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ABSTRACT: Biomass waste-derived engineered biochar for CO2 capture
presents a viable route for climate change mitigation and sustainable waste
management. However, optimally synthesizing them for enhanced performance
is time- and labor-intensive. To address these issues, we devise an active learning
strategy to guide and expedite their synthesis with improved CO2 adsorption
capacities. Our framework learns from experimental data and recommends
optimal synthesis parameters, aiming to maximize the narrow micropore volume
of engineered biochar, which exhibits a linear correlation with its CO2
adsorption capacity. We experimentally validate the active learning predictions,
and these data are iteratively leveraged for subsequent model training and
revalidation, thereby establishing a closed loop. Over three active learning cycles,
we synthesized 16 property-specific engineered biochar samples such that the
CO2 uptake nearly doubled by the final round. We demonstrate a data-driven
workflow to accelerate the development of high-performance engineered biochar with enhanced CO2 uptake and broader
applications as a functional material.
KEYWORDS: inverse design, machine learning, particle swarm optimization, carbon neutrality, environmental sustainability, UN SDG 13

1. INTRODUCTION
Carbon capture and storage (CCS) has attracted significant
attention to mitigate climate change and limit global warming
to 1.5 °C,1,2 fueled by the steady increase in atmospheric
concentration and annual growth rate of CO2 emissions.3

Several technologies, including solvent-based absorption,
membrane and cryogenic separations, and adsorption over
porous solids, have found prominence for postcombustion
CO2 capture, where the latter has emerged as a popular choice
owing to its low cost and operational energy requirement, high
selectivity, and ease of regeneration.4−6 Different classes of
adsorbents including zeolites, metal organic frameworks
(MOFs), activated carbons, metal oxides, and silica have
been extensively investigated over the past couple decades.4,7

Among these, engineered biochar, a form of activated carbon,
presents a promising functional material for postcombustion
CO2 capture due to its advantages including abundant carbon
precursors (i.e., biomass and organic waste), tunable porosity,
mild operating conditions, high feasibility for practical
applications, low energy requirement for regeneration, and
excellent carbon negative emission properties.4,8,9 Moreover,
upcycling biomass waste into engineered biochar serves as a
sustainable waste-to-resource strategy, while the byproduct
syngas can be combusted to generate thermal energy for
synthesizing engineered biochar.10,11

The rational design of high-performing engineered biochar
for CO2 adsorption necessitates pore structure engineering
(including the total surface area, pore volume, and pore size
distribution), which is accomplished through carbonization
and activation processes,12−15 along with modification
strategies such as doping with N, S, or Mg, among others.16−19

It is well acknowledged that these steps are the controllable
synthesis parameters; thus, a wide gamut of their possible
parameter space is explored following the trial-and-error
approach, which is time- and resource-intensive. This demands
novel strategies that are capable of accelerating the
experimental efforts to design property-specific engineered
biochar materials.

Recent strides in machine learning (ML) have proven
effective in guiding the synthesis of application-specific
inorganic materials,20−22 organic compounds,23,24 adsorb-
ents,25,26 and membranes.27 In the biochar community, several
ML-based studies have been reported that predicted the yield
and physical−chemical properties of biochar,28−31 organic
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contaminant removal,32−34 heavy metal immobilization,35−38

and CO2 adsorption on biochar39 or leveraged concepts of
natural language processing (NLP) to text-mine scientific
articles and create a database of synthetic recipes.40 Notably,
although a handful of these studies provide experimental
validation,31,37,41 the majority remain purely theoretical. Thus,
there is an evident dearth of studies that utilize ML concepts
and tools to synthesize biochar with the desired properties and
performance.

In this proof-of-concept, we take the first steps to address
this gap. Our previous studies uncovered two critical findings:
(i) engineered biochar’s narrow micropores under 0.8 nm
(V0.8) exhibit a linear correlation with CO2 adsorption42 and
(ii) the textural properties including pore volume and surface
area outweigh the functional groups for CO2 adsorption at
25 °C and 1 bar.39 Based on these findings, we hypothesize
that tailoring V0.8 in engineered biochar can achieve the desired
CO2 adsorption capacity.9,39 To test this hypothesis, we used
rice husk as a carbon precursor and created a data-driven
framework that identifies optimal synthesis conditions to
maximize the CO2 adsorption capacity. We train a model on an
initial set of experimental data, which learns the complex and
nonlinear relationship between the synthesis parameters and
V0.8 of the engineered biochar and in turn recommends the
synthesis conditions necessary to maximize V0.8, ultimately
enhancing the CO2 adsorption. The data from these
experiments are iteratively fed to the model for further
training, prediction, and experimental recommendations,
thereby establishing a closed active learning loop43,44 (Figure
1). Across three active learning cycles, we synthesized 16
engineered biochar samples, progressively tuning their V0.8 to

achieve a nearly doubled CO2 adsorption capacity by the final
round.

