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Global high-resolution total water storage 
anomalies from self-supervised data 
assimilation using deep learning algorithms

Junyang Gou       & Benedikt Soja    

Total water storage anomalies (TWSAs) describe the variations of the 
terrestrial water cycle, which is essential for understanding our climate 
system. This study proposes a self-supervised data assimilation model with 
a new loss function to provide global TWSAs with a spatial resolution of 0.5°. 
The model combines hydrological simulations as well as measurements 
from the Gravity Recovery and Climate Experiment (GRACE) and its follow-
on (GRACE-FO) satellite missions. The efficiency of the high-resolution 
information is proved by closing the water balance equation in small basins 
while preserving large-scale accuracy inherited from the GRACE(-FO) 
measurements. The product contributes to monitoring natural hazards 
locally and shows potential for better understanding the impacts of natural 
and anthropogenic activities on the water cycle. We anticipate our approach 
to be generally applicable to other TWSA data sources and the resulting 
products to be valuable for the geoscience community and society.

Monitoring variations in the global water cycle is crucial for under-
standing the Earth’s climate system1. The long-term trends in ice-sheet 
melting2 and freshwater availability3 can be investigated by analys-
ing the water cycle over decades, while the short-term variations of 
the water cycle contain fruitful information for monitoring natural 
hazards like flood4 and drought5 events. To quantify variations in the 
global water cycle, total water storage (TWS), defined as the storage 
in all forms of water, has been implemented as an essential climate 
variable6. For decades, TWS has mainly been modelled by simulations 
from global hydrological models, including global hydrology and water 
resource models and land surface models7. The hydrological models 
can provide spatial variance and short-term temporal variations but 
suffer from providing reliable long-term trends, which indicate the 
climate and human-induced changes in water storage8. Since 2002, the 
Gravity Recovery and Climate Experiment (GRACE) and its follow-on 
(GRACE-FO) missions (hereafter GRACE) have provided us with a unique 
opportunity to monitor the changes in global TWS anomalies (TWSAs) 
by measuring gravity field variations9–11. The satellite-measured TWSAs 
have unprecedented accuracy with global coverage due to the physical 
measurement principle and provide valuable information about the 
Earth’s climate system from a macro perspective1,12–14.

Although GRACE products have been widely used, their coarse 
spatial resolution of about 3° is among the key factors limiting the 
applications in related fields, such as understanding water storage 
changes in small catchments14. The problem of low spatial resolu-
tion mainly comes from two origins as follows. First, the design of the 
orbit and the accuracy of the instruments inherently limit the possible 
spatial resolution15,16. Second, postprocessing approaches are needed 
for obtaining meaningful signals17,18 but they also attenuate the actual 
geophysical signals, especially the high-frequency signals19–21. As a 
result, reconstructing these high-frequency geophysical signals is vital. 
To improve the resolution, incorporating additional information with 
higher spatial resolution is necessary. In the specific task of downscal-
ing GRACE TWSAs, the most promising high-resolution information is 
contained in hydrological models and measurements. The hydrologi-
cal models can directly simulate TWSAs, whereas other hydrological 
parameters such as precipitation provide valuable auxiliary informa-
tion by considering the water balance14,22. Many studies have proven 
the feasibility of assimilating data to downscale GRACE products over 
specific regions23–26 but few of them applied the methods successfully 
on a global scale. The downscaling algorithms with global generalizabil-
ity so far can provide GRACE TWSAs of 0.5° using partial least squares 
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including coastal areas and small islands, except for Greenland and 
Antarctica due to the deficiency of hydrological models39,40. Our model 
is based on the principle of convolutional neural networks41, allowing us 
to consider spatial correlations between individual cells. Our analysis 
shows the impressive performance of the proposed algorithm in pro-
viding high-resolution TWSAs, which represent the high-resolution 
structures while keeping accurate mass conservation on the basin scale. 
Therefore, the water balance equation can be better closed in the basins 
smaller than the GRACE-effective resolution. Ultimately, we also discuss 
the potential usages of the obtained high-resolution TWSA product for 
analysing the impacts of climate change and anthropogenic activities 
on a local scale, as well as for natural hazard monitoring.

