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aETH Zürich, Institut für Theoretische Physik,

Wolfgang-Pauli-Str. 27, CH-8093 Zurich, Switzerland
bDepartment of Mathematics, University of York,

Heslington, York YO10 5DD, U.K.
cInstitute of Theoretical Physics and Astronomy, Vilnius University,
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1 Introduction

The exploration of integrability in the AdS/CFT correspondence has revealed many differ-

ent facets of integrability, that all have their origin in the planar limit of the duality between

gauge and string theories (see review [1]). One of the key directions of this exploration

is the worldsheet scattering, which is largely driven by the centrally extended psu (2|2)C
algebra [2–4] and its Yangian extension [5]. These algebras play a central role in finding the

relevant scattering matrices and writing the corresponding Bethe ansatz equations [6–11].

This data is also of particular importance in solving the so-called T - and Y -systems used

to describe the spectral problem [12–14] and calculating Wilson loops [15, 16].

A specific case of the worldsheet scattering is the boundary scattering which has

attained lots of research interest and development on its own due to a large variety of

the boundary conditions that arise when open strings end on D-branes embedded in the

AdS5 ×S5 background (see [17–27]). Boundary conditions depend not only on the type of

the D-brane the string is attached to, but also on the type of embedding and the relative

orientation of the string and the brane. The emerging integrable configurations have been

classified in [28].
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The best known and most studied boundaries are the so-called Z = 0 and Y = 0 giant

gravitons that are D3-branes occupying the maximal S3 ⊂ S5 of the AdS5 × S5 space-

time [29–36], the Z = 0 and Y = 0 D7-branes wrapping AdS5 × S3, and the “horizontal”

and “vertical” D5-branes wrapping a defect hypersurface AdS4 ⊂ AdS5 and a maximal

S2 ⊂ S5 [37–45]. While being six different configurations these actually provide only five

different boundary conditions due to the equivalence of the Y = 0 giant graviton and the

Y = 0 D7-brane from the worldsheet scattering point of view [44].

The presence of boundaries generically breaks some of the underlying symmetries. This

makes the scattering more complicated than in the system without the boundaries. Hence

some more elaborate algebraic structures are needed to solve the corresponding boundary

scattering problem [48]. The fundamental AdS/CFT worldsheet S-matrix is determined

up to an overall phase by the underlying Lie algebra and the bound-state S-matrices are

found by employing the Yangian extension (see reviews [46, 47]). However finding boundary

bound-state reflection matrices requires constructing coideal subalgebras [49–52], e.g. the

(generalized) twisted Yangians [53–56]. These coideal subalgebras depend crucially on

the corresponding boundary conditions. The boundary scattering for the Y = 0 giant

graviton and the Y = 0 D7-brane are identical and were shown to be governed by a

twisted Yangian of type I [57–59], the boundary scattering for the Z = 0 giant graviton

is governed by the twisted Yangian of type II [60], and for the D5-brane it is the achiral

twisted Yangian [61]. The boundary scattering for the Z = 0 D7-brane is special as it

factorizes into non-equivalent left and right factors. The scattering in the right factor is

identical to the scattering for the Z = 0 giant graviton, while the left factor does not

respect any supersymmetries and the boundary Yangian structure for this case has not

been revealed so far. The corresponding reflection matrices have been found by solving the

boundary Yang-Baxter equation [44, 45]. This is because the boundary Lie algebra alone is

not enough to obtain even the fundamental reflection matrix. Thus knowing the boundary

Yangian symmetry is necessary for algebraic Bethe ansatz techniques. Furthermore, this

case is particularly interesting as it describes a non-supersymmetric boundary field theory.

This shows that it is possible to break all supersymmetry without spoiling integrability,

which manifests itself via symmetries of Yangian or quantum affine type.

In many cases, a Yangian algebra can be obtained as a specific “degenerate” limit of

a quantum affine algebra. In the same way twisted Yangians are “degenerate” limits of

twisted quantum affine coideal subalgebras. Quantum affine algebras, while being complex,

are of a more elegant form than their Yangian counterparts. This becomes a very important

feature when dealing with twisted Yangians.

A quantum affine algebra Q̂ leading to a q-deformed S-matrix which in the q → 1

limit specializes to the AdS/CFT worldsheet S-matrix was constructed in [62] and the

corresponding q-deformed bound-state S-matrices were found in [63]. However, finding

fundamental scattering matrices does not require the full quantum affine algebra, thus

the fundamental q-deformed S-matrix was found earlier in [64]. This algebra has also

been employed in the Pohlmeyer reduced version of the AdS/CFT superstring theory [65],

which was shown to be important in understanding the stability of the bound-states in the

q-deformed theory [66].
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The q-deformed boundary scattering for the Y = 0 and Z = 0 giant gravitons was first

considered and the corresponding fundamental reflection matrices were obtained in [67]. A

quantum affine coideal subalgebra governing boundary scattering for the q-deformed model

of the Y = 0 giant graviton was recently constructed in [68]. This coideal subalgebra was

shown to be of a very compact form and may be considered as the quantum affine version

of the quantum symmetric pairs developed in [69, 70] (see also [71, 72]). In the rational

q → 1 limit this algebra reproduces the twisted Yangian of the Y = 0 giant graviton and

the corresponding q-deformed bound-state reflection matrix specializes to the non-deformed

one found in [59].

In the first part of this work we construct the twisted Yangian for the left factor of the

Z = 0 D7-brane, completing the quest of finding the boundary Yangians of the well known

integrable boundaries in AdS/CFT. We also give a more elegant form of the Yangian

symmetry of the Z = 0 giant graviton found in [60]. In the second part we construct

quantum affine coideal subalgebras for q-deformed models of the Z = 0 giant graviton and

the left factor of the Z = 0 D7-brane. These algebras have a rather compact form and

follow the same pattern the one in [68]. The compactness of the algebra is very important

for the Z = 0 giant graviton since the twisted Yangian of it is of a complicated form, thus

in this case it is much more convenient to deal with the quantum affine coideal subalgebra

than with the corresponding twisted Yangian. The q-deformed reflection matrices of these

models in the q → 1 limit specialize to the ones found in [29, 44, 45].

This paper is organized as follows. In section 2 we review the worldsheet scattering

and the boundary scattering for the Z = 0 giant graviton and the D7-brane, and the cor-

responding boundary symmetries. In section 3 we recall the AdS/CFT Yangian symmetry

and the twisted Yangian of the Z = 0 giant graviton, and construct the twisted Yangian

for the left factor of the D7-brane. In section 4 we construct the quantum affine coideal

subalgebras for the q-deformed models of the Z = 0 giant graviton and the left factor

of the D7-brane. Section 5 contains discussion and concluding remarks. The q-deformed

reflection matrices of the Z = 0 giant graviton are given in the appendix A.

2 The setup

In this section we will first recall the symmetry properties and the necessary preliminaries

of the worldsheet scattering and reflection matrices. After this we continue with a short

discussion on the two different boundary problems that we address in this paper.

2.1 Scattering and reflection

The algebra. The symmetry algebra of excitations in the light-cone string theory on the

AdS5×S5 background and for the single-trace local operators in theN = 4 supersymmetric

Yang-Mills gauge theory is given by two copies (left and right) of the centrally-extended

Lie superalgebra [2, 4]

psu (2|2)C = psu (2|2)⋉R3 . (2.1)

This Lie algebra contains two sets of bosonic su(2) rotation generators R b
a , L

β
α , two sets of

fermionic supersymmetry generators Q a
α , G

α
a and three central charges C, C† and H. The
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non-trivial commutation relations are

[L β
α , Jγ ] = δβγ Jα − 1

2δ
β
αJγ , {Q a

α ,Q
b
β } = ǫabǫαβC ,

[L β
α , Jγ ] = −δγαJ

β + 1
2δ

β
αJ

γ , {G α
a ,G β

b } = ǫαβǫabC
† ,

[R b
a , Jc] = δbcJa − 1

2δ
b
aJc , {Q a

α ,G
β
b } = δabL

α
β + δαβR

a
b + 1

2δ
a
b δ

α
βH ,

[R b
a , J

c] = −δcaJ
b + 1

2δ
b
aJ

c , (2.2)

where a, b, . . . = 1, 2 and α, β, . . . = 3, 4, and the symbols Ja, Jα with lower (or upper)

indices represent any generators with the corresponding index structure.

This algebra may be equipped with a non-trivial (braided) Hopf algebra struc-

ture [73, 74] such that for any JA ∈ psu (2|2)C

∆(JA) = JA ⊗ 1 + U [[A]] ⊗ JA , ∆op(JA) = JA ⊗ U [[A]] + 1⊗ JA . (2.3)

Here U is the so-called braiding factor of the algebra and the additive quantum number

[[A]] equals 0 for generators in sl(2) ⊕ sl(2) and for H, 1
2 for Q a

α , −1
2 for Gα

a , 1 for C and

−1 for C†.