2. METHODOLOGY
2.1. Experimental Protocols and Scope. All of the

experiments encompassing synthesis, characterization, and
CO2 adsorption tests of engineered biochar samples are
categorized into seed and guided experiments. Seed experi-
ments rely on the experimental researcher’s intuition and are
trial-and-error in nature, while guided experiments follow
suggestions from the active learning framework. Regardless of
the experiment type, all of the engineered biochar samples are
synthesized through rice husk carbonization and KOH
activation. It is essential to note that various engineered
biochar preparation methods exist, involving activating agents
like NaOH and postactivation modifications such as N-, S-, O-,
or Mg-doping.17−19 However, our scope focuses on carbon-
ization followed by KOH activation for consistency in the data.
This choice allows our model to learn nonlinear correlations
between synthetic parameters and engineered biochar’s
textural properties, enabling meaningful experiment recom-
mendations. Furthermore, including a wide array of synthesis
procedures would increase complexity, posing the challenge of
the “dimensionality curse” with too many variables for a small
data regime.43,45

2.1.1. Synthesis of Engineered Biochar. We chose carbon-
ization followed by KOH activation, a verified and practical
method for preparing high-performance CO2 adsorption
engineered biochar samples.46−48 In this synthesis route, five
parameters, including carbonization temperature (TC) and
residence time (RC), activation temperature (TA) and

Figure 1. Active learning schematic for upcycling rice husk into engineered biochar for CO2 capture toward environmental sustainability. Beginning
with 10 initial experiments, a forward model is developed which maps V0.8 as a function of five synthesis parameters and is correlated to CO2
adsorption capacity. The inverse model then recommends experiments worth investigating to maximize the performance. Across three active
learning cycles, the CO2 adsorption of the synthesized engineered biochars almost doubles.
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residence time (RA), and mass ratio of KOH and biochar
(K/B), were considered essential, as these could be varied or
adjusted conveniently during experimentation. Post activation,
the engineered biochar samples were collected and washed
using distilled water to remove unreacted chemicals and dried
at 110 °C for 24 h.

2.1.2. Characterization and CO2 Adsorption Tests. All of
the synthesized engineered biochar samples were characterized
to determine their textural properties and evaluated for their
CO2 adsorption capacities. The samples were first pre-degassed
at 150 °C for 12 h to remove gases adsorbed in samples,
followed by N2 adsorption and desorption isotherms at
−196 °C using the Micromeritics analyzer (ASAP 2020).
Thereafter, the total pore volume (VTotal) was calculated using
the Horvath−Kawazoe equation at p/p0 = 0.99, and the
cumulative pore volume limited by narrow micropores less
than 0.8 nm (V0.8) was obtained by using nonlocal density
functional theory (NLDFT) with the standard slit model. CO2
adsorption capacities were determined at 25 °C and 1 bar
using the volumetric sorption analyzer (ASAP 2020, Micro-
meritics).

2.2. Active Learning Framework. Our active learning
strategy combines the regression ability of ML with the
optimization assets of a particle swarm optimizer (PSO)
suitable for single objective functions.49,50 Herein, the former is
also referred to as a forward model as it predicts V0.8 (property
of interest) based on synthesis parameters (input to the
model), whereas the latter is termed as an inverse model as it
recommends optimal synthesis conditions (output of the
optimizer) to maximize V0.8 (objective function). Since CO2
adsorption (performance) linearly correlated to V0.8 (prop-
erty), maximizing the latter invariably increases the former,
which is the ultimate goal of this work.

