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Many biological networks can maintain their function against single gene loss. However, the
evolutionary mechanisms responsible for such robustness remain unclear. Here, we demonstrate
that antagonistic host–parasite interactions can act as a selective pressure driving the emergence of
robustness against gene loss. Using a model of host signaling networks and simulating their
coevolution with parasites that interfere with network function, we find that networks evolve both
redundancy and specific architectures that allow them tomaintain their response despite removal of
proteins.We show thatwhen the parasite pressure is removed, subsequent evolution can lead to loss
of redundancy while architecture-based robustness is retained. Contrary to intuition, increased
parasite virulence hampers evolution of robustness by limiting the generation of population level
diversity in the host. However, when robustness emerges under high virulence, it tends to be
stronger. These findings predict an increased presence of robustness mechanisms in biological
networks operating under parasite interference. Conversely, the presence of such mechanisms
could indicate current or past parasite interference.
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Introduction

In several organisms, gene deletion studies suggest a large
fraction of genes to be dispensable (Giaever et al, 2002; Alonso
et al, 2003; Kamath et al, 2003; Wilson et al, 2005). Although
part of this observation stems from genes that are required
under environments not assayed in the lab, a still appreciable
number of genes can be lost with seemingly no phenotypic
effect (Hoffmann, 1991; Joyner et al, 1991; Goldstein, 1993;
Cadigan et al, 1994). Such robustness can result fromduplicate
genes that maintain a functional overlap despite molecular
divergence (redundancy) (Wagner, 2000a; Gu et al, 2003; Papp
et al, 2004) or from system architecture (Edwards and Palsson,
1999; Emmerling et al, 2002). The emergence and main-
tenance of these two mechanisms pose significant challenges
for evolutionary biology (de Visser et al, 2003). Previous work
has shown that genetic mutational load could act as a weak
selective pressure for redundancy and can result in the

emergence and maintenance of robustness under specific
conditions (Nowak et al, 1997; Wagner, 2000b). However, no
explanation currently exists for how evolution can lead to
specific network architectures that are robust against deletion
of parts. Furthermore, although fluctuating environments are
suggested to drive the evolution of robustness in metabolic
networks (Harrison et al, 2007), the relation between
ecological factors and robustness is not addressed in detail.
Among the many potential ecological factors that could

influence the evolution of networks, parasites stand out for
several reasons. Parasite-imposed selective pressure on the
host is usually high, as the fitness reductions that result from
failure to deal with the parasite are often severe. Conversely,
the fitness reductions of parasites that fail to infect, survive
and transmit themselves in and among hosts are even more
severe (Anderson and May, 1991). This strong antagonistic
fitness interaction, combined with the fact that both parasite
virulence and host susceptibility are strongly determined by
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genes, results in a never-ending arms race at molecular level
(Schmid-Hempel and Ebert, 2003; de Wit, 2007). This arms
race, usually referred to as Red Queen dynamics (Bell, 1982),
is a driving force responsible for the selection of many
fundamental traits such as sexual reproduction (Jaenike,
1978; Salathé et al, 2008a). At the molecular level, the
coevolution gives rise to parasite proteins that promote entry
to and growth in the host system, and host proteins that
recognize parasite and initiate an immune response against it.
It has been suggested that parasites might have lost the race to
avoid direct recognition by hosts and have instead shifted their
focus to interfering with the host pathways that are mediating
defence (Schmid-Hempel, 2005). Indeed, there is ample
empirical evidence for parasite interference with host path-
ways (Sacks and Sher, 2002; Bhavsar et al, 2007; Marques and
Carthew, 2007). For example, parasitic protozoa Leishmania
and Toxoplasma gondii are shown to inhibit the activity of
specific host kinases (Olivier et al, 1992) and block nuclear
localization of specific transcription factors (Denkers et al,
2004), respectively. The bacterial pathogens Salmonella
enterica and Yersinia have proteins that act as kinases and
phosphotases for proteins in the intracellular signaling path-
ways of their hosts (Terebiznik et al, 2002; Prehna et al, 2006),
thereby altering cellular responses. Parasites also seem to have
evolved strategies to downregulate expression (Stern-Ginossar
et al, 2007) or inhibit proper folding (Tardif and Siddiqui, 2003)
of specific host proteins. Ultimately, all these interference
strategies will disturb the dynamics and the final response of
the host signaling networks, thereby reducing the fitness of the
host and benefiting that of the parasite.
Here, we explore the consequences of parasite interference