Representations. The physical excitations of the AdS5 × S5 superstring transform in

the supersymmetric short representations of psu (2|2)C [3]. They are conveniently described

in terms of the superspace formalism introduced in [9]. The representation describing an

M -particle bound-states consists of vectors |m,n, k, l〉 ∈ V (p) where k + l + m + n = M

and V (p) is the corresponding vector space of excitations with momentum p. The labels

m,n denote fermionic degrees of freedom and k, l denote the bosonic part. The symmetry

generators act on the basis vectors as

R 1
2 |m,n, k, l〉 = k |m,n, k − 1, l + 1〉 , L 4

3 |m,n, k, l〉 = |m+ 1, n− 1, k, l〉 ,
R 2
1 |m,n, k, l〉 = l |m,n, k + 1, l − 1〉 , L 3

4 |m,n, k, l〉 = |m− 1, n+ 1, k, l〉 . (2.4)

The action of the supercharges is given by

Q 2
4 |m,n, k, l〉 = a (−1)ml |m,n+ 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉 ,

G 4
2 |m,n, k, l〉 = c k |m+ 1, n, k − 1, l〉+ d (−1)m |m,n− 1, k, l + 1〉 . (2.5)

The explicit action of the rest of the charges is easily obtained by employing the commuta-

tion relations (2.2). A convenient parametrization of the representation labels of the states

in the bulk is [2, 9]

a =

√
g

M
γ, b =

√
g

M

α

γ

(
1− x+

x−

)
, c =

√
g

M

iγ

αx+
, d =

√
g

M

ix+

γ

(
x−

x+
− 1

)
, (2.6)

where M is the bound-state number (M = 1 corresponds to the fundamental representa-

tion), g is the coupling constant, and x± are the spectral parameters (eip = x+

x− ) respecting

the mass-shell (multiplet-shortening) constraint

x++
1

x+
− x−− 1

x−
=

iM

g
. (2.7)
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The parameters γ and α are internal parameters of the representation and define the relative

normalization between bosons and fermions. The unitarity requirement imposes α† = α−1

and γ = eiϕ
√

i (x−− x+) , where the arbitrary phase factor eiϕ reflects the freedom in

choosing x±. The rapidity of the magnon in the x± parametrization is defined to be

u = x++
1

x+
− iM

2g
. (2.8)

The eigenvalues of the central charges for the M -magnon bound-states are expressed by

CM = M ab = gα
(
1− eip

)
, C†

M = M cd = gα−1
(
1− e−ip

)
,

HM = M (ad+ bc) =

√
M2 + 16g2 sin2

p

2
. (2.9)

Bulk scattering theory. The fundamental scattering matrix

S : V (p1)⊗ V (p2) −→ V (p1)⊗ V (p2) , (2.10)

is obtained by requiring it to respect the symmetry algebra, i.e. to intertwine the coproduct

and the opposite coproduct

∆op(JA)S = S∆(JA) . (2.11)

The above requirement is restrictive enough to fix the matrix structure for the fundamental

S-matrix. However, the Lie algebra alone is not enough to define all coefficients of the

generic bound-state S-matrices uniquely. This is because the tensor product of the higher

order supersymmetric short representations generically yields a sum of irreducible long

representations. To remedy this, one either needs to invoke the Yang-Baxter equation or

use Yangian symmetry [8, 9].

Reflection algebra and the boundary scattering. The reflection matrix maps in-

coming states with momentum p to outgoing states with momentum −p while keeping the

boundary states invariant under the reflection,

K : V (p)⊗ V (s) −→ V (−p)⊗ V (s) . (2.12)

Here V (p) represents the vector space of the bulk states and V (s) represents the vector space

of the boundary states with s denoting any parameters associated to the boundary states.

The representation labels associated to the reflected states in V (−p) can be obtained

from (2.6) using the reflection map κ : x± 7→ −x∓ leading to a matrix relation between

the representation labels of incoming and outgoing states,

(
a b

c d

)
D = T

(
a b

c d

)
T−1 with D =

(
γ/γ 0

0 γ/γ

)
, T =

(
U−2 0

0 −1

)
, (2.13)
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where the underbarred parameters are the image of the usual representation paremeters

under the reflection map, i.e. κ : (a, b, c, d) 7→ (a, b, c, d) and κ : γ 7→ γ. This notation

allows us to introduce the reflected coproduct [60],

∆ref(JA) = JA ⊗ 1 + U−[[A]] ⊗ JA , (2.14)

where ∆ref = (κ⊗ 1) ◦∆ and JA = κ(JA), and κ(U) = U−1 has been used implicitly.1

Suppose the boundary preserves a subalgebra a of psu (2|2)C . Then we can formulate

the symmetry properties of the reflection matrix K in a similar way as those of the S-

matrix (2.11). Namely, the symmetry properties of the reflection matrix are simply given

by the boundary intertwining equation

∆ref(JA)K = K∆(JA) , (2.15)

with JA ∈ a, and the reflection matrix is required to satisfy the reflection (the boundary

Yang-Baxter) equation

K2S21K1S12 = S21K1S12K2 . (2.16)

Here the underbarred notation denotes reflected states.

We will now proceed with a discussion of the two different types of boundaries that

we consider in this paper.

2.2 The Z = 0 giant graviton

The maximal giant graviton is a D3-brane in the AdS5×S5 spacetime wrapping a topologi-

cally-trivial cycle enclosing maximal S3 ⊂ S5, and is prevented from collapsing by coupling

to the background supergravity fields [17]. The usual parametrization of S5 is expressed in

terms of the complex coordinates X = Φ1 + iΦ2, Y = Φ3 + iΦ4, Z = Φ5 + iΦ6 respecting

|X|2 + |Y |2 + |Z|2 = 1, where the radius of S5 has been set to unity, R = 1. In this

parametrization the maximal giant graviton is obtained by setting any two Φi’s to zero.

However, any two such configurations are related to each other by an SO(6) rotation. This

symmetry can be broken by attaching an open string to the brane and giving it a charge

J corresponding to the preferred SO(2) ⊂ SO(6) rotation.

The parametrization in complex coordinates makes it easy to translate this setup to

the gauge theory side. The triplet X, Y , Z can be thought of as representing the three

complex scalar fields of the N = 4 super Yang-Mills. Then the field theory description of

the string in the large J limit carries a large number of insertions, called the Bethe vacuum

state, of the field corresponding to the preferred rotation, and a relatively small number of

other fields, called excitations (or simply magnons). The explicit description of the string

in the gauge theory depends on the choice of the particular generator J and the relevant

orientation of the giant graviton inside S5. The two relevant cases are obtained by choosing

J = J56 and the giant graviton to be the maximal three sphere given by Y = 0 or Z = 0

with the standard Bethe vacuum on the string being Z = X5 + iX6 [29].

1This construction is algebra specific, because the reflection map κ : U → U−1 is an involution of the

algebra and leads to the representations of psu (2|2)
C
for incoming and reflected states. However a reflection

map for an arbitrary Lie algebra can be explicitly constructed at the representation level only.

– 6 –
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In the large J limit the string worldsheet is a very long segment. Consequently, the left

and right boundaries are well separated and can be treated independently; thus the bound-

ary scattering becomes equivalent to scattering on a semi-infinite line. In the AdS/CFT

this translates into the description of a magnon incoming from infinity, reflecting at the

boundary, and returning back to infinity. Hence the asymptotic states are interpolating

between the usual vacuum of BMN states [75] and the boundary. This treatments allows us

to employ the usual S-matrix technique discussed above to study the boundary scattering.

Here we will consider the Z = 0 giant graviton which preserves the same supersymme-

tries as the field Z, and thus the boundary Lie algebra is psu (2|2)C .

Boundary representation. The boundary forms a supersymmetric short representation

of the Lie algebra psu (2|2)C . This representation is parametrized by the following labels [29]

aB =

√
g

M
γB, bB =

√
g

M

α

γB
, cB =

√
g

M

iγB
αxB

, dB =

√
g

M

xB
iγB

, (2.17)

and the multiplet shortening (mass-shell) condition is

xB +
1

xB
=

iM

g
. (2.18)

The boundary values of the central charges are

C(B)M = M aBbB = gα , C†

(B)M = M cBdB = gα−1 ,

H(B)M = M (aBdB + bBcB) =
√
M2 + 4g2 . (2.19)

The unitarity requirement imposes an additional constraint, γB = eiϕB
√−ixB. Thus

this representation is just an M -particle bound-state representation with different labels.

