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1 Introduction

There is by now plenty of evidence supporting conjectures of holographic duality between

3D theories of higher spin gravity and 2D CFTs with higher spin symmetry (see [1] for a

review). Such dualities are not strong-weak dualities in the traditional AdS/CFT sense: be-

cause the CFTs are exactly solvable in principle, one can often compute a given quantity ex-

actly on both sides, akin to the strong form of the AdS/CFT correspondence. In this sense,
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a primary motivation for the study of higher spin theories — aside from possible connec-

tions to high energy string theory, among others — is the possibility that we might extract

deeper lessons about holography and the emergence of classical spacetime more generally.

We focus henceforth on the non-supersymmetric duality proposals of [2, 3], which

state that the WN minimal models in certain large central charge limits, parameterized by

a constant λ, are dual to the bosonic 3D higher spin theories of [4] with a single complex

scalar field. The CFT has a classicalW-symmetry, denotedW∞[λ] [3, 5–7], which emerges

as the asymptotic symmetry algebra of AdS3 higher spin gravity [7], where λ parameterizes

a line of AdS3 vacua.

The bulk theory also admits other solutions, notably BTZ black holes and their higher

spin generalizations (see [8] for a review). Much about their thermodynamics is understood

(though see [9–12] for further scrutiny) and has passed a nontrivial holographic test [13, 14],

but the nonlocal nature of higher spin gravity and its large symmetry algebra render

geometric interpretations hazardous. In fact, the assignment of the name ‘black hole’ is

largely motivated by reference to a Wilson loop involving a higher spin gauge field wrapping

a contractible cycle, rather than to, say, the existence of an event horizon [15]. It remains

a fascinating problem to find satisfying and gauge invariant generalizations of spacetime

geometry to the higher spin world.

One way to improve the physical understanding of a solution of higher spin gravity

is to examine scalar fluctuations. The higher spin symmetry fixes the dynamics and the

masses of the scalar fields in the theory, which is appealing from a physical perspective

but makes computations non-trivial. In [16], the authors computed the bulk-boundary

propagator of a scalar field propagating in the background of the 3D higher spin black

hole of [13], to first order in the higher spin chemical potential. The black hole solves the

bosonic 3D higher spin theory of [4] which, at linearized level around a solution in the pure

gauge sector, couples free scalar matter to an hs[λ]×hs[λ] Chern-Simons theory of higher

spin fields; for technical reasons, [16] worked at the specific value λ = 1
2 , where there exists

a simpler representation of the hs
[

1
2

]
algebra in terms of harmonic oscillator variables.

By taking the bulk point to an asymptotic boundary, one can extract two-point func-

tions of dual CFT operators in the presence of a higher spin deformation to the CFT action.

If the operators are on opposite asymptotic boundaries of the Lorentzian black hole (in the

eternal black hole sense [17]), this represents a ‘mixed’ correlator evaluated in an entangled

state of two copies of the boundary CFT. The higher spin calculation of [16] showed that

the first order correction to such a mixed scalar two-point function, analytically continued

to Lorentzian signature, is nonsingular. This was argued, by analogy with the same prop-

erty of the BTZ black hole, to lend support to the claim that the background solution is

indeed a black hole with causally disconnected boundary components.

If the operators lie on the same boundary, then the two-point function is simply a

thermal correlator for a given scalar operator in a single CFT. In our case, it is calculated

in the presence of a nonzero higher spin chemical potential. This one-sided correlator,

which was also calculated in [16] to first order, will be our focus of this paper.

The goal of this work is to extend the gravity calculations of [16], and subsequently

match them to a CFT calculation. Indeed, where the gravity and CFT results overlap,
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they will be seen to match, providing evidence for the proposed holographic dualities at

finite temperature that goes beyond the higher spin sector alone. There are actually two

different large c limits of the WN minimal models for which dualities have been proposed,

known as the ’t Hooft [2] and semiclassical [3] limits, and our work applies to both of these.

More specifically, whereas [16] worked at the specific value λ = 1
2 and only to leading

nontrivial order in the higher spin chemical potential, we will extend those results to other

values of λ and beyond linear order. We will utilize various tools at our disposal for

computing the boundary two-point function that were developed in [16, 18–21].

Turning to CFT, the dual quantity we must calculate is the torus two-point function of

a scalar primary φ (and its conjugate), in the presence of a deformation of the CFT action

by a holomorphic spin-3 operator W . The operator φ has conformal dimension ∆ = 1 + λ

(as well as a fixed set of higher spin zero mode eigenvalues), and indeed such an operator

lies in the spectrum of the WN minimal models at large c. As we discuss in detail, at nth

order in perturbation theory, the problem is reduced to integrating correlation functions

of φ̄φ with n spin-3 fields over n copies of the torus. Because we are interested specifically

in the asymptotically high temperature regime, we can use a modular transformation to

relate them to correlators at very low temperatures, which can be extracted from those on

the sphere. With sufficient care, this technique allows us to derive the two-point function

to arbitrary order for generic λ using OPEs and methods of contour integration; we content

ourselves with a second order calculation. These manipulations are similar in spirit to those

of [14] where the higher spin black hole entropy was reproduced from CFT.1

Furthermore, we repeat the above calculations in both bulk and boundary for the case

where the dual scalar operator is a ‘multi-trace’ operator, applying a recent prescription for

computing correlation functions involving such operators in higher spin gravity [21]. This

involves taking the bulk master fields of the Vasiliev theory to lie in a higher representation

of hs[λ]. We can state this most clearly with reference to the WN minimal models, where

representations are labeled by two integrable highest weight representations, (Λ+; Λ−), of

the su(N) affine algebra at level k and k+1, respectively [22, 23]. The calculations described

above use a bulk scalar field with m2 = −1+λ2, dual to the scalar primary φ ≡ (f; 0) which

is the highest weight state of the minimal representation ofW∞[λ]. But the CFT has many

other representations, and those of the form (Λ+; 0) can be made by taking tensor products

of the basic (f; 0) field, hence the nickname ‘multi-trace’ operators. In our calculations we

focus specifically on the ( ; 0) operator, where in the bulk we take the master fields to live

in the representation. Once again, the two sides of the calculation agree.

The paper is organized as follows. Section 2 carries out the gravity calculations, start-

ing with a few new results regarding the higher spin black hole of [13]. This is followed

by a brief collection of techniques one can use to study propagating matter in higher spin

gravity, after which we apply them to the calculation of scalar correlators in the black

hole background. In section 3 we turn to the CFT side, explaining how one computes the

relevant torus amplitude and executing the algorithm through second order in the higher

1There are differences however, and the application of the present formalism to the derivation of the

black hole entropy is subtle. We will comment on the relation between the two approaches.
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spin deformation. The final result is a formula for generic λ, which matches the bulk where

applicable. Section 4 repeats the analysis, now for the ( ; 0) operator in the CFT and

the corresponding scalar master field in the bulk. In section 5 we conclude with some

discussion. Appendices A and B contain some details of the bulk and CFT calculations,

respectively, and appendix C considers the derivation of the higher spin black hole partition

function [14] from our CFT approach.

2 CFT correlators from scalars in the hs[λ] black hole background

A central result of [16] was the computation of the bulk-boundary propagator of a scalar

field propagating in the background of the 3D higher spin black hole of [13], to first order in

the higher spin chemical potential, α. This requires knowledge of only the linearized higher

spin theory [4], which can be cast as a hs[λ]×hs[λ] Chern-Simons theory coupled to a scalar

of m2 = −1 + λ2. The scalar was fixed to obey the alternate quantization at the value

λ = 1
2 , and thus it is dual to a scalar operator in a W∞

[
1
2

]
CFT with conformal dimension

∆ = 1
2 . Extracting the two-point function where both operators lie on the same boundary

at asymptotic infinity — namely, a torus with modular parameter τ parameterized by

Euclidean coordinates (z, z) ∼ (z + 2π, z + 2π) ∼ (z + 2πτ, z + 2πτ) — the result was

found to be2

〈φ̄(z, z)φ(0, 0)〉
〈φ̄(z, z)φ(0, 0)〉(0)

= 1 +
α

16τ2

3 sin z
τ +

(
2 + cos zτ

) (
z
τ −

z
τ

)
sin2 z

2τ

+O(α2) , (2.1)

where 〈φ̄(z, z)φ(0, 0)〉(0) is the thermal two-point function in the absence of a higher spin

deformation,

〈φ̄(z, z)φ(0, 0)〉(0) =

√
1

4ττ sin z
2τ sin z

2τ

. (2.2)

This is the result we would like to generalize in the bulk and then match to a CFT

calculation. We begin with a short treatment of the black hole background itself and free

scalar dynamics in 3D higher spin gravity. Subsections 2.1 and 2.2 are mostly review but

contain an updated treatment of the black hole including some new results.

2.1 The hs[λ] black hole

Let us start with the Chern-Simons equations of motion

dA+A ∧ ?A = 0 , dĀ+ Ā ∧ ?Ā = 0 , (2.3)

where (A, Ā) are independent elements of the Lie algebra hs[λ]; the generators of hs[λ] are

denoted as V s
m, see appendix A.1 for our conventions. It turns out to be convenient to

choose a gauge [6] such that the black hole solution takes the form

A(ρ, z, z̄) = b−1ab+ b−1db (2.4)

Ā(ρ, z, z̄) = bāb−1 + bdb−1 , (2.5)

2We always leave implicit the sum over images that enforces the periodicity (z, z) ∼ (z + 2π, z + 2π).
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where b = eρV
2
0 , and the connections (a, ā) are constant with aρ = aρ = 0. For the hs[λ]

black hole solutions found in [13], the unbarred connection has components

az = V 2
1 −

2πL
k
V 2
−1 −

πW
2k

V 3
−2 + UV 4

−3 + · · · (2.6)

az = −α
τ

(az ? az)
∣∣∣
traceless

, (2.7)

where ? denotes the lone star product [24], and (L,W,U) are the stress tensor, spin-3

and spin-4 charges, respectively. The ellipsis represents an infinite series of higher spin

charges, and k is the level of the hs[λ] Chern-Simons action. The solution is accompanied

by the analogous barred components az and az. In this gauge it is manifest that each of

these constant connections is flat, i.e. the equations of motion (2.3) are simply [az, az] =

[az, az] = 0.

The black hole charges, expanded perturbatively in the spin-3 chemical potential α,

are given through O(α2) as3

L = − k

8πτ2
+

k

24πτ6
(λ2 − 4)α2 +O(α4) (2.8)

W = − k

3πτ5
α+O(α3) (2.9)

U =
7

36τ8
α2 +O(α4) ,

along with barred charges given by α→ α, τ → τ . All other charges are zero at this order.