with host signaling networks on the evolution of the latter. In
particular, we would like to understand (i) whether parasite
interference can lead to evolution of networks with robust
responses, (ii) how exactly these networks would achieve
robustness and (iii) which parameters would affect the
evolution of robustness. Standard population genetic models,
which have been successfully applied to the emergence of
redundancy in one- or two-loci systems (Nowak et al, 1997;
Wagner, 2000b), are not adequate to capture the complexity of
such a system. To overcome this limitation, here we use
models of host signaling networks and computer simulations
that allow us to capture the structure–behavior relation in
these networks and their evolution under parasite interfer-
ence, respectively. We find that robustness against gene loss
can evolve in networks, and that it results from either
redundancy or specific network structures. We show that
robustness based on the latter is maintained over subsequent
evolution even in the absence of parasites, whereas redun-
dancy is lost. Furthermore, we find parasite virulence to be a
key parameter having a double impact on the evolution of
robustness: high virulence limits the emergence of robustness
by hampering diversity in the host population, but at the
same time it selects for stronger robustness. These findings
indicate that antagonistic host–parasite interactions can be a
strong ecological factor shaping the global structure of
biological networks. Furthermore, they point to an interesting
interplay between population level diversity and emergence of
complex traits and the influence of parasite virulence on this
interplay.

Results

We used a mathematical model of signaling networks to study
the consequences of antagonistic host–parasite interaction
at the molecular level. Briefly, this model assumes that a
signaling network consists of proteins that exist in two forms,
active and inactive (Soyer and Bonhoeffer, 2006; Soyer et al,
2006). Each protein, when active, can influence the state of
other proteins in the network with which it interacts. Two
arbitrary proteins are taken as receptor and effector, allowing
the network behavior to be quantified as changes in the active
effector concentration in response to incoming signals
received at the receptor (see the section Network model). We
ran evolutionary simulations starting with a homogenous host
population, where each organism contained the same founder
network of four proteins, and a heterogeneous parasite
population, where each organism contained a single protein
interfering with one specific protein in the host network. Host
networks were free to evolve through biologically plausible
mutations, whereas parasites could evolve only the specificity
of their interference (i.e. the identity of the protein they target
in the host; see the section Evolutionary simulations). The
fitness of a host was defined as the ability of its network to
produce the same dynamical response to an incoming signal as
that of the founder, in the presence of parasite interference (see
Equation (4)). To account for the fact that the fitness effects of
parasite interference on network dynamics might be of
different strength, we adjust the effects of the parasite by a
global parameter, which we refer to as the virulence of the
parasite. By doing so, we follow the common notation of
virulence as parasite-induced fitness reduction in the host
(Anderson and May, 1991; Bull, 1994). Parasite fitness relates
directly to the effect it has on network dynamics of its host
(see Equation (5)). The resulting antagonistic fitness relation
quickly led to the emergence of highly fit parasites that
interferedwith a key protein in the host network (see Figure 1).
As evolution proceeded, hosts slowly improved their fitness,
eventually escaping the parasite interference. The resulting
host networks were able to maintain a high fitness upon
random removal of single proteins, that is, they are robust to
gene loss (see Figure 2). For the sample simulation shown, the
most frequent network in the final population could maintain
its response to an incoming signal similar to that of the founder
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Figure 1 Host and parasite fitness (black and red lines, respectively) for a
sample simulation with virulence equal to 1. For robustness of networks from
the final host population resulting from this simulation, see Figure 2. For
the dynamics of the most frequent network in the final population, see
Supplementary Figure 1.
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when any one of its proteins was removed (see Supplementary
Figure 1).
Achieving such complete robustness requires redundancy at

each protein or a specific system architecture that could
tolerate the loss of each of the proteins. Although we find both
mechanisms evolving in the host networks, only the latter
seems to be maintained over evolution. Subsequent evolution
of sample host populations—taken from simulations where
coevolution led to high robustness—in the absence of
parasites but under stabilizing selection (see Materials and
methods) showed that robustness was either lost almost
completely or barely affected. In the former case, evolution in
absence of parasites resulted in a significant reduction in the
average network size, strongly indicating that loss in robust-
ness was due to loss of redundant proteins (see Figure 2). In
contrast, host populations that maintained high robustness
also maintained network size, suggesting that in these cases,
robustness was due to network architecture. These indications
were further supported by the analysis of most frequent
network architectures in the host population at the end of
evolution with and without parasites (see Figure 3). These
results suggest that architecture-based robustness is more
stable than pure redundancy and can be maintained indepen-
dent of the generative selective pressures. Once a specific
network architecture arises that is robust against parasite
interference, it could not be changed over subsequent
evolution evenwhen parasites are absent because the network
has to maintain specific dynamics (that of the founder). On the
other hand, purely redundant proteins can be easily lost
without any dynamical constraints. Fitness data from single
protein deletions in the absence of parasites indicate that
networks exhibiting redundancy-based robustness consist of
more proteins whose removal has exceedingly small fitness
effects than networks exhibiting architecture-based robustness
(data not shown). Thus, despite showing high robustness,
networks with redundancy-based robustness can become
smaller at a faster rate than networks with architecture-based

robustness, because in the former, a higher proportion of
deletions are effectively neutral (i.e. the selection coefficient is
smaller than one over population size).
Repeating the evolutionary simulations with more than 60