Interestingly, boundary labels can be obtained from the bulk ones in (2.6) by a simple

bulk-to-boundary map x± 7→ ±xB together with a rescaling of the coupling constant

g → g/2. This rescaling is introduced to cancel the factor of
√
2 appearing due to the

bulk-to-boundary map of γ, i.e. γ 7→
√
2 γB. This map also reproduces (2.19) when applied

to (2.9). In such a way the M -magnon boundary bound-state can be interpreted as a bulk

2M -magnon bound-state with a maximal momentum, p = π, i.e. it is the state at the end

of the Brillouin zone.

Finally, note that the braiding factor U , which is a central (and group-like) element

of the psu (2|2)C algebra, is not in the boundary algebra, and thus, strictly speaking,

the boundary algebra is a subalgebra of the bulk algebra isomorphic to psu (2|2)C , but

parametrized by one parameter — the coupling constant g only.2 Hence the boundary

algebra is invariant under the reflection map κ.

Scattering. Reflection matrix for the fundamental particles was found in [29] by using

the boundary Lie algebra, and the reflection matrices for the 2-particle bound-states were

found in [45] by using boundary Lie algebra combined with the reflection equation. These

reflection matrices were shown to follow from the twisted Yangian structure [60]. In later

sections we give a more elegant form this symmetry.

2The parameter α can be neglected.
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2.3 The Z = 0 D7-brane

The second system we will consider is the so-called “Z = 0 D7-brane” configuration, where

the D7-brane is wrapping the entire AdS5 and a maximal S3 ⊂ S5 of the underlying

AdS5 × S5 background. Boundary scattering for this system was presented in [44]. Here

we will briefly reall the properties of this configuration that are relevant to us.

The Z = 0 D7-brane is obtained by setting X5 = X6 = 0 in the parametrization of

S5. This choice breaks the SO(6) symmetry down to SO(4)1234 × SO(2)56. It also breaks

exactly half of the background supersymmetries that are left handed with respect to the

boundary SO(4) symmetry, and the surviving fields on the gauge theory side form the

N = 2 chiral hypermultiplet [43]. Next, choosing the Bethe vacuum to be Z = X5 + iX6

and the preferred charge J = J56 rotating the directions transverse to the brane thus

preserving the SO(4) symmetry, one further breaks half of the residual supercharges — the

left copy of psu (2|2)C . This leaves the boundary algebra to be

su(2)× su(2)× p̃su(2|2)⋉R3 . (2.20)

The fundamental matter fields transform in a (1,�) representation of psu(2|2) × p̃su(2|2)
(we refer to [44] for the explicit details on the boundary matter content).

This setup leads to a factorization K ⊗ K̃ of the complete reflection matrix, and thus

two independent reflection processes need to be considered, the reflection in the left and in

the right factor of the brane.

The reflection in the right factor

K̃ : V (p)⊗ V (s) −→ V (−p)⊗ V (s) , (2.21)

is equivalent to the reflection from the Z = 0 giant graviton discussed above. The reflection

in the left factor

K : V (p)⊗ 1 −→ V (−p)⊗ 1 . (2.22)

is a reflection from a non-supersymmetric singlet boundary. The fundamental reflection

matrix was found in [44], the bound-state one was found in [45]. Let us now recall the

latter case.

Scattering theory. The boundary we are considering is a singlet with respect to the

boundary algebra, thus it may be represented by the boundary vacuum state |0〉B which is

annihilated by all generators of the boundary algebra [76]. We define the reflection matrix

to be the intertwining matrix

K |m,n, k, l〉 ⊗ |0〉B = K
(a,b,c,d)
(m,n,k,l) |a, b, c, d〉 ⊗ |0〉B . (2.23)

The space of states |m,n, k, l〉 is 4M -dimensional and can be decomposed into four 4M =

(M + 1) + (M − 1) +M +M subspaces that have the orthogonal basis

|k〉1 = |0, 0, k,M−k〉 , k = 0 . . .M ,

|k〉2 = |1, 1, k−1,M−k−1〉 , k = 1 . . .M − 1 ,

|k〉3 = |1, 0, k,M−k−1〉 , k = 0 . . .M − 1 ,

|k〉4 = |0, 1, k,M−k−1〉 , k = 0 . . .M − 1 . (2.24)

– 8 –
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The boundary Lie algebra in the left factor is generated by the bosonic generators R b
a

and L
β
α , and the central charge H only. It constrains the reflection matrix K to be diagonal

for any k and M ,

K |k〉1 = A |k〉1 , K |k〉2 = B |k〉2 , K |k〉α = C |k〉α , (2.25)

where α = 3, 4 and we have dropped the boundary vacuum state. The standard nor-

malization is A = 1. This leaves coefficients B and C undetermined. However, due to a

simple form of the reflection matrix, these can readily be found by solving the boundary

Yang-Baxter equation. It factorizes in this case, and thus can be solved by the method of

separating variables. Consequently one finds

B =
xB + x+

xB − x−
γ

γ
, C =

(xB + x+)(1− xBx
+)

(xB − x−)(1 + xBx−)

γ2

γ2
, (2.26)

where the parameter xB satisfies the fundamental mass-shell condition xB + 1/xB = i/g.

This constraint is obtained by considering the “supersymmetric” matrix elements of the

boundary Yang-Baxter equation, e.g. 3〈ki| ⊗ 4〈kj |BYBE |km〉1⊗ |kn〉1. We refer to [44, 45]

for details.

In the next section we will construct the boundary Yangian algebra and show that it

leads to the same reflection matrix.

3 Boundary Yangian algebras

The crucial algebraic structure that allows us to fully determine the matrix structure of the

AdS/CFT scattering matrices is the Yangian of psu (2|2)C . For reflection from a boundary

the analogous structure is that of a twisted Yangian. In this section we briefly discuss this

algebraic framework and then specialize it to the two boundary models we have discussed

in the previous section.

3.1 Yangians and reflection

Yangian Y(g). The Yangian Y(g) of a Lie algebra g is a deformation of the universal

enveloping algebra of the polynomial algebra g[u]. It has level-0 g generators Ja and level-1

Y(g) generators Ĵa. Their commutators have the generic form

[ Ja, Jb] = fab
c J

c, [ Ja, Ĵb] = fab
c Ĵ

c, (3.1)

and are required to obey Jacobi and Serre relations [55]

[
J[a,

[
Jb, Jc]

]]
= 0 ,

[
Ĵ[a,

[
Ĵb, Jc]

]]
= O(J3) , (3.2)

where [a b c] denotes cyclic permutations, and indices a (, b, c, . . .) run over all generators of

g. Indices of the structure constants fab
d can be lowered by means of the inverse Killing-

Cartan form. The co-product of the generators then takes the form

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja, ∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa + 1
2f

a
bc J

b ⊗ Jc. (3.3)
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Finite-dimensional representations of Y(g) are realized in one-parameter families, via the

evaluation automorphism

τv : Y(g) → Y(g) , Ja 7→ Ja , Ĵa 7→ Ĵa + v Ja , (3.4)

corresponding to a shift in the polynomial variable. Some finite-dimensional irreducible

representations of g may be extended to representations of Y(g) via the evaluation map

evv : Y(g) → U(g) , Ja 7→ Ja , Ĵa 7→ v Ja , (3.5)

which yields evaluation modules, with states |v〉 carrying a spectral parameter v.

We will build finite-dimensional representations of Y(g) by considering the tensor prod-

uct of two such g-modules on which the bulk S-matrix acts. The action of Yangian gener-

ators on the g-module V (v) is then defined correspondingly

Ĵa |v〉 = γ (v + v0) J
a |v〉 , |v〉 ∈ V (v) , (3.6)

with γ some C-number to be determined and v0 some representation parameter.