At λ = 0, 1, there are non-perturbative conjectures for the charges (L,W) obtained from

a CFT calculation using free-field realizations of the W∞[λ] symmetry [13].

These charges were obtained by demanding that the holonomy of this solution around

the thermal cycle, denoted as

H = eω , ω = 2π(τaz + τaz) (2.10)

be equal to that of the BTZ black hole, H = HBTZ. It was shown in [16] that HBTZ is a

central element of the group we call HS[λ] — that is, it commutes with all elements V s
m

of the algebra hs[λ] — from which the statement H = HBTZ follows if the two are related

by conjugation by some element eX , with X ∈ hs[λ]. Perturbative evidence for this was

provided in [16], and indeed this is equivalent to demanding that Tr(ωn) = Tr(ωnBTZ) for

all n which implicitly defines the charges. Knowledge of the charges is enough to determine

the thermal partition function and hence the black hole entropy, and the ensemble thus

constructed is guaranteed to obey the first law of thermodynamics; this network of ideas

was recently affirmed and clarified in [11, 25].

3We have followed normalization conventions of [16], which differ by a simple rescaling compared

to [8, 13].
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A complementary perspective is provided by considering an infinite-dimensional matrix

representation of sl(2). The nonzero matrix elements are

(V 2
0 )jj =

−λ+ 1

2
− j

(V 2
1 )j+1,j = −

√
(−λ− j)j (2.11)

(V 2
−1)j,j+1 =

√
(−λ− j)j ,

where j = 1, . . . ,∞. From these we can construct the defining representation of the full

hs[λ] algebra using the enveloping algebra construction [24, 26] (see appendix A.1), and

the lone star product is isomorphic to infinite-dimensional matrix multiplication. When

λ = −N , an ideal forms, and the upper leftN×N block survives as theN×N representation

of sl(N).

Now we note that any linear combination of sl(2) generators can be diagonalized to a

multiple of V 2
0

βV 2
1 + γV 2

−1 + δV 2
0 = S

(
−2i

√
|M |V 2

0

)
S−1 , where M =

(
β δ/2

δ/2 γ

)
(2.12)

for some matrix S. For the BTZ, and hence also the hs[λ] higher spin black hole, the

thermal holonomy is given by the exponential of such an object,

ωBTZ = π

(
2τV 2

1 +
1

2τ
V 2
−1

)
, (2.13)

and so

H = eωBTZ = S e−2πiV 2
0 S−1 = e−2πiV 2

0 . (2.14)

The last equality follows because e−2πiV 2
0 is central; indeed, it is proportional to the

(infinite-dimensional) identity,

H = eiπ(1+λ) 1 . (2.15)

Thus it is rather obvious that H is central from this matrix perspective, as are other

features of the black hole thermal holonomy which were not already known: for example,

there is a periodicity Hλ = Hλ+2n for integer n. Integer powers Hn are trivially elements

of the center as well, corresponding to thermal holonomies of black holes with thermal

periodicity (z, z) ∼ (z + 2πnτ, z + 2πnτ). This helps us answer the question of what

exactly the center of the group HS[λ] is. It tells us that at rational λ = p/q, the thermal

holonomy of the BTZ black hole and its multiply-wound counterparts form a discrete

abelian subgroup Zq(Z2q) of the center for p + q even(odd), extending a result of [16]; on

the other hand, it proves that for irrational λ, the center of HS[λ] is U(1).4 Furthermore,

one can define a trace operation for these matrices [28],

TrX =
1

−λ
lim

N→−λ

N∑
j=1

Xjj . (2.16)

4Incidentally, this last fact is also implied by the results of [27]. There is further evidence suggesting

that the center of HS[λ] for any non-integer λ is U(1).
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Then one can show, using (2.11) and (2.12), that generally

Tr eβV
2
1 +γV 2

−1+δV 2
0 =

1

λ

sin
(
λ
√
|M |

)
sin
(√
|M |

) (2.17)

with M defined in (2.12). One can check this explicitly for λ = −N using matrices, and

at λ = 1
2 using a harmonic oscillator representation of hs[λ] generators [29, 30].

This is a useful result in the general understanding of how to deal with exponentials

of hs[λ] valued elements, which appear, for instance, in finite gauge transformations of

hs[λ] Chern-Simons theory. One application in the present context is in the creation of a

compact generating function for the traces Tr(ωnBTZ): by forming the object Ht = etω and

taking derivatives, the equations defining the black hole charges are

Tr(ωn) =
1

λ
lim
t→0

(
∂nt

sin(πλt)

sin(πt)

)
, n ∈ N (2.18)

up to the choice of an overall normalization of the trace. Still, to find the charges one must

solve these equations as in [13].

2.1.1 A zero temperature limit

The hs[λ] black hole has a useful zero temperature limit, in which we take τ2 →∞, α→∞
for fixed µ = α/τ . All charges vanish, and the resulting connection is

a = V 2
1 dz − µV 3

2 dz̄

a = V 2
−1dz̄ . (2.19)

This has been referred to as the ‘chiral deformation’ background in [16, 20]. Its simplicity

will allow us to check scalar correlators in the black hole background against independent

calculations in the above limit.

2.2 Scalar fields in higher spin gravity

Next we introduce the essential aspects of the machinery for computing scalar bulk-

boundary propagators and correlators in 3D higher spin gravity, which have previously

been used in various contexts, e.g. [16, 18–21].

The scalar field and its spacetime derivatives are packaged in a master field of the

higher spin theory which we denote C. This object is a spacetime zero-form transforming

in the twisted adjoint representation of hs[λ] that obeys the following simple equation

dC +A ? C − C ? A = 0 . (2.20)

The physical scalar field Φ is the identity component of C, which we denote Φ ≡ Tr(C).

The equation of motion (2.20) is deceptively simple: in a generic on-shell background,

it can be a challenge to decouple the different components of C and extract a scalar wave

equation for Φ. But because the gauge fields can always be written as locally pure gauge,

the gauge symmetry of (2.20) allows us to write down its solutions directly in terms of such

– 7 –
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gauge functions [16, 18]. In particular, the scalar master field can be obtained by a gauge

transformation from the gauge in which A = 0 and dc = 0, where c denotes the master

field C in the A = 0 gauge. This powerful method avoids the need to tediously extract the

wave equation in a given background, let alone to solve it.

More explicitly, connections that are independent of boundary coordinates (z, z) are

obtained via (2.4) from constant (a, a), as for the black hole (2.6). Then upon introducing

the definitions

Λ0 = aµx
µ , Λρ = b−1 ? Λ0 ? b ,

Λ0 = aµx
µ , Λρ = b ? Λ0 ? b

−1 , (2.21)

the scalar field is given by

Φ(z, z, ρ; 0) = e∆ρ Tr
[
e−Λρ ? c ? eΛρ

]
. (2.22)

The parameter ∆ is the conformal dimension of the dual scalar operator, related to the bulk

scalar mass in the usual way, m2 = ∆(∆− 2). Specifying to the case where Φ is the bulk-

boundary propagator, it was shown in [16] that c is a highest weight state of hs[λ]. This

prescription is conjectured to describe the correct generalization of delta-function boundary

conditions to the case of a scalar field propagating in an arbitrary higher spin background.

To extract the boundary two-point functions where both operators live at positive infin-

ity, the AdS/CFT dictionary then directs us to take the large ρ→∞ limit of (2.22), whereby

Φ(z, z, ρ; 0) ≈ e−∆ρ 〈φ̄(z, z)φ(0, 0)〉+ · · · , ρ→∞ . (2.23)

In the black hole background, say, one can also consider a ‘mixed’ correlator — with

operators on opposite boundaries of the global Lorentzian spacetime — which probes its

causal structure; this would be given by the ρ→ −∞ limit of (2.22) instead.

Henceforth we focus on the one-sided correlators (2.23). These should match those

of any holographic dual CFT with W∞[λ] symmetry and a scalar primary of conformal

dimension ∆. (Of course, we have in mind theWN minimal models at large central charge.)

To evaluate (2.20), one must choose a representation of hs[λ] in which (A,A,C) live. In

particular, in [21] it was argued that — at least on the level of free fields — solving (2.20)

with master fields in a general representation of hs[λ] computes CFT correlation functions

of dual scalar operators living in the same representation of hs[λ], which we recall is the

wedge algebra ofW∞[λ] [7]. The simplest case is when C lives in the defining representation

of hs[λ], in which case it contains a single scalar field with m2 = −1+λ2, and the ? product

becomes the lone star product. In the context of the WN minimal models, this bulk field

C is dual to the (f; 0) primary and its hs[λ] descendants.

A useful fact is that the highest weight state c is a projector [16, 27, 31]. In the

infinite-dimensional matrix representation of the defining representation of hs[λ], it can be

written as

c = diag(1, 0, 0, . . .) . (2.24)

Then the scalar propagator (2.22) boils down to a single matrix element,

Φ(z, z, ρ; 0) = e∆ρ〈1| eΛρe−Λρ |1〉 . (2.25)

– 8 –
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All of these manipulations are especially simple and transparent when λ = −N is an

integer: the master fields become finite-dimensional matrices and the (linearized) bulk

theory is sl(N) × sl(N) Chern-Simons theory consistently coupled to matter. This case

was studied in some detail in [3, 21, 32]. One very useful feature of the λ = −N case is that

one can calculate boundary correlators without computing the full propagator. Denoting

the highest and lowest weight states of some representation using a bra-ket notation as

|hw〉 and |−hw〉, respectively, the boundary two-point function for operators living in the

same CFT is simply

〈φ̄(z, z)φ(0, 0)〉 = 〈−hw|e−Λ0 |hw〉 〈hw|eΛ0 |−hw〉 . (2.26)

The large ρ limit eliminates the other terms contributing to (2.22).

It is worth emphasizing that at generic λ, generating solutions to scalar wave equations

by passage from A = 0 gauge as in (2.22) is not calculationally feasible in an arbitrary

higher spin background. One can overcome these hurdles for integer λ, where we have

finite-dimensional matrices at our disposal [21]; at λ = 1
2 , using the harmonic oscillator

realization of hs[λ] generators [16, 29]; or for generic λ if the background is simple enough,

by using (2.25) and the matrix representation introduced earlier [21]. Of course, one can

always proceed by using brute force to find the wave equation and solve it. In what follows,

we will use each of these methods.

