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Abstract: We introduce the computer code Recola for the recursive generation of tree-

level and one-loop amplitudes in the Standard Model. Tree-level amplitudes are constructed

using off-shell currents instead of Feynman diagrams as basic building blocks. One-loop

amplitudes are represented as linear combinations of tensor integrals whose coefficients are

calculated similarly to the tree-level amplitudes by recursive construction of loop off-shell

currents. We introduce a novel algorithm for the treatment of colour, assigning a colour

structure to each off-shell current which enables us to recursively construct the colour

structure of the amplitude efficiently. Recola is interfaced with a tensor-integral library

and provides complete one-loop Standard Model amplitudes including rational terms and

counterterms. As a first application we consider Z + 2 jets production at the LHC and

calculate with Recola the next-to-leading-order electroweak corrections to the dominant

partonic channels.
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1 Introduction

The study of the mechanism of electroweak (EW) symmetry breaking and the search for

physics beyond the Standard Model (SM) is the primary goal of the Large Hadron Collider

(LHC) and the corresponding experiments. With the discovery of a bosonic resonance

with a mass of around 125GeV important progress has been achieved. Still it remains

an open question if this resonance is the SM Higgs boson and if there are phenomena of

new physics at the TeV scale. Evidence for a discovery of new particles and the precise

determination of their masses and couplings on the one hand as well as the establishment

of exclusion limits on the other hand are achieved by sophisticated experimental analyses,

capable of highlighting a small signal on a huge background. For the interpretation of the

data a precise knowledge of the background is essential. This often relies on theoretical

descriptions, sometimes also on data-driven estimations where the extrapolation to the

signal region is based on theoretical distributions. A sound comparison of experimental

signals with theoretical predictions allowing precise tests of the SM (or of theories beyond)

requires high precision from both experiment and theory.
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Theoretical predictions at leading order (LO) in perturbation theory are usually in-

sufficient to match the experimental precision. At a hadron collider QCD corrections are

indispensable, but also EW corrections can have an important impact. For instance, for

Higgs-boson production in vector-boson fusion, EW and QCD corrections are of the same

order of magnitude [1]. Moreover, the high energies attained by the LHC allow to collect

data in phase-space regions where the effects of logarithms of EW origin become sizeable.

The high centre-of-mass energies available at the LHC generate a lot of events with many

particles in the final state. Therefore a proper theoretical description of LHC physics re-

quires next-to-leading-order (NLO) computations of multiparticle processes (with five, six,

or more external legs) in the full SM (including EW corrections).

In the past years many groups have concentrated their efforts to make such calcula-

tions feasible. New techniques have been proposed, mainly for the computation of one-loop

virtual corrections which are considered the bottleneck of NLO calculations. In the stan-

dard approach based on Feynman diagrams the major problem is caused by huge algebraic

expressions appearing in the computation of the virtual amplitudes. The development of

techniques based on Generalised Unitarity [2–9] allowed a change of perspective. The for-

mal starting point of these methods is the general decomposition of one-loop amplitudes as

linear combinations of scalar integrals, as obtained from the standard Passarino-Veltman

reduction [10]. The computation of the coefficients of the scalar functions is then reduced

to the calculation of tree-level amplitudes by means of cutting equations. The simplic-

ity of these relations allowed the automation of NLO QCD computations leading to the

development of computer programs [11–18] which enabled the calculations of many QCD

processes [19–36] of the Les Houches priority list [37].

More recently, based on ideas of Soper [38] purely numerical methods for the calculation

of one-loop QCD amplitudes have been put forward [39]. They are based on subtracting

the soft, collinear, and ultraviolet divergences of one-loop amplitudes and performing the

loop integration of the remaining finite integrals numerically after suitably deforming the

integration contours in the complex space. These methods do not rely on Feynman graphs

and have been proven to work for multi-parton amplitudes [40].

The success of the new methods did, however, not supersede the traditional diagram-

matic approach. The Generalised Unitarity methods still suffer from the numerical instabil-

ities characteristic of the Passarino-Veltman reduction. These are overcome by computing

the amplitude in quadruple or multiple precision at critical phase-space points, reducing

however the CPU efficiency [41, 42]. While rescue solutions in this context have been

proposed in refs. [43, 44], it is well-known that numerical instabilities can be avoided by

constructing the amplitude as a linear combination of tensor integrals, which is the nat-

ural representation in the Feynman-diagrammatic approach. Various groups [18, 45–48]

have developed efficient computational techniques for the calculation of the tensor inte-

grals that avoid numerical instabilities. Using these improved methods in the Feynman-

diagrammatic approach yields more than competitive numerical codes. In particular the

methods of refs. [46, 48] have been successfully applied to the calculation of both EW

corrections [1, 49–52] and QCD corrections [53–56].

– 2 –
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Recently the diagrammatic approach has been further boosted by the advent of the

OpenLoops algorithm [57]. Organising the diagrams into cut-opened topologies, the co-

efficients of the tensor integrals are recursively built with tree-level-like techniques; the

efficiency is increased by pinch identities that relate higher-point loop diagrams to pre-

computed lower-point diagrams. Since the method is based on individual topologies, colour

factorises and is treated algebraically. The present implementation of OpenLoops can

handle NLO QCD corrections to any Standard Model process.

An interesting hybrid method, proposed by Andreas van Hameren in ref. [58] for evalu-

ating one-loop gluonic amplitudes, combines stable and universal tensor-reduction methods

for loop integrals with a basic result of Generalised Unitarity, namely the reduction of the

computation of a one-loop amplitude to that of a set of tree-level amplitudes. The tech-

nique relies on the representation of the amplitude in terms of tensor integrals, whose

coefficients are computed recursively [59] without resorting to Feynman diagrams at any

stage.

In this paper we present Recola, a generator of SM one-loop (and tree) amplitudes.

It is based on an algorithm which implements recursion relations for the computation of

the coefficients of the tensor integrals. The goal is to combine the efficiency of the numer-

ically stable tensor-integral reduction with the automation made possible by a completely

recursive non-diagrammatic approach.

As a first application of Recola we have calculated EW corrections to pp → Z +

2 jets. Due to its large cross section and similar signatures this process provides a major

background for Higgs-boson production in vector-boson fusion kinematics. The dominant

NLO QCD corrections of O(α3
sα) have been investigated in refs. [60, 61], while a subset of

EW Z+2 jets production has been studied at NLO QCD in ref. [62]. Here, we calculate the

EW corrections of O(α2
sα

2) to the dominant partonic channels for Z + 2 jets production.

This paper is organised as follows: in section 2 we present the algorithm for the

construction of amplitudes, introducing first our implementation of recursion relations at

tree level (section 2.1) and discussing in section 2.2 its generalisation to one-loop ampli-

tudes. After some remarks on the computation of the rational terms and counterterms

(section 2.3), we describe in section 2.4 a new algorithm for the treatment of colour. The

setup of our calculation for Z + 2 jets production is detailed in section 3.1, and numerical

results are discussed in section 3.2. Finally, section 4 contains our conclusions.

2 Recola: REcursive Computation of One-Loop Amplitudes

Recola is a code written in Fortran90 for the computation of tree and one-loop scat-

tering amplitudes in the SM, based on recursion relations.

2.1 Tree-level recursion relations

The tree-level recursive algorithm is inspired by the Dyson-Schwinger equations [63–65]

and follows closely the strategy of Helac [66–68], using off-shell currents as basic building

blocks.

– 3 –
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Let us consider a process with E external legs, and select a particle P of the model1

together with a sub-set of n external legs. The off-shell current w(P, {n}) is then defined

as the sum of all Feynman sub-graphs which generate P combining the selected n external

particles:

w(P, {n}) = n
P
. (2.1)

Here the shaded bubble pictorially represents all possible sub-graphs, and the dot indicates

the off-shell part of the current. If according to the Feynman rules of the theory a sub-set

of n external particles cannot generate P , the corresponding current vanishes. For n > 1

the propagator of P is included in the definition and the current is called “internal”. A

current generated by only one (n = 1) external particle P ′ is called “external”; if P = P ′,
it coincides with the wave function of the particle, otherwise it vanishes.