different founder networks and with different virulence values
(see Materials and methods), we find that the evolution of
neither mechanism is trivial; in 40% of the simulationswe ran,
hosts were not able to escape parasite pressure, and robustness
against gene loss did not evolve. What are the determining
factors behind this observation? One possibility is that founder
network properties and/or the stochastic nature of the
evolutionary dynamics dictate the outcome of these simula-
tions. As network evolution is akin to a random move in the
topology space, both the starting location and the path taken
might matter (Wagner, 2005). Although we see some effect of
stochasticity in the emergence of robustness (see Supplemen-
tary Figure 6), we could not find any clear relation between
evolution of robustness and the founder network properties.
An alternative explanation is that the emergence of robustness
relates to the global virulence parameter. In the presented
model, virulence controls the effect of parasite interference on
the host fitness and effectively tunes the strength of the
selective pressure for robustness. Hence, wewould expect that
increased virulence, bymeans of increasing selective pressure,
should favor evolution of robustness. Surprisingly, we found
the opposite, that is, evolution of robustness was hampered
under high virulence. This paradox was resolved once we
analyzed the diversity in host populations.

Figure 3 Cartoon representation of most frequent networks for the simulations
shown in Figure 2. Top: Most frequent network in the final population resulting
from the simulation with parasite virulence equal to 1.0 (right) and 0.1 (left).
Bottom: Most frequent networks in the corresponding final populations resulting
from subsequent evolution in the absence of parasites. Red and blue arrows
represent activating and inhibiting interactions, respectively. Arrows pointing from
a single protein to a box with many proteins inside indicate that the former
interacts with all of the proteins inside the box. Note that proteins with no outgoing
interactions are not shown in these cartoons for clarity, as these proteins do not
affect network behavior (see Supplementary information).
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Figure 2 Left: The average fitness effect of single gene deletion on the
networks of the population. Straight lines show the data for the population at the
end of evolution with parasites (generation 2000 on the right panel). Dashed lines
show the data for the population at the end of subsequent evolution without
parasites (generation 4000 on the right panel). Orange and black indicate
simulations starting from the same founder but with virulence values 0.1, and 1.0,
respectively. The straight black line corresponds to the simulation shown in
Figure 1. Data are shown as empirical cumulative distributions; each vertical line
represents the fraction of networks in the population for which average fitness
effect of a gene deletion is below, or equal to, the value shown on the x-axis.
Right: Network size (i.e. number of proteins in the network) averaged over the
host population during the course of evolution with (first 2000 generations) and
without (last 2000 generations) parasites.
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As shown in Figure 4, we found a high correlation between
structural diversity in the population (number of networks
with a unique structure) and emergence of robust networks
(average correlation coefficient (R2) is 0.83). It was very
typical in these evolutionary simulations that emergence of
high host fitness (i.e. robustness) was always preceded by an
increase in diversity. This is demonstrated in Figure 5 for
a sample simulation, where we show the number of networks
utilizing a given protein and the number of parasites
interfering with that protein over the course of evolution
along with the fitness of the two populations. Early on, the
parasite population is dominated by two genotypes that are
interfering with the two intermediary proteins in the founder
network. As it is highly likely that any mutant network arising
in the host population will also utilize these key proteins, it is
difficult for such mutants to arise in frequency and generate
some diversity in the host population. However, even when a
small amount of diversity is generated in the host population,
it allows other parasite genotypes to coexist with the dominant
ones. This decreases the selective pressure on the host
population, further enhancing generation of diversity. The
resulting feedback eventually leads to a Red Queen dynamics
where several host and parasite genotypes enter an oscillatory
cycle of negative frequency-dependent selection (see Figure 5).
The side effect of the resulting diversity in the host population
is a more efficient search of the aforementioned topology
space, eventually leading to robust networks and an increase
in fitness. As high virulence makes initial emergence and
establishment ofmutant networksmore difficult, it hinders the
emergence of diversity and consequently robustness. How-
ever, if hosts manage to generate some diversity under high
virulence and break parasite pressure early, they tend to evolve
higher robustness than under low virulence (see Supplemen-
tary Figure 2). Hence, increased parasite virulence acts as a
two-sided sword, both limiting the emergence of precursors of
robust networks by hampering population diversity and
promoting evolution toward higher robustness by providing
increased selective pressure for it.
What is the significance of parasite interference for the

evolution of robustness against gene loss in host networks? As
parasites provide an ever-changing and coadapting environ-
ment for their hosts, it is possible that such robustness could
also result simply from evolution under changing or multiple
environments. A similar argument is made in the case of
metabolic networks, namely that the evolution toward
metabolizing multiple sources (i.e. adaptation to a new
environment) might result in robustness against gene loss as
a by-product (Harrison et al, 2007). Alternatively, robustness
against gene loss could result as a response to genetic
mutations or developmental errors. To test such alternative
scenarios and understand the specific effect of parasites on the
evolution of robustness against gene loss, we ran additional
simulations. As summarized in Table I and Supplementary
Figure 3, we do not find any significant amount of robustness
against gene loss when networks evolve under stabilizing
selection or under environmental fluctuations, modeled as
changing fitness requirements (see Materials and methods).
The former result is interesting, as another kind of robustness
(that against fluctuations in kinetic rates) can evolve under
stabilizing selection (Wagner, 1996; Siegal and Bergman,