2.3 Scalar correlators in the black hole background

We now present our results for scalar correlators in the hs[λ] black hole background, ex-

tending (2.1). We treat the case of the elementary scalar field in the defining representation

of hs[λ], with m2 = −1 +λ2, dual to a scalar primary operator with ∆ = 1 +λ. To achieve

the alternate quantization, simply take λ→ −λ.

First, some preliminaries. Because the problem factorizes into barred and unbarred

sectors, we will only consider a nonzero left-moving potential, α. At O(α0) one has the

pure BTZ solution. The full bulk-boundary propagator (up to overall normalization) for

the scalar in the background of a rotating BTZ black hole is

Φ(0) =

(
eρ

cos z
2τ cos z

2τ + 4e2ρττ sin z
2τ sin z

2τ

)∆

. (2.27)

One deduces the correct thermal two-point function between (large ρ) CFT operators as

〈φ̄(z, z)φ(0, 0)〉(0) =

(
4ττ sin

z

2τ
sin

z

2τ

)−∆

. (2.28)

As above, (z, z) parameterize the boundary torus. At higher orders, we expand as

〈φ̄(z, z)φ(0, 0)〉 = 〈φ̄(z, z)φ(0, 0)〉(0) +

∞∑
n=1

〈φ̄(z, z)φ(0, 0)〉(αn) , (2.29)

where 〈φ̄(z, z)φ(0, 0)〉(αn) is of O(αn). We will find it convenient to normalize our results

by the leading order piece, so the expansion parameter is the dimensionless ratio α/τ2.
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2.3.1 First order: universal structure

Even at leading non-trivial order in α, it is hard to evaluate (2.22) for the black hole

connection (2.6) at generic λ. Instead, we will resort to the brute force solution of the

master field equation (2.20).

Fortunately, this is rather straightforward in perturbation theory. Expand the master

fields as

C = C + αĈ , A = A+ αÂ , A = A . (2.30)

The (A,A,C) are the leading order BTZ master fields, and at first order we have

dĈ +A ? Ĉ − Ĉ ? A = −Â ? C . (2.31)

The effect of the higher spin terms Â is to generate a source term S ≡ −Â ? C, built out

of components of the BTZ master field C, for the master field perturbation Ĉ. Our goal is

to decouple the components of equation (2.31) to extract the wave equation for Φ̂.

The source terms can be determined by analyzing (2.20) in the pure BTZ background.

It is convenient to expand S in spacetime and along the internal directions, denoting

Ssm,xµ as the component along the generator V s
m and the differential dxµ. After some

algebra detailed in appendix A.2, one arrives at a two-derivative equation for the scalar

perturbation Φ̂[
−3η2

−∂
2
ρ − 6η+η−∂ρ − 768e4ρτ2τ2(τ2∂2 + τ2∂

2
)− 192e2ρτ2τ2η+∂∂ + 3(λ2 − 1)η2

−

]
Φ̂

= 8eρ(λ2 − 1)τ2η−S
2
1,z + 32e3ρ(λ2 − 1)τ2τ2η−S

2
1,z

−768e4ρτ2τ2(τ2∂S1
0,z + τ2∂S1

0,z)− 192e2ρτ2τ2∂S1
0,z − 3072e6ρτ4τ4∂S1

0,z , (2.32)

where we have defined η± ≡ ±1 + 16e4ρτ2τ2 and explicit expressions of the source terms

can be found in (A.10). One readily confirms that (2.27) solves this equation at S = 0.

Upon plugging in the source terms computed in the appendix, one is faced with a very

long and complicated partial differential equation. Fortunately, we were able to guess the

answer. The following solution of (2.32) is the bulk-boundary propagator for the scalar

field perturbation:

Φ̂ =
wf

2τ2
Φ(0)

[
cos2 Z

2

(
sinZ + (2− cosZ)(Z − Z)

)
−4e2ρττ sinZ

(
2(1− cosZ) + sinZ (Z − Z)

)
+(4e2ρττ)2 sin2 Z

2

(
3 sinZ + (2 + cosZ)(Z − Z)

)]
×
(

cos
Z
2

cos
Z
2

+ 4e2ρττ sin
Z
2

sin
Z
2

)−2

, (2.33)

where we have defined

Z =
z

τ
, Z =

z

τ
(2.34)

and wf = 1
6(1 + λ)(2 + λ) is the spin-3 zero mode eigenvalue of the scalar field.
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Taking the large ρ limit, the O(α) correction to the boundary two-point function as

parameterized by (2.29) is

〈φ̄(z, z)φ(0, 0)〉(α)

〈φ̄(z, z)φ(0, 0)〉(0)
=
αwf

τ2

3 sinZ + (2 + cosZ)(Z − Z)

2 sin2 Z
2

. (2.35)

This is a nice result. The functional form of both the propagator and the correlator is

universal: the only λ-dependence enters via the overall constant wf and the mass of the

scalar field. We were able to guess this result based on the CFT considerations: as we will

justify soon, the universality of the correlator follows from the fact that CFT three-point

functions 〈W (x)φ̄(z, z)φ(0, 0)〉 on the plane are fixed by conformal invariance, with an

overall coefficient given by the spin-3 eigenvalue of the scalar operator φ̄, see section 3.2.1.

For the minimal representation considered here, this eigenvalue is precisely wf . The fact

that the entire propagator is universal is less obvious, but true. This is another of the

strong restrictions imposed by higher spin symmetry.

2.3.2 Second order

Instead of following the method of the previous subsection to the next order — where we

will almost certainly encounter a partial differential equation whose solution we cannot

guess — we content ourselves with results at discrete, integer values of λ = −N . We can

jump right to the correlator using (2.26) without solving for the propagator.

Using an N ×N matrix representation we calculate the following corrections at O(α2)

and N = 3, 4, 5, 6, for a scalar in the standard quantization5 with ∆ = 1−N :

• N = 3 :

〈φ̄(z, z)φ(0)〉(α2)

〈φ̄(z, z)φ(0)〉(0)
=

α2

36τ4 sin2 Z
2

(6+4(Z−Z)2−(6+(Z−Z)2) cosZ−6(Z−Z) sinZ) .

(2.36)

• N = 4 :

〈φ̄(z, z)φ(0)〉(α2)

〈φ̄(z, z)φ(0)〉(0)
=

α2

2τ4
(Z − Z)2 . (2.37)

• N = 5 :

〈φ̄(z, z)φ(0)〉(α2)

〈φ̄(z, z)φ(0)〉(0)
=

α2

8τ4 sin4 Z
2

[
− 3 + 6(Z − Z)2 − 2(−4 + (Z − Z)2) cosZ

+ (−5+2(Z−Z)2) cos 2Z − 4(Z−Z)(sinZ + sin 2Z)
]
. (2.38)

• N = 6 :

〈φ̄(z, z)φ(0)〉(α2)

〈φ̄(z, z)φ(0)〉(0)
=

5α2

72τ4 sin4 Z
2

[
9(−1 + 4(Z−Z)2) + 8(6 + (Z−Z)2) cosZ (2.39)

+ (−39 + 10(Z−Z)2) cos 2Z − 6(Z−Z)(8 sinZ + 5 sin 2Z)
]
.

5Note that ∆ < 0 in this regime, an aspect of this limit which has been discussed recently in [3, 21, 27, 32].

The non-unitarity does not come to bear on the calculation of correlation functions.
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The functional form of these results is not universal, in parallel with the same property

of CFT four-point functions.

2.3.3 All orders in zero temperature, fixed µ limit

In the limit in which we take the temperature to zero holding µ = α/τ fixed — introduced

in section 2.1.1 — we can compute the scalar propagator to all orders in µ, for generic λ,

by passing from the A = 0 gauge using (2.25) and the matrix representation (2.11). For

our scalar field Φ with ∆ = 1 + λ, we thus have

lim
(τ,τ)→∞,
µ fixed

Φ = e(1+λ)ρ〈1|eeρ zV 2
−1e−e

ρzV 2
1 eµe

2ρ zV 3
2 |1〉 . (2.40)

The key aspect of the simplicity of (2.19) is that V 3
2 = V 2

1 ? V 2
1 . Then using

〈1|(V 2
−1)p(V 2

1 )q|1〉 = δp,q
q!Γ(q + λ+ 1)

Γ(λ+ 1)
(2.41)

and expanding in a series, the propagator is

lim
(τ,τ)→∞,
µ fixed

Φ = e(1+λ)ρ
∞∑

m,n,p=0

(−eρz)m

m!

(µe2ρz)n

n!

(eρz)p

p!
〈1|(V 2

−1)p(V 2
1 )m+2n|1〉 (2.42)

=

(
eρ

1 + e2ρzz

)1+λ ∞∑
n=0

[
µe4ρz3

(1 + e2ρzz)2

]n
Γ(2n+ 1 + λ)

n!Γ(1 + λ)
. (2.43)

This result matches [16] at λ = 1
2 and gives the correct propagator in the µ = 0, Poincaré

AdS limit. Taking the large ρ limit, the scalar two-point function is then

lim
(τ,τ)→∞,
µ fixed

〈φ̄(z, z)φ(0, 0)〉
〈φ̄(z, z)φ(0, 0)〉(0)

=

∞∑
n=0

(
µz

z2

)n Γ(2n+ 1 + λ)

n!Γ(1 + λ)
. (2.44)

One can confirm agreement with our results through O(α2) in this limit, and we will

compare (2.44) with a CFT calculation.

Let us now turn to the CFT, where we compute 〈φ̄(z, z)φ(0, 0)〉 through O(α2) for

generic λ. Happily, all of the above results will be seen to agree.

3 The dual CFT point of view

In [15] the following entry of the higher spin AdS/CFT dictionary was established. (We

work in Euclidean signature for convenience.) Consider the flat connection, valued in sl(3)

for simplicity,

a =

(
L1 −

2π

k
L(z, z)L−1 −

π

2k
W(z, z)W−2

)
dz − (µ(z, z)W2 + · · ·) dz , (3.1)

where the ellipses represent terms needed to satisfy the equation of motion. With µ = 0,

this is asymptotic to Poincaré AdS in the sense of [6], and the dual CFT lives on R2
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parameterized by (z, z); the equations of motion fix L and W to be holomorphic currents.