In a theory with tri- and quadri-linear couplings only, the internal off-shell currents

can be constructed using recursively the Dyson-Schwinger equations:

n
P

=

i+j=n
∑

{i},{j}

∑

Pi,Pj

Pi
i

Pjj

P
+

i+j+k=n
∑

{i},{j},{k}

∑

Pi,Pj ,Pk

i Pi

j Pj

k Pk

. P
.(2.2)

Each term of the sums represents a “branch”, which is obtained by multiplication of the

generating currents w(Pi, {i}), w(Pj , {j}) [and w(Pk, {k}) for the second term of (2.2)] with

the interaction vertex, marked by the small box, and the propagator of P , marked by the

thick line. Branches have to be built for all possible generating currents formed by sub-sets

{i}, {j} (and {k}) of the n external particles such that i+ j (+k) = n. The recursive con-

struction of the amplitude can be efficiently implemented using lower-multiplicity off-shell

currents as seeds for the numerical evaluation of higher-multiplicity ones. First, all possi-

ble currents with two external legs (n = 2) are calculated combining through a tri-linear

coupling pairs of external currents only. Next the currents with three external particles

(n = 3) are generated summing the branches with three external currents linked through

a quadri-linear coupling and those with one external current and one of the calculated

internal currents with two external legs, linked through a tri-linear coupling. Analogously

the currents with n = 4 are then computed combining two or three currents with n = 1,

n = 2 and n = 3, and so on. As a consequence of the summation in (2.2), the current

w(P, {n}) depends on the particle P and on the set of generating external particles {n} but

not on the particular way these particles have been combined in order to get w(P, {n}). In
this respect, working with off-shell currents rather than Feynman diagrams allows to avoid

recomputing identical sub-graphs contributing to different diagrams, since each current is

computed just once; furthermore, the summation in (2.2) reduces the number of generated

objects which are passed to the next step of the recursion.

1Here all particles of the model have to be taken into account, also unphysical ones like would-be

Goldstone bosons.
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In order to calculate the amplitude for a tree-level process A→ B we first use crossing

symmetry to switch to incoming particles and consider the corresponding process A+B →
0, where B is charge conjugate toB. Next we choose one of the external legs, for definiteness

the Eth leg, to close the construction of the amplitude. Then all currents resulting from

the other E− 1 external legs are recursively constructed. In the last step of the procedure,

i.e. for n = E − 1, we require the generated particle P to be the selected Eth external

particle. As a consequence this last current is unique, and the amplitude M is obtained

multiplying with the inverse of its propagator and with the wave function of the selected

Eth particle (which coincides with the Eth external current):

M = E−1 × (propagator)−1 × E . (2.3)

The recursive evaluation of the currents begins with the external currents (n = 1),

which, for colourless particles of a given polarisation λ and momentum p, are given by the

corresponding wave functions:

λ
p

= uλ(p), λ
p

= v̄λ(p), λ
p

= ǫλ(p),
p

= 1 . (2.4)

The explicit expressions for the spinors uλ(p), ūλ(p), vλ(p), v̄λ(p) of fermions and for the

polarisation vectors ǫλ(p), ǫ
∗
λ(p) of vector bosons have been coded using ref. [69]. For

coloured external particles also the information on colour has to be kept, as we explain in

section 2.4.

Once the external currents have been numerically evaluated, the internal ones are

built using the Feynman rules of the theory. For example, given a pair of external e−

and e+ with momenta p1 and p2 and currents uλ1(p1) and v̄λ2(p2), one can generate the

internal current of a photon contracting the two external currents with the QED vertex

−i e γµ and the photon propagator −i gµν/(p1 + p2)
2. Once the particle P of the off-shell

propagator is fixed, in general, several branches contribute to the same internal current

since different combinations of particles with appropriate interaction vertices can generate

the same particle P . In these cases the contributions can be simply summed up, according

to (2.2).

The recursive algorithm is implemented in the code Recola through two steps.

In the first part, the initialisation phase, the currents are identified by integer numbers

which contain all the relevant non-dynamical information: the particle content (e−, e+, γ,
etc.), the colour information (see section 2.4) and an integer tag number. The tag number

is assigned according to a binary notation [66, 70]. In practice, the external currents get

a label 2i−1, where i is the ith external leg, i.e. 1 → 1, 2 → 2, 3 → 4, . . . , E → 2E−1.

The tag number of an internal current is obtained by a summation of the integer tags of

the external currents contributing to it. The binary notation ensures that, given the tag

number of any internal current, the contributing external legs can be uniquely identified.

Moreover, it reflects the basic property that a current depends on the generating external

particles {n}, but not on the particular way these particles have been combined in order

to obtain the current.

– 5 –
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The initialisation part of the code builds a skeleton of the amplitude: all needed off-

shell currents are enumerated and, for each branch, all generating off-shell currents and the

generated one are identified. This part is run once for all, before giving explicit values to

the momenta of the external particles, i.e. before performing the phase-space integration

in a Monte Carlo program.

The second part of the code, the dynamical production phase, uses the results of the

first part to actually compute the amplitude for each point of the phase-space. First, the

external currents are numerically computed; then, branch after branch, all internal currents

are recursively evaluated according to the skeleton generated in the initialisation phase.

Here the code has to be as efficient as possible in terms of CPU time because it must run

on a large grid of points in phase-space; the computation of all non-dynamical quantities

in the initialisation phase allows to avoid a repetition of those operations which can be

performed once independently of the particular values of the external momenta.

2.2 One-loop recursion relations

Let us now move to the one-loop case. After summing all contributing Feynman graphs Gi

every one-loop amplitude can be written as a linear combination of tensor integrals:

δM =
∑

i

Gi =
∑

j

∑

rj

c
(j,rj ,Nj)
µ1···µrj

T
µ1···µrj

(j,rj ,Nj)
. (2.5)

Here the tensor coefficients c
(j,rj ,Nj)
µ1···µrj

do not depend on the loop momentum q, which is

present only in the tensor integrals

T
µ1···µrj

(j,rj ,Nj)
=

(2πµ)4−D

iπ2

∫

dDq
qµ1 · · · qµrj

Dj,0 · · ·Dj,Nj−1
, Dj,a = (q + pj,a)

2 −m2
j,a. (2.6)

The index j classifies the different tensor integrals needed for the process, the integer Nj

equals the number of loop propagators, and rj (≤ Nj in the ’t Hooft-Feynman gauge) is

the rank of the tensor integral.

Leaving aside the computation of the tensor integrals, to be performed with the pre-

ferred technique, we focus here on the tensor coefficients c
(j,rj ,Nj)
µ1···µrj

, which for multi-leg

processes, due to the complexity of the SM, result in long algebraic expressions in the

standard Feynman-diagram approach. An interesting idea has been proposed in ref. [58],

where recursive relations for the tensor coefficients of gluon amplitudes have been derived

for colour-ordered amplitudes of purely gluonic processes. We have further developed this

approach to deal with the full SM. There is a clear topological correspondence between

a one-loop diagram with E external legs and a tree diagram with E + 2 external legs,

obtained after cutting one of the loop lines. After uniquely fixing this correspondence, one

can compute the tensor coefficients c
(j,rj ,Nj)
µ1···µrj

with recursion relations similar to those used

for tree amplitudes.