Global downscaled TWSA product with 
uncertainties
We determined a global high-resolution TWSA product from April 2002 
to December 2019, covering all global land areas except for Greenland 
and Antarctica. To provide uncertainty information, we combined 
probabilistic deep learning principles and Monte Carlo simulations to 
estimate the uncertainties using deep ensembles42. An example of the 
highly resolved TWSA product is shown in Fig. 2 with six major river 
basins enlarged. On the global scale, the seasonal changes in water 
storage are consistent with the ones observed by the GRACE measure-
ments (Supplementary Videos 1 and 2). The regional maps demonstrate 
the visibility of the main river systems with refined details, which are 
inherited from the WGHM simulations. Moreover, the results are visu-
ally smoother than the WGHM TWSAs, indicating effective noise reduc-
tion. The reduction of the outliers is not only beneficial to reducing 
the amount of abnormal pixels but also helpful for gaining accurate 
values of the other neighbouring pixels. Once the outliers are reduced, 
the magnitudes of the neighbouring pixels with actual signals are cali-
brated by considering the constraint of agreements with GRACE TWSAs 
over an area larger than the GRACE-effective resolution16. Overall, the 
downscaled TWSAs have a global median uncertainty of 7.3 mm. The 
regions where water storage changes rapidly are usually accompanied 
by relatively large uncertainties due to their higher TWSA values, such 
as the mainstreams shown in Fig. 2.

regression27 or an ensemble Kalman filter assimilation pipeline28 but 
still have some deficiencies, such as insufficient intrabasin variability 
preservation or interbasin mass conservation.

In recent years, deep learning has progressed rapidly and shown 
remarkable potential in modelling the Earth system29–31. Many studies  
investigated the potential of applying deep learning or classical 
machine learning approaches to downscale GRACE measurements in 
a supervised learning context32,33. The main challenge is the need for 
high-resolution ground truth of TWSAs, which are inaccessible. There-
fore, the studies usually generate the training pairs by downsampling 
the high-resolution hydrological simulations into the same resolution 
as GRACE. Under the assumption that the relationship between predic-
tors and targets holds in different resolution domains, they apply the 
trained model on the original high-resolution hydrological simulations 
to obtain the downscaled GRACE predictions with the same resolu-
tion34–36. Another way to deal with the lack of ground truth is generating 
GRACE-like TWSAs by applying a Gaussian smoother on the hydro-
logical simulations and training the model based on synthetic data 
pairs37. In this context, the necessary assumption is that the captured 
relationship also holds for the real GRACE measurements. However, all 
the aforementioned studies only applied their methods locally to con-
tinentally, indicating the difficulty of applying proposed deep learning 
methods globally due to their inherent challenges about generaliza-
tion38. This study contributes to the downscaling problem and solves 
the two mentioned inadequacies of the existing deep learning algo-
rithms, namely relieving assumptions between different domains and 
providing global generalizability. First, we developed a loss function 
based on the average deviations between the outputs and the GRACE 
TWSAs over a certain area and the similarity between the outputs and 
WaterGAP Hydrology Model (WGHM)39 simulations (Fig. 1; Methods). 
Since the GRACE and WGHM TWSAs are part of the inputs, we do not 
need extra labels or certain assumptions for generating synthetic 
training pairs. As a result, the network parameters can be optimized 
in a self-supervised manner without explicit assumptions bridging 
the high–low spatial resolution domains or simulation–measurement 
domains. Second, our downscaled TWSAs inherit the global generaliz-
ability from both GRACE and WGHM TWSAs and cover all the land areas, 
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Fig. 1 | The structure of the designed deep learning model in this study with 
an enlarged structure of the used residual blocks. The 2D convolutional layers 
and upsampling layers with bilinear interpolation are denoted by Conv2D and 
Upsampling2D. The kernel size of the 2D convolutional layers is denoted by k, 

whereas the stride is denoted by s. The input features go through the encoder–
decoder structure to generate the predictions with the same size, which will 
be compared to the GRACE and WGHM TWSAs to compute the loss function. 
Therefore, the optimizing process is self-supervised.
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High-resolution details with large-scale mass 
conservation
Since accurate high-resolution TWSA measurements on a global scale 
are inaccessible, we cannot directly evaluate the quality of the down-
scaled product. Therefore, we rely on the GRACE measurements and 
WGHM simulations in different contexts. First, we compared the down-
scaled TWSAs with the WGHM simulations to study whether the high-
resolution structures are sufficiently reconstructed. To achieve this 
goal, we considered each pixel over the whole time span as a time series 
and computed the pixel-wise Pearson correlations between downscaled 
and WGHM TWSAs. The impact of the inaccurate magnitudes in the 

WGHM TWSAs is reduced since the Pearson correlation is invariant 
under changes in scale. As shown in Fig. 3a, the overall correlation is high 
with a median value of 0.80, meaning an improvement of 51% compared 
to GRACE TWSAs (0.53). The relatively low correlations are mainly 
found in arid regions such as the north of Africa, the Middle East and 
the middle of Asia. These low correlations are understandable due to 
weak hydrological signals in these arid regions since GRACE and WGHM 
are not sufficiently sensitive to accurately measure or simulate them. 
Furthermore, comparisons with independent satellite altimetry meas-
urements show that the high-resolution information of the downscaled 
product is beneficial (Supplementary Table 1 and Supplementary Fig. 5).
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Fig. 2 | The downscaled TWSAs (top) and their uncertainties (bottom) in 
August 2008. The data are provided in the format of equivalent water height 
(EWH) with a spatial resolution of 0.5°. a–f, Six major river basins are shown with 