For nonzero µ, the CFT action is deformed by a term

δSCFT = − 1

2πi

∫
dz dz̄ µ(z, z)W (z) =

1

π

∫
d2z µ(z, z)W (z) , (3.2)

and one can show that the resultingW3 Ward identities are equivalent to the bulk equations

of motion. This is the justification for the identification of the µ in the bulk with the µ on

the boundary, and similarly for the charges (L,W) with the CFT currents (L,W ); indeed,

a similar analysis can be done in pure gravity [33]. This logic extends to the barred sector,

and to the replacement of sl(3) by any higher spin algebra.6

In this paper, we wish to perturb the BTZ black hole by a chemical potential for

the spin-3 charge, cf. (2.6). The CFT, now living on the torus parameterized by (z, z) ∼
(z+2π, z+2π) ∼ (z+2πτ, z+2πτ), is again perturbed as in (3.2) with µ constant. Our goal

is to compute the two-point function of a scalar primary in the presence of this deformation,

perturbatively in µ and in the high temperature regime. As in the bulk calculation, we

have turned on a holomorphic chemical potential only. Comparing to the connection (2.6),

we follow previous work by taking µ = α/τ ; this will naturally arise from our calculation

below (and was already deduced in a different way in [11, 25]).

For our computations it is actually more convenient to describe the torus as an an-

nulus rather than a parallelogram parameterized by (z, z), so let us define the ‘annulus

coordinate’, v = eiz.7 Then transforming (3.2) and inserting exp[−δSCFT ] into the scalar

two-point function, the deformed two-point function is equal to the torus amplitude

wh1 w̄
h̄
1 w

h
2 w̄

h̄
2 Tr

(
φ̄(w1, w̄1)φ(w2, w̄2) ei

µ
π

∫
d2v v

2

v̄
W (v)qL0− c

24 q̄L̄0− c
24

)
, (3.3)

where q = exp(2πiτ). Using transformation properties of quasi-primary fields, one notes

that (3.3) is at least formally doubly-periodic in each (wi, w̄i) separately, where the two

periodicities refer to wi 7→ e2πiwi and wi 7→ q wi, respectively.

Specifying to a primary with ∆ = 1+λ, these results should match the bulk calculations

of the previous section. In the large c limit of the WN minimal models, the scalar primary

φ is taken to be that of the minimal representation, φ ≡ (f; 0), along with its conjugate

φ ≡ (̄f; 0).8

We should stress that the exponential in (3.3) differs from what was considered

in [13, 14], where instead of the 2d integral above a contour integral, leading to W0, was

inserted inside the trace. We have explicitly checked9 that one can also derive the scalar

6The authors of [12, 34] propose a set of boundary conditions which they argue to imply that the

W -symmetry is preserved even in the black hole background with finite constant µ. They suggest that,

correspondingly, the CFT deformation might be viewed as due to an exactly marginal operator. This idea

is in apparent tension with the body of results — including those of the current paper — that are consistent

with the CFT deformation being by an irrelevant operator, though further consideration of their idea is

warranted. We thank the authors of [12, 34] for discussions.
7In what follows, {w,wi, v} parameterize the annulus, while {z, zi} parameterize the parallelogram.
8Note that relative to the conventions of [7] we have interchanged the roles of φ and φ̄.
9We thank Per Kraus for discussions and crucial insights on this calculation and the relation between

the two approaches.
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correlators in that approach; one must take care to identify properly the evolution opera-

tor for the scalars such that the correlator remains periodic. On the other hand, one can

imagine computing the black hole entropy using the 2d integral deformation introduced in

this paper. As is explained in appendix C, this seems to lead to a slightly different result

that may however correspond to a different choice of thermodynamic variables [11]. This

issue is however subtle, and we defer its full exploration to the future.10

3.1 The unperturbed answer

Let us first explain how to calculate the two-point function at µ = 0, i.e. the torus two-

point function

F (φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄) ≡ wh1 wh2 w̄h̄1 w̄h̄2 Tr
(
φ̄(w1, w̄1)φ(w2, w̄2)qL0− c

24 q̄L̄0− c
24
)
. (3.4)

We shall always be interested in scalar fields in this paper, i.e. we shall set h̄ = h from now

on. Since we are interested in this amplitude in the limit τ → 0, it is advantageous to do

a modular S-transformation, leading to a trace with modular parameter τ̂ = −1/τ . Under

the S-transformation, the torus amplitude (3.4) transforms as

F
(
φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄

)
= (τ̂ ˆ̄τ)2hF

(
φ̄(wτ̂1 , w̄

ˆ̄τ
1)φ(wτ̂2 , w̄

ˆ̄τ
2); τ̂ , ˆ̄τ

)
. (3.5)

In the limit τ̂2 →∞, we have q̂ ≡ e2πiτ̂ → 0, and the leading contribution comes from the

vacuum representation, and in fact just from the vacuum state in the trace. Therefore, the

zeroth-order term becomes in this limit

〈φ̄(w1, w̄1)φ(w2, w̄2)〉(0) ∼= (τ̂ ˆ̄τ)2h wτ̂h1 wτ̂h2 w̄ ˆ̄τh
1 w̄ ˆ̄τh

2

(wτ̂1 − wτ̂2)2h(w̄ ˆ̄τ
1 − w̄

ˆ̄τ
2)2h

, (3.6)

where we have normalized the two-point function by dividing by the zero-point function

(which removes the (q̂ ˆ̄q)−
c
24 factor). To compare directly with the bulk result we pass back

to the parallelogram via

w1 ≡ eiz1 , w̄1 ≡ e−iz̄1 , w2 ≡ eiz2 , w̄2 ≡ e−iz̄2 , (3.7)

and the zeroth-order term becomes

〈φ̄(z1, z̄1)φ(z2, z̄2)〉(0) =
(τ̂ ˆ̄τ)2h(

4 sin τ̂(z1−z2)
2 sin

ˆ̄τ(z̄1−z̄2)
2

)2h
. (3.8)

This agrees with the gravity result (2.28) after setting z1 = z, z2 = 0, and taking into

account that

τ̂ = −1

τ
, ˆ̄τ = −1

τ̄
. (3.9)

10We thank Tom Hartman for very useful conversations about this issue.

– 14 –



J
H
E
P
1
0
(
2
0
1
3
)
0
4
5

Figure 1. Domain of the 2d integral.

3.2 First order correction

The first order correction to the scalar two-point function is given by the integral

i
µ

π

∫
d2v

v2

v̄
wh1 w̄

h
1 w

h
2 w̄

h
2 Tr

(
W (v)φ̄(w1, w̄1)φ(w2, w̄2) qL0− c

24 q̄L̄0− c
24
)

= i
µ

π

∫
d2v

vv̄
F
(
W (v)φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄

)
, (3.10)

where F denotes again the torus amplitude analogous to equation (3.4). We are again

interested in the high temperature regime, which can be evaluated by doing an S-modular

transformation, writing the torus amplitude in terms of τ̂ = −1/τ , and picking out the

leading term. Using the familiar modular transformation properties, see e.g. [14], this

leads to

i
µ

π

∫
d2v

vv̄
τ̂2h+3 ˆ̄τ

2h
F
(
W (vτ̂ )φ̄(wτ̂1 , w̄

ˆ̄τ
1)φ(wτ̂2 , w̄

ˆ̄τ
2); τ̂ , ˆ̄τ

)
= −i α

π
τ̂2h+2 ˆ̄τ

2h
∫
d2ṽ

ṽ˜̄v
F
(
W (ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2); τ̂ , ˆ̄τ

)
, (3.11)

where we have renamed the coupling constant α = −µ/ˆ̄τ following the gravity notation,

and tilde variables are defined as

ṽ ≡ vτ̂ , w̃1 ≡ wτ̂1 , w̃2 ≡ wτ̂2 , (3.12)

and similarly for the barred coordinates. The integration domain changes as in figure 1

after the change of variables (3.12).

Let us briefly sketch the issues involved in computing this quantity. We want to

extract the leading contribution for τ̂2 → ∞ while maintaining the periodicity of the

correlator in the process. Following [14, 35], one proceeds to use recursion relations that

turn the integrand into a sum of Weierstrass functions multiplying the scalar fields and

their derivatives. These capture the interactions between the W current and the scalar

fields while respecting the torus periodicity. We then integrate the resulting function over

the full annulus.
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This last step requires a regularization scheme to deal with colliding operators. We

will choose to work with a scheme11 [36], where

1
˜̄v

= ˜̄∂ ln ˜̄v = ˜̄∂ ln(˜̄vṽ) . (3.13)

Then we can use Stokes’ theorem∫
M
d2ṽ (∂̃A+ ˜̄∂Ā) =

i

2

∮
∂M

(d˜̄vA− dṽĀ) (3.14)

to rewrite (3.11) as a sum of line integrals. In general, these will involve regular parts,

coming from the integration over the annulus boundaries, and singular parts, coming from

the points ṽ = w̃i where the operators collide. The latter contours are along small ‘holes’

that have been cut out around the scalar insertion points wi in order to make the integral

well-defined; for these contributions, one can ignore the recursion relations and simply use

the OPEs in the integrand of (3.11), as we are regulating short-distance singularities that

do not see the topology of the torus.

Using the recursion relations of [14, 35] which are briefly recapitulated in appendix B,

it is easy to see that the regular parts of (3.11) vanish in the scheme (3.13). This is due to

the periodicity of Weierstrass functions along the angular cycle of the annulus (see, e.g.,

appendix A of [14]). What remains is solely the singular part, and so we are entitled to

use the OPEs.

In the high temperature regime, the leading contribution of the trace comes from the

vacuum state (after the modular transformation); using Stokes’ theorem, the integral (3.11)

then simplifies to

− α

2π
τ̂2h+2 ˆ̄τ

2h
(q̂ ˆ̄q)−

c
24 w̃h1 ˜̄w

h
1 w̃

h
2

˜̄w
h
2

∮
holes

dṽ ṽ2 ln(˜̄vṽ)
〈
W (ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0
, (3.15)

where 〈· · · 〉0 denotes the correlation function on the sphere. The contour is along the small

holes that have been cut out around the insertion points w̃1 and w̃2. Our job is to compute

these integrals.

In order to do so, we only need to understand the poles of the integrand. From the

OPE of the W (ṽ) field with the scalar field φ̄(w̃1, ˜̄w1) we get

W (ṽ)φ̄(w̃1, ˜̄w1) =
(W0φ̄)(w̃1, ˜̄w1)

(ṽ − w̃1)3
+

(W−1φ̄)(w̃1, ˜̄w1)

(ṽ − w̃1)2
+

(W−2φ̄)(w̃1, ˜̄w1)

ṽ − w̃1
+ · · · (3.16)

where, in the large c limit, we have

W0 φ̄ ≡ wf φ̄

W−1 φ̄ =
3wf

2hf
L−1φ̄ =

3wf

2hf
∂φ̄ (3.17)

W−2 φ̄ =
3wf

hf(2hf + 1)
L2
−1φ̄ =

3wf

hf(2hf + 1)
∂2φ̄ .