Given a process A → B at one loop, we consider first the set of all tree processes

A+B + P + P̄ → 0 for each particle P of the SM.2 However, the set {A+B + P + P̄ →
0, ∀P ∈ SM} contains more diagrams than the original one-loop process A → B. This

2Here all unphysical particles, in particular also Faddeev-Popov ghosts, must be included.

– 6 –
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is due to the fact that we can cut the loop diagram at any of its loop lines and that we

can run along the loop clockwise and counterclockwise. Therefore, we have to fix some

rules to discard the redundant diagrams. To explain these rules, we can work without

loss of generality in a theory with a single scalar particle φ with a tri-linear coupling (the

generalisation to the presence of a quadri-linear coupling is straightforward). In such a

theory the set {A+B+P+P̄ → 0, ∀P ∈ SM} reduces to one process, i.e. A+B+φ+φ̄→ 0.

We use tag numbers for external and internal currents as explained in section 2.1 and assign

tag numbers 2E and 2E+1 to the currents corresponding to the two additional external legs

of P and P̄ . These currents are called “external loop currents”, while the legs of P and P̄

are called “external loop legs”.

Let us first consider the sets of diagrams with three and four external legs where only

external particles enter the loop. Marking with a cross the two external loop legs of the

trees, we get:

1

2

4

→
× ×

1

2

4
8 16

+
× ×

1

4

2
8 16

+
× ×

2

1

4
8 16

+
× ×

2

4

1
8 16

+
× ×

4

1

2
8 16

+
× ×

4

2

1
8 16

,

1

2 4

8

+

1

2 8

4

+

1

8 2

4

→
× ×1

2 4

8
16 32

+
× ×2

4 8

1
16 32

+
× ×4

8 1

2
16 32

+
× ×8

1 2

4
16 32

+
× ×8

4 2

1
16 32

+
× ×1

8 4

2
16 32

+
× ×2

1 8

4
16 32

+
× ×4

2 1

8
16 32

+
× ×1

2 8

4
16 32

+
× ×2

8 4

1
16 32

+
× ×8

4 1

2
16 32

+
× ×4

1 2

8
16 32

+
× ×4

8 2

1
16 32

+
× ×1

4 8

2
16 32

+
× ×2

1 4

8
16 32

+
× ×8

2 1

4
16 32

+
× ×1

8 2

4
16 32

+
× ×8

2 4

1
16 32

+
× ×2

4 1

8
16 32

+
× ×4

1 8

2
16 32

+
× ×4

2 8

1
16 32

+
× ×1

4 2

8
16 32

+
× ×8

1 4

2
16 32

+
× ×2

8 1

4
16 32

. (2.7)

The diagrams on the right-hand side are obtained by cutting in all possible ways one of

the loop lines of the diagrams on the left-hand side. The tree diagrams have been drawn

in such a way, that one can easily identify the original sequence of the loop lines (called

“loop flow”), starting from the external loop leg with tag number 2E and ending with the

external loop leg with tag number 2E+1. Two simple rules can avoid the redundant tree

diagrams and fix properly the correspondence with the loop diagrams:

1’) The external current 1 must be attached to the external loop current with tag number

2E . This rule fixes the starting point of the loop flow and thus reduces the redundancy

already up to a factor of two, the direction of the loop flow.

– 7 –
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2’) The external currents 1, 2 and 4 must be attached to the loop flow in ascending order

(the other external currents can enter the loop flow everywhere, also between 1, 2

and 4). This rule uniquely fixes the direction of the loop flow.

With these rules the way of cutting each loop diagram of (2.7) becomes unique:

1

2

4

→
× ×

1

2

48 16

,

1

2 4

8

+

1

2 8

4

+

1

8 2

4

→
× ×1

2 4

816 32

+
× ×1

2 8

416 32

+
× ×1

8 2

416 32

. (2.8)

The rules have to be generalised to other classes of diagrams where external legs can

combine in tree sub-graphs before entering the loop flow. To this end we define an identifier

number for each current, given by the smallest external tag among those forming its tag

number. For example, a current with tag number 13 = 1 + 4 + 8, which has been created

combining the external legs 1, 4 and 8, has identifier 1; a current with tag number 6 = 2+4

has identifier 2. For external currents the identifier coincides with the tag number. In case

of a quadri-linear coupling, the two currents entering the loop are represented by a common

identifier, the minimum of the two identifiers for the individual currents.

Now the generalisation of the two rules is straightforward:

1) The current with identifier 1 must be attached to the external loop current with tag

number 2E .

2) The currents with the three smallest identifiers must be attached to the loop flow

following the ascending order of their identifiers.

The proper treatment of self-energy insertions deserves particular care. For two identi-

cal particles flowing in the self-energy loop, the selection rules (actually the first rule alone)

reduce the number of cut diagrams to one. On the other hand in this case the self-energy

diagram gets a symmetry factor 1/2 because of Wick’s theorem. If the two particles in

the loop are different, we get two cut diagrams, which however give the same contribution.

Therefore, the cutting procedure for self-energies reproduces the loop diagrams correctly if

the corresponding tree contributions are multiplied by a factor 1/2 in all cases.

In addition to rules 1) and 2), in most renormalisation schemes some classes of dia-

grams have to be discarded, namely tadpoles and self-energy insertions on external legs.

Therefore, being S = 1 + 2 + 4 + · · · + 2E−1= 2E − 1 the sum of all external tags of the

process, we use the following additional rules:

3) A current with tag number equal to S or equal to S − 2n, n = 0, 1, . . . E − 1, cannot

enter the loop flow in a branch with a tri-linear vertex. This eliminates tadpole

diagrams and those self-energy contributions made of tri-linear vertices which are

inserted on external legs.

4) If in a branch with a quadri-linear vertex one of the two currents entering the loop flow

is external, the sum of their tag numbers cannot be equal to S. This eliminates the

self-energy contributions involving one quadri-linear vertex inserted on external legs.

– 8 –
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Applying these four rules to the generation of the skeleton for the off-shell currents of the

tree processes of the set {A → B + P + P̄ , ∀P ∈ SM}, we obtain the proper skeleton for

the one-loop process A→ B.

Having reduced the formal generation of the one-loop amplitude to the generation of a

set of tree-level processes, we can build the “loop off-shell currents” in a similar way as the

tree-level currents in section 2.1, in order to obtain the tensor coefficients c
(j,rj ,Nj)
µ1···µrj

of (2.5).

At one-loop level, the particle which closes the recursive construction is the external loop

leg with tag number 2E+1. Since all loop lines are virtual lines and retain their propagator,

the last step of (2.3), where the last generated current is multiplied with the wave function

of the particle closing the recursion, × 2E+1, is performed without multiplication by

the inverse propagator resulting in

δM =

1 2E−1

↔
∑

P

×

1 2E−1

2E

P × ×
P

2E+1 . (2.9)

The external currents for the first E external legs are defined as in section 2.1; the external

currents of the two external loop legs are defined such that the contraction originally

contained in the loop can be easily reproduced. To this end, we introduce a suitable set of

spinors ψi = ui, v̄i and polarisation vectors ǫµi for the cut fermions and vector bosons,

(ψi)α = (ψ̄i)α = δiα, with
4

∑

i=1

(ψ̄i)α(ψi)β = δαβ ,

ǫµi = δµi , with
4

∑

i=1

ǫµi ǫ
ν
i = δµν , (2.10)

where i denotes the “polarisation”, and α, β and µ, ν are spinor and Lorentz indices, re-

spectively. The loops are glued together as:

scalars: ↔
×
1

× ×1 ,

vector bosons: ↔
4

∑

i=1

×
ǫi

× ×ǫi ,

fermions: ↔
4

∑

i=1

×
ψi

× ×ψ̄i ,

↔
4

∑

i=1

×
ψ̄i

× ×ψi . (2.11)

Except for the scalar case, the cutting procedure associates to the one-loop amplitude the

sum of four tree-level amplitudes with particular spinors/polarisation vectors for the cut

particle.
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Having fixed the external currents, we describe how to compute the internal ones. As

explained in section 2.1, for tree amplitudes these are computed summing up the currents

generated in branches where the generating currents are multiplied with the Feynman rules

for the vertex and the propagator of the generated particle. This is valid also at one-loop

level for pure tree currents built by combining the original external legs 1, . . . , 2E−1.