Twisted Yangian Y(g, a). Consider an integrable model with the symmetry algebra

given by the Yangian Y(g) of some Lie algebra g. Suppose that the boundary module

respects a subalgebra a ⊂ g corresponding to an involution θ : g → g such that a is left

invariant under θ, i.e. a = gθ. Then a and the subset b = g\a respecting

[a, a] ⊂ a, [a, b] ⊂ b, [b, b] ⊂ a . (3.7)

are the positive and negative eigenspaces of θ, namely θ(a) = +a and θ(b) = −b. The asso-

ciated symmetry algebra respected by the boundary is the so-called (generalized) twisted

Yangian Y (g, a) of type I [53] (see also [54, 56]) generated by the level-0 charges Ji and

twisted level-1 charges

J̃p := Ĵp + t Jp + 1
4f

p
qi

(
Jq Ji + Ji Jq

)
, (3.8)

where indices i(, j, k, . . .) run over the a-indices and p, q(, r, . . .) over the b-indices. The

parameter t corresponds to the freedom of shifting the spectral parameter via the auto-

morphism of the Yangian (3.4). It can be restricted to a particular value by some additional

constraints of the algebra or by solving the boundary intertwining equation. The coprod-

ucts of the charges Ji and J̃i are

∆(Ji) = Ji ⊗ 1 + 1⊗ Ji , ∆(J̃p) = J̃p ⊗ 1 + 1⊗ J̃p + fp
qi J

q ⊗ Ji , (3.9)

and satisfy the co-ideal property

∆Y(g, a) ⊂ Y(g)⊗Y(g, a) . (3.10)

This construction is not valid when θ is trivial, i.e. gθ = g. This case corresponds to

the twisted Yangian Y(g, g) described below.
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Twisted Yangian Y(g, g). Consider a boundary which respects all of the bulk Lie

algebra g. Such a boundary does not respect any level-1 charges and the corresponding

boundary Yangian is a twisted Yangian Y(g, g) of type II generated by level-0 generators

Ja and twisted level-2 charges [56]

˜̃
Ja =

̂̂
Ja + t Ĵa +

1

4
fa
bc

(
ĴbJc + JcĴb

)
,

̂̂
Ja =

1

cg
fa

bc [ Ĵ
c, Ĵb] , (3.11)

having coproducts of the form

∆(
˜̃
Ja) =

˜̃
Ja ⊗ 1+ 1⊗ ˜̃Ja + fa

bc Ĵ
b ⊗ Jc +

1

4cg
fa
bc

(
h cb
+ lki J

lJk ⊗ Ji + h cb
− lki J

i ⊗ JlJk
)
, (3.12)

and satisfying the coideal property

∆Y(g, g) ⊂ Y(g)⊗Y(g, g) , (3.13)

where h cb
± lki = f c

ldf
b
kef

de
i± f ce

d(f
b
kef

d
li+ f b

lef
d
ki) and cg is the eigenvalue of the quadratic

Casimir operator in the adjoint representation. Indices a(, b, c, . . .) run over all indices of

g, and t is an arbitrary complex parameter playing the same role as in (3.8), i.e. can be

restricted to a particular value by some additional constraints.

Yangian Y(psu (2|2)
C
). The Yangian symmetry of the worldsheet S-matrix is gener-

ated by the Lie algebra (2.1) and the corresponding Yangian generators having the following

coproducts [5]

∆(R̂ b
a ) = R̂ b

a ⊗ 1 + 1⊗ R̂ b
a + 1

2R
c
a ⊗ R b

c − 1
2R

b
c ⊗ R c

a − 1
2G

γ
a U+1⊗Q b

γ

− 1
2Q

b
γ U−1⊗G γ

a + 1
4δ

b
aG

γ
c U+1⊗Q c

γ + 1
4δ

b
aQ

c
γ U−1⊗G γ

c ,

∆(L̂ β
α ) = L̂ β

α ⊗ 1 + 1⊗ L̂ β
α − 1

2 L
γ

α ⊗ L β
γ + 1

2 L
β

γ ⊗ L γ
α + 1

2 U+1G β
c ⊗Q c

α

+ 1
2 U−1Q c

α ⊗G β
c − 1

4 δ
β
α U+1G γ

c ⊗Q c
γ − 1

4 δ
β
α U−1Q c

γ ⊗G γ
c , (3.14)

and the rest can be obtained by means of the commutation relations (2.2). These Yangian

generators can be written in a very elegant form by employing the Casimir-like operator

T = R b
a R a

b − L β
α L α

β +Q a
α G α

a −G α
a Q a

α , ∆(T) = T⊗ 1 + 1⊗ T+ 2T⊗2 , (3.15)

where T⊗2 is the double-site version of T. This operator commutes with all bosonic gener-

ators of the psu (2|2)C algebra. In such a way the generators (3.14) are equivalent to

∆(R̂ b
a ) = R̂ b

a ⊗ 1 + 1⊗ R̂ b
a + 1

2

[
R b
a ⊗ 1,T⊗2

]
,

∆(L̂ β
α ) = L̂ β

α ⊗ 1 + 1⊗ L̂ β
α + 1

2

[
L β
α ⊗ 1,T⊗2

]
, (3.16)

However this elegant way of defining Yangian generators does not extend for supercharges

Q̂ a
α , Ĝ

α
a and central elements Ĉ, Ĉ†, Ĥ. This is because the psu (2|2)C algebra does not

have a well-defined quadratic Casimir operator due to the degeneracy of the Killing-Cartan

form. Finally, the evaluation representation is defined by [5]

evu : Ĵa 7→ igu Ja , (3.17)

where u is the rapidity (2.8).

– 11 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
0

Reflection. In order to discuss the symmetry properties of the reflection matrices, we

need to extend the reflected coproduct to Yangians. However, this is readily done by

composing the reflection map κ with the evaluation map ansatz (3.6) giving

κ
(
Ĵa
)
|v〉 = γ (−v + v0) J

a |v〉 . (3.18)

Here κ : v 7→ −v and κ : v0, γ 7→ v0, γ. The reflected coproduct of Yangian generators then

straightforwardly follows by composing (3.3) with κ.

3.2 Z = 0 giant graviton

The Z = 0 giant graviton preserves all of the bulk Lie algebra. Thus the corresponding

twisted Yangian is of the Y(g, g) type and was presented in [60]. Here we will give a more

elegant form of this symmetry with the help of expressions (3.15) and (3.16).

Firstly, notice that in general

[T, Ĵa] = κbd [J
bJd, Ĵa] = fa

bc (Ĵ
bJc + JcĴb) , (3.19)

where T is the Casimir operator. Recall that the psu (2|2)C algebra does not have a well

defined Casimir operator, as we have disused before, but has a well defined Casimir-like

operator (3.15) which commutes with the bosonic generators. In such a way, bearing on

the analogy to (3.16), we can combine the prescription (3.11) with (3.19) giving level-2

twisted Yangian charges of the Z = 0 giant graviton

˜̃
R 2
1 := [R̂ 1

1 , R̂
2
1 ] +

1
4

[
R̂ 2
1 ,T

]
,

˜̃
L 4
3 := [L̂ 3

3 , L̂
4
3 ] +

1
4

[
L̂ 4
3 ,T

]
, (3.20)

having coproducts given by

∆
(˜̃
R 2
1

)
=
˜̃
R 2
1 ⊗ 1 + 1⊗ ˜̃R 2

1 + [R̂ 2
1 ⊗ 1,T⊗2]

+ 1
4

[
[R 1

1 ⊗ 1,T⊗2], [R 2
1 ⊗ 1,T⊗2]

]
+ 1

4

[
[R 2

1 ⊗ 1,T⊗2],T⊗2]
]
, (3.21)

∆
(˜̃
L 4
3

)
=
˜̃
L 4
3 ⊗ 1 + 1⊗ ˜̃L 4

3 + [L̂ 4
3 ⊗ 1,T⊗2]

+ 1
4

[
[L 4

3 ⊗ 1,T⊗2], [L 4
3 ⊗ 1,T⊗2]

]
+ 1

4

[
[L 4

3 ⊗ 1,T⊗2],T⊗2]
]
, (3.22)

where we have used (3.12) and (3.16) implicitly. The rest of the Yangian algebra can

be derived by commuting with the level-0 generators. The expressions given above have

a relatively compact form, however the explicit form of the coproducts is very bulky.

Also note that the terms with parameter t are not present in (3.20). This is because the

intertwining equation gives an additional constraint t = 0.

Finally, for finding the expressions of the reflected coproducts one has to use (2.14)

together with

∆ref(ĴA) = Ĵ
A ⊗ 1 + U−[[A]] ⊗ ĴA + fA

BC U−[[C]] JB ⊗ JC . (3.23)

The boundary evaluation map is given by [60]

evw : ĴA 7→ igw JA , (3.24)
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where w = iM
2g is the boundary spectral parameter. The same result may be obtained

heuristically by applying the bulk-to-boundary map x± 7→ ±xB to the bulk rapidity (2.8)

and using the boundary mass-shell condition (2.18),

u = x+ +
1

x+
− iM

2g
7−→ xB +

1

xB
− iM

2g
=

iM

2g
= w . (3.25)

Symmetry constraints. By solving the reflection intertwining equation for all Lie al-

gebra and Yangian symmetries,

∆ref(JA)K = K∆(JA) , ∆ref(
˜̃
JA)K = K∆(

˜̃
JA) , (3.26)

one can obtain all reflection coefficients of any bound-state reflection matrix up to the

overall dressing phase. This could be done in a similar way as it was done for the bound-

state S-matrix in [11]. However, due to very bulky form of the boundary Yangian, this

would be extremely challenging.