11This scheme respects the ṽ 7→ e2πiṽ period of the annulus. One can also choose a scheme respecting the

other periodicity of the annulus ṽ 7→ q̂ ṽ (see appendix B for details). We have confirmed that the result is

scheme-independent.
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Recall that φ̄ is the representation corresponding to (f̄; 0), for which the eigenvalues are (in

our conventions)

hf =
1

2
(1 + λ)

wf =
1

6
(1 + λ)(2 + λ) =

1

3
hf(2hf + 1) .

(3.18)

Note that similar statements are true for (0; f) for which the eigenvalues are obtained from

the above by replacing λ 7→ −λ. Furthermore, the conjugate representations have the same

h eigenvalues, and opposite w-eigenvalues.

The contribution from the hole at w̃1 thus leads to12

i α τ̂2h+2 ˆ̄τ
2h

(q̂ ˆ̄q)−
c
24 w̃h1 ˜̄w

h
1 w̃

h
2

˜̄w
h
2

([
3wf

2
+

3wf

2hf
w̃1∂w̃1

]
+ ln( ˜̄w1w̃1)

[
wf +

3wf

hf
w̃1∂w̃1 +

3wf

hf(2hf + 1)
w̃2

1∂
2
w̃1

])
〈φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)〉0 . (3.19)

Moving the prefactor w̃h1 ˜̄w
h̄
1 w̃

h
2

˜̄w
h̄
2 through the derivatives, this becomes

i α τ̂2D1 〈φ̄(w1, w̄1)φ(w2, w̄2)〉(0) , (3.20)

where the differential operator D1 is defined by

D1 ≡
3wf

2hf
(w̃1∂w̃1) + ln( ˜̄w1w̃1)

(
3wf

hf(2hf + 1)
(w̃1∂w̃1)2 − wf

hf − 1

2hf + 1

)
. (3.21)

The contribution from the hole w̃2 differs by an overall minus sign, since in replacing φ̄ by

φ, the relations (3.17) change by a minus sign. Putting both contributions together, the

first order correction (proportional to α) equals

〈φ̄(w̃1, ¯̃w1)φ(w̃2, ¯̃w2)〉(α) = i α τ̂2(D1 −D2)〈φ̄(w1, w̄1)φ(w2, w̄2)〉(0) , (3.22)

where D2 is obtained from D1 by replacing w̃1 with w̃2, and 〈φ̄(w1, w̄1)φ(w2, w̄2)〉(0) is the

function of w̃i and ˜̄wj as defined in (3.6).

Finally we return to parallelogram coordinates using eq. (3.7), i.e. we define

w̃1 = eiτ̂z1 , w̃1∂w̃1 =
1

iτ̂
∂z1 , etc. (3.23)

Then we can use the explicit formula from (3.8) to deduce that

〈φ̄(z, z̄)φ(0, 0)〉(α)

〈φ̄(z, z̄)φ(0, 0)〉(0)
= αwf τ̂

2 −3 sin(τ̂ z) + (τ̂ z − ˆ̄τ z̄)(2 + cos(τ̂ z))

2 sin2 τ̂ z
2

, (3.24)

where we have set z1 = z, z2 = 0, for simplicity. With the explicit form of the eigenvalues

as given in (3.18), this then reproduces precisely (2.35) upon taking into account (2.34)

and (3.9).

12Notice the contour integral is along the clock-wise direction of the small disk cut around the singularity,

thus an extra minus sign is added.
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3.2.1 The structure of the first order result

Before we proceed we should mention that this first order calculation could have also

been done more simply, using the fact that the form of the 3-point function that appears

in (3.15) is completely fixed by conformal symmetry. (This is a special feature of the 3-

point function, and hence the following argument only works at first order.) Indeed, since

W , φ̄ and φ are (quasi-)primary fields, we know a priori that

〈
W (ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0

=
const

(w̃1 − w̃2)2h( ˜̄w1 − ˜̄w2)2h

[
(w̃1 − w̃2)

(ṽ − w̃1)(ṽ − w̃2)

]3

. (3.25)

Furthermore, the constant can be determined by considering a contour integral of ṽ around

w̃1, say,〈
(W0φ̄)(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0

=
1

2πi

∮
w̃1

dṽ (ṽ − w̃1)2
〈
W (ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0

=
const

(w̃1 − w̃2)2h( ˜̄w1 − ˜̄w2)2h
, (3.26)

i.e. the constant equals wf , the W0 eigenvalue of φ̄ (up to the normalisation factor of the

2-point function). Inserting (3.25) into (3.15) then gives the final answer (3.24) as a simple

contour integral, including the correct overall coefficient.

In fact, this result is true for a scalar field φ in any representation; in our other

derivation we used the special null vector structure of φ, see (3.17) and (3.18), but the

result does not actually rely on this. It also generalizes to other cases of nonzero higher

spin chemical potentials. These statements have also been checked from the bulk and will

be useful in the following.

3.3 Second order correction

Next we consider the second order correction for which we need to evaluate the integral

− µ2

2π2

∫
d2v1

v1v̄1

∫
d2v2

v2v̄2
F
(
W (v1)W (v2) φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄

)
, (3.27)

where F again denotes the torus amplitude. After the modular transformation and the

redefinition (3.12), the integral becomes

− α2

2π2
τ̂2h+4 ˆ̄τ

2h
(q̂ ˆ̄q)−

c
24 w̃h1 ˜̄w

h
1 w̃

h
2

˜̄w
h
2∫

d2ṽ1

˜̄v1

∫
d2ṽ2

˜̄v2
ṽ2

1 ṽ
2
2 〈W (ṽ1)W (ṽ2) φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)〉0 , (3.28)

plus terms subleading in the high temperature limit.

As at first order, the regular terms will vanish upon integration by parts and use of

the recursion relations, so we can jump right to the use of the OPEs. The 4-point function

in the integrand can be evaluated using the OPEs of W with the various fields,

WWφ̄φ+WWφ̄φ+WWφ̄φ . (3.29)
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The OPEs for the last two terms were already given before, and we denote the contribution

of these pieces to the total result as 〈φ̄(z, z̄)φ(0, 0)〉(α
2)

W . The OPE of two spin-3 fields takes

the form

W (ṽ1)W (ṽ2) ∼5cN3

6 ṽ6
12

+ 5N3

[
L

ṽ4
12

+
1

2

L′

ṽ3
12

+
3

20

L′′

ṽ2
12

+
1

30

L′′′

ṽ12

]
+

4

ṽ2
12

[
U +

20N3

5c+ 22
Λ(4)

]
+

2

ṽ12

[
U ′ +

20N3

5c+ 22
∂Λ(4)

]
, (3.30)

where N3 fixes the normalization of the spin-3 current, and our conventions are

N3 = −1

5
(λ2 − 4) . (3.31)

The composite field Λ(4) in (3.30) will not contribute in the large c limit at O(α2). The first

term in (3.30) is a disconnected diagram which does not contribute in our regularization

scheme. Therefore, from the contraction of the two W currents we only need to consider

the terms involving U and L (and their derivatives). In total, the O(α2) correction is thus

the sum of three types of terms, which we denote

〈φ̄(z, z̄)φ(0, 0)〉(α2) = 〈φ̄(z, z̄)φ(0, 0)〉(α
2)

L +〈φ̄(z, z̄)φ(0, 0)〉(α
2)

U +〈φ̄(z, z̄)φ(0, 0)〉(α
2)

W . (3.32)

The L terms (including its derivatives) combine, using integration by parts, to

α2τ̂4N3

3

(
2hf + ln( ˜̄w1w̃1)(w̃1∂w̃1) + ln( ˜̄w2w̃2)(w̃2∂w̃2)

) 〈
φ̄(w1, w̄1), φ(w2, w̄2)

〉(0)

thus leading to (after passage to parallelogram coordinates, see eq. (3.23))

〈φ̄(z, z̄)φ(0, 0)〉(α
2)

L

〈φ̄(z, z̄)φ(0, 0)〉(0)
= α2τ̂4 N3hf

3

(
2− (τ̂ z − ˆ̄τ z̄) cot

τ̂ z

2

)
. (3.33)

The U term and its derivative combine to

− α2

2πi
τ̂2h+4 ˆ̄τ

2h
(q̂ ˆ̄q)−

c
24 w̃h1 ˜̄w

h
1 w̃

h
2

˜̄w
h
2

∮
dṽ ṽ3 ln(˜̄vṽ)

〈
U(ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0
. (3.34)

We can evaluate this using the same argument as in section 3.2.1:13 the 3-point function

is of the form

〈
U(ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0

= uf

[
(w̃1 − w̃2)

(ṽ − w̃1)(ṽ − w̃2)

]4 〈
φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2)

〉
0
, (3.35)

where uf is the spin-4 zero mode eigenvalue of φ̄,

uf =
1

20
(1 + λ)(2 + λ)(3 + λ) =

1

5
hf(2hf + 1)(hf + 1) . (3.36)

13We have also checked that this result is correctly reproduced by the OPEs of U with φ̄ and φ, i.e. doing

the analogue of the calculation of section 3.2.
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Inserting this into (3.34) the subsequent contour integration yields (after passage to paral-

lelogram coordinates)

〈φ̄(z, z̄)φ(0, 0)〉(α
2)

U

〈φ̄(z, z̄)φ(0, 0)〉(0)
= uf α

2 τ̂4

{
19+11 cos(τ̂ z)

6 sin2 τ̂ z
2

− (τ̂ z − ˆ̄τ z̄)
(4+cos(τ̂ z)) sin(τ̂ z)

4 sin4 τ̂ z
2

}
. (3.37)

The second and third terms of (3.29), on the other hand, lead to

−α
2

2
τ̂4
{
D1D1 − 2D1D2 +D2D2

}〈
φ̄(w1, w̄1), φ(w2, w̄2)

〉(0)
, (3.38)

where D1 is defined in (3.21). This leads to the contribution

〈φ̄(z, z̄)φ(0, 0)〉(α
2)

W

〈φ̄(z, z̄)φ(0, 0)〉(0)
=

w2
f

16hf(2hf + 1)
α2τ̂4

[
N0 − (τ̂ z − ˆ̄τ z̄)N1 + (τ̂ z − ˆ̄τ z̄)2N2

]
, (3.39)

with the definitions

N0 ≡
12(2hf + 1)((3hf + 1) cos(τ̂ z) + 3hf + 5)

sin2 τ̂ z
2

N1 ≡
24(hf + 1)(hf cos(τ̂ z) + 2hf + 3) sin(τ̂ z)

sin4 τ̂ z
2

N2 ≡
(2hf + 1)(2(4hf + 9) cos(τ̂ z) + hf cos(2τ̂ z)) + 9(2h2

f + 5hf + 4)

sin4 τ̂ z
2

. (3.40)

Collecting all three contributions (3.33), (3.37), and (3.39) together, the final result for the

second order correction (i.e. the term proportional to α2) is then

〈φ̄(z, z̄)φ(0, 0)〉(α2)

〈φ̄(z, z̄)φ(0, 0)〉(0)
=
α2τ̂4(1 + λ)(2 + λ)

48

{
(λ+ 4)[(3λ+ 13) + (3λ+ 5) cos(τ̂ z)]

sin2 τ̂ z
2

− (τ̂ z − ˆ̄τ z̄)
(λ+ 4)[2(λ+ 4) + (λ+ 1) cos(τ̂ z)] sin(τ̂ z)

sin4 τ̂ z
2

(3.41)

+ (τ̂ z− ˆ̄τ z̄)2 9(λ2+7λ+14)+4(2λ2+15λ+22) cos(τ̂ z)+(λ+1)(λ+2) cos(2τ̂ z)

12 sin4 τ̂ z
2

}
,

where we have used the eigenvalues (3.18) and (3.36). We have also confirmed that the

same result is obtained using the other regularization scheme explained in appendix B.