The new features of the loop case are connected to the loop off-shell currents involving

the external loop leg with tag number 2E carrying a loop momentum q. The external loop

current with tag number 2E defines the beginning of the loop flow; all currents with tag

number ≥ 2E belong to the loop flow and are called loop currents, while the branches gener-

ating them are called loop branches. Every internal loop current contains a q-dependence,

generated by the Feynman rules for the vertex and the propagator. Working in the ’t Hooft-

Feynman gauge in the SM, the q-dependence of (vertex)×(propagator) takes the form

(vertex) × (propagator) =
aµqµ + b

(q + p)2 −m2
, (2.12)

where the linear q-dependence in the numerator results from a fermion propagator, from

a coupling of three vector bosons, or from a coupling between one vector boson and two

scalar/ghost particles (in all other cases aµ = 0). If the interacting particles are fermions

and/or vector bosons, the coefficients aµ and b have an additional Dirac and/or Lorentz

structure which is not made explicit here for simplicity. Denoting by w1(q) the first internal

loop current, we have

w1(q) =
dµ1
1,1qµ1 + d1,0

(q + p1)2 −m2
1

, (2.13)

where p1 is the sum of the external momenta entering the first loop branch while dµ1
1,1 and

d1,0 result from a product of the generating currents with the constants aµ and b in (2.12).

If the current w1 corresponds to a fermion/vector boson, w1 as well as dµ1
1,1 and d1,0 carry

an additional spinor/Lorentz index, suppressed in (2.13). Proceeding along the loop flow,

the second internal loop current is built combining w1(q) with tree currents and with a

product (vertex)×(propagator) of the form (2.12) and reads

w2(q) =
dµ1µ2
2,2 qµ1qµ2 + dµ1

2,1qµ1 + d2,0

[(q + p1)2 −m2
1][(q + p2)2 −m2

2]
. (2.14)

The recursively constructed lth loop current of the loop flow is of the form

wl(q) =
l

∑

k=0

dµ1···µk

l,k qµ1 · · · qµk

∏l
h=1[(q + ph)2 −m2

h]
. (2.15)

For the last loop current (with l = Nj = number of loop lines) the momentum pNj
is equal

to the sum of all external momenta and thus vanishes.

The recursion relations (2.2) are valid also for the loop currents, but cannot be used to

compute them numerically (unless we give an explicit value to the loop momentum q). How-

ever, one can define similar relations to compute the set of coefficients {dl,0, dµ1

l,1, . . . , d
µ1···µl

l,l },
using the general form of (2.12) for the q-dependence of loop branches. In fact in a
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loop branch with a tri-linear vertex, knowing the generating tree current wt and the

coefficients {dl−1,0, d
µ1

l−1,1, . . . , d
µ1···µl−1

l−1,l−1 } of the generating loop current, the coefficients

{dl,0, dµ1

l,1, . . . , d
µ1···µl

l,l } of the generated loop current are given by

{dl,0, dµ1

l,1, . . . , d
µ1···µl

l,l } = wt

(

{0, dl−1,0, d
µ2

l−1,1, . . . , d
µ2···µl

l−1,l−1} aµ1

+ {dl−1,0, d
µ1

l−1,1, . . . , d
µ1···µl−1

l−1,l−1 , 0} b
)

, (2.16)

where we have again omitted the Dirac/Lorentz indices associated with fermionic or vecto-

rial currents as in (2.13). For quadri-linear vertices, the situation is even simpler because

in this case aµ = 0 and (2.16) simplifies to

{dl,0, dµ1

l,1, . . . , d
µ1···µl

l,l } = wt1wt2 {dl−1,0, d
µ1

l−1,1, . . . , d
µ1···µl−1

l−1,l−1 , 0} b, (2.17)

where wt1 and wt2 are the two generating tree-level currents. The expressions (2.16)

and (2.17) have to be used at each loop branch. The generated coefficients dµ1···µk

l,k ,

k = 0, . . . , l are in general not symmetric under the exchange of their indices µ1 · · ·µk, but,
being implicitly multiplied by the symmetric product qµ1 · · · qµk

, they can be symmetrised

at each step. In this way the number of independent coefficients dµ1···µk

l,k is decreased,

leading to a reduction of operations in subsequent steps of the recursion.

The recursion relations for loop branches allow us to compute the coefficients of the

loop currents, but we are not allowed to sum them unless their denominators are equal.

From (2.15) one can see that the denominators are products of propagators and are deter-

mined by a sequence of off-set momenta {p1, . . . , pl} and masses {m1, . . . ,ml}. Therefore,
while tree currents are defined by the tag number, the particle content, and the colour

information, the loop currents need an additional parameter, called sequence number,

containing the information on {p1, . . . , pl} and {m1, . . . ,ml}. In this way, loop currents

with different q-dependent denominators are distinguished, and contributions from loop

branches with the same denominators can be summed as for tree branches.

The introduction of the sequence number spoils the uniqueness of the last current.

Given the cut particle and its polarisation [the index i in (2.10)], the coefficients

{dNj ,0, d
µ1

Nj ,1
, . . . , d

µ1···µNj

Nj ,Nj
} of the last current with sequence number ns give a contribution

to the tensor coefficients of (2.5) with j = ns. The index j, describing the class of the

tensor integrals, is then identified with the sequence number of the last currents. At

this level, contributions from different polarisations of the cut particle can be summed

up. For different cut particles one gets in general contributions to different classes of

tensor integrals. However, since not the particles but only their masses and momenta enter

the sequence number, also contributions to the same tensor integral classes appear and

are combined.

Also at one-loop level the code is divided into an initialisation and a production phase.

In the initialisation phase, the skeleton of the branches is generated and all quantities

which do not depend on the momenta are fixed. In particular, the sequence numbers of

the last currents allow already at this step to determine the list of needed tensor integrals.

Therefore the computation of the tensor integrals can be done independently of the one of

the tensor coefficients (in the production phase of the code).
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2.3 Rational terms and renormalisation

In dimensional regularisation the calculation of Feynman amplitudes is performed in D =

4− 2ǫ space-time dimensions, and the result is arranged as a power series in ǫ. In this way,

UV divergences of the loop integrals manifest themselves as 1/ǫ poles to be subtracted upon

renormalisation. For consistency, all space-time related objects entering the amplitude have

to be promoted to their D-dimensional generalisations and all manipulations have to be

performed in D dimensions. Otherwise terms of order O(ǫ) are missed which, combined

with the 1/ǫ pole of the loop integral, give finite contributions to the amplitude. Because

these are rational functions of the kinematical invariants, they are conventionally called

rational terms. A rational term is dubbed R1-term if it results from the ǫ-dependence of

the denominators of the loop integrals and it is called R2-term if it is generated by a O(ǫ)

term in the numerator of the Feynman amplitude [71].

We assume that the tensor integrals, taken as input by Recola, contain the R1-

terms, either by keeping the denominators of the loop propagators D-dimensional in the

calculation or by explicitly adding these terms. Note, however, that even if the calculation

of the tensor integrals is performed in D dimensions, they enter Recola as numerical four-

dimensional tensors. The numerical construction of the tensor coefficients, on the other

hand, works strictly in four space-time dimensions, so that the R2-terms are not taken

into account automatically. These terms can, however, be easily computed using effective

Feynman rules which have been implemented in our code using the results of refs. [71–74] .3

The insertion of the effective Feynman rules for vertices and propagators is performed in

the tree-level amplitude generator, taking care that only one of the vertices results from a

rational term.