3.3 Z = 0 D7-brane: left factor

The boundary Lie algebra for the left factor of the Z = 0 D7-brane can be formally

decomposed as h = g\(m+ c), where

h = {R a
b , L

α
β , H} , m = {Q α

b , G a
β } , c = {C, C†} . (3.27)

This setup almost resembles the structure of a symmetric pair. In the latter case the

boundary scattering would be governed by a twisted Yangian Y(g, a) of type I [53, 56] in

a similar way as for the Y = 0 giant graviton [57, 58]. Unfortunately, in the present case

the symmetric pair structure breaks down due to the following relations,

{Q a
α ,Q

b
β } = ǫabǫαβ C , {G α

a ,G β
b } = ǫαβǫabC

† . (3.28)

In other words, the presence of the central charges prevents us from applying the generic

formalism discussed earlier. However, the algebra psu (2|2)C has an SL(2) outer automor-

phism, which is realized as a mixing of the supercharges. This automorphism can be used

to rotate the central charges to a trivial point, C ≡ C† ≡ 0, in such a way the commutation

relations (3.28) in the rotated realization of the algebra are absent. We will use an analogue

of this automorphism on the level of the twisted charges to construct the twisted Yangian.

Modified twisted Yangian Y(g, h). Let us first ignore the fact that the central charges

C and C† are not symmetries of the boundary, and suppose they are in the boundary algebra

h. Then following the prescription (3.8), and using the structural constants obtained from

the Yangian Y(psu (2|2)C), we obtain

Q̃′ a
α = Q̂ a

α + t
Q
Q a

α + 1
4

(
Q c

α R a
c + R a

c Q c
α +Q a

γ L γ
α + L γ

α Q a
γ +HQ a

α − 2 εαγε
acCG γ

c

)

= Q̂ α
b + t

Q
Q α

b + 1
4

(
HQ a

α − [Th,Q α
b ]− 2 εαγε

acCG γ
c

)
,

G̃′ α
a = Ĝ α

a − t
G
G α

a − 1
4

(
G α

c R c
a + R c

a G α
c +G γ

a L α
γ + L α

γ G γ
a +HG α

a − 2 εacε
αγ C†Q c

γ

)

= Ĝ α
a − t

G
G α

a − 1
4

(
HG α

a − [Th,Q α
b ]− 2 εacε

αγ C†Q c
γ

)
, (3.29)
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where Th is the Casimir-like operator (3.15) restricted to the subalgebra h (3.27). The

coproducts of these twisted charges are

∆(Q̃′ a
α ) = Q̃′ a

α ⊗ 1+ U+1⊗ Q̃′ a
α +Q c

α ⊗ R a
c +Q a

γ ⊗ L γ
α + 1

2Q
a
α ⊗H− εαγε

acG γ
c U+2⊗ C ,

∆(G̃′ α
a ) = G̃′ α

a ⊗ 1+ U−1⊗ G̃′ α
a −G α

c ⊗ R c
a −G γ

a ⊗ L α
γ − 1

2G
α
a ⊗H+ εacε

αγ Q c
γ U−2⊗ C†.

(3.30)

As expected, we see that these charges violate the coideal property due to central charges

acting on the boundary. We can overcome this problem by adding a twist resembling the

SL(2) automorphism,

Q̃ a
α = Q̃′ a

α + εαγε
ac (C− gα)G γ

c ,

G̃ α
a = G̃′ α

a − εacε
αγ (C† − gα−1)Q c

γ . (3.31)

The coproducts of the new charges are then readily found to be

∆(Q̃ a
α ) = Q̃ α

b ⊗ 1 + U+1 ⊗ Q̃ α
b +Q c

α ⊗ R a
c +Q a

γ ⊗ L γ
α + 1

2 Q
a
α ⊗H ,

∆(G̃ α
a ) = G̃ α

a ⊗ 1 + U−1⊗ G̃ α
a −G α

c ⊗ R c
a −G γ

a ⊗ L α
γ − 1

2 G
α
a ⊗H , (3.32)

and thus the coideal property (3.10) is satisfied.

The parameters t
Q
and t

G
in the twist (3.29) are constrained by requiring the twisted

central charges

˜̃
C = ǫabǫ

αβ{Q̃ a
α , Q̃

b
β } ,

˜̃
C† = ǫαβǫ

ab{G̃ α
a , G̃ β

b } , (3.33)

to be coreflective. This gives a constraint t
Q
= t

G
=
√
g2 + 1/4. The square root may be

eliminated by using the fundamental mass-shell condition xB +1/xB = i/g (2.18). In such

a way we obtain the very elegant expression, t
Q
= t

G
= ig/xB + 1/2.

Symmetry constraints. The complete reflection matrix K (2.25) then follows from

simple symmetry arguments. Indeed,

(
K Q̃ 1

3 − Q̃ 1
3 K

)
|k〉1 = 0 and

(
K Q̃ 1

3 − Q̃ 1
3 K

)
|k〉2 = 0 (3.34)

lead to the reflection coefficients that coincide with (2.26) as required.

4 Quantum affine boundary algebras

In this section we will consider a q-deformed model of the boundary scattering from the

Z = 0 giant graviton and the left factor of the Z = 0 D7-brane considered earlier. We

will start by briefly reclling the construction of the quantum affine coideal subalgebras [56]

(see [69, 70] for explicit details on the non-affine coideal subalgebras) and the bound-

state representation of the quantum affine algebra Q̂ [62, 63]. We will then construct the

corresponding boundary algebras using the same approach as for the q-deformed model of

the reflection from the Y = 0 giant graviton [68].
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4.1 Quantum affine coideal subalgebras

Let the quantum deformed universal enveloping algebra Uq(g) of a semisimple Lie algebra

g of rank n be generated by the elements Ei, Fi, K
±1
i (Ki = qHi , i = 1, . . . , n), that

correspond to the standard Drinfeld-Jimbo realization. The Hopf algebra structure of

Uq(g) is given by

∆(Ki) = Ki ⊗Ki , S(K−1
i ) = Ki , ǫ(Ki) = 1 ,

∆(Ei) = Ei ⊗ 1 +K−1
i ⊗ Ei , S(Ei) = −KiEi , ǫ(Ei) = 0 ,

∆(Fi) = Fi ⊗Ki + 1⊗ Fi , S(Fi) = −FiK
−1
i , ǫ(Fi) = 0 . (4.1)

Being a Hopf algebra, Uq(g) admits a right adjoint actions that makes Uq(g) into a right

module. The right adjoint action is given by

(adr Ei)A = (−1)[A][Ei]KiAEi −KiEiA ,

(adr Fi)A = (−1)[A][Fi]AFi − FiK
−1
i AKi ,

(
adr K

−1
i

)
A = KiAK

−1
i , (4.2)

where (−1)[A][Ei] and (−1)[A][Fi] are the fermionic grade factors. We shall also be using a

short-hand notation
(
adr Ei · · ·Ej

)
A =

(
adr Ei · · · adr Ej

)
A and similarly for Fi.

Let Uq(ĝ) be the universal enveloping algebra of ĝ, the affine extension of g. Let

π = {α1, α2, . . . , αn} be the set of simple positive roots of g, and let π̂ = α0 ∪ π, where

α0 denotes the affine root. Let E0, F0, K
±1
0 be the affine generators of Uq(ĝ), and let T

denote the abelian subgroup T ⊂ Uq(ĝ) generated by all K±1
i and K±1

0 .

Consider an involution θ of ĝ such that the associated root space automorphism Θ

may be represented by

Θ(α0) ∈ −αp(0) − Z(π\αp(0)) and Θ(αi) = αi for all αi ∈ πΘ = π\αp(0) . (4.3)

where p(0) ∈ {0, 1, . . . , n}, and satisfying

α0 −Θ(α0) = kδ , where

{
k = 1 for p(0) 6= 0 ,

k = 2 for p(0) = 0 ,
(4.4)

where δ is the imaginary root;recall that α0 = δ − ϑ, where ϑ is the highest root. Then Θ

induces a subalgebra M ⊂ Uq(ĝ) generated by Ei, Fi and K±
i for all αi ∈ πΘ and a Θ-fixed

subgroup TΘ. Furthermore, there exists a sequence {αi1 , . . . , αir}, αik ∈ πΘ, and a set of

positive integers {m1, . . . ,mr} such that the algebra elements defined by

Ẽ0 = F0K
−1
0 − dy θ̃(F0)K

−1
0 , θ̃(F0) =

(
adr Ei1

(m1)· · ·Eir
(mr)

)
E′

p(0) ,

F̃0 = E′
0K

−1
0 − dx θ̃(E

′
0)K

−1
0 , θ̃(E′

0) =
(
adr Fi1

(m1)· · ·Fir
(mr)

)
Fp(0) , (4.5)

where E′
i = EiKi, together with TΘ, M and suitable dx, dy ∈ C generate a quantum affine

coideal subalgebra B̂ ⊂ Uq(ĝ) which is compatible with the reflection equation. Note that

quite often the boundary algebra includes all of the Cartan subgroup T . In such cases the

factor of K−1
0 in (4.5) can be omitted. The boundary algebras we will be considering in

the next sections will be exactly of this type. The case with p(0) = 0 will correspond to

the q-deformed model of the Z = 0 giant graviton, while the p(0) 6= 0 case will correspond

to the left factor of the D7-brane.
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Example. Here we will give a simple example illustrating the technique described above.