2.2.1. Forward Model. As the first step, a random forest
(RF) and Gaussian process (GP) regressor were trained on an
initial set of 10 experiments using TC, RC, TA, RA, and K/B as
input features to predict V0.8, which was then used to calculate
the CO2 adsorption empirically using the linear relation42

VCO adsorption 8 1.212 0.8= × + (1)

This combined process of predicting V0.8 and empirically
calculating the CO2 adsorption is referred to as the forward
model. Subsequently, a feature importance analysis using the
SHAP (Shapley Additive exPlanations) analysis was performed
on the best-performing algorithm.44,51

This approach aims to determine the most important input
features that affect the target properties and thereby enhance
the interpretability of ML predictions,49,52 while ensuring
alignment with domain knowledge and experimental experi-
ence.43,44,53 The latter is crucial for building user confidence in
ML predictions, ultimately facilitating guided synthesis and
process optimization.

2.2.2. Inverse Model. The ML algorithm acts as a surrogate
to the PSO algorithm, which explores the synthesis parameters
within specified boundary conditions to maximize V0.8 and is
referred to as the inverse model.25,27,49 In each run of the
inverse model, the PSO algorithm selects the next potential set
of n conditions (generations) to be tested experimentally,
where the number of generations are determined by the
modeler.50 Each batch serves as an iteration in the inverse
design strategy, and each condition within a single iteration
serves as an experimental data point worth validation.23,24 The
PSO-recommended experimental conditions are tested and

simultaneously added to the initial data set, further training the
forward model and subsequent PSO to sequentially maximize
V0.8. This iterative process continues until no further
improvements in CO2 adsorption capacities are observed or
until the optimizer reaches a global maximum/minimum.20,43

The particulars of the various rounds of active learning
cycles are summarized in Table 1. Details of the regressor

algorithms, hyperparameter tuning, error metrics, SHAP, and
PSO algorithm are described in the Supporting Information
(Sections S1−S5). All of the modeling activities were
performed in Python (version 3.6) using the open-source
libraries: Scikit-learn for developing ML models, Shap for
model interpretation, and PySwarm for optimization.

3. RESULTS AND DISCUSSION
3.1. Seed Experiments and Model Prediction. We

initiate the active learning framework through the seed
experiments, which comprised 10 experimental conditions
from synthesis to the CO2 adsorption performance of the
engineered biochar. The N2 adsorption and desorption
isotherms for 10 engineered biochar samples prepared at
−196 °C during the seed experiments are summarized in Table
S1 and depicted in Figure S1. All isotherms belong to type I of
the International Union of Pure and Applied Chemistry
(IUPAC) classification, implying that all of the prepared
engineered biochar samples were typical microporous carbon
materials.20,24 Moreover, the pore size distributions (PSDs) of
the samples, which are measured following the N2 isotherms,
and the NLDFT with the standard slit models are presented in
Figure 2a. For all of the samples in the seed experiments, the
microporous structures were well-developed and dominant
pore sizes were smaller than 2.0 nm, implying their
effectiveness to adsorb CO2 gas.10,11 The CO2 adsorption
isotherms at 25 °C for the seed samples are depicted in Figure
2b. Because all of the synthesis conditions were performed
under the trial-and-error approach, it resulted in significant
variation in the CO2 adsorption performance. The mean
amount of CO2 adsorbed during the seed cycle was observed
to be 2.17 mmol g−1 with the least at 0.92 mmol g−1 and
maximum at 2.88 mmol g−1, respectively.

Based on the data generated during the seed experiments,
two types of ML algorithms, namely, RF and GP regressors,
were devised to predict V0.8 using synthesis parameters as
model inputs. The RF regressor exhibited superior perform-
ance with R2 and RMSE values of 0.88 and 0.024 cm3 g−1,
respectively, compared to GP with corresponding R2 and
RMSE values of 0.74 and 0.035 cm3 g−1, respectively (Table
S2). Given the small size of the seed data set, we expect that
RF, an ensemble algorithm must have fit the small-sized data
set more effectively by making use of bootstrap sampling and
statistical averaging.28,50 Finally, given the better prediction

Table 1. Overview of the Active Learning Cycle with the
Essential Detailsa

nomenclature sample prepared
type of

experiments
number of
experiments

Seed EB 1 − EB 10 initial 10
R1 EB 11 − EB 15 guided 5
R2 EB 16 − EB 21 guided 6
R3 EB 22 − EB 26 guided 5

aNote: EB-x, x represents the number of each prepared sample.
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performance of the RF over GP, the former was hereon chosen
as the choice of algorithm for SHAP analysis and as a surrogate
for the subsequent optimization in the active learning
framework.