This result holds for arbitrary λ; for λ = −3,−4,−5,−6, where we can do the gravity

calculation at arbitrary temperature (see eqs. (2.36)–(2.39)), it matches what we found

there after taking into account the S-modular transformation (3.9).

We can also take the zero temperature limit, discussed in section 2.3.3, of the above

result and match to the bulk result (2.44). This corresponds here to taking τ̂2 → 0 for

fixed µ = −α τ̂ . One easily confirms a match through O(µ2) for arbitrary λ.
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4 A further test: higher scalar representations

There are various directions in which one could extend these computations. One is to

take the dual CFT primary to live in a higher, i.e. non-defining, representation. The

bulk calculation then uses a master field C living in a representation Λ+ of hs[λ], whose

lowest component is a scalar field with a different mass [21]; the CFT representation has

a different spectrum, and consequently the relevant OPEs between φ and the higher spin

fields are different. In the context of the corresponding WN minimal models, the relevant

CFT primary is then described by (Λ+; 0).

We will focus our attention on the case of the antisymmetric two-box representation,

Λ+ = . For simplicity we also focus on the ‘semiclassical limit’ of the WN minimal mod-

els [3, 32], for which λ = −N ; in this limit the primary state of the ( ; 0) representation,

which we denote φa, has conformal dimension

h( ; 0) ≡ ha = 2hf + 1 = 2 + λ . (4.1)

Denoting the CFT primary by φa ≡ ( ; 0), our goal is to compute perturbatively its

two-point function in the bulk and on the boundary,

〈φ̄a(z, z)φa(0, 0)〉 = 〈φ̄a(z, z)φa(0, 0)〉(0) +

∞∑
n=1

〈φ̄a(z, z)φa(0, 0)〉(αn) , (4.2)

where, again,

〈φ̄a(z, z)φa(0, 0)〉(0) =

(
4ττ sin

z

2τ
sin

z

2τ

)−2ha

. (4.3)

As we shall see these results will also agree, which can be taken as evidence for the duality

itself and further confirmation for this multi-trace correlator prescription.

4.1 The CFT approach

The CFT calculation is essentially the same, except that the detailed form of the OPEs

with the higher spin fields is now different. Recall that the ‘wedge’ character of the (f; 0)

representation reads

χwedge
(f;0) = qhf

1

1− q
= qhf (1 + q + q2 + q3 + · · · ) , (4.4)

from which it follows that there is only one independent descendant state (inside the wedge)

at each level. On the other hand, for ( ; 0) the wedge character equals

χwedge

( ;0)
= qha

1

(1− q)(1− q2)
= qha(1 + q + 2q2 + 2q3 + · · · ) . (4.5)

For example, there is only one state at level one, and hence the null-vector at that level

must be the same as before, i.e.

W−1φ̄a =
3wa
2ha

L−1φ̄a =
3wa
2ha

∂φ̄a , (4.6)
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where wa and ha are the W0 and L0-eigenvalues of φ̄a, respectively. At level 2 (and 3),

however, there is one more independent state inside the wedge. For example, at level 2,

we may take the two independent states to be W−2φ̄a and L2
−1φ̄a. Thus we cannot replace

W−2φ̄a in terms of L2
−1φ̄a using null vectors as in the last equation of (3.17), and we need

to proceed differently. In fact, what actually matters for the calculation is to determine

〈(W−2φ̄a)(w̃1, ˜̄w1)φa(w̃2, ˜̄w2)〉0 =

〈([
W−2 −

3wa
ha(2ha + 1)

L2
−1

]
φ̄a

)
(w̃1, ˜̄w1)φa(w̃2, ˜̄w2)

〉
0

+
3wa

ha(2ha + 1)
∂2
w̃1
〈φ̄a(w̃1, ˜̄w1)φa(w̃2, ˜̄w2)〉0

=
3wa

ha(2ha + 1)
∂2
w̃1
〈φ̄a(w̃1, ˜̄w1)φa(w̃2, ˜̄w2)〉0 , (4.7)

where we have used that
[
W−2 − 3wa

ha(2ha+1)L
2
−1

]
φ̄a is quasi-primary (and hence does not

contribute in the two-point function with φa). At linear order the calculation therefore goes

effectively through: the result is (3.24), with the replacement of wf by the W0 eigenvalue

of φ̄a, which is

w( ; 0) ≡ wa =
1

3
(2 + λ)(4 + λ) . (4.8)

Again, this result is also immediately implied by the considerations of section 3.2.1.

At second order, the calculation of the L and U contributions, i.e. the first term

in (3.29), is essentially unchanged — indeed, effectively this is again a 3-point function

calculation, and hence the comments of section 3.2.1 apply — but the determination of the

second and third terms in (3.29) require more care. Since there is no null-vector equation

for W−2φ̄a, we have to use the usual mode bouncing tricks in order to evaluate these

correlators. Apart from that, however, the calculation is very similar, and the final result

to second order equals

〈φ̄a(z, z̄)φa(0, 0)〉(α2)

〈φ̄a(z, z̄)φa(0, 0)〉(0)
=
α2τ̂4(λ+ 2)

12
×{

1

sin2 τ̂ z
2

[
(3λ3 + 38λ2 + 174λ+ 259) + (λ+ 5)(3λ2 + 19λ+ 31) cos(τ̂ z)

]
−(τ̂ z − ˆ̄τ z̄)

sin4 τ̂ z
2

[
(2λ3 + 25λ2 + 112λ+ 164) + (λ3 + 11λ2 + 38λ+ 43) cos(τ̂ z)

]
sin(τ̂ z)

+
(τ̂ z − ˆ̄τ z̄)2

12 sin4 τ̂ z
2

[
9(λ3 + 12λ2 + 52λ+ 74) + 2(λ+ 4)2(4λ+ 17) cos(τ̂ z)

+(λ+ 4)2(λ+ 2) cos(2τ̂ z)
]}

, (4.9)

where we have used the eigenvalues (4.1) and (4.8) and

u( ; 0) ≡ ua =
1

10
(2 + λ)(3 + λ)(7 + λ) . (4.10)

As before, this result is valid for arbitrary λ. We should mention that this calculation can

be done equally easily in the ’t Hooft limit, where the relevant representation is ( ; 0),

whose ha, wa, ua eigenvalues are the same as above [37].
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4.2 The gravity approach

In the gravity theory we can carry out the computations at integer λ = −N . The pre-

scription for computing the two-point correlator of the ( ; 0) operator was described in

section 2, and again amounts to evaluating (2.26), where now |hw〉 and | − hw〉 are highest

and lowest weight states of the representation, respectively.

It is easiest to construct this representation via the antisymmetric tensor product of

two representations. Then the highest and lowest weight states in are

|hw〉 =
|1〉|2〉 − |2〉|1〉√

2
(4.11)

| − hw〉 =
|N〉|N − 1〉 − |N − 1〉|N〉√

2
, (4.12)

and so

〈−hw|e−Λ0 |hw〉 = 〈N |e−Λ0 |1〉〈N − 1|e−Λ0 |2〉 − 〈N |e−Λ0 |2〉〈N − 1|e−Λ0 |1〉 , (4.13)

where the matrix elements on the right-hand side are taken in the defining representation.

At first order, inferring from results at low-lying values of N , we find exactly the same

universal structure as in the defining representation, only with a different overall coefficient,

〈φ̄a(z, z)φa(0, 0)〉(α)

〈φ̄a(z, z)φa(0, 0)〉(0)
=
αwa
τ2

3 sinZ + (2 + cosZ)(Z − Z)

2 sin2 Z
2

, (4.14)

where

wa =
(2−N)(4−N)

3
. (4.15)

This matches the CFT result after taking into account the S-modular transformation.

At second order, we present results for N = 3, 4, 5, 6, for which we obtain

• N = 3 :

〈φ̄a(z, z)φa(0, 0)〉(α2)

〈φ̄a(z, z)φa(0, 0)〉(0)
=

α2

36τ4 sin2 Z
2

[
6 + 4(Z − Z)2 − (6 + (Z − Z)2) cosZ

− 6(Z − Z) sinZ
]
. (4.16)

This is the same result as (2.36) because for sl(3), = .

• N = 4 :

〈φ̄a(z, z)φa(0, 0)〉(α2)

〈φ̄a(z, z)φa(0, 0)〉(0)
=

α2

8τ4 sin4 Z
2

[
3(5 + 2(Z − Z)2)− 16 cosZ + cos 2Z

+ 2(Z − Z)(−8 sinZ + sin 2Z)
]
. (4.17)

• N = 5 :

〈φ̄a(z, z)φa(0, 0)〉(α2)

〈φ̄a(z, z)φa(0, 0)〉(0)
=

α2

16τ4 sin4 Z
2

[
72 + 33(Z − Z)2 + 2(−36 + (Z − Z)2) cosZ

+ (Z−Z)2 cos 2Z − (Z−Z)(84 sinZ−6 sin 2Z)
]
. (4.18)

– 23 –



J
H
E
P
1
0
(
2
0
1
3
)
0
4
5

• N = 6 :

〈φ̄a(z, z)φa(0, 0)〉(α2)

〈φ̄a(z, z)φa(0, 0)〉(0)
=

α2

36τ4 sin4 Z
2

[
9(35+22(Z−Z)2) + 8(−30+7(Z−Z)2) cosZ

+ (−75+16(Z−Z)2) cos 2Z−30(Z−Z)(16 sinZ+sin 2Z)
]
.