2002). To have a more direct comparison to the parasite
scenario, we create an alternative environment model where a
given environment corresponds to knockout of a specific gene
in the network (see Materials and methods). Biologically, this
scenario corresponds to the environment containing a toxin or
drug that interferes with a specific protein in the network. The
environment fluctuates over time as the specificity of the drug
changes.When such changes are modeled to occur as frequent
as every generation, this scenario would correspond to
developmental errors (Nowak et al, 1997). We find that
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Figure 5 Diversity in host and parasite population shown as the number of
networks in the host population that utilizes a given protein (top) and the number
of parasites interfering with a given protein in the host network (bottom). Each
colored line represents a protein identity with the color coding in two panels being
the same; black, red, blue, yellow, green, cyan, violet and gray represent proteins
2, 3, 4, 5, 6, 7, 8 and 9. Note that receptor and effector in the host network are
excluded from this plot, as they are not involved in parasite targeting (see
Supplementary information). The inset shows the mean fitness for host (black)
and parasite (red) population. Data are from a sample simulation with virulence
equal to 1.
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Figure 4 Number of unique network topologies in the final host population
versus the average fitness effect of a single gene loss averaged over the final
host population. Points with different colors represent data from simulations with
different virulence; for orange, red, blue and black, virulence equals 0.1, 0.2, 0.5
and 1.0, respectively. Open (filled) circles represent simulations where the
average fitness of the final host population is above (below) that of the parasite
population (i.e. indicating hosts escaping parasite pressure).
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networks evolving under this scenario become highly robust
to gene loss, when fluctuations occur as frequent as every 200
generations or faster (see Table I and Supplementary Figure 3).
However, parasite interference tends to result in stronger
robustness more often (see Supplementary Figure 4). Among
the 10 simulations considered, the average fitness effect of
deletions (e.g. robustness) over the population reached �0.3
or higher seven times for parasite interference but only three
times for environmental fluctuations (for k¼50). Furthermore,
we find that environmental robustness is more readily lost
upon subsequent evolution compared with that evolved under
parasite interference. Assuming that simulations where
evolution under interference resulted in a mean robustness
of �0.5 or higher and where further evolution did not reduce
robustness to levels below this threshold correspond to
evolutionarily stable robustness, we found 37.5% stability in
robustness evolving under environmental fluctuations with
k¼50 (33% for k¼200). In the 10 simulations starting from
the same founders, parasite-driven robustness had a stability
of 57%.
Taken together, these findings show that interference with

network dynamics can lead to evolution of robustness against
gene loss and that such robustness might be maintained even
after removal of interference (i.e. be evolutionarily stable).
Following the empirical evidence that parasites interfere with
host networks, we show how and under which conditions
host–parasite coevolution leads to evolution of robustness and
predict an increased presence of robustness mechanisms in
biological networks operating under parasite interference.

Discussion

Here we have shown that antagonistic interaction between
parasites and their host at molecular level may lead to host
networks evolving both architecture- and redundancy-based
robustness toward gene loss. The emergence and the extent of
these robustness strategies will depend on the virulence of the
parasites and the ability of the host to generate diversity at
molecular level. The key prediction of this study is that
signaling networks (and other biological systems) operating
under parasite interference would show increased redundancy
or specific architectures that can tolerate removal of parts.
Conversely, presence of such properties in a network could be
taken as a sign of current or past parasite interference. In
particular, we point out that in at least one specific plant–
viroid system, parasite success seems to relate to the
redundancy of host proteins (Kalantidis et al, 2007). Specific

knockout experiments in this and similar systems can verify
the relation between redundancy in the host and the fitness of
the parasite.
The main assumptions of the model are that the parasite

exerts a specific and strong interferencewith a single protein in
the host network and benefits directly from this. Hence, our
findings would apply to any host–parasite system in which
these conditions are met (see also Materials and methods).
Although we do not include protein sequences in the model,
we expect that generation of sequence diversity would be
another strategy for the host to avoid parasite interference.
Interestingly, signal transducers are observed to show gene
number expansion and increased sequence diversity in
disease-vector mosquitoes (Waterhouse et al, 2007).
We find that another possible evolutionary force that could

generate such robustness against gene loss in host networks is
fluctuations in environmental factors that interfere with
network dynamics (i.e. cause knockout of a specific protein).
To evolve robustness that is similar in strength and stability to
that observed under host–parasite coevolution, such fluctua-
tions would have to occur as frequent as every 50 generations.
Interestingly, we do not find any robustness evolving under
mutational load (even when mutation rate is very high) or
under fluctuating fitness requirements. The latter would
correspond to changes in dynamic requirements from the
network (e.g. the need to lengthen response), which could
result from environmental or internal fluctuations.
To conclude, this study clearly demonstrates the need to

consider evolutionary dynamics and ecological factors, such
as host–parasite interactions and environmental constraints,
for achieving a better understanding of system level properties
in molecular biology.