The next step involved SHAP analysis of the RF regressor to
unveil feature importance. Though SHAP interpretation does
not imply causality, they aid in determining correlations
between the input features and target variables and thus help

deduce how the ML algorithm arrives at its prediction.51,52

The synthesis parameters influence based on the seed
experiments ranked as TC > TA > RC > K/B > RA. These
findings align with the existing literature, wherein it is agreed
that operating temperatures are more important than residence
time for both carbonization and activation.54−56 Moreover,
during the KOH activation, chemical reactions occur at high

Figure 2. Pore size distributions (PSDs) of (a) ten samples for seed cycle, five samples for R1 cycle, six samples for R2 cycle, and five samples for
R3 cycle. EB-x, x represents the number of each sample. (b) Experimental CO2 uptake at 25 °C and 1 bar using all data from seed to R3
experiments. EB-x, x represents the number of each prepared sample.

Figure 3. Evolution of (a) V0.8 in the form of histogram over the active learning cycle. A steady increase in the size of V0.8 and the corresponding
frequency is observed after each iteration. (b) CO2 adsorption capacity at 25 °C and 1 bar as a scatter plot, over the various experiments performed
during active learning. A linear increase in the CO2 adsorption capacities is observed with progressive experiments. The subplot in panel (b) shows
a mean CO2 uptake of 2.17 mmol g−1 for seed experiments, whereas those for guided experiments reach 3.24 mmol g−1.
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operating temperatures to efficiently develop microporous
structures, highlighting the critical role of K/B over RA.

3.2. Active Learning. After training the RF regressor on
the seed experiments (10 experimental conditions), the
optimization process was initiated in batch mode for PSO
using local penalization. We defined maximization of V0.8 as the
objective function, as it was dependent on the synthesis
parameters (and thus tunable) and linearly correlated to the
CO2 adsorption capacity at 25 °C and 1 bar. Thus, it served as
an ideal link between the synthesis parameters and the CO2
adsorption tests.

3.2.1. Maximizing V0.8 and CO2 Adsorption. Based on the
seed experimental data, the RF-based surrogate model was
developed, and its predictions were thereafter leveraged by the
PSO to suggest five additional experimental points (i.e., half
the size of the seed experiments). This formed our first round
of active learning (R1). The PSO sampling of five experiments
was not arbitrary but rather based on the modeler’s notion of
sampling 50% of the seed data set to capture sufficient
experimental design space (10 × 0.5 = 5). We synthesized
engineered biochar samples based on the synthesis recom-
mendations by the PSO (R1, summarized in Table S2) and
characterized their textural properties, followed by the
evaluation of the CO2 adsorption capacities. Figure S1 presents
the similar N2 adsorption and desorption isotherms of the five
engineered biochar samples synthesized during the R1 cycle,
suggesting that they were also microporous carbon materials.
As shown in Figure 2a, most of the pore sizes are less than 2

nm, which could further improve the CO2 adsorption
capacities.42 The CO2 adsorption isotherms at 25 °C of all
five prepared samples are depicted in Figure 2b, exhibiting
improved CO2 adsorption capacities compared with seed
experiments. Specifically, the average V0.8 and CO2 adsorption
capacity during the latter experiments were 0.12 cm3 g−1 and
2.17 mmol g−1, whereas those from guided experiments during
R1 were 0.23 cm3 g−1 and 2.94 mmol g−1, respectively. In
summary, the CO2 adsorption capacities increased by 1.35-
fold, given the approximately 2-fold increase in V0.8 (Figure 3).

During the second round (R2), the RF-based surrogate
model was trained on 15 data points (seed and R1
experiments) and fed to the PSO, which in turn suggested
the next 6 experimental conditions for synthesizing CO2
adsorbents from rice husk. Here, again, the PSO sampling of
6 experiments was chosen by the modeler under the pretext of
sampling 40% of the current data set (15 × 0.4 = 6). On
synthesizing the engineered biochar samples based on the
suggested experiments, the PSDs of these 6 samples as shown
in Figure 2a displayed a similar trend as the earlier synthesized
samples but with improvements in V0.8. As a result, the average
CO2 adsorption in R2 increased to 3.09 mmol g−1, which was
approximately 1.4 times more than those in seed experimental
data. The maximum CO2 adsorption in this cycle was found to
be 3.25 mmol g−1, approximately 13% more than the best CO2
adsorption observed during the seed experiments.