Renormalisation is performed via counterterms based on the conventions of ref. [75].

In analogy with the effective Feynman rules for the rational terms, the insertion of coun-

terterms takes place in the tree-level amplitude generator. Presently, counterterms are

fixed following the complex-mass scheme of refs. [76, 77] and the results of ref. [75] for all

parameters of the SM. The strong coupling constant is renormalised in the MS-scheme at a

general scale Q for contributions coming from gluons and light quarks, while the top-quark

contribution is subtracted at zero momentum.

2.4 Treatment of colour

In the computation of the currents an important aspect is the treatment of colour, which

does not factorise in the recursive construction (contrary to the diagrammatic approach).

One could obtain the factorisation of colour by splitting the amplitude in a sum of colour-

ordered amplitudes, as done in ref. [78]. This, however, would increase the number of

amplitudes to compute and would become complicated in the full SM. Alternatively,

one could compute colour-dressed amplitudes, as for instance in ref. [66], where off-shell

currents would carry explicit colour indices and would have to be computed for each index

separately, slowing down the calculation considerably. Although the number of colour-

dressed amplitudes to be computed can be decreased by a Monte Carlo sampling over

3We thank R. Pittau for clarifications concerning refs. [73, 74].
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colour configurations [67], the number of operations at intermediate steps remains large. In

order to optimise the colour treatment further, we developed an alternative approach based

on “structure-dressed” amplitudes, where each current gets an explicit colour structure.

This is easily achieved working in the colour-flow representation of the 1/Nc expan-

sion [79], introduced in refs. [80, 81] for perturbative QCD computations, where the conven-

tional 8 gluon fields Aa
µ are replaced by a 3× 3 matrix (Aµ)

i
j =

1√
2
Aa

µ(λ
a)ij with the trace

condition
∑

i (Aµ)
i
i = 0. Quarks and antiquarks maintain the usual colour index i = 1, 2, 3,

while gluons get a pair of indices i, j = 1, 2, 3; the Gell-Mann matrices λa and the structure

constants in the Feynman rules are then substituted by combinations of Kronecker δs. The

propagators read

j i
p

= δij ×
i(p/+m)

p2 −m2
,

i1
j1 i2

j2µ ν
p

= i1
j1 i2

j2 × − i gµν
p2

= δi1j2δ
i2
j1

− i gµν
p2

,

i1
j1 i2

j2
p

= i1
j1 i2

j2 × i

p2
= δi1j2δ

i2
j1

i

p2
, (2.18)

while the vertices become

i1

j2

i3
j3 µ=







i1

j2

i3
j3 − 1

Nc

i1

j2

i3
j3






× igs√

2
γµ=

(

δi1j3δ
i3
j2
− 1

Nc
δi1j2δ

i3
j3

)

igs√
2
γµ,

i1j1

i2j2

i3
j3

µ

ν

ρ

p1

p2
p3

=







i1j1

i2j2

i3
j3 −

j1
i1

j2
i2

j3
i3







i gs√
2

[

gµν(p1−p2)ρ+gνρ(p2−p3)µ+gρµ(p3−p1)ν
]

=
(

δi1j3δ
i2
j1
δi3j2 − δi1j2δ

i2
j3
δi3j1

) i gs√
2

[

gµν(p1−p2)ρ+gνρ(p2−p3)µ+gρµ(p3−p1)ν
]

,

i1j1

i2j2 i3
j3

i4
j4

µ

ν ρ

σ

=
i g2s
2

[ (

δi1j4δ
i2
j1
δi3j2δ

i4
j3
+ δi1j2δ

i2
j3
δi3j4δ

i4
j1

)(

2gµρgνσ − gµσgνρ − gµνgρσ
)

+
(

δi1j3δ
i2
j4
δi3j2δ

i4
j1
+ δi1j4δ

i2
j3
δi3j1δ

i4
j2

)(

2gµνgρσ − gµρgνσ − gµσgνρ
)

+
(

δi1j3δ
i2
j1
δi3j4δ

i4
j2
+ δi1j2δ

i2
j4
δi3j1δ

i4
j3

)(

2gµσgνρ − gµνgρσ − gµρgνσ
)]

,

i1j1

i2j2

i3
j3 µ

p1

=







j1
i1

j2
i2

j3
i3 −

i1j1

i2j2

i3
j3







i gs√
2
pµ1 =

(

δi1j2δ
i2
j3
δi3j1 − δi1j3δ

i2
j1
δi3j2

) i gs√
2
pµ1 .

(2.19)

In all Feynman rules the colour part is described by products of Kronecker δs, and therefore

in the colour-flow representation the colour structure of the amplitude can be simply ob-
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tained as a linear combination of all possible products of Kronecker δs carrying the colour

indices of the external particles. For a process with k external gluons and m external

quark-antiquark pairs the amplitude takes the simple form:

Aα1,...,αn

β1,...,βn
=

∑

P (1,...,n)

δα1
β1
· · · δαn

βn
A1,...,n, n = k +m, (2.20)

where in general all n! permutations P (1, . . . , n) of the indices β1, . . . , βn have to be con-

sidered.

In a framework based on colour-dressed amplitudes, the colour indices of the external

particles would be fixed and at each branch, given the colour of the generating currents, all

colour configurations (3 for quarks or antiquarks, 9 for gluons) for the generated current

would be computed. Many of them are zero, and the others differ just by simple factors.

Since in this approach one would define and compute unnecessarily many currents, we

decided to follow a different strategy.

Instead of assigning an explicit colour to the currents, we assign them a “colour struc-

ture”, which is a product of Kronecker δs. In order to understand how these structures

look like, let us first consider the external currents for quarks, antiquarks, and gluons:

β i = uλ(p) δ
i
β , α j = v̄λ(p) δ

α
j ,

β
α

i
j = ǫλ(p) δ

i
β δ

α
j , (2.21)

where α and β are the colour indices of the external particles while i and j are “open” colour

indices, which, during the recursive construction of internal currents, are contracted with

the indices of the Feynman rules of (2.19). In the recursive procedure these contractions

generate products of δs: some of them carry indices of external particles only, as in (2.20),

and some others involve the open indices of the generated current. For example, the

combination of an external quark with colour structure δi1β1
with an external gluon with

colour structure δi2β2
δα2
j2

produces, according to the Feynman rules of (2.19), a quark with

two possible colour structures: δα2
β1
δiβ2

and δα2
β2
δiβ1

. In both structures the first δ carries

just external indices α1, β1, β2, while the second one contains also the open index i of the

generated quark current.

The resulting colour structures for the off-shell currents are in complete correspondence

to the colour structure in (2.20) for the full amplitude. The indices of the δ-structures of

a particular off-shell current are given by the colour indices αi, βj of the external particles

generating the current and by potential open indices for the generated particle: no open

indices for a colour-neutral particle, one for a quark/antiquark, two for a gluon. Therefore,

in general, the colour structure of a gluon current, obtained from k external gluons and

n− k external quark-antiquark pairs, takes the form

α1β1

αk
βk

αk+1

αn

βk+1

βn

i
j → δα1

β1
· · · δαn−1

βn−1
δ iβn

δαn

j , (2.22)
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where permutations P (1, . . . , n+ 1) of the indices β1, . . . , βn, j on the right-hand side cor-

respond to different currents. For the colour structure of a quark (antiquark) current,

obtained from k external gluons, n − k − 1 external quark-antiquark pairs and an addi-

tional quark (antiquark) we have

α1β1

αk
βk

αk+1

αn−1

βk+1

βn

i → δα1
β1
· · · δαn−1

βn−1
δ iβn

,

α1β1

αk
βk

αk+1

αn

βk+1

βn−1

j → δα1
β1
· · · δαn−1

βn−1
δαn

j ,

(2.23)

where again permutations P (1, . . . , n) of β1, . . . , βn in the first case and of β1, . . . , βn−1, j

in the second correspond to different currents.