enlarged details: Amazon (a), Mississippi (b), Congo (c), Lena (d), Yangtze (e) 
and Nile (f). The regions without valid information are shaded. Note the different 
spatial scales for the enlarged images for better visualization.
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To evaluate the basin-wise quality of the downscaled TWSAs, we 
rely on the GRACE measurements since the GRACE TWSAs are con-
sidered to be accurate over the their effective resolution16,43. We first 
averaged GRACE and downscaled TWSAs of each individual basin to 
generate basin-wise time series and compute the root mean square 
errors (RMSEs) between these two types of time series. The results 
are shown in Fig. 3b for 288 basins globally. The RMSEs are lower than 
30 mm in most of the land areas, resulting in a global average RMSE of 
21.9 mm weighted by basin areas. This value demonstrates the quality  
of the downscaled TWSAs since the typical GRACE uncertainties are 
20–30 mm (ref. 15). Compared to WGHM simulations (weighted RMSE 
of 49.2 mm), our method provides an improvement of around 56%. Fur-
ther analysis reveals that certain basins exhibit relatively high RMSEs, 
such as the basins in the glaciated areas of Alaska. Insufficiently mod-
elling of glaciers and ice sheets is a known issue of the hydrological 
models8,39. Since we trained one neural network for the whole globe, 
the network cannot handle the substantial differences between the 
hydrological simulations and GRACE measurements in these specific 
regions because the issue is inessential in other regions, constituting 
the major part of the samples. Therefore, we consider this issue as a 
trade-off between generalizability and performance in specific areas.

Long-term trends and seasonal variations
To understand the performance of the proposed deep learning model 
on the basin scale in more detail, we plot the time series of the aver-
age TWSAs over the six selected major basins (Fig. 4). In the Amazon 
basin, dominant seasonal signals are relatively homogeneous. Both 
downscaled and WGHM TWSAs agree well with GRACE measurements, 

although the WGHM simulations tend to underestimate the amplitudes. 
For the basins where average TWSAs are less stationary and with more 
inhomogeneous variations (Mississippi, Congo, Lena and Nile), the 
downscaled TWSAs agree better with the GRACE observations than the 
WGHM simulations. These phenomena may be related to the known 
limitation of hydrological simulations, as they cannot fully capture the 
trends in water changes8. For example, the downscaled TWSAs success-
fully model the steady decrease in the Lena basin after 2007 and the 
increase in the Nile basin since 2010, whereas the WGHM time series 
do not represent these trends properly. However, both downscaled 
and WGHM TWSAs underestimate the increasing trend in the Yangtze 
River basin after 2010. A potential reason is the active anthropogenic 
impacts in this basin, such as construction of dams44. Although the 
WGHM model considers human intervention, it may perform unsatis-
factorily in specific regions and result in a relatively big disparity from 
GRACE measurements39. As a result, the typical relationship captured 
by our model based on global data may not be the best solution in these 
regions, which is again a trade-off between generalizability and perfor-
mance in specific areas. Conversely, the good agreements between the 
downscaled TWSAs and the GRACE measurements in the Mississippi 
and Congo basins demonstrate the performance of our model.

To quantify the performance of our method in retaining long-term 
trend, annual and semi-annual signals, we estimated these signals 
from the three TWSA types over 160 basins larger than 200,000 km2 
and show the results in Fig. 5a. Here, we set the spatial threshold of 
200,000 km2 to obtain more reliable GRACE estimations as refer-
ence16,39,43. The correlation between WGHM- and GRACE-derived trends 
is only 0.47, showing the major limitation of the hydrological models in 
capturing long-term trends. Our method substantially improves this 
situation and reaches a correlation of 0.94. This improvement reveals 
the effectiveness of the proposed algorithm for data assimilation. The 
network has learned to rely on the GRACE measurements to calibrate 
the average magnitudes over an area larger than the GRACE-effective 
resolution. Therefore, the trends contained in the GRACE measure-
ments have been successfully inherited to the downscaled TWSAs. The 
largest trend differences are found in the glaciated basins of Alaska 
and their neighbouring basins (Fig. 5b), which related to the problem 
of insufficient modelling of glaciers and the resulting leakage errors 
again. The performance of WGHM on annual and semi-annual signal 
estimations is clearly better than estimating trends with correlations 
of 0.83 for both. Nevertheless, our method still outperforms it and 
reaches correlations of 0.97 and 0.95, respectively. The results prove 
the realistic temporal changes in our downscaled TWSAs on the basin 
scale, even though we treated every month separately and did not 
explicitly feed any temporal information to the model. Moreover, the 
phases of the annual signals of our downscaled product agree well with 
those measured by GRACE (Fig. 5c), with the only major differences 
occurring in the north of Africa where the hydrological signals are weak 
and the phases are therefore ambiguously defined. It is a remarkable 
improvement compared to WGHM simulations, which suffer from 
phase shifts of 2 or 3 months for many of the basins globally (Supple-
mentary Figs. 3 and 4).