The steady and linear improvements in CO2 adsorption
observed over two rounds of active learning prompted a third

Figure 4. (a) Collinearity heatmap between all of the synthesis parameters investigated in the study, where no strong correlation is observed. (b)
Average prediction performance of the RF algorithm over the entire active learning process. The blue dashed lines represent the line of equality
(x = y). (c) Feature importance ranking represented as normalized SHAP values after the final round of active learning. (d) Two-way interaction
plot between all of the synthetic parameters investigated, where the yellow regions depict maximal performance in terms of CO2 adsorption. The
following abbreviations are used: TA for activation temperature, RA for activation duration, Tc for carbonization temperature, RC for carbonization
duration, and K/B for mass ratio of KOH to biochar.
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round. With a total of 21 experimental data points until R2, we
probed the PSO to generate five additional experimental data
points for synthesizing high-performance CO2 adsorbents from
rice husk. The PSO sampling of five experiments in this round
was chosen under the pretext of sampling 25% of the current
data set (21 × 0.25 = 5). By this round, it appeared that the
PSO was hitting a global maximum with respect to parameters
including TC and K/B (further discussion in the next section).
Nonetheless, the next set of five suggested experimental values,
i.e., R3 were used to synthesize engineered biochar samples,
and their performance was evaluated. The CO2 adsorption
isotherms at 25 °C of all five prepared samples during R3 are
shown in Figure 2b and exhibited the best CO2 adsorption
capacities in this study. As observed in Figures 2b and 3b, three
of the engineered biochar samples synthesized under this
iteration had CO2 adsorption capacities above 3.5 mmol g−1,
with the highest value of 3.84 mmol g−1. From an overall
comparative perspective, this implied that by the third round
the CO2 adsorption capacities had increased by 1.7−1.9 times
compared with the seed experiments.

3.2.2. Improvements in Model Prediction during Active
Learning. Beyond assessing the engineered biochar perform-
ance, we analyzed the evolution of the forward model’s
prediction ability. No correlations were observed among the
synthesis conditions (inputs to the model), as shown in Figure
4a. Simultaneously, the RF-based forward model was trained
using PSO-recommended experimental data after each active
learning round, and its error metrics were observed as shown
in Figure S2. During the initial R1 cycle, as the size of the data
set increased from 10 to 15, the model performance also
increased from R2 = 0.88 to 0.91. Further on, retraining the RF
algorithm with experimental data of R2 improved the
predictions to R2 = 0.94, finally saturating at the same values
on subsequent training with R3 data. Throughout the active
learning cycles, the RMSE values ranged between 0.021 and
0.024 mmol g−1, with a mean R2 = 0.92 as depicted in Figure
4b, indicating model robustness and generalization. The

improvements in model prediction were expected with
increased data quantity and quality, where the latter was
fostered by clean, controlled experiment environments. Further
details on the determination of optimal parameter values for
TC, RC, TA, RA, and K/B are described in the Supporting
Information (Section S6).

3.2.3. Rationalizing the Model Recommendations. The
synthesis parameters including TC, TA, and K/B are vital for
achieving desired microporosity in engineered biochar for
effective CO2 adsorption.12,57 Interestingly, these parameters
were identified as the top three features affecting performance
by SHAP analysis (Figure 4c). It is worth noting that the
model ranked these parameters with no prior mechanistic
information on the reaction chemistry or kinetics but purely
based on data-driven correlations, building user confidence.
We rationalize the model recommendations by visually
analyzing the two-way interaction among the synthesis
parameters investigated and link them with literature claims
to present plausible reasoning.