We can easily distinguish two parts in the colour structure: the “open part”, which

is always present in coloured currents, contains one (for quarks and antiquarks) or two

(for gluons) δs with open colour indices i and/or j, while the “saturated part”, which is

absent in external currents, is a product of δs with only external colour indices. Only the

open parts of the structures play an active role in the combination of currents, while the

saturated parts of the generating currents simply multiply to give the saturated part of the

generated current. In our code these two parts are represented by integer numbers, based

on a binary notation.

Moving from colour-dressed to structure-dressed currents reduces already the number

of currents. For example, there are 9 colour-dressed currents for a gluon generated from the

currents of a quark and an antiquark (although many of them vanish), while we have just

one structure-dressed current. A further optimisation can be achieved introducing a colour

label and giving the same colour label to currents differing just by a colour factor (due to

subsequent multiplication of different colour coefficients). In the example considered above

of an external quark combined with an external gluon, the coefficients of the two possible

colour structures δα2
β1
δiβ2

and δα2
β2
δiβ1

differ only by a factor −1/Nc. For structure-dressed

currents this label is easily introduced, together with the corresponding colour factors,

already in the initialisation phase and can be used in the production phase of the code to

compute just one of the currents with the same colour label.

3 Electroweak corrections to Z + 2 jets production at the LHC

As a first example for the application of the code Recola, we consider the EW corrections

to the dominant partonic channels contributing to the process pp → Z + 2 jets.

3.1 Details of the calculation

At leading order (LO) in perturbation theory, the production of a Z boson at the LHC in

association with a pair of hard jets is governed by the partonic subprocesses

q i g → qi g Z , (3.1)

qi q̄i → qj q̄j Z, qi, qj = u, c, d, s, b, (3.2)
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qi

g

g

qi

Z

qi

q̄i

qj

q̄j

Z

g

qi

q̄j

qi

q̄j

Z

W

W

Figure 1. From left to right: sample tree diagrams for the QCD contributions to qi g → qi g Z and

to qi q̄i → qj q̄j Z, and the EW contributions to qi q̄j → qi q̄j Z.

and their crossing-related counterparts. Since we neglect flavour mixing as well as finite-

mass effects for the light quarks, the LO amplitudes do not depend on the quark generation,

and the contributions of the various generations to the cross section differ only by their

parton luminosities. While the mixed quark-gluon (gluonic) channels (3.1) contribute to

the cross section exclusively at order O(αα2
s ), the four-quark channels (3.2) develop LO

diagrams of strong as well as of EW nature leading to contributions of order O(αα2
s ),

O(α2αs), and O(α3) to the cross section. Representative Feynman diagrams are shown

in figure 1. If standard experimental acceptance cuts are applied (see section 3.2.1 for

the specification of our cuts), the mixed quark-gluon channels clearly dominate over the

four-quark channels, with the subprocesses ug → ugZ and dg → dgZ contributing ∼ 70%

and the complete class (3.1) of partonic subprocesses contributing ∼ 80% to the total cross

section.4 Therefore as a first step towards a complete NLO calculation of EW effects in

Z + 2 jets we here calculate EW corrections to the gluonic channels (3.1).

3.1.1 General setup

In our calculation we describe potentially resonant Z-boson propagators appearing in loop

diagrams (see figure 2 left for a sample diagram) by attributing a complex mass

µ2Z =MZ
2 − iMZΓZ (3.3)

to internal Z bosons. To this end, we consistently use the complex-mass scheme [76, 77, 82]

where µ2W and µ2Z are defined as the poles of the W- and Z-boson propagators in the complex

plane. On the other hand, the external Z boson is treated as a stable final-state particle

with its invariant mass being fixed toMZ, whereMZ
2 is the real part of the complex pole of

the Z-boson propagator. The pole values MV and ΓV (V = W,Z) for the mass and width

of the W and Z boson are related to the on-shell results MOS
V and ΓOS

V obtained from the

LEP and Tevatron experiments by [83]

MV =MOS
V /

√

1 + (ΓOS
V /MOS

V )2 , ΓV = ΓOS
V /

√

1 + (ΓOS
V /MOS

V )2 . (3.4)

4In a scenario where vector-boson fusion kinematics is imposed, the dominance of the gluonic chan-

nels (3.1) shrinks. Requiring, for instance, two tagging jets in opposite hemispheres with rapidity difference

|yj1 − yj2 | > 4, the gluonic channels contribute only ∼ 65%.
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g

g

Z

qi

q̄i

Z

qi

g

qi

g

Z

Z/γ

Figure 2. Left: box diagram involving a potentially resonant Z-boson propagator. Right: pentagon

diagram involving a 5-point tensor integral of rank 4.

For the definition of the electromagnetic coupling constant α we adopt the Gµ scheme,

i.e. we fix the value of α via its tree-level relation with the Fermi constant Gµ:

αGµ =

√
2GµMW

2

π

(

1− MW
2

MZ
2

)

. (3.5)

Compared to the Thomson-limit definition of α, the definition of αGµ in the Gµ-scheme

incorporates effects of the renormalisation-group running from the scale Q2 = 0 to the

scale Q2 = M2
W. In addition NLO corrections involving logarithms of light quark masses

are avoided as such contributions do not enter the muon decay.

3.1.2 Virtual corrections

The virtual corrections involve O(300) diagrams per partonic channel, including 20 pen-

tagon and 71 box contributions.5 The most complicated topologies are given by pentagons

involving 5-point functions of rank up to r = 4 (see figure 2 right for a sample diagram).

The virtual amplitude is calculated using the ’t Hooft-Feynman gauge. The calculation of

the tensor integrals is performed employing recursive numerical reduction to scalar inte-

grals based on refs. [46, 48, 84–86]. Numerical instabilities from small Gram determinants

are avoided by resorting to various expansion algorithms for the problematic momentum

configurations [48]. Both, in the case of UV divergences as well as in the case of infrared

(IR) divergences, dimensional regularisation is applied to extract the corresponding singu-

larities. The EW sector of the SM is renormalised using an on-shell prescription for the W-

and Z-boson masses in the framework of the complex-mass scheme [77]. As the coupling

αGµ is derived from MW, MZ and Gµ, its counterterm inherits a correction term ∆r from

the weak corrections to muon decay [87].

For virtual NLO contributions the finite top-quark mass affects partonic channels in-

volving external bottom quarks in a different way than channels with external quarks of the

first two generations. While the top-quark mass is properly taken into account in closed

fermion loops, finite top-quark-mass effects constrained to diagrams with external bottom

quarks are neglected (
(−)

bg → (−)

bgZ and bb̄ → ggZ are suppressed by the bottom PDFs,

gg → bb̄Z contributes about 1% at LO).

5While Recola does not use Feynman diagrams, we give these numbers as a measure of the complexity

of the process.

– 17 –



J
H
E
P
0
4
(
2
0
1
3
)
0
3
7

3.1.3 Real corrections

The EW real corrections to the subprocess (3.1) are induced by photon Bremsstrahlung

and given by

qi g → qi g Z γ . (3.6)

Emission of a soft or a collinear photon from an external quark leads to IR divergences

which are regularised dimensionally. If an IR-safe event definition is used, the final-state

singularities cancel with corresponding IR poles from the virtual corrections. For the

initial-state singularities this cancellation is incomplete but the remnant can be absorbed

into a redefinition of the quark distribution function. Technically we make use of the

Catani-Seymour dipole formalism as formulated in ref. [88], which we transferred in a

straightforward way to the case of dimensionally regularised photon emission.

In addition to the singularities from soft and collinear photon emission we face a

further source of IR divergences originating from a soft final-state gluon (see ref. [50]).