(4.19)

These match the CFT result (4.9) for λ = −3,−4,−5,−6 after taking into account the

S-modular transformation.

5 Discussion

The preceding match between CFT scalar correlators as computed from the bulk and the

boundary is another piece of evidence for the proposed higher spin AdS3/CFT2 dualities

of [2, 3]. Our calculations can be straightforwardly extended in a number of directions, for

instance to the supersymmetric realm [38–41].

One issue that has emerged in the course of this investigation is the question of what

the correct prescription for the CFT deformation should be. As we have argued here, the

deformation should be given by (3.2). While this is very natural for various reasons, it is

not obviously the same as the prescription that was used for the successful match of the

black hole and boundary entropies in [13, 14]. (In particular, while here the perturbation

is via a 2d integral, the perturbative term in [13, 14] was taken to be just the zero mode

W0, and at least on the face of it, these two descriptions do not agree. See the discussion

in appendix C.) A full understanding of this subtlety may also help to cast some light

on the recent interpretational mysteries surrounding the higher spin black hole entropy,

see [10, 11, 25, 34].

To close, let us take this opportunity to highlight a pressing open question for the

higher spin duality enterprise at large. As we noted, our calculations are driven by the

interplay between higher spin symmetry and charged scalar primary operators, and are

independent of the specific CFT in question as long as it has the right spectrum. The

large c limits of the WN minimal models have this property, but our results do not probe

the interactions among the scalar operators themselves. Indeed, in the context of the

duality, all explicit higher spin gravity calculations involving scalar fields have so far been

at linearized order around a given higher spin background. While this nevertheless allows

one to calculate holographically certain three-point and even four-point functions of the

dual CFT [19–21], these cannot involve more than two light scalar operators.

Thus, to come closer to a smoking gun for the proposed dualities, we feel that it is

important to understand the dynamics on the gravity side beyond the free field level. With

respect to calculating correlation functions, one would like to effectively perform a Witten

diagram expansion in the bulk. There are plenty of explicit predictions from CFT — for

instance, from four-point functions of scalar primary operators that remain light in the

classical limit — that the bulk theory must reproduce if the duality is valid.
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Understanding the bulk perturbation theory of the 3D Vasiliev theory beyond lin-

earized order would also permit one to address the issue of back-reaction. Can we form a

black hole from a collapsing shell of matter? How does this mesh with input from CFT [42]?

In a sense, it is not yet clear whether the integrability of the WN minimal models, or the

fact that they are interacting, will determine whether black hole formation is possible.
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A Details of bulk calculations

A.1 hs[λ] conventions

We follow the conventions of [16] which we briefly recapitulate here. In the defining rep-

resentation, our hs[λ] generators V s
m — labeled by a spin index, s = 2, 3, . . . and a mode

index, |m| < s, with m ∈ Z — are built from the sl(2) subalgebra as

V s
m = (−1)s−1−m (s+m− 1)!

(2s− 2)!

[
V 2
−1, . . . [V

2
−1, [V

2
−1︸ ︷︷ ︸

s−m−1 terms

, (V 2
1 )s−1]]

]
. (A.1)

At λ = ±N , this also defines our basis of sl(N) matrices in the N ×N representation upon

removing all generators with s > N .

In the defining representation of hs[λ], the ? operation is the lone star product [24], an

infinite-dimensional generalization of N×N matrix multiplication: that is, the star product

can be decomposed as a linear combination of hs[λ] generators, plus an identity element

V 1
0 . The hs[λ] commutator is the star commutator. Explicitly, the lone star product is

V s
m ? V t

n ≡
1

2

s+t−|s−t|−1∑
u=1,2,3,...

gstu (m,n;λ)V s+t−u
m+n , (A.2)

with structure constants

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (m,n) , (A.3)
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where

N st
u (m,n) =

u−1∑
k=0

(−1)k

(
u− 1

k

)
[s− 1 +m]u−1−k[s− 1−m]k[t− 1 + n]k[t− 1− n]u−1−k

φstu (λ) = 4F3

[
1
2 + λ , 1

2 − λ ,
2−u

2 , 1−u
2

3
2 − s ,

3
2 − t ,

1
2 + s+ t− u

∣∣∣∣∣1
]
. (A.4)

We make use of the descending Pochhammer symbol, [a]n = a(a− 1) . . . (a− n+ 1). q is a

normalization constant which we set to q = 1/4. These structure constants are polynomials

in λ2. In defining our trace operation, we append no overall normalization factor, i.e.

Tr(X) = X|V 1
0
. (A.5)

An explicit formula for the bilinear trace Tr(V s
mV

s
−m) can be found in, e.g. [7].

A.2 First order perturbation theory

Recall the scalar equation (2.20) expanded to first-order in α, given in (2.31)

dĈ +A ? Ĉ − Ĉ ? A = −Â ? C (A.6)

and denote S ≡ −Â ? C. The ingredients are as follows:

• (A,A) are the pure BTZ connections,

A =

(
eρV 2

1 +
e−ρ

4τ2
V 2
−1

)
dz + V 2

0 dρ

A =

(
eρV 2
−1 +

e−ρ

4τ2V
2

1

)
dz − V 2

0 dρ ; (A.7)

• C is the master field in the pure BTZ background obeying dC +A?C −C ?A = 0;

• Â is the O(α) part of the hs[λ] black hole connection (2.6) with charges (2.8),

gauge-transformed to restore ρ-dependence using (2.4); explicitly,

Â =
e−2ρ

6τ5
V 3
−2dz −

1

τ

(
e2ρV 3

2 +
1

16τ4
V 3
−2 +

e−2ρ

2τ2
V 3

0

)
dz ; (A.8)

• Ĉ is the O(α) fluctuation whose identity component Φ̂ = Tr(Ĉ) gives the scalar

field perturbation.

The equation (A.6) decomposes along spacetime and internal directions to give an

infinite set of component equations. We want to decouple these components to extract the

wave equation for Φ̂, which was given in (2.32) in terms of components of S. From (A.6),

we see that this will be a two-derivative equation for Φ̂: the only effect of the higher

spin deformation of the connection is to generate a source for a scalar field moving in the

BTZ background.
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By studying the structure of (A.6) and (A.7), one finds a minimal set of six equations

needed to extract the wave equation. Denoting by V s
m,xµ the component of (A.6) along the

generator V s
m and the direction dxµ, the set is

V 1
0,ρ : ∂ρΦ̂ + Ĉ2

0 ·
λ2 − 1

6
= 0

V 1
0,z : ∂Φ̂− eρĈ2

−1 ·
λ2 − 1

6
− e−ρ

4τ2
Ĉ2

1 ·
λ2 − 1

6
= S1

0,z

V 1
0,z : ∂Φ̂− eρĈ2

1 ·
λ2 − 1

6
− e−ρ

4τ2 Ĉ
2
−1 ·

λ2 − 1

6
= S1

0,z

V 2
1,z : ∂Ĉ2

1 + eρΦ̂ +
eρ

2
Ĉ2

0 − eρĈ3
0 ·

λ2 − 4

30
− e−ρ

4τ2
Ĉ3

2 ·
λ2 − 4

5
= S2

1,z

V 2
1,z : ∂Ĉ2

1 − eρĈ3
2 ·

λ2 − 4

5
+
e−ρ

4τ2

(
Φ̂− 1

2
Ĉ2

0 − Ĉ3
0 ·

λ2 − 4

30

)
= S2

1,z

V 2
0,ρ : ∂ρĈ

2
0 + 2Φ̂ + Ĉ3

0 ·
2(λ2 − 4)

15
= 0 . (A.9)

Thus we have six equations for six components, {Φ̂, Ĉ2
0 , Ĉ

2
±1Ĉ

3
0 , Ĉ

3
2}. For S = 0, these are

the equations in the pure BTZ background for the components of C. Decoupling these

leads to (2.32).

Now we need to compute the source terms. Using (A.8) and computing Ssm,xµ along

the necessary directions using the lone star product, we find

S1
0,z = −(λ2 − 1)(λ2 − 4)

180τ5
e−2ρC3

2

S1
0,z = −(λ2 − 1)(λ2 − 4)

1440τ

(
48e2ρC3

−2 +
3

τ4
e−2ρC3

2 +
4

τ2
C3

0

)
S2

1,z = −(λ2 − 4)(λ2 − 9)

140τ5
e−2ρC4

3

S2
1,z = −(λ2 − 4)

τ

[
e2ρ

(
−1

5
C2
−1 −

1

10
C3
−1 +

(λ2 − 9)

350
C4
−1

)
+
e−2ρ

τ4

(
3(λ2 − 9)

1120

)
C4

3 +
1

τ2

(
− 1

60
C2

1 −
1

40
C3

1 +
(λ2 − 9)

700
C4

1

)]
. (A.10)

We see that we need to derive the following components of the master field C in the

BTZ background: {C3
±2, C

3
±1, C

3
0 , C

4
3 , C

4
±1, C

2
−1}. In particular we need to solve for these

in terms of the scalar field Φ(0) ≡ Tr(C), where Φ(0) is the zeroth order bulk-boundary

propagator (2.27). Thus the main task at this stage is to find a closed set of equations for

C with which one can solve for the desired components of C.

Inspection of the BTZ connection and the nature of the lone star product guides one

toward the following (non-unique) algorithm:

1. Solve, in sequence, V 1
0,z, V

1
0,z for C2

±1; then V 2
0,z, V

2
0,z for C3

±1; and finally V 3
0,z, V

3
0,z

for C4
±1.

2. Next, solve V 1
0,ρ, V

2
0,ρ for C2

0 and C3
0 .
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3. Solve V 2
1,z, V

2
−1,z for C3

±2.

4. Finally, solve V 3
2,z for C4

3 .

The logic of some of these steps is manifest in (A.9), recalling that C obeys those same

equations with S = 0. For more guidance and some mnemonics on how to read off quickly

which components of C appear in which equations, we refer the reader to [20].

Continuing, this algorithm yields the sources (A.10), given in terms of spacetime deriva-

tives of Φ(0). In particular, the S1
0 terms contain up to two derivatives of Φ(0), and the

S2
1 terms contain up to three derivatives; all are fairly long expressions. Plugging them

into (2.32) yields the final wave equation for Φ̂, which is a long result. Nevertheless, it is

easy to check that (2.33) is a solution.