Materials and methods

Network model

To capture the dynamics and structure of host networks, we use a
generic mathematical model that has been described in detail before
(Soyer and Bonhoeffer, 2006). Briefly, the model describes a network
as a collection of n interacting proteins, each of which can be in an
active (Pi*) or inactive state (Pi).When active, each protein can activate
or deactivate any of the other proteins, depending on an interaction
coefficient. Biologically, such an effect can be due to phosphorylation,
methylation or any other type of chemical or structural interaction.
The concentration of the active and inactive forms of each protein adds
up to 1 (i.e. [Pi*]¼1�[Pi]). Two proteins (the first and the last) in the
network are arbitrarily defined as receptor, where the network
interacts with an external signal, and effector, where a resulting
network response is measured. The biochemical dynamics of the

Table I Average robustness calculated from simulations corresponding to different evolutionary scenarios (see Materials and methods)

Parasite interference Environmental fluctuation A Environmental fluctuation B Mutational load

k¼200 k¼50 k¼1 k¼200 k¼50 m¼0.005 m¼0.05

�0.35 �0.45 �0.40 �0.38 �0.80 �0.85 �0.99 �0.97

Each robustness value corresponds to the fitness effect of single gene deletion averaged over the networks found in the final populations from 10 simulations. For each
evolutionary scenario, the considered simulations start from the same 10 founder networks. Environmental fluctuations A and B correspond to interference and
changes in fitness requirements, respectively, whereas the combination of the former with k¼1 corresponds to developmental errors (see main text).
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active protein concentrations in the network are governed by the set of
differential equations of the form

d½P�i �
dt

¼ ½Pi� di1 ½L� þ
X
j

kij ½P�j �
 ! !

� ½P�i �
X
j

lij ½P�j �
 !

ð1Þ

where the interaction coefficients kij and lij denote the strength of
activation and deactivation, respectively, of protein j on protein i, [L] is
the signal concentration and d is the Kronecker delta (i.e. di1¼1 when
i¼1 and di1¼0 otherwise). It is assumed that the effect of protein j on
protein i is either activating or deactivating, but not both (i.e. kijlij¼0),
and that proteins cannot have an effect on themselves (i.e. kij¼lij¼0
when i¼j). Finally, the maximum value that an interaction coefficient
can attain is set to 1.

To quantify network behavior (or dynamics) D, we use three
measures: (i) the steady-state activity before a signal, (ii) the response
in the presence of a signal and (iii) the steady-state activity after the
signal. Biologically, this means that to be deemed functional a network
should have stable dynamics and the ability to produce a detectable
response to incoming signal (defined here as at least 10% of the
maximum possible). To obtain D for a given network, we first set
[Pi*]¼[Pi]¼0.5 for all proteins in the network and [L]¼0. We
equilibrate the system by integrating the set of differential equations
resulting from (1) for 1000 iterations or until steady state is reached
(determined by an eigenvalue analysis) and record the active effector
concentration at the end of this period as the pre-signal steady state of
the system, [Peff* ]pre. We then introduce a signal by setting [L]¼1 and
integrate for 100 iterations, after which the signal disappears (i.e.
[L]¼0). During these 100 iterations, we deduce the response of the
network as the sum of absolute differences between the current active
effector concentration and [Peff* ]pre, that is, the dynamic response of a
network to an incoming signal, r, is given by

r ¼
X100
t¼0

½P�eff�pre � ½P�eff�t
��� ��� ð2Þ

After the signal has passed, we let the system equilibrate again for 1000
iterations or until steady state is reached. We record the active effector
concentration at the end of this period as the post-signal steady state of
the system [Peff* ]post. With these measurements, we can write network
dynamics as

D ¼ r þ ½P�eff�pre þ ½P�eff�post ð3Þ
In summary, the presented network model captures the basic
biochemistry of biological networks and allows us to quantify their
function using the dynamic response to incoming signals. Although
this model is inspired by biological signaling networks, at an abstract
level it can be used to capture the dynamics of any biological system of
interacting units such as gene networks. The basic assumptions of the
model are that interacting molecules are found in two states (e.g. on
and off) and that each molecule could interact with any other. The
latter assumption allows generality in the model without imposing
limitations; every network structure that could be constructed in the
presented model could be constructed in nature (possibly requiring a
larger system).

Evolutionary simulations

To study the coevolution of parasite and host atmolecular level, we run
evolutionary simulations, starting from initial populations of the host
and parasite. The initial host population is homogeneous and contains
N replicates of a founder individual (reported results are for N¼1000).
A host organism is modeled simply as a biochemical network that has
the form described above. The network of the founder individual is a
random, functional network that consists of four proteins including
receptor and effector. This random network is generated by creating
each of the possible connections among the four proteins with
probability 0.5. If an interaction is generated, an interaction coefficient
(between�1 and 1) is chosen randomly to represent type and strength
of the interaction (positive values correspond to activation, negative
values correspond to deactivation). No direct interaction is allowed
between effector and receptor. The dynamics of such founder network
is considered the wild-type dynamics Dwt for the host population.