Consider Uq(ŝl2) = {Ei, Fi,K
±1
i | i = 0, 1}, a quantum affine extension of the Lie algebra

g = sl2. The set of simple roots in this case is π̂ = {α0, α1}, where α1 is the regular root

and α0 is the affine root. There are two boundary scattering problems associated with this

algebra that are relevant to us.

1. Case with p(0 ) = 0 . Consider a boundary which respects all of the bulk Lie algebra,

i.e. the boundary Lie algebra is h = g = sl2. This means that the root α1 is respected

by the boundary, while α0(= δ−α1) is not (by definition). Then the associated root

space automorphism by (4.3) and (4.4) is constrained to

Θ1(α1) = α1, α0 −Θ1(α0) = 2δ giving Θ1(α0) = −α0 − 2α1 . (4.6)

Hence the non-affine subalgebra of the boundary algebra B̂ is M = {E1, F1}, while
the affine part, by (4.5), is generated by the twisted affine generators

Ẽ0 = F0 − dy θ̃(F0) , θ̃(F0) =
(
adr E

2
1

)
E′

0 ,

F̃0 = E′
0 − dx θ̃(E

′
0) , θ̃(E′

0) =
(
adr F

2
1

)
F0 , (4.7)

for suitable dx, dy .

2. Case with p(0 ) 6= 0 . Consider a boundary which respects none of the bulk Lie alge-

bra, i.e. the boundary Lie algebra consists of the Cartan subalgebra only. This means

that both roots, α1 and α0, are not respected by the boundary. Then

α0 −Θ2(α0) = δ giving Θ2(α0) = −α1 . (4.8)

Hence the boundary algebra B̂ is generated by the Cartan subalgebra and twisted

affine generators

Ẽ0 = F0 − dy θ̃(F0) , θ̃(F0) = E′
1 ,

F̃0 = E′
0 − dx θ̃(E

′
0) , θ̃(E′

0) = F1 , (4.9)

with suitable dx, dy . For more details on these coideal subalgebras see [56].

4.2 Quantum affine algebra of the q-deformed worldsheet scattering

The symmetry algebra Q̂ of the q-deformed worldsheet scattering is a deformation of the

centrally extended affine algebra ŝl(2|2) [62]. It is generated by four sets of the Chevalley

generators Ei, Fi, Ki (i = 1, 2, 3, 4) and two sets of central elements Uk, Vk (k = 2, 4)

with Uk being responsible for the braiding of the coproduct. The set of simple positive

roots is π̂ = π ∪ α4 = {α1, α2, α3, α4}, where α4 is the affine root. The roots α1 and α3

are bosonic, while α2 and α4 are fermionic.

Let us start by recalling the symmetric matrix DA and the normalization matrix D

associated to the Cartan matrix A for ŝl(2|2):

DA =




2 −1 0 −1

−1 0 1 0

0 1 −2 1

−1 0 1 0


 , D = diag(1,−1,−1,−1). (4.10)
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The algebra is then defined accordingly by the following non-trivial commutation relations,

KiEj = qDAijEjKi, KiFj = q−DAijFjKi,

{E2, F4} = −g̃α̃−1(K4 − U2U
−1
4 K−1

2 ), {E4, F2} = g̃α̃+1(K2 − U4U
−1
2 K−1

4 ),

[Ej , Fj} = Djj

Kj −K−1
j

q − q−1
, [Ei, Fj} = 0, i 6= j, i+ j 6= 6. (4.11)

These are supplemented by a set of Serre relations (j = 1, 3)

[Ej , [Ej , Ek]]− (q − 2 + q−1)EjEkEj = 0, [E1, E3] = E2E2 = E4E4 = {E2, E4} = 0,

[Fj , [Fj , Fk]]− (q − 2 + q−1)FjFkFj = 0, [F1, F3] = F2F2 = F4F4 = {F2, F4} = 0.

(4.12)

and the central elements are related to the quartic Serre relations (for k = 2, 4) as follows

{[E1, Ek], [E3, Ek]} − (q − 2 + q−1)EkE1E3Ek = gαk(1− V 2
k U

2
k ),

{[F1, Fk], [F3, Fk]} − (q − 2 + q−1)FkF1F3Fk = gα−1
k (V −2

k − U−2
k ) . (4.13)

This algebra has three central charges,

C1 = K1K
2
2K3 , C2 = gα2(1− V 2

2 U
2
2 ) , C3 = gα−1

2 (V −2
2 − U−2

2 ) , (4.14)

plus three affine counterparts of theirs. Finally, the central elements Vk are constrained by

the relation K−1
1 K−2

k K−1
3 = V 2

k .

Hopf algebra. The group-like elements X ∈ {1,Kj , Uk, Vk} (j = 1, 2, 3, 4 and k = 2, 4)

have the coproduct ∆ defined in the usual way, ∆(X) = X ⊗X, while for the remaining

Chevalley generators they are deformed by the central elements Uk

∆(Ej) = Ej ⊗ 1+K−1
j U

+δj,2
2 U

+δj,4
4 ⊗Ej , ∆(Fj) = Fj ⊗Kj +U

−δj,2
2 U

−δj,4
4 ⊗Fj . (4.15)

Representation. We shall be using the q-oscillator representation (for any complex q not

a root of unity) constructed in [63]. The bound-state representation is defined on vectors

|m,n, k, l〉 = (a†3)
m(a†4)

n(a†1)
k(a†2)

l |0〉 , (4.16)

where the indices 1, 2 denote bosonic and 3, 4 - fermionic oscillators; the total number

of excitations k + l + m + n = M is the bound-state number and the dimension of the

representation is dim= 4M . This representation constrains the central elements as U :=

U2 = U−1
4 and V := V2 = V −1

4 and describes an excitation with momentum p defined by

the relation U2 = eip.

The triples corresponding to the bosonic and fermionic slq(2) in this representation

are given by

H1|m,n, k, l〉 = (l − k) |m,n, k, l〉 , H3|m,n, k, l〉 = (n−m) |m,n, k, l〉 ,
E1|m,n, k, l〉 = [k]q |m,n, k − 1, l + 1〉 , E3|m,n, k, l〉 = |m+ 1, n− 1, k, l〉 ,
F1|m,n, k, l〉 = [l]q |m,n, k + 1, l − 1〉 , F3|m,n, k, l〉 = |m− 1, n+ 1, k, l〉 . (4.17)
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The supercharges act on basis states as

H2|m,n, k, l〉 = −
{
C − k − l +m− n

2

}
|m,n, k, l〉 ,

E2|m,n, k, l〉 = a (−1)m[l]q |m,n+ 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉 ,
F2|m,n, k, l〉 = c [k]q |m+ 1, n, k − 1, l〉+ d (−1)m |m,n− 1, k, l + 1〉 . (4.18)

Here [n]q = (qn − q−n)/(q− q−1) denotes the q-number and C is the q-factor of the central

element V = qC and represents the energy of the state. The representation labels a, b, c, d

satisfy constraints

ad =
q

M
2 V − q−

M
2 V −1

qM − q−M
, bc =

q−
M
2 V − q

M
2 V −1

qM − q−M
,

ab =
gα

[M ]q
(1− U2V 2) , cd =

gα−1

[M ]q
(V −2 − U−2) , (4.19)

which altogether give the multiplet shortening (mass-shell) condition

g2

[M ]2q
(V −2 − U−2)(1− U2V 2) =

(V − qMV −1)(V − q−MV −1)

(qM − q−M )2
. (4.20)

The explicit x± parametrization of the representation labels is

a =

√
g

[M ]q
γ , b =

√
g

[M ]q

α

γ

x−− x+

x−
,

c =

√
g

[M ]q

γ

αV

i g̃ q
M
2

g(x++ ξ)
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+− x−

ξx++ 1
. (4.21)

The central elements in this parametrization read as

U2 =
1

qM
x+ + ξ

x− + ξ
= qM

x+

x−
ξx− + 1

ξx+ + 1
, V 2 =

1

qM
ξx+ + 1

ξx− + 1
= qM

x+

x−
x− + ξ

x+ + ξ
, (4.22)

while the shortening condition (4.20) becomes

1

qM

(
x+ +

1

x+

)
− qM

(
x− +

1

x−

)
=

(
qM − 1

qM

)(
ξ +

1

ξ

)
, (4.23)

where ξ = −ig̃(q − q−1) and g̃2 = g2/(1− g2(q − q−1)2).