Isolated soft gluons do not pose any problem as they do not pass our selection cuts because

the requirement of two hard jets is not fulfilled. However, in IR-safe observables quarks,

and thus all QCD partons, have to be recombined with photons if they are sufficiently

collinear. Thus, if a soft gluon is collinear to a photon, it still passes the selection cuts if

recombined with the collinear photon, giving rise to a soft-gluon divergence that would be

cancelled by the virtual QCD corrections to Z + 1 jet + γ production. Following refs. [50,

89] we eliminate this singularity by discarding events which contain a jet consisting of a

hard photon recombined with a soft parton a (a = qi, q̄i, g) taking the photon-jet energy

fraction zγ = Eγ/(Eγ + Ea) as a discriminator. Photonic jets with zγ above a critical

value zcutγ are attributed to the process pp → Z+1 jet+γ and therefore they are excluded.

However, this event definition is still not IR-safe because the application of the zγ-cut to

recombined quark-photon jets spoils the cancellation of final-state collinear singularities

with the IR divergences from the virtual corrections. This is cured by absorbing the left-

over singularities into the measured quark-photon fragmentation function [90, 91].

3.1.4 Implementation

In order to ensure correctness of our results, and in particular of the calculation with

Recola, we have performed two independent calculations which we find to be in mutual

agreement. While the first one applies the technique of recursive amplitude generation as

described in section 2, the second one relies on the conventional Feynman-diagrammatic

approach.

In the first calculation the amplitude generator Recola provides the Feynman ampli-

tudes. For the evaluation of the tensor integrals Recola is interfaced with the Fortran

library Collier [92]. To this end Collier has been extended by an efficient algorithm

for building up the tensor integrals from the recursively calculated Lorentz-invariant coef-

ficient functions. The phase-space integration is performed by means of a generic in-house

Monte-Carlo generator [93] following the multi-channel sampling approach.

The second code uses FeynArts 3.2 [94, 95] and FormCalc 3.1 [96] for the gen-

eration and simplification of the Feynman amplitudes. For the numerical evaluation the
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Process class Virtual [ fb] |RP − 1|[%] real [ fb] |RP − 1|[%] δσNLO
EW [ fb] |RP − 1|[%]

qg → qgZ, −14463± 10
0.3± 0.2

−825± 9
2± 3

−15288± 13
0.3± 0.2

q̄g → q̄gZ −14499± 27 −841± 22 −15340± 35

qq̄ → ggZ
−1395± 2

0.8± 0.5
118± 1

0.01± 1
−1277± 2

0.9± 0.6
−1406± 7 118± 1 −1288± 7

gg → qq̄Z
−1024± 2

0.5± 0.4
−186± 1

0.7± 0.9
−1210± 2

0.3± 0.3
−1018± 3 −187± 1 −1206± 3

Table 1. Comparison of numerical results from Recola (upper numbers) and Pole (lower num-

bers) for the NLO contribution δσNLO
EW to the total cross section of various partonic process classes

(summed over q = u, d). In addition to the complete NLO correction we separately give the finite

virtual and real corrections and the relative differences between Recola and Pole.

amplitudes are translated into the Weyl-van der Waerden formalism [97] using the program

Pole [98]. The tensor integrals are again evaluated by Collier which by itself provides

two independent implementations of all its building blocks. Finally, the phase-space inte-

gration is performed with the multi-channel generator Lusifer [99].

3.1.5 Accuracy and efficiency of Recola

In this section we estimate the accuracy and efficiency of the purely numerical algorithm

Recola by comparing with the code Pole which is based on algebraically generated

analytical expressions.

In table 1 we compare results obtained withRecola (upper numbers) and Pole (lower

numbers) for the NLO contribution δσNLO
EW to the total cross section for various classes of

partonic channels. We further display separate results for the finite virtual corrections

including the integrated dipoles (virtual) and for the finite real corrections including the

dipole-subtraction terms (real). In addition we also present the relative deviation |R/P−1|
between the results of Recola (R) and Pole (P). For the results obtained by Recola

we have requested 5 × 106 accepted events in the case of the virtual corrections and 108

accepted events in the case of the real corrections, while (roughly by a factor of 10) lower

statistics has been used for the calculation with Pole. The results in table 1 demonstrate

that our two independent calculations agree with each other within the Monte Carlo errors

in the per-mille range.

A more detailed comparison can be obtained by comparing the weights at individual

phase-space points. For 106 Monte Carlo-generated phase-space points we have compared

the pure virtual contribution 2Re(M∗
LOδMNLO) to the squared matrix element (with di-

vergences omitted) calculated by Recola and Pole for the partonic process ug → ugZ.

In figure 3 we show the integrated fraction of the 106 phase-space points for which the

agreement |R/P−1| between Recola and Pole is worse than ∆. We find a typical agree-

ment of 10−11 − 10−14, with less than 1% of the phase-space points showing an agreement

worse than 10−7 and less than 0.02% showing an agreement worse than 10−5. The result

of this test of the precision of the code is similar to the one performed by the OpenLoops
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Figure 3. Level of agreement of 2Re(M∗
LOδMNLO) between Recola and Pole for ug → ugZ.

The plot shows the probability for an agreement worse than ∆ for 106 phase-space points generated

by the Monte Carlo.

collaboration [57] which also uses the tensor-integral library Collier. Note, however, that

we compare two independent codes for the calculation of the tensor coefficients which are

based on two entirely different algorithms. Furthermore the distribution of the phase-space

points is in our case determined from the multi-channel Monte Carlo generator adapted to

the peaking structure of the underlying process.

Finally, we give some details on timing and the amount of memory required. The

evaluation of the spin- and colour-summed one-loop matrix elements takes about 30 ms per

phase-space point for ug → ugZ (or any other partonic process considered in this paper) on

a single Intel i7-2720QM core with gfortran 4.6.1. The size of the executable on disk is

about 3MB. The matrix elements are constructed during the run and the required memory

depends strongly on the size of the dynamically generated internal arrays and thus on the

considered process. For pp → Z + 2 jets memory is no issue. More complicated processes

will be considered in the future.

3.2 Numerical results

3.2.1 Input parameters and selection cuts

We use the following set of input parameters [100],

Gµ = 1.1663787× 10−5GeV−2,

MW
OS = 80.385GeV, ΓOS

W = 2.085GeV,

MZ
OS = 91.1876GeV, ΓOS

Z = 2.4952GeV,

MH = 125GeV, mt = 173.2GeV (3.7)

with the value for the top-quark mass taken from ref. [101]. The pole masses MW,Z and

widths ΓW,Z entering our calculation are obtained from the stated on-shell values MOS
W,Z
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according to (3.4). The electromagnetic coupling constant αGµ is determined from Gµ

via (3.5). The CKM matrix only appears in loop amplitudes and is set to unity.

For the prediction of the hadronic pp → Z+2 jets cross section the partonic cross sec-

tions have to be convoluted with the corresponding parton distribution functions (PDFs).

Since our calculation does not take into account NLO QCD effects, we consistently re-

sort to LO PDFs, using the LHAPDF implementation of the central MSTW2008LO PDF

set [102]. From there we infer the value

αLO
s (MZ) = 0.1394 (3.8)

for the strong coupling constant. We identify the QCD factorisation scale µF and the

renormalisation scale µR choosing

µF = µR =MZ . (3.9)

Note that the choice of the scales µF,R as well as the actual value for the strong coupling αs

plays a minor role for our numerical analysis of EW radiative corrections in section 3.2.2.

We focus on the relative importance of the NLO EW corrections considering the ratio

σNLO
EW /σLO from which the αs and the scale dependence drop out.