The initial parasite population is heterogeneous (reflecting its faster
evolution) and contains N randomly generated individuals. Parasites
are modeled as organisms with a single gene that specifies which
protein it interferes with in the host network (the target protein x of the
parasite). Biologically, parasite interference can have different forms
such as suppressing gene expression (Stern-Ginossar et al, 2007),
inhibiting protein folding (Tardif and Siddiqui, 2003) or competitive
binding at protein active site (or at its substrate) (Terebiznik et al, 2002;
Denkers et al, 2004; Prehna et al, 2006). All these different types of
interferences at protein level will influence network dynamics, as the
interplay of the affected protein with other proteins will be halted or
reduced. Here we model an extreme case of interference, where we set
all interaction coefficients in the host network that involve the target
protein to 0. In other words, parasite interference blocks all activity of
the targeted protein. Modeling interference in such a way is motivated
by the fact that when a parasite trait is introduced in the coevolu-
tionary simulations that codes for the strength of interference, it
quickly leads to evolution of parasites with maximum interference
ability (data not shown). Furthermore, we assume that parasite
interference at one target protein will also affect any duplicates of it
that may emerge during evolution (see below) equally (i.e. inter-
ference is carried on to the duplicates of x). The parasite is never
allowed to interfere with the effector or the receptor of a network, as
the host has no means of escaping such interference in this model (see
below). In summary, this model allows us to capture the complexity of
the parasite–host interactions envisaged here. The often used
population genetics approach, where host and parasite interact at
least at two loci with at least two alleles, and a specified interaction
matrix defines whether an infection occurs or not (see for example,
Frank, 1994; Agrawal and Lively, 2002; Kouyos et al, 2007; Salathé
et al, 2008b), is not adequate for the analysis presented here.

After the host and parasite populations are initialized, an evolu-
tionary simulation is run for 2000 generations. At each generation,
every host in the population is infected with a parasite that is drawn
randomly from the parasite population and the resulting interaction is
used to determine the fitness of both host and parasite. The host fitness
is defined as the ability of its network to adhere to wild-type dynamics
after parasite interference. It is calculated as

whost ¼ 1� v 1� e�
dðDp ;DwtÞ

s

� �
ð4Þ

where v refers to parasite virulence and d is a function to capture the
difference between the current dynamics obtained after parasite
interference (Dp) and that of the wild type (Dwt). The latter returns the
sum of the absolute difference between current and wild-type steady-
state values and the response. The parameters s and virulence define
the strength of selection imposed by network dynamics and parasites,
respectively. Here, we report results from simulations where swas set
to 1. In general, increasing values of s would result in decreasing
selection toward attaining the wild-type dynamics and decreasing
fitness effects of the parasite. Hence, we find that increasing s (weak
selection on network dynamics) helps the emergence of robustness
whereas decreasing s impairs it (data not shown). Hosts that harbor
networks with wild-type dynamics will have maximum fitness
irrespective of virulence and s values (i.e. d(Dp, Dwt)¼0 and w¼1).
Hosts with a non-functional network, as defined above, are assigned a
minimal fitness (of 10�10). Fitness of a parasite is simply given by its
ability to disturb the network dynamics of its host and is calculated as

wparasite ¼ 1� e�
dðDp ;Dwt Þ

s ð5Þ
For parasites that were involved in multiple interactions (i.e.
infections), the final fitness value is taken as the average over all
interactions.

At the end of each generation, newhost and parasite populations are
produced from the current one using random drawing with replace-
ment. A random individual is picked up from the population and is
cloned into the new population if a randomly generated number (from
the interval [0,1]) is below its fitness. Then it is put back into the
current population and a new draw is made. The process is continued
until the new population contains N individuals. During replication of
individuals,mutations can occur. For parasites, mutations occurwith a
probability of 0.01 and result in a random change in their target, x, in
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the host network. For asexually reproducing hosts, mutations occur
with a probability of 0.005 per protein in their network. These
modeling choices result in parasites evolving twice as fast as their host,
and reflect the general biological observation that parasites evolve
faster than their hosts. In reality, the exact difference in the rate of
evolution will be determined by several factors, including number of
parasite generations per host generation, susceptibility of the host and
infectivity of the parasite. We find that evolution of robustness is
impaired with increasing relevant rate of parasite evolution, but that
hosts can still evolve robustnesswhen parasites are evolving as high as
20-fold faster (see Supplementary Figure 5).

