59).

Let Symn be the group of permutations of the integers {1, 2, . . . , n}. Its irreducible

representations SΛ are indexed by partitions of n, that is Young diagrams Λ with |Λ| = n.

When restricted to the subgroup Symm× Symn ⊂ Symm+n, a representation SΛ of Symm+n

decomposes as ([54], chapter 1)

resSΛ ∼=
⊕

Ξ,Π

c Λ
ΞΠ SΞ ⊠ SΠ , (A.1)

– 25 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
1

where the sum is over partitions Ξ of m and partitions Π of n, and we used the symbol ⊠

to denote the tensor product between representations of different groups.

Let V be the fundamental representation of U(M |N), and VΛ the irreducible U(M |N)

covariant tensor of shape Λ. Clearly, the two groups Symn and U(M |N) act naturally

on the tensor product V ⊗n. Because the action of Symn commutes with the action of

U(M |N), one can consider V ⊗n as a representation of the product group Symn×U(M |N).

With respect to this latter action, one has the following decomposition into irreducible

representations [60]

V ⊗n ∼=
⊕

Λ

SΛ ⊠ VΛ , (A.2)

where the sum runs over all partitions Λ of n that fit into a hook with arm width M and

leg width N [61]. We shall call these partitions hook-shaped. This type of multiplicity free

decomposition is known in the mathematical literature as a Schur-Weyl duality.

Consider now the decomposition of the representation V ⊗m ⊗ V ⊗n with respect to

the product group Symm× Symn×U(M |N). Applying eq. (A.2), on the one hand, to the

whole tensor product V ⊗(m+n) and, on the other, to each factor V ⊗m and V ⊗n separately,

one arrives at
⊕

Λ

resSΛ ⊠ VΛ =
⊕

Ξ,Π

SΞ ⊠ SΠ ⊠ (VΞ ⊗ VΠ) . (A.3)

Decomposing the restricted representation into irreducibles as in eq. (A.1), we conclude

that the tensor product of irreducible U(M |N) representations must be

VΞ ⊗ VΠ ∼=
⊕

Λ

c Λ
ΞΠ VΛ , (A.4)

where all partitions are hook-shaped. Setting M = N and taking N → ∞ we arrive at

eq. (3.57). Note that the restriction on the hook-shape disappears in this limit.

Finally, we want to prove (3.58) and (3.59), following MacDonalds’s book [54] on

symmetric functions. Let X,Y ∈ GL(∞|∞)+ be two diagonal matrices, whose entries we

label as
X2i,2i = xi+1 , X2i+1,2i+1 = ξi+1

Y2i,2i = yi+1 , Y2i+1,2i+1 = ηi+1
, i ∈ N0 . (A.5)

We define a Schur type symmetric function by

sΛ(x|ξ) = schΛ(X) =
∑

T∈STabΛ

∏

j∈T

Xjj(−1)j , (A.6)

where x = (x1, x2, . . . ), ξ = (ξ1, ξ2, . . . ) are treated as formal indeterminate variables.

Note that if we restricted the values of x and ξ by setting xi = 0 for i > M and ξj = 0 for

j > N , then (A.6) becomes a U(M |N) character. From (3.34) and the definition of Young

supertableaux in figure 4 it follows that

sΛ(x|ξ) = sΛt(−ξ| − x) . (A.7)

Denoting y = (y1, y2, . . . ) and η = (η1, η2, . . . ), we can now rewrite (3.35) as

∏

i,j

(1− xiηj)(1− yiξj)

(1− xiyj)(1− ξiηj)
=
∑

Λ

sΛ(x|ξ)sΛ(y|η) , (A.8)
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where the left hand side is to be understood as a generating function. Next we repeat

the argument of ([54], pg. 40–41). Let us introduce a third set of independent variables

z = (z1, z2, . . . ), ζ = (ζ1, ζ2, . . . ), and consider the product which we can rewrite in two

different ways as

∏

i,j

(1− ziξj)(1− ziηj)(1− ζixj)(1− ζiyj)

(1− zixj)(1− ziyj)(1− ζiξj)(1− ζiηj)
=
∑

Λ

sΛ(z|ζ) sΛ(x ∪ y|ξ ∪ η)

=
∑

Ξ,Π

sΞ(z|ζ) sΞ(x|ξ) sΠ(z|ζ) sΠ(y|η) (A.9)

=
∑

Λ,Ξ,Π

sΛ(z|ζ)
(

c Λ
ΞΠ sΞ(x|ξ) sΠ(y|η)

)

,

where we have used (3.57) in the last line; this leads to the important relation

sΛ(x ∪ y|ξ ∪ η) =
∑

Ξ,Π

c Λ
ΞΠ sΞ(x|ξ) sΠ(y|η) . (A.10)

We now specialise to y = (w, 0, 0, . . . ) and η = (0, 0, . . . ). Then sΠ(y|η) becomes a U(1)

character, which is only non-zero provided that Π has a single row, in which case it equals

w|Π|. Next, we choose x and ξ so that for all i ∈ N0

ξi+1 = (U1)2i,2i = qi+
1

2 , xi+1 = (U1)2i+1,2i+1 = −qi+1 , (A.11)

where U1 is, as before, defined by U1 = U(h = 1
2) and we recall that U(h)jj = (−1)jqh+

j

2 ,

see eq. (3.36). Then the eigenvalues of U0 = U(h = 0) are

(U0)00 = 1 , (U0)2i+2,2i+2 = −xi+1 = qi+1 , (U0)2i+1,2i+1 = −ξi+1 = −qi+ 1

2 , (A.12)

where again i ∈ N0. Setting w = 1, it follows from (A.12), (A.7), (A.10) and (A.11) that

schΛ(U0) = sΛ(−x ∪ {1}| − ξ) =
∑

Ξ

c
Λ

|Λ/Ξ|Ξ sΞt(ξ|x) =
∑

Ξ

c
Λ

|Λ/Ξ|Ξ schΞt(U1) . (A.13)

This completes the proof of (3.58) and (3.59).
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