B Another regularization scheme

In this appendix we repeat the first order correction (3.10), using the regularization scheme

that preserves the ṽ 7→ q̂ ṽ period of the annulus, as advertised in footnote 11. By modular

invariance, this is equivalent to using the scheme that preserves the angular periodicity

before the modular transformation. The second order correction (3.27) can be worked out

similarly, but is more involved.

In this regularization, before the modular transformation, we write

1

v̄
= ∂̄ ln(v̄v) . (B.1)

Then using Stokes’ theorem, (3.10) becomes

µ

2π

∮
dv

v
ln(v̄v)F

(
W (v)φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄

)
, (B.2)

where the contour integral runs along the boundaries (which gives the regular part) and

encircles the singularities (which gives the singular part).

For the regular part, the integration along the outer circle is trivially zero since the

radius is 1 (and hence the logarithm vanishes), while the integration along the inner cir-

cle gives

2µτ2

∮
0

dv

v
F
(
W (v)φ̄(w1, w̄1)φ(w2, w̄2); τ, τ̄

)
. (B.3)

The contour integral isolates the zero mode of W (v), so the calculation is similar to those

in [14]. Following the standard procedure to compute torus amplitudes at high temperature,

we now perform a S-modular transformation so that the low-lying states dominate. After

a change of variables (3.12), we get

− 2α τ̂2 τ̂
2h+1 ˆ̄τ

2h
∫ q̂

1

dṽ

ṽ
F
(
W (ṽ)φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2); τ̂ , ˆ̄τ

)
. (B.4)
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This can be calculated using the recursion relations (see (2.21) of [14]) and we have

−2α τ̂2 τ̂
2h+1 ˆ̄τ

2h
∫ q̂

1

dṽ

ṽ

{∑
m≥0

Pm+1

(
w̃1

ṽ

)
F
(
W [m]φ̄(w̃1, ˜̄w1)φ(w̃2, ˜̄w2); τ̂ , ˆ̄τ

)
(B.5)

+
∑
m≥0

Pm+1

(
w̃2

ṽ

)
F
(
φ̄(w̃1, ˜̄w1)W [m]φ(w̃2, ˜̄w2); τ̂ , ˆ̄τ

)}
,

where Pm+1 denote the Weierstrass functions, and the bracketed modes are defined the

same way as in (2.22) of [14]. Using the integrals of Weierstrass functions∫ q̂

1

dṽ

ṽ
P1

(
w̃

ṽ

)
= (2πi)(iπ − 2πiτ̂ + ln w̃) (B.6)∫ q̂

1

dṽ

ṽ
P2

(
w̃

ṽ

)
= (2πi)2 (B.7)∫ q̂

1

dṽ

ṽ
Pm+1

(
w̃

ṽ

)
= 0 , (m > 1) (B.8)

as well as the definition of the bracketed modes

W [0] = (2πi)−1 (W−2 + 2W−1 +W0) (B.9)

W [1] = (2πi)−2

(
W−1 +

3

2
W0 +

1

3
W1 + . . .

)
, (B.10)

we find that the first order correction (B.3) equals

〈φ̄(w̃1, ¯̃w1)φ(w̃2, ¯̃w2)〉(α)
reg =

(
1−

ˆ̄τ

τ̂

)
i α τ̂2 (Dholo

1 −Dholo
2 ) 〈φ̄(w1, w̄1)φ(w2, w̄2)〉(0) , (B.11)

where the differential operator

Dholo
1 ≡ 3wf

2hf
(w̃1∂w̃1) + ln(w̃1)

(
3wf

hf(2hf + 1)
(w̃1∂w̃1)2 − wf

hf − 1

2hf + 1

)
(B.12)

is the ‘holomorphic’ part of (3.21). Using the coordinate transformation (3.23), this leads

to the result

〈φ̄(z, z̄)φ(0, 0)〉(α)
reg

〈φ̄(z, z̄)φ(0, 0)〉(0)
=

(
1−

ˆ̄τ

τ̂

)
αwf τ̂

2 −3 sin(τ̂ z) + (τ̂ z)(2 + cos(τ̂ z))

2 sin2 τ̂ z
2

, (B.13)

which is the ‘holomorphic’ part of (3.24) with an additional factor (1− ˆ̄τ/τ̂).

It remains to determine the contour integral around the singular part of (B.2). After

the modular S-transformation, this takes the same form as the calculation in section 3.2,

except that we now write instead of (3.13)

1
˜̄v

= ˜̄∂

[
ln ˜̄v +

ˆ̄τ

τ̂
ln ṽ

]
, (B.14)
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which is invariant under ṽ 7→ q̂ṽ. Relative to (3.24), the effect of (B.14) is to produce an

overall factor ˆ̄τ/τ̂ for the ‘holomorphic’ piece (the piece proportional to ln ṽ), while keeping

the piece proportional to ln ˜̄v unchanged. Thus, the result of the singular part is

〈φ̄(z, z̄)φ(0, 0)〉(α)
sing

〈φ̄(z, z̄)φ(0, 0)〉(0)
= αwf τ̂ ˆ̄τ

−3 sin(τ̂ z) + τ̂(z − z̄)(2 + cos(τ̂ z))

2 sin2 τ̂ z
2

. (B.15)

Adding (B.13) to (B.15), we then precisely recover (3.24).

C Black hole partition function from CFT redux

As was mentioned at the beginning of section 3, the perturbation that is used in this

paper, eq. (3.2), differs from the perturbing term in the analysis of the black hole entropy

(or partition function) that was employed in [13, 14]. In this appendix we want to comment

on the relationship between the two approaches.

In [13, 14] the perturbed partition was taken to equal

Z1d = Tr
(
e2πiαW0qL0− c

24 q̄L̄0− c
24

)
, (C.1)

where W0 means that the zero mode of W has been inserted into the trace. This is a

natural definition from the perspective of the partition function as a trace over states in a

Hilbert space. At O(α2), for example, one must then calculate

Z
(2)
1d =

(2πiα)2

2!
Tr(W0W0 q

L0− c
24 q̄L̄0− c

24 )

=
α2

2

∮
0
dv1

∮
0
dv2 v

2
1v

2
2 Tr(W (v1)W (v2)qL0− c

24 q̄L̄0− c
24 )

=
α2

2

∮
0

dv1

v1

∮
0

dv2

v2
F (W (v1)W (v2); τ, τ) , (C.2)

where F is the torus amplitude defined as in (3.4), and the contour encircles the origin.

This is to be compared with what the perturbation (3.2) would give rise to. Then we

would define the deformed partition function as

Z2d = Tr
(
ei
µ
π

∫
d2v v

2

v̄
W (v)qL0− c

24 q̄L̄0− c
24

)
, (C.3)

and the second order term is

Z
(2)
2d = − µ2

2π2

∫
d2v1

v1v̄1

∫
d2v2

v2v̄2
F (W (v1)W (v2); τ, τ) . (C.4)

We want to study the question whether the two deformations give the same partition

function, i.e. whether Z2d = Z1d.

Formally we may relate the two calculations by simply performing the integral of the

perturbing term in the exponent. Using the mode expansion W (v) =
∑

n v
−n−3Wn, we

then find

i
µ

π

∫
d2v

v2

v̄
W (v) = i

µ

π

∫
d2v

vv̄

∑
n

v−nWn

= i
µ

π

∫ 1

|q|

dr

r

∫ 2π

0
dθ
∑
n

r−ne−inθWn = 4πi µ τ2W0 . (C.5)

– 30 –



J
H
E
P
1
0
(
2
0
1
3
)
0
4
5

This suggests that the partition function (C.4) reduces to (C.2) provided we identify the

chemical potentials as

2πi αnew = 4πi µτ2 =⇒ αnew = 2µτ2 . (C.6)

Note that this differs from the relation between µ and α that was used in [13, 14] as well

as earlier in this paper, see the comment after eq. (3.11),

α = µτ̄ . (C.7)

Note that this discrepancy is exactly of the same type as the relation between the holomor-

phic and canoncial approaches to the calculation of the black hole entropy, see eq. (5.30)

of [11]. Thus we suspect that this is related to the inherent ambiguities in defining ther-

modynamic variables for these theories.14

One may be worried about the somewhat formal argument in eq. (C.5) above since it

does not address possible singularities when the operators coincide. For a more rigorous

treatment, we may use the result of [36] where it is shown that the two approaches only

differ by a contact term. At second order, one finds, see ([36], eq. (3.14))〈∫
W

∫
W

〉
= (2πiτ2)2

〈∮
W

∮
W

〉
+ 2π2iτ2

〈∮
(WW )2

〉
. (C.8)

Here we have used the shorthand notation∫
W =

∫
d2v

vv̄
W (v) ,

∮
W =

∮
0

dv

v
W (v) , (C.9)

(with the understanding that they appear inside a torus amplitude) and (WW )2 is the

coefficient of the OPE

W (v) ·W (w) ∼
∞∑

n=−∞
(v − w)−n (WW )n(w) . (C.10)

This was derived by using the same scheme as in appendix B, recursively eliminating all 2d

integrals in favor of contour integrals: the first term of the right side of (C.8) captures the

regular part of the left hand side integrated along the annulus boundary, while the second

term comes from the singularities. Since the W∞[µ] algebra is ‘abelian’ in the sense of [36]

— this is basically a direct consequence of the fact that the algebra respects a Z2-grading,

where fields of even (odd) conformal dimension are even (odd) — the two-product (AB)2

does not contain any central terms.15 Thus, the contact term is subleading in the large

central charge limit, and hence does not contribute to the calculation, and we conclude

that (C.8) establishes the desired relation.

We should stress though that these manipulations are very subtle. For example, if one

uses (C.8) after the modular transformation instead — that is, at low temperature — the

result naively appears to vanish. Similarly, one can use a regularization scheme in which

14We thank Tom Hartman for drawing our attention to this.
15Note that the W∞[µ] algebra only contains fields of conformal dimension h ≥ 2.
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the thermal periodicity v 7→ qv is preserved instead, in which case its application at high

temperature appears to give zero. (This ‘flip’ is natural, as the modular transformation

exchanges cycles.) This seems related to the fact that the respective cycles are becoming

degenerate in the corresponding limits. The scalar calculations suffer no such apparent

scheme-dependence, because one picks up singularities from the scalar operator insertions

on the torus upon taking the limit.

In addition, it seems nontrivial to firmly establish that one never picks up O(c) con-

tact terms at higher orders, in the high temperature regime. For instance, one finds terms

proportional to the vacuum expectation value of a pair of two-products (WW )2, which

will include stress tensor two-point functions. One can provide arguments that such terms

vanish at high temperature even if they don’t vanish identically, but we leave a full inves-

tigation for the future.
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