When a mutation occurs in the host, it will cause one of the
following outcomes at network level (with the corresponding
probabilities in parentheses): deletion (P¼0.4), formation (P¼0.1) or
adjustment (P¼0.2) of an interaction, and deletion (P¼0.2) or
duplication (P¼0.1) of a protein. These probabilities are arbitrarily
chosen to represent the generally accepted view that in general
deleterious mutations are more common. The observation that
mutations leading to deletion of interactions and proteins are more
deleterious than insertions has been shown before for similar models
(Soyer, 2007).

Mutations involving an interaction are modeled by choosing a
random protein A (that is already part of the network) and then
choosing a random protein B (that is either part of the network or not).
If the mutation to be introduced involves interaction formation, it is
made sure that an interaction between A and B does not yet exist, and
that A and B are not duplicates. We then create this interaction with a
random interaction coefficient from the interval [�1,1]. For mutations
resulting in interaction deletion or adjustment, A and B are selected
such that there exists at least one interaction between them. In the first
case, the new interaction coefficient is set to 0, whereas in the latter
case, the new interaction coefficient results from adding a Gaussian
noise (mean 0, s.d. 0.1) to the original value. In both cases, the changes
made are carried over to all duplicates of A and B accordingly.
Biologically, this corresponds to the situation where a mutation in
protein A (B) changes the way it interacts with protein B (A)—clearly,
all duplicates of B (A) are affected equally.

Deleting a protein is modeled by setting the coefficient of all
incoming and outgoing interactions of that protein to 0. Duplicating a
protein is implemented by picking a random protein in the current
network and duplicating it with all its existing interactions. A new
protein generated in this way will be considered a duplicate of the
original one as long as the two have the same interactions and the total
difference in interaction coefficients is less than a set threshold
(reported results are with a threshold of 0.1). As duplicate relations
also have an effect on parasite–host interaction (see above), this
threshold could influence the evolutionary dynamics in these
simulations. However, sample simulations with a threshold of 0.5
indicated that reported results are qualitatively robust to the value of
this parameter.

Throughout mutations at network level, duplication of effector and
receptor, and formation of a direct interaction between the two are not
allowed. The maximum number of proteins in any host network is
limited to 10. We have run evolutionary simulations under four
different parasite virulence values (0.1, 0.2, 0.5 and 1.0) for each of
the 63, randomly generated, founder hosts. Furthermore, we have
repeated evolutionary simulations five times for two selected
founders, resulting in 284 simulations. The latter runs indicate that
the qualitative conclusions drawn here are robust to the stochastic
nature of these evolutionary simulations (see Supplementary
Figure 6).

Alternative evolutionary scenarios

To further analyze evolution of robustness against gene loss, we tested
several alternative scenarios. First, we simulated network evolution
under stabilizing selection. In these simulations, host fitness was
calculated as

w ¼ e�
dðD;Dwt Þ

s ð6Þ
where d is the difference between the current and the wild-type
dynamics (Dwt) as before. In this case, current network dynamics

simply reflect the status of the network as it evolves in the absence of
any external influence (i.e. in the absence of parasites or environ-
mental effects).

Second, we simulated network evolution under the effect of
fluctuating environments. In particular, we modeled the environment
(i) as the fitness requirement under which networks evolve (in other
words, the dynamics of the wild type (Dwt)) or (ii) as deletion of a
specific protein in the network. The latter scenario would correspond
to the environment having a toxin or drug that would interfere with
the function of a given protein. Under this scenario, changes in the
environment would correspond to changes in the specificity of the
toxin. We implemented this scenario as a homogenous parasite
population that does not evolve. The first scenario is biologically easier
to imagine and simply suggests that the environment determines the
functional selective pressures underwhich the network evolves. In this
scenario, changes in the environment would simply correspond to
changes in the dynamics required from the network.

We run simulations under each scenario for 10 arbitrarily chosen
founders (see Supplementary Figure 3). We implemented environ-
mental fluctuations by changing the environment every k generations.
Under the first scenario, this meant adding a Gaussian noise to the
three dynamical properties determining network dynamics (namely,
steady-state levels of active effector and network response) so that a
new wild-type dynamics (Dwt) is generated. Under the second
scenario, change in the environment involved changing the identity
of the protein being targeted. At every kth generation, we picked the
most frequent gene in the population at that moment as the new target
(we pick the second most frequent protein if most frequent is the same
as the current target). We run simulations for k¼200 and 50. Finally,
we used the second scenario with k¼1 to model developmental errors.

Robustness analyses

To evaluate their robustness toward loss of genes, we subjected
networks to single gene deletions. For each network, we first reduced
the network to its core by removing all proteins that did not have any
outgoing interactions, as these do not affect network dynamics (i.e.
networks would be naturally robust to their removal). We then deleted
every intermediary gene that participated in this core network,
excluding the receptor and effector, one at a time. The final robustness
of the network was calculated using

KOeff ¼ avg
X
i

ðe�
dðDi ;DwtÞ

s � e�
dðD;Dwt Þ

s Þ
 !