Closing water balance equation beyond the 
GRACE resolution
The downscaled TWSAs are beneficial for better closing the water 
balance equation in regions smaller than the GRACE-effective resolu-
tion. Figure 6 depicts the agreements between water changes inferred  
from the downscaled TWSAs and those computed from ERA5-Land 
water budget components45 in level-4 basins46. The downscaled TWSAs 
show a reasonable ability to close the water balance equation globally 
with positive Nash–Sutcliffe efficiency (NSE)47 of 83% studied area, 
whereas GRACE and WGHM have positive NSE in 77% and 75%. Most of 
the negative values come from the arid regions where the hydrological 
signals are weak. The improvements of downscaled TWSAs compared  
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Fig. 3 | Evaluation of the downscaled TWSAs from 2002 to the end of 2019. 
a, The global pixel-wise Pearson correlation with WGHM simulations. b, The 
basin-wise RMSE compared to GRACE measurements. The regions without valid 
information are shaded.
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to the original GRACE product strongly correlate with the basin sizes 
(Fig. 6b). The average improvement in NSE given by the downscaled 
TWSAs is 0.13 for basins larger than GRACE-effective resolution 
(200,000 km2)39, 0.21 for basins between the effective resolution and 

limiting resolution (63,000 km2)16 and 1.21 for basins smaller than 
63,000 km2. Conversely, the benefits compared to WGHM TWSAs do 
not strongly correlate with basin sizes but probably come from the 
more accurate values obtained from data assimilation.
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Discussion
The downscaled TWSAs provide special insight for studying the  
climate and anthropogenic impacts locally, which enables the devel-
opment of targeted strategies for sustainable management of water 
resources. Figure 7a shows the comparison of the derived trends 
from the three sources of TWSAs. The high-resolution signals in 
the downscaled trends are inherited from WGHM simulations and  

their values are calibrated by considering the agreement with  
GRACE measurements on the effective resolution. For example, the 
downscaled trends clearly show the three hot spots of groundwater 
depletion in the United States (the High Plains aquifer, the Mississippi 
embayment and the Central Valley of California)48,49. Among them, the 
notable negative trends in the High Plains aquifer are not observable in 
GRACE TWSAs since the positive trends caused by progress from dry 
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to wet periods3 on the neighbouring pixels average them out. GRACE 
TWSAs indicate negligible to positive trends mainly caused by increas-
ing precipitation in central and southern India3,50, which do not fully 
represent the remarkable water storage declines in the regions with 
high population density and groundwater irrigation51. Caveat: we note 
that the downscaled product generally depends on the quality of used 
hydrological simulations. Prominent trends in the simulations will 
impact downscaled trends to a certain extent. We should interpret these 
signals with care since relatively larger uncertainties are expected as a 
result of imperfections in the hydrological simulations.

The downscaled TWSAs enable multiple downstream applications, 
including flood and drought monitoring on a local scale. To study the 
potential benefits of our downscaled TWSAs, we computed two well-
known TWSA-based indices: the flooding potential index (FPI)4 and the 
drought severity index (DSI)5. We report the maximum FPI of the year 
2008 in Fig. 7b to show the most notable signals in a single plot, whereas 
Fig. 7c depicts the monthly DSI of August 2008. FPI is sensitive to the 
value range of TWSAs since it relies on the relative relationship between 
the storage deficit and accumulated precipitation. The outliers present 
in WGHM simulations can ruin the relationship and cause unrealistic 
flood potential, resulting in an FPI map with far more high-risk regions 
than GRACE-derived FPI. Our proposed method clearly ameliorates this 
issue by suppressing the outliers, which allows us to obtain realistic 
high-resolution FPI with a reasonable visual agreement with GRACE-
derived FPI, such as in the Congo basin and along the eastern coastline 
of North America. Similarly, the abnormal values in the WGHM simula-
tions may cause opposite categories in DSI, resulting in noisy patterns 
(north of Africa) or abnormally underestimated severity (Australia). 
Again, the DSI derived from the downscaled TWSAs agree better with 
the GRACE-derived ones and open the window to monitor extreme 
environmental events with higher spatial resolution. However, the 
environmental monitoring indices derived from downscaled TWSAs 
inherited the same limitations that GRACE TWSAs have52, since the 
downscaled TWSAs only provide higher spatial resolution but do not 
provide longer observations.