The action of the affine charges H4, E4, F4 is defined in exactly the same way

as for the regular supercharges subject to the following substitutions, C → −C and

(a, b, c, d) → (ã, b̃, c̃, d̃). The affine labels ã, b̃, c̃, d̃ are acquired from (2.6) by a simple

replacement

V → V −1 , x± → 1

x±
, γ → iα̃γ

x+
, α → α α̃2 . (4.24)

The multiplicative spectral (evaluation) parameter of the algebra is

z =
1− U2V 2

V 2 − U2
. (4.25)
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Reflection. Recall that reflection maps incoming states |m,n, k, l〉 ∈ V (p) to outgoing

(reflected) states |m,n, k, l〉 ∈ V (−p) while keeping the boundary invariant (2.12)

K : V (p)⊗ V (s) −→ V (−p)⊗ V (s) .

The representation defined in the paragraph above describes incoming states with mo-

mentum p given by the relation eip = U2. Then the representation corresponding to the

reflected states with momentum −p will have the central element equal to e−ip = U−2,

i.e. reflection acts by inverting the central element U 7→ U−1. The conservation of the

total number of fermions and bosons together with the energy conservation constrains the

central element V and Cartan generators Ki to be invariant under the reflection. This

implies that there is a reflection automorphism κ : Q̂ → Q̂ref of the algebra defined by

κ : (V, U) 7→ (V , U) and κ : (Ej , Fj ,Kj) 7→ (Ej , F j ,Kj) , (4.26)

where the underlined elements generate the reflected algebra Q̂ref . Then the constraints

U = U−1 , V = V , Ki = Ki , (4.27)

define the representation of the reflected algebra. The representation labels a, b , c, d asso-

ciated to the charges Ej , F j are obtained by replacing U 7→ U−1 in (4.19) and similarly for

the affine ones. Hence the labels of the reflected charges are related to the initial ones as

a =
γ

γ
a, b =

γα2

γ

cd

a
V 2, c =

γ

γα2

ab

d
V −2, d =

γ

γ
d, (4.28)

giving

a =

√
g

[M ]q
γ, b =

√
g

[M ]q

α

γ

g̃2(x+− x−)

g2(1 + ξx−)(ξ + x+)
,

c =

√
g

[M ]q

γ

αV

gq
M
2 (ξx−+ 1)

ig̃ x−
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+− x−

ξx++ 1
, (4.29)

The extension to the affine case is straightforward. Here we have chosen a =
γ

γ a as an

initial constraint with γ being the reflected version of γ, i.e. κ(γ) = γ. The reflection map

for the x± parametrization is found by comparing (4.29) with (4.21), giving

κ : x± 7→ − x∓ + ξ

ξx∓ + 1
. (4.30)

It is involutive, κ2 = id, and is in agreement with the one conjectured in [67].3 In the

q → 1 limit this maps specializes to the usual reflection map, κ : x± 7→ −x∓, as required.

Let us also introduce the reflected coproducts of Ei and Fi,

∆ref(Ej) = Ej ⊗ 1+K−1
j U−δj,2+δj,4 ⊗Ej , ∆ref(Fj) = F j ⊗Kj +U+δj,2−δj,4 ⊗Fj , (4.31)

3The authors of [67] are using the x± parametrization of [64], while we use the one of [62]. The map

between these two is x±

BK = gg̃−1(x±

BGM + ξ).
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where as in the previous section, ∆ref := (κ ⊗ 1) ◦ ∆ and we have used (4.27) implicitly.

These shall play an important role in finding the explicit form of the reflection matrix.

The expressions in (4.28) may be casted in a matrix form

(
a b

c d

)
D = T

(
a b

c d

)
T−1 with D =

(
γ/γ 0

0 γ/γ

)
, T =

(
U−2 0

0 −z

)
, (4.32)

revealing the explicit relation between two isomorphic representations of Q̂. Here were

treat γ and γ as unconstrained parameters defining the representations of incoming and

reflected states. In the q → 1 limit (4.32) specializes to (2.13) as required.

4.3 q-deformed Z = 0 giant graviton

The Z = 0 giant graviton preserves all of the bulk Lie algebra. Therefore the corresponding

q-deformed model of this boundary preserves all regular charges and all Cartan subalgebra

T of Q̂. The affine generators E4 and F4 are not preserved by the boundary itself, but give

rise to the twisted affine generators of the quantum affine coideal subalgebra B̂Z ⊂ Q̂ .

Coideal subalgebra. The boundary conditions define the root space automorphism ΘZ

associated to this boundary to act on the simple roots as

ΘZ(αi) = αi for i = 1, 2, 3, and ΘZ(α4) = −α4 − 2α3 − 2α2 − 2α1 . (4.33)

Thus πΘZ
= {α1, α2, α3} and it gives rise to the subalgebra MZ of Q̂ . The affine part of

the boundary algebra B̂Z is generated by the twisted affine charges

Ẽ312 = F4 − dy θ̃(F4) , θ̃(F4) = (adrE1E3E2E3E2E1)E
′
4 , (4.34)

F̃312 = E′
4 − dx θ̃(E

′
4) , θ̃(E′

4) = (adrF1F3F2F3F2F1)F4 , (4.35)

where the action of θ̃ is induced by (4.33). Any other non-trivial ordering of the generators

in the adjoint action above is equivalent up to a sign. Here by non-trivial we assume the

obtained operator is non-zero. Note that the form of the twisted charges above slightly

differs from those in (4.5) because the boundary respects all of the Cartan subalgebra

T ⊂ Q̂. The rest of B̂Z can be furnished with the help of the right adjoint action of adrMZ ,

Ẽ12 = (adrF3) Ẽ312 , F̃12 = (adrE3) F̃312 , (4.36)

Ẽ32 = (adrF1) Ẽ312 , F̃32 = (adrE1) F̃312 , (4.37)

Ẽ2 = (adrF1F3) Ẽ312 , F̃2 = (adrE1E3) F̃312 , (4.38)

C̃2 = (adrE2) Ẽ312 , C̃3 = (adrF2) F̃312 . (4.39)

Let us show the coideal property for the these charges explicitly. It is enough to show

the coideal property for a pair of twisted affine charges only. For simplicity reasons we
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choose (4.38),

∆(Ẽ2) = (adr F1F3)F4K
−1
4 ⊗K13 − dy(adr E2E3E2E1)E

′
4K

−1
4 ⊗K2321 + UK−1

4 ⊗ Ẽ2

+ (q − q−1)
(
q−1F4K

−1
4 ⊗K4 [F1, F3]q2

− q(adr F1)F4 ⊗K14F3 + q−1(adr F3)F4 ⊗K34F1

)

− dy(q − q−1)(U ⊗ 1)
(
q−2UE′

4 ⊗K4

{
E′

2,
[
E′

3,
[
E′

1, E
′
2

]
q

]
q3

}

− U(adr E1)E
′
4 ⊗K14(adr E2E3)E

′
2 − U(adr E3)E

′
4 ⊗K34(adr E2E1)E

′
2

+ (adr E2E3)E
′
4 ⊗K234(adr E2)E

′
1 + (adr E2E1)E

′
4 ⊗K214(adr E2)E

′
3

+ (adr E2E1E3)E
′
4 ⊗K2134E

′
2

)

∈ Q̂ ⊗ B̂Z , (4.40)

and similarly for ∆(F̃2). The short-hand notation Ki...j = Ki · · ·Kj has been employed,

and [A,B]qn = AB − qnBA is the q-deformed commutator. The coideal property for the

rest of the twisted affine charges follows from the adrMZ-invariance of B̂Z .

Boundary representation. The next step is to construct the boundary bound-state

representation of the coideal subalgebra B̂Z . The constraints defining the representation

are the commutation relations in the third line of (4.11), and the coreflectivity of the

regular central charges C2, C3 (4.14) and the twisted affine central charges C̃2, C̃3 (4.39).