Integrated carbonization and activation, particularly with
KOH, effectively enhance microporosity and pore structure in
biochar due to the adequate valorization of the precursor.14,57

Chemical activation with KOH interacts with carbon matrices,
liberating gases to form micropores.12,13,42 Our study identifies
optimal conditions for high CO2 adsorption with TA > 700 °C
and TC at ca. 400 °C (Figure 4d). The activation of precursors
carbonized at TC ≤ 400 °C results in high reactivity with the
KOH solvent, yielding well-defined pore structures.56 How-
ever, increasing TC above 500 °C may hinder this process due
to the presence of volatiles on the precursor surface formed
during carbonization.13,14 In the case of TC and K/B (Figure
4d), high-performance regions were identified for TC values
between 400 and 405 and ratio values between 1.7 and 2.0.
While from a modeling perspective these values suggest the
PSO had converged at respective global and local minima,
mechanistically, it indicted that the amount of KOH at TC =
400−405 was suitable to react with most, if not all, of the

Figure 5. (a) Landscape of over 50 publications published between 2019 and 2023, leveraging machine learning for prediction of various biochar-
specific properties and applications (y-axis). Approximately 90% of the published works are purely theoretical. (b) A series of 16 engineered biochar
samples were synthesized during the active learning cycles by tuning their V0.8 based on the model-recommended synthesis parameters, which
ultimately affected the CO2 adsorption. The predicted and experimentally measured CO2 adsorption of these samples closely matched with each
other.
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precursor, forming well-developed pores.14,56 Similarly, for K/
B and RA (Figure 4d), the optimal performance was observed
at RA between 1.5 and 3.5 h, with K/B = 1.7−2, providing the
necessary residence time for the activation process. A shorter
duration (<1.5 h) would lead to incomplete reaction between
KOH and the precursor, while the converse (>3.5 h) risks
forming surface moieties that hamper porosity.12 During
chemical activation, TA values ranging from 650 to 800 °C
are typical for biomass-derived engineered biochar.9,14 This
also seemed the case in K/B and TA (Figure 4d), where,
irrespective of the K/B values, TA > 700 °C favored high
performance, with recommended values ranging between 724
and 800 °C and 1.5 and 2.0 for TA and K/B, respectively,
during R3 experiments. In summary, rationalizing the feature
importance analysis revealed that the synthetic recommenda-
tions made by the model aligned closely with the established
heuristic, reinforcing its validity and thus building user
confidence.

3.3. Active Learning Implications for Guiding Biochar
Synthesis. Recent years have seen an increase in the number
of ML-based studies on various applications. However, our
literature analysis reveals that opportunities to translate the
collective insights from such studies to design property-specific
biochars have remained minimal (Figure 5a, Supporting
Information Table S1). To address this limitation, we
developed a data-driven framework, which uses small data
(typical in experimental research groups) to accelerate the
development of engineered biochar materials, demonstrated
through 16 samples synthesized over three active learning
cycles with desired textural properties and enhanced CO2
adsorption capacities. The model’s prediction and the
measured CO2 adsorption were in close agreement with each
other (Figure 5b), highlighting the efficacy of our approach.

The generality of our work arises from its data-driven nature
and is not limited to particular feedstocks or specific synthetic
parameters. Data-driven models have found prominence in
recent years as they do not rely on the process mechanism but
rather learn correlations between a set of inputs and target
functions, making them adaptable to various applications.
Thus, we are confident that our framework can be used or
adapted by researchers to synthesize property-specific biochar
for their respective applications by choosing the feedstocks and
synthesis parameters of choice. By a similar extension, this
strategy could also be used for the development of materials
such as adsorbents, catalysts, and membranes by exploiting
their structure−property performance relations provided
sufficient (ca. 20−30) experimental data points are available
to initiate the active learning loop. In the current study, our
prime focus was directed toward developing the guided
synthesis protocol from conception to implementation.
Understanding the mechanisms and kinetics of CO2
adsorption (i.e., functional groups, hydrophilicity, and surface
charge density) for these engineered biochar samples will be
the point of future research endeavors.

■ ASSOCIATED CONTENT

*sı Supporting Information
The curated data set and ML model developed in this study
are open sourced at GitHub (https://github.com/
ssuvarnamanu/active-learning-for-biochar-design). The Sup-
porting Information is available free of charge at https://
pubs.acs.org/doi/10.1021/acs.est.3c10922.

Details of the ML algorithms are explained in Section
S1, and hyper-parameters, error metrics, and SHAP
analysis are described in Sections S2−S4. Formulation of
the PSO and evolution of the model predictions and
optimization are provided in Sections S5 and S6,
respectively. N2 adsorption isotherms are depicted in
Figure S1. Model performance in terms of R2 is shown
Figure S2. Details of the experimental data set are
presented in Table S1. Algorithm-specific tuned hyper-
parameter are listed in Table S2. Literature overview of
ML studies pertaining to biochar applications is
described in Table S3 (PDF)
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