Our current approach still has some limitations, which reveal the 
potential for further improving high-resolution TWSAs. First, more 
effort should be put into modelling the glaciers by considering addi-
tional measurements or specific models. Second, human intervention 
modelling is sophisticated and may need specific modifications. Includ-
ing population, farming area and water usage statistics in the deep 
learning model may provide better results. Last, deep learning models 
have the potential to consider constraints based on the interactions 
between different forms of water, such as the interaction between ter-
restrial water and ocean or free water and glaciers. Nevertheless, with 
the preliminary study on the potential use of the downscaled TWSAs 
for monitoring water change and natural hazards, we demonstrate the 
significance of the proposed method. In practice, timeliness is a key 
factor. The training process of the proposed algorithm can be finished 
in around 3 days for the global model using consumer-level platforms 
(NVIDIA RTX3080TI), which is efficient considering the typical delay of 
GRACE monthly products. Therefore, the major limitations for rapidly 
delivering high-resolution TWSAs are the processing time demands of 
GRACE measurements and hydrological simulations. For applications 
that need higher temporal frequencies, such as daily to weekly solu-
tions, we can benefit from the principle of online machine learning 
and the proposed model can be updated within 1 hour. The operational 
delivery of the downscaled product should be beneficial for the geo-
science community and society, especially in the fields of hydrology, 
climate science, sustainable water management and hazard prediction.

Methods
GRACE mascon solution
The analysis centres of GRACE provide a variety of products regularly. 
One of the most user-friendly products is the mass concentration 

(mascon) solution, where the mass variations are directly estimated 
by explicitly relating the intersatellite range–rate measurements to 
the mascon formulation53–55. Compared to the spherical harmonic 
solutions, the mascon solutions suffer less from leakage errors and can 
better separate the land and ocean signals56. Therefore, the mascon 
solutions typically have a finer resolution for small regions57. In this 
study, we used the mascon solutions provided by NASA Jet Propul-
sion Laboratory ( JPL)58. JPL has applied many data processing steps, 
including the replacement of C2,0 coefficients with the solutions from 
satellite laser ranging59, applying a Glacier Isostatic Adjustment (GIA) 
model60, removal of the impacts of ocean, atmosphere and land ice 
masses. In the end, the remaining monthly gravity changes can provide 
a precise measure of mass redistribution in the Earth’s water cycle57. 
Besides, the mean values from 2004.0 to 2009.999 are removed from 
the products to produce the TWSA in the form of EWH. The product 
used in this study is without the land-grid-scaling gain factors61 so that 
the data can provide us with information that is entirely independent 
of hydrological models.

Hydrological models and basin boundaries
WaterGAP is a global hydrological model that thoroughly describes 
water storage, usage and resources in all land areas except for Ant-
arctica. WaterGAP v.2.2d, including WGHM, was published in 202139. 
WGHM comprehensively models daily water flows and water storage 
since it includes various forms of water, such as groundwater, rivers and 
snow. As one of the standard WGHM outputs, monthly TWS is provided 
at a high spatial resolution of 0.5° × 0.5°. This TWS product is the sum 
of the water storage in the canopy, snow, soil, groundwater, wetland, 
lake, reservoir and river storage39. Owing to the modelling approach 
and high spatial resolution, we can observe the principal rivers from 
the simulated TWS. The direct comparison between the obtained 
TWSAs and the GRACE TWSAs is possible62. However, we must remove 
the average values from 2004.0 to 2009.999 to generate the TWSAs 
with the same temporal baseline. Since the WGHM-modelled TWS 
does not include assimilation of GRACE measurements, the obtained 
WGHM TWSAs and GRACE TWSAs are entirely independent. Although 
the global structures of the WGHM TWSAs are noticeably more finely 
resolved than GRACE products, the WGHM TWSAs also have two non-
negligible limitations. First, the WGHM simulations are much noisier 
due to errors in the simulation procedure. Second, the values of the 
WGHM TWSAs are less accurate compared to the GRACE TWSAs since 
they are not based on real observations. WGHM clearly underestimates 
the mean annual TWSA amplitudes in more than half of 147 investigated 
river basins by more than 10%, which may relate to the fact that Water-
GAP does not simulate glaciers39.

In addition, we included hydrological information from the  
Global Land Data Assimilation System (GLDAS), which aims to assimi-
late satellite- and ground-based observational products to provide 
fields of land surface states and fluxes40. Within this platform, many 
land surface models (LSM) are integrated. In this study, we used the data 
from the GLDAS Noah Land Surface Model L4 monthly 0.25° × 0.25° 
v.2.1 (refs. 40,63). GLDAS v.2.1 is forced with a combination of model 
and observation data from 2000 to the present without assimilating 
GRACE measurements. Therefore, the products provided by GLDAS 
v.2.1 are additional data sources independent of the GRACE TWSAs. 
Considering the water balance equation, which describes the rela-
tionship between the changes of TWSA (TWSC) and precipitation (P), 
evapotranspiration (ET) and runoff (R):

TWSC = P − ET − R, (1)

we exclusively focused on the three mentioned parameters. The data 
are downsampled into the resolution of 0.5° × 0.5° by computing the 
average of four neighbouring pixels to obtain the same resolution as 
the WGHM TWSAs.
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The hydrological boundaries are obtained from HydroBasins46, 
which represent a series of vectorized polygon layers that depict sub-
basin boundaries at a global scale. All continents, except Antarctica, are 
included. The HydroBASINS product follows the Pfafstetter concept64 
and provides levels 1 to 12 globally. In this study, we focused on the 
HydroBasins level 1 (nine continents), 3 (292 sub-basins) and 4 (1,342 
sub-basins) products.