ð7Þ

whereDi corresponds to the network dynamics resulting from deletion
of protein i and D corresponds to the network dynamics without any
deletion. Giving the average fitness effect of a single deletion, values of
KOeff that are close to 0 indicate higher robustness of the network
dynamics against gene loss. Note that in the robustness calculation, we
used the same value for s as in the corresponding evolutionary
simulations.

It is also possible to analyze the dynamical effects of single protein
deletions by plotting the response (i.e. active effector concentration) of
the resulting disturbed networks. Supplementary Figure 1 demon-
strates such an analysis for the most frequent network found in the
final host population, resulting from a sample evolutionary simula-
tion. Considering only those simulations where hosts were able to
escape the parasite pressure (i.e. mean fitness of the final host
population was higher than that of parasites), we find that the mean
KOeff for the host population increases with increasing virulence (see
Supplementary Figure 2).

Evolutionary stability of robustness

To test whether evolved robustness in host networks is evolutionarily
stable, we evolved final host populations resulting from the coevolu-
tionary simulations for another 2000 generations in the absence of any
parasite but under stabilizing selection (see above).

Evolving final populations from 34 sample coevolutionary simula-
tions further, we find that in 11 cases all the networks in the population
completely lost their robustness against gene loss. Such loss was

Host–parasite interaction and robustness
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always accompanied by a reduction in the average network size.
Eleven cases resulted in minimal or no reduction in robustness and
network size remaining steady over evolution. The remaining cases
gave intermediate results where reductions in both robustness and
network size were observed.

Code and data availability

All simulations are written in Java. Source code and results from
sample evolutionary simulations are available as Supplementary
informaton.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature. com/msb).
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We are grateful to Csaba Pàl for critical comments on the manuscript
and Michela Denti for pointing out the viroid literature. MS acknowl-
edges the support of the Swiss National Science Foundation. OSS
acknowledges the support of Italian Ministry of University and
Research.

References

Agrawal A, Lively CM (2002) Infection genetics: gene-for-gene versus
matching-alleles models and all points in between. Evol Ecol Res 4:
79–90

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P,
Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C,
Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L,
Ansari Y, Choy N, Deen H et al (2003) Genome-wide insertional
mutagenesis of Arabidopsis thaliana. Science (New York, NY) 301:
653–657

Anderson RM, May RM (1991) Infectious Diseases of Humans. Oxford:
Oxford University Press

Bell G (1982) The Masterpiece of Nature: The Evolution and Genetics of
Sexuality. Berkeley: University of California Press

Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell
pathways by bacterial pathogens. Nature 449: 827–834

Bull JJ (1994) Perspective—virulence. Evolution 48: 1423–1437
Cadigan KM, Grossniklaus U, Gehring WJ (1994) Functional

redundancy: the respective roles of the two sloppy paired genes
in Drosophila segmentation. Proc Natl Acad Sci USA 91: 6324–6328

de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-
Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF,
Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC,
Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003)
Perspective: evolution and detection of genetic robustness. Evol Int
J Org Evol 57: 1959–1972

de Wit PJ (2007) How plants recognize pathogens and defend
themselves. Cell Mol Life Sci 64: 2726–2732

Denkers EY, Butcher BA, Del Rio L, Kim L (2004) Manipulation of
mitogen-activated protein kinase/nuclear factor-kappaB-signaling
cascades during intracellular Toxoplasma gondii infection.
Immunol Rev 201: 191–205

Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus
influenzae Rd metabolic genotype. The Journal of Biological
Chemistry 274: 17410–17416

Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T,
Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses
to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:
152–164

Frank SA (1994) Recognition and polymorphism in host–parasite
genetics. Philos Trans R Soc London 346: 283–293

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S,
Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A,
El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S,
Curtiss M, Davis K, Deutschbauer A et al (2002) Functional
profiling of the Saccharomyces cerevisiae genome. Nature 418:
387–391

Goldstein LS (1993) Functional redundancy in mitotic force
generation. J Cell Biol 120: 1–3

Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of
duplicate genes in genetic robustness against null mutations.
Nature 421: 63–66

Harrison R, Papp B, Pal C, Oliver SG, Delneri D (2007) Plasticity of
genetic interactions in metabolic networks of yeast. Proc Natl Acad
Sci USA 104: 2307–2312

Hoffmann FM (1991) Drosophila abl and genetic redundancy in signal
transduction. Trends Genet 7: 351–355

Jaenike J (1978) An hypothesis to account for the maintanence of sex
within populations. Evol Theory 3: 191–194

Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J (1991) Subtle
cerebellar phenotype inmice homozygous for a targeted deletion of
the En-2 homeobox. Science (New York, NY) 251: 1239–1243

Kalantidis K, Denti MA, Tzortzakaki S, Marinou E, Tabler M,
Tsagris M (2007) Virp1 is a host protein with a major role in
Potato spindle tuber viroid infection in Nicotiana plants. J Virol 81:
12872–12880

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M,
Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP,
Zipperlen P, Ahringer J (2003) Systematic functional analysis
of the Caenorhabditis elegans genome using RNAi. Nature 421:
231–237
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