For the jet-reconstruction we use the anti-kT clustering algorithm [103] with separation

parameter R = 0.4. For our scenario with exactly two partons and one potential photon

in the final state this simply amounts to recombining the photon with a parton a if Raγ =
√

(ya − yγ)2 + φ2aγ < R. Here y = 1
2 ln[(E+ pL)/(E − pL)] is the particle’s rapidity with E

denoting its energy and pL its three-momentum component along the beam axis, and φaγ
is the azimuthal angle between the the photon and the parton a in the plane transverse to

the beam axis. In case of recombination, the resulting photon-parton jet is subjected to

the cut zγ = Eγ/(Eγ+Ea) < 0.7 in order to distinguish between Z+2 jets and Z+1 jet+γ

production as explained in section 3.1.3. After a possible recombination, we require two

hard jets with

pT,jet > 25GeV, |yjet| < 4.5 (3.10)

for the final event.

3.2.2 Results

In this section we present results for the total cross section and various differential dis-

tributions using the numerical input parameters and acceptance cuts introduced above.

The total cross section and its composition at LO for the 8TeV LHC is shown in table 2

where the absolute and relative contributions of the partonic channels are listed. In the

lower part of table 2 we provide the contribution to the total cross section of partonic

processes with external gluons (gluonic) and of the four-quark processes (four-quark). We

find the total cross section dominated by processes with external gluons, in particular by

the quark-gluon induced processes (69%). We also provide the NLO cross section and the

relative EW corrections for the gluonic channels in the last two columns of table 2. For

our set of cuts, they range between −1.0% and −1.4% for the different gluonic channels.
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Process class σLO [pb] σLO/σLOtot [%] σNLO
EW [pb]

σNLO
EW

σLO − 1 [%]

ug → ugZ, dg → dgZ,
1324.1(2) 68.79 1308.8(2) −1.16

ūg → ūgZ, d̄g → d̄gZ

uū → ggZ, dd̄ → ggZ 128.84(2) 6.69 127.56(2) −0.99

gg → uūZ, gg → dd̄Z 87.40(2) 4.54 86.18(2) −1.37

uu′ → uu′Z, dd′ → dd′Z,
88.41(2) 4.59 — —

ūū′ → ūū′Z, d̄d̄′ → d̄d̄′Z

uū → u′ū′Z, dd̄ → d′d̄′Z,
87.98(2) 4.57 — —

uū′ → uū′Z, dd̄′ → dd̄′Z

uū → dd̄Z, dd̄ → uūZ,
16.566(3) 0.86 — —

uū′ → dd̄′Z, dd̄′ → uū′Z

ud → u′d′Z, ūd̄ → ū′d̄′Z,
111.74(3) 5.81 — —

ud → udZ, ūd̄ → ūd̄Z

ud̄ → u′d̄′Z, ūd → ū′d′Z,
79.70(2) 4.14 — —

ud̄ → ud̄Z, ūd → ūdZ

gluonic 1540.4(2) 80.02 1522.5(2) −1.16

four-quark 384.41(4) 19.98 — —

sum 1924.8(2) 100.00 — —

Table 2. Composition of the LO cross section for pp → Z + 2 jets at the 8TeV LHC. In the first

column the partonic processes are listed, where u, u′ denote the up-type quarks u, c and d, d′ the

down-type quarks d, s, b. The second column provides the corresponding cross section where the

numbers in parenthesis give the integration error on the last digit. The third column contains the

relative contribution to the total cross section in percent. In the fourth column we list the NLO

EW cross section for the gluonic channels and in the last column the relative EW corrections.

In the following we present results for distributions at LO and NLO for the gluonic

channels only. Although these channels dominate the total cross section we emphasise

that there are certain phase-space regions where the relative importance of the four-quark

processes is enhanced and these channels and the corresponding EW corrections should

not be neglected to describe pp → Z + 2 jets properly.

For each distribution we provide two plots: the upper panels show the LO and NLO

prediction for the differential cross section while the lower panels show the NLO result

normalised to the LO result. In figure 4 we present results for the differential cross section

as a function of the transverse momentum and the rapidity for the harder jet j1 and softer jet

j2, respectively. Both transverse momentum distributions show steep slopes over six orders

of magnitude in the displayed pT range. The EW corrections lower the LO prediction, and

their relative size grows in absolute value with increasing transverse momentum due to
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Figure 4. Distributions of the transverse momentum and the rapidity of the harder jet j1 and the

softer jet j2 at the 8TeV LHC at LO (blue, dashed) and NLO (red, solid). The lower panels show

the ratio of the NLO distribution over the LO distribution.

the well-known EW Sudakov logarithms [104–107]. For transverse momenta of the softer

jet pT,j2≃ 1TeV the impact of EW corrections amounts up to −10% relative to the Born

approximation, while for transverse momenta of the harder jet pT,j1 ≃ 1TeV the EW effects

are of the order of −15%. Since, the rapidity distributions are not sensitive to Sudakov

logarithms, the corresponding EW corrections are flat and around −1% as for the total

cross section.

The differential cross section as a function of the di-jet invariant mass and as a function

of the transverse momentum of the Z boson is shown on the left-hand side in figure 5. For

both distributions we find the expected dependence on the Sudakov logarithms, although

the sensitivity in the di-jet invariant-mass distribution is less pronounced than in the pT,Z-

distribution. ForMjj ≃ 500GeV the EW corrections are of the order of −2%; they amount

up to −4% forMjj ≃ 2TeV. The transverse momentum distribution of the Z boson receives

large corrections, from −15% for pT,Z ≃ 500GeV to −25% for pT,Z ≃ 1TeV. On the upper

right-hand side in figure 5 we present the differential distribution of the relative azimuthal

angle φjj between the two jets. The φjj-distribution shows that the two jets are preferably

back-to-back in the transverse plane and that the EW corrections lower the differential

cross section by 1−1.5%. They induce a shape change at the permille level relative to
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Figure 5. Distributions of the di-jet invariant mass, the relative azimuthal angle between the two

jets, the transverse momentum and the rapidity of the Z boson at the 8TeV LHC at LO (blue,

dashed) and NLO (red, solid). The lower panels show the ratio of the NLO distribution over the

LO distribution.

the LO approximation. The rapidity distribution of the Z boson is depicted in the lower

right-hand side of figure 5. In the central region |yZ| < 2, where most of the Z bosons are

produced, the EW corrections lower the LO cross section by 1−1.5% while for |yZ| > 2

their effect drops to the permille level.

4 Conclusions

The full exploitation of the Large Hadron Collider relies on precise theoretical predictions.

To this end QCD and electroweak next-to-leading order corrections have to be calculated

for many processes involving many particles in the final state. This requires efficient and

reliable automatic tools.

In this paper we have presented Recola, a Fortran90 code for the REcursive Com-

putation of One-Loop Amplitudes. It uses methods based on Dyson-Schwinger equations

to calculate the coefficients of all tensor integrals appearing in a one-loop amplitude re-

cursively. The tensor integrals can then be evaluated with efficient numerically stable

techniques. The algorithm has been implemented for the full electroweak Standard Model,

including counterterms and rational terms, but could be generalised to more complicated
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theories in a straightforward way. The implementation supports the complex-mass scheme

and is thus applicable to processes involving intermediate unstable particles. For the treat-

ment of colour we have developed a new recursive algorithm based on colour structures

that naturally appear in the colour-flow representation.

As a first application of Recola, we have calculated the electroweak corrections to

the dominant partonic channels in Z+2 jets production at the LHC. The results have been

verified with an independent calculation based on Feynman-diagrammatic methods. For

a typical set of cuts, the electroweak corrections are negative at the level of one percent,

but become sizeable where large energy scales are relevant. However, in general and in

particular for large energies of the jets, a meaningful prediction requires the inclusion

of next-to-leading-order corrections to all partonic channels. This will be pursued in a

forthcoming publication.
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