Feature selection and preprocessing
One of the essential prerequisites for the success of the deep learning 
model is to determine a set of meaningful features that can represent 
the changes in TWSAs to a sufficient degree. First, the TWSAs from 
GRACE and WGHM are the most important features because the GRACE 
TWSAs have relatively accurate values over a larger region and those 
from WGHM provide information about high-resolution structures. 
Furthermore, we included precipitation, evapotranspiration and runoff 
as features inspired by equation (1). We should note that the GLDAS 
provides runoff split into three components: storm surface runoff, 
baseflow-groundwater runoff and snow melt. Therefore, we have five 
additional features in total. In the end, since multiple studies pointed 
out the correlation between the changes of TWS and geocoordinates1 
and the positive contribution of geocoordinates to global deep learn-
ing models65, we also considered latitudes and longitudes as additional 
features. We normalized the features on the basis of their 0.01th per-
centiles and 99.99th percentiles to reduce the impacts of outliers.

The final step before we fed the data into our model is splitting 
the global area into small patches of the same size. We first found all 
the pixels on land by relying on the basin boundaries. Then, we consid-
ered them as the central pixels and generated a 16° × 16° patch around 
each central pixel, which means each patch has a size of 32 × 32 with a 
resolution of 0.5°. The patch size is a multiple of the coarse resolution  
of GRACE TWSAs (3° × 3°). A 16° × 16° patch contains more than 25  
effective GRACE pixels, making the patch-wise average of GRACE 
TWSAs meaningful. Some patches near the coastlines unavoidably 
contain areas over oceans where the hydrological models do not pro-
vide any values. We filled these with the average values of valid pixels 
in the same patch. The patches were considered as images in our deep 
learning model and the nine features were put into nine channels.

Self-supervised data assimilation model
The lack of high-resolution ground truth impedes the application of 
supervised learning approaches to provide high-resolution TWSAs. All 
the mentioned deep learning-based studies artificially generated input–
output pairs, which capacitates a supervised regression but always 
under the constraints of certain assumptions. To avoid strict assump-
tions about the input–output pairs and exploit the information from 
the available data sources as much as possible, we proposed a data 
assimilation model with a specifically designed loss function that allows 
self-supervised optimization. Our model is based on the principle of 
the convolutional neural networks41, which is a specific type of neural 
networks that uses convolution in place of general matrix multiplication 
in some layers. The convolutional operators, usually known as kernels, 
can extract high-level feature maps by considering the relative posi-
tional relationship between pixels or low-level features. In our specific 
case, the model can extract information about hydrological phenom-
ena, such as water storage changes in waterbodies, from the values of 
individual pixels. We also applied the concept of residual learning66. In 
this context, the network explicitly approximates the residual function 
ℱ(x) = ℋ(x) − x , which is the difference between the original target 
function ℋ(x) and the input x. The fitting of the residual function should 
not be more difficult than fitting the original target function itself due 
to the existence of the skip connection. As a result, a deeper model 
should have a training error no greater than its shallower counterpart66. 
Batch normalization67 is also included to reduce the sensitivity to the 
initialization and thereby improve the optimizing process.

Our model aims to assimilate the satellite observations and 
hydrological simulation by balancing the accurate values from GRACE 
observations over an area larger than their effective resolution and the 
high-resolution structures from the WGHM simulations. Therefore, the 
loss function is designed in the way that the outputs of our model are 
compared with both inputs, GRACE TWSAs and WGHM TWSAs. The first 
goal of our optimizing process is to let the values of the outputs be as 
close as the GRACE TWSAs over each patch. Since the GRACE measure-
ments of individual 0.5° pixels are not representative, we computed 
the absolute error (AE) between the averaged GRACE TWSAs and the 
averaged predicted TWSAs over each patch:

AEG (PG, ̂P) =
||||
1
N

N
∑
n=1

pG,n −
1
N

N
∑
n=1

̂pn

||||
, (2)

where PG and ̂P  denote the GRACE patches and predicted patches, 
respectively. Each patch includes N pixels with values denoted by pG 
and ̂p for GRACE and predicted patches. The second goal of our opti-
mizing process is to learn the high-resolution structures from the 
WGHM TWSAs. For this purpose, we introduced the Pearson correlation 
coefficient (R) between the outputs and WGHM TWSAs to describe the 
similarity since it proves superior to other similarity metrics like struc-
ture similarity index (SSIM) as argued in another study68 and confirmed 
in our tests. We introduced a second metric to enhance the measure-
ments of structural similarity, namely the mean absolute error (MAE) 
between WGHM TWSAs and predicted TWSAs. Equations (3) and (4) 
show the corresponding definitions with pW denoting the pixels of the 
WGHM patch PW and ̂p denoting the pixels of the output patch ̂P , 
respectively:

R(PW, ̂P) =
∑m∑n(PW,mn−PW)( ̂Pmn− ̂P )

√
(∑m∑n(PW,mn−PW)

2
)(∑m∑n( ̂Pmn− ̂P )

2
)
, (3)

MAEW (PW, ̂P) = 1
N

N
∑
n=1

||pW,n − ̂pn|| . (4)

Finally, we combined the proposed terms to achieve the two  
goals within the same optimizing process, leading to the following 
formulation of the loss function:

ℒ (PG,PW, ̂P) = 1
B

B
∑
b=1

{AEG(PG, ̂P) + [1 − R (PW, ̂P)] ×MAEW (PW, ̂P)} , (5)

where B is the batch size. The reason for using both AE and MAE rather 
than the L2 metrics is that the L1 metrics are usually more robust against 
outliers. During our experiments, we observed that the GRACE-term 
and WGHM-term converge with similar magnitudes, indicating the 
ability of our model to balance the two terms without over-relying on 
any of them. Thus, there is no need to add more hyperparameters to 
weigh these two terms explicitly.

The detailed realization of the global model is shown in Fig. 1, 
including details of the applied residual blocks. The encoder contains 
three two-dimensional (2D) convolutional layers followed by a ReLU 
activation function (ReLU(x) = max(0, x))  and three residual blocks.  
The encoding process is realized by the fact that each convolutional 
layer has a stride of 2 to reduce the size of the outputs and increase the 
receptive field. The convolutional layers have increasing numbers of 
kernels (16, 32 and 64) with a size of 3 to increase the latent information, 
namely the feature dimension. In the decoder, the feature maps have 
to be upsampled first. Here, we use 2D-bilinear upsampling layers to 
pre-upsample the feature maps and feed them into the 2D convolu-
tional layers, followed by ReLU and residual blocks. Unlike the encoder, 
the convolutional layers have stride 1 to keep the size of outputs the 
same. They have 64, 32 and 16 kernels to reproduce the spatial 
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information from the latent information. At the end of the architecture, 
another convolutional layer with kernel size 1 without activation func-
tion is designed so that it can project the final feature maps to the actual 
TWSA values. The resulting output size is the same as the input size 
(32 × 32). Once the outputs are generated, they are compared to the 
original GRACE and WGHM TWSAs to compute the loss using equation 
(5). To understand the benefits of our proposed model structure, we 
can analyse the two parts of the optimizing process separately. If we 
only consider the parts of the loss function related to the WGHM terms 
(bottom part in Fig. 1), our model is similar to an autoencoder69,70, which 
aims to reconstruct the WGHM TWSAs while reducing noise. Therefore, 
the number of outliers is remarkably reduced. Then, optimizing  
the part of the loss function related to the GRACE terms is like a regres-
sion problem (top part in Fig. 1), aiming to calibrate the values of  
the reconstructed high-resolution TWSAs on the patch scale. Our 
proposed loss function combines these two principles so that they  
are optimized jointly.

To tune the model structure and hyperparameters, we started with 
experiments over four river basins (Amazon, Congo, Mississippi and 
Lena). At this stage, we randomly split the data of 158 months until the 
end of 2016 into training (70%, 110 months), validation (15%, 24 months) 
and test sets (15%, 24 months). By monitoring the training process, we 
observed that the models usually converged between training epochs 
120 and 150. The models did not suffer from overfitting issues and had 
similar performance on data from 2017 to the end of 2019. Therefore, 
we decided to train our models using all 180 months of data to obtain 
the same quality for the whole time interval (April 2002 to December  
2019). We used TensorFlow v.2.6.0 (ref. 71) to implement all the net-
works as well as the training, validation and test processes. The opti-
mizer is Adam72 with default settings and a batch size of 512. The training 
process is efficient and can be finished in around 3 days for the global 
model using consumer-level platforms (NVIDIA RTX 3080TI).

Estimating uncertainties based on deep ensemble
To quantify the uncertainties of downscaled TWSAs, we followed the 
principle of deep ensemble learning42 and trained five independent 
deep learning models from scratch with different random initial states. 
As a relatively small number of independent models is sufficient for 
modelling the predictive uncertainty73, we computed our ensemble 
results (μ∗) and uncertainties (σ∗) as:

μ∗ =
1
M

M
∑
m=1

μθm , (6)

σ∗ =
√√√
√

1
M

M
∑
m=1

(μ2
θm
+ σ2θm ) − μ2

∗, (7)

where μθm and σθm are the predicted TWSAs and associated uncertainties 
of model m and M is the total number of models, namely five in this 
study. However, due to the specific design of the loss function, σθm 
cannot be directly estimated by deep learning models. To overcome 
this issue, we used Monte Carlo simulations. We sampled 20 sets of 
GRACE inputs randomly on the basis of their uncertainties for each 
model m to estimate σθm. Ultimately, the ensemble uncertainty σ* was 
estimated from five independent deep learning models, with 100 
Monte Carlo simulation runs in total. We note that the uncertainties  
of WGHM simulations and GLDAS inputs are unavailable and not  
considered. Therefore, the uncertainties reported in this study may 
be underestimated.

Closure of water balance equation
The closure of the water balance equation is realized by comparing the 
left side of equation (1) computed from the derivatives of TWSA prod-
ucts and the right side of equation (1) computed from water budget 

components. We chose the precipitation, evapotranspiration and 
runoff products from ERA5-Land45 to provide independent external 
evaluation since they are not considered in the deep learning model. 
Moreover, they are proven to agree well with GRACE measurements22. 
To obtain homogeneous time steps for water changes, we interpolated 
the GRACE and our downscaled TWSAs to the middle of each month 
using PCHIP74 interpolation. The GRACE and GRACE-FO eras were 
dealt with separately to avoid a biased interpolation caused by the 
gap of 1 year. The TWSCs were obtained by centred finite differences 
of TWSAs:

TWSC(t) = TWSA(t + 1) − TWSA(t − 1)
2Δt , (8)

where Δt indicates 1 month. The P, ET and R time series were further 
smoothed to reduce potential high-frequency artefacts introduced 
by the finite differences75:

X̃(t) = 1
4X(t − 1) + 1

2X(t) +
1
4X(t + 1), (9)

where X denotes P, ET or R. To this end, we received two types of TWSCs: 
TWSCGRACE estimated from GRACE measurements or other TWSA prod-
uct and TWSCbudget estimated from P, ET and R. The agreement of these 
two TWSCs was quantified by computing the NSE47:

NSE = 1 −
1
T
∑T

t=1 (TWSCbudget(t) − TWSCGRACE(t))
2

1
T
∑T

t=1 (TWSCGRACE(t) − TWSCGRACE(t))
2 . (10)

TWSA-derived environmental monitoring indices
To demonstrate the applicability of the highly resolved TWSAs, we 
relied on the concepts of environmental monitoring indices introduced 
in previous studies, including FPI4 and DSI5. The motivation for FPI is 
the different capacities of storing water in each cell. We obtained the 
water deficit SDef(t) = SMax − S(t − 1) by computing the difference between 
the water storage of the previous month (S(t − 1)) and historic maxima 
SMax for each individual cell. Under the assumption that the high flood-
ing risks are caused by extreme precipitation, we computed the flood 
potential index F(t) = PMon − SDef(t), where PMon(t) = P(t) × dt denotes the 
monthly precipitation (ERA5L in this study). In the end, the FPI was 
normalized to the range 0 to 1: FPI = F(t)/max [F(t)] . During this 
approach, the gaps within the TWSA records may cause incorrect water 
deficit due to the integral over time for the monthly precipitation. DSI 
is a standardized metric and also considers the different characteristics 
of each cell. First, we computed the average values (TWSAm) and  
standard deviations (σm) of each month m over all the years with valid 
TWSA records. Then, we computed standardized anomalies for the 
month m and year y as (TWSAm,y − TWSAm)/σm. In the end, the standard-
ized anomalies were place in 11 categories on the basis of the thresholds 
set by ranking percentiles (30%, 20%, 10%, 5% and 2%, two-sided)76.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The downscaled TWSA product generated in this study is publicly 
available at https://doi.org/10.3929/ethz-b-000648738 (ref. 77). The 
raw data used in this study are publicly available. The JPL GRACE mason 
product is available at https://grace.jpl.nasa.gov/data/get-data/. The 
WGHM TWSA simulations are available at https://doi.org/10.1594/
PANGAEA.948461 (ref. 78). The GLDAS Noah products are available at 
https://disc.gsfc.nasa.gov/. The ERA5-Land products are available at 
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https://cds.climate.copernicus.eu. The HydroBasin data are available 
at https://www.hydrosheds.org/products/hydrobasins. Source data 
are provided with this paper.

Code availability
The core codes for the deep learning model used including the trained 
model and weights are available at https://gitlab.ethz.ch/spacege-
odesy_public/grace_seda. Further codes for analysing and produc-
ing other results are available from the corresponding authors upon 
request.
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