We will start by constructing the boundary representation of the regular supercharges E2

and F2 and the central element V . We will denote the latter as VB in order to distinguish it

from the bulk representation (4.22). Note that the deformation parameter U is not in the

boundary algebra and thus does not have a boundary representation. This can be easily

seen by inspecting (4.40), U never appears in the right factor of the tensor product. In

such a way the algebra constraints (4.14) get modified for the boundary algebra.

The algebra constraints for C2 and C3 for incoming and reflected states in the bulk

are given by

C2 ⊗ 1 = gα(1− U2V 2)⊗ 1 , C3 ⊗ 1 = gα−1(V −2 − U−2)⊗ 1 ,

C2 ⊗ 1 = gα(1− U−2V 2)⊗ 1 , C3 ⊗ 1 = gα−1(V −2 − U2)⊗ 1 . (4.41)

Here we have used (4.27) implicitly and the tensor space structure is bulk ⊗ boundary.

Then requiring their coproducts

∆(C2) = C2 ⊗ 1 + V 2U2 ⊗ C2 , ∆(C3) = C3 ⊗ V −2
B + U−2 ⊗ C3 ,

∆ref(C2) = C2 ⊗ 1 + V 2U−2 ⊗ C2 , ∆ref(C3) = C3 ⊗ V −2
B + U2 ⊗ C3 , (4.42)

to be coreflective, ∆(Ci) = ∆ref(Ci), we find the boundary algebra constraints for the

regular central charges to be

1⊗ C2 = 1⊗ gα , 1⊗ C3 = 1⊗ gα−1V −2
B . (4.43)
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Therefore the representation constraints for the boundary algebra are

aBdB =
q

M
2 VB − q−

M
2 V −1

B

qM − q−M
, bBcB =

q−
M
2 VB − q

M
2 V −1

B

qM − q−M
,

aBbB =
gα

[M ]q
, cBdB =

gα−1

[M ]q
V −2
B . (4.44)

These relations force the boundary labels to be

aB =
√

g
[M ]q

γB , bB =
√

g
[M ]q

α

γB
,

cB =
√

g
[M ]q

γB
α

ig̃

gξ

qM/2
(
1− q−MV 2

B

)

VB
, dB =

√
g

[M ]q

g̃

γB

qM/2
(
V 2
B − q−M

)

igξ VB
, (4.45)

where VB is required to satisfy

(
V 2
B − q−M

) (
V 2
B − qM

)
=

ξ2

ξ2 − 1
. (4.46)

A convenient parametrization satisfying this constraint is

V 2
B = qM

xB
xB + ξ

= q−M 1 + ξxB
1− ξ2

. (4.47)

In this way the boundary labels become

aB =
√

g
[M ]q

γB , bB =
√

g
[M ]q

α

γB
,

cB =
√

g
[M ]q

γB
α

ig̃

g

qM/2

VB(xB + ξ)
, dB =

√
g

[M ]q

g̃

igγB

VBq
M/2 (xB + ξ)

ξxB + 1
. (4.48)

Consequently, the mass-shell constraint

(
aBdB − qMbBcB

) (
aBdB − q−MbBcB

)
= 1 , (4.49)

in this parametrization becomes

q−2Mg2
(
1 + x2B + 2xBξ

)2

[M ]2q (ξ
2 − 1)x2B

= 1 . (4.50)

In the q → 1 limit it gives the usual (non-deformed) mass-shell constraint

− g2

M2

(
xB +

1

xB

)2

= 1 =⇒ xB +
1

xB
=

iM

g
. (4.51)

Furthermore, the q → 1 limit gives VB → 1, and labels (4.48) reproduce the usual non-

deformed boundary labels (2.17), as required.

Let us now turn to the construction of the boundary representation labels of the affine

generators E4 and F4. We will construct the affine representation in a similar way as we did

for the regular one above, except we will not give the explicit details of the coreflectivity

of the twisted affine central charges as we did for the regular ones. This is because the
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explicit form of the coproducts of C̃2 and C̃3 is very large and thus we will only state the

final constraints we have obtained.

The representation constraints that follow from the commutation relations (4.11) give

ãB d̃B =
q

M
2 ṼB − q−

M
2 Ṽ −1

B

qM − q−M
, b̃B c̃B =

q−
M
2 ṼB − q

M
2 Ṽ −1

B

qM − q−M
. (4.52)

Bearing on the analogy to the affine bulk labels we choose the following ansatz for the

affine boundary labels,

ãB =
√

g
[M ]q

γBα̃

AB
, b̃B =

√
g

[M ]q

αα̃

γB
BB ,

c̃B =
q−

M
2 ṼB − q

M
2 Ṽ −1

B

(qM − q−M ) b̃B
, d̃B =

q
M
2 ṼB − q−

M
2 Ṽ −1

B

(qM − q−M ) ãB
, (4.53)

where AB and BB are undetermined parameters. Then using this ansatz and requiring C̃2

and C̃3 to be coreflective we find additional constraints that solve this requirement,

AB = −i xB , BB = −i(xB + 2ξ) , V 2
B Ṽ 2

B = 1 +
ξ2

ξ2 − 1
. (4.54)

These define the affine boundary labels to be

ãB =
√

g
[M ]q

iγBα̃

xB
, b̃B =

√
g

[M ]q

αα̃

iγB
(xB + 2ξ) ,

c̃B = −
√

g
[M ]q

g̃ q
M
2 γB

gαα̃(1 + ξxB)ṼB

, d̃B =
√

g
[M ]q

g̃ q−
M
2

gα̃γBṼB

1− ξ(xB + 2ξ)

ξ2 − 1
. (4.55)

The coreflectivity property also constrains the parameters dy and dx to be

dy = (αα̃)−2 , dx = −(αα̃)2 , (4.56)

thus fixing the last undetermined elements of B̂Z .

Finally we want to give two useful relations of the boundary representation that are

closely linked to those of the bulk representation. Namely, the evaluation parameter z may

be expressed in terms of the bulk representation labels as

z =
g

g̃ α α̃
(ab̃− bã) , z−1 =

g α α̃

g̃
(cd̃− dc̃) . (4.57)

In a similar way, for the boundary representation, we obtain

qM =
g

g̃ α α̃
(aB b̃B − bB ãB) , q−M = VBṼB

g α α̃

g̃
(cB d̃B − dB c̃B) . (4.58)

In the q → 1 limit parameter z can be expanded in series as z = 1−2ighu+O(h2), where q ∼
eh and u is given by (2.8). The second term in this expansion reveals the Yangian evaluation

map of (3.17). Similarly for the boundary case we obtain qM = 1 − 2ighw + O(h2),

where w = iM/g, and is in a perfect agreement with the boundary evaluation map (3.24)

as required.
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Symmetry constraints. The boundary algebra B̂Z allows us to find any bound-state

reflection matrix up to the overall dressing phase by solving the boundary intertwining

equation (2.15)

∆ref(JA)Kq = Kq ∆(JA) for all JA ∈ B̂Z ,

This can be done in a similar way as in [63], where the bound-state S-matrix for the algebra

Q̂ was found. However these calculations are rather complicated and thus we will reduce our

goal to finding the analytic expressions of the reflection matrices with the total bound-state

number M ≤ 3. These are the fundamental reflection matrix KAa
q and the bound-state

reflection matrices KBa
q and KAb

q . Here indices A and B denote the fundamental and M = 2

bound-states in the bulk, the indices a and b in the same way denote the boundary (bound-)

states. These matrices in the explicit form are given in the appendix A. We have checked

that they are unitary and satisfy the reflection equation. Also we have calculated some

higher order bound-state reflection matrices numerically, and checked that they satisfy the

reflection equation.

4.4 q-deformed Z = 0 D7-brane: left factor

The left factor of the Z = 0 D7-brane does not respect any of the Lie supercharges Q α
a ,

G a
α or central charges C, C† (3.27). Hence the corresponding q-deformed model of this

boundary in addition to the affine supercharges E4 and F4 does not respect the regular

supercharges F2 and E2 (and central elements C2, C3). These generators combined together

will give rise to the twisted affine generators of the quantum affine coideal subalgebra

B̂X ⊂ Q̂. The boundary is a singlet with respect to the boundary algebra, thus we will not

need to construct the boundary representation of B̂X .

Coideal subalgebra. The boundary conditions define the root space automorphism ΘX

associated to the left factor of the D7-brane to act on the simple roots as

ΘX(α1) = α1, ΘX(α2) = −α4 − α1 − α3,

ΘX(α3) = α3, ΘX(α4) = −α2 − α1 − α3. (4.59)

Thus πΘX
= {α1, α3} and it gives rise to the subalgebra MX of Q̂ .

As in the previous case, we build B̂X based on the affine extension, hence p(4) = 2.

This setup fixes the twisted affine charges to be

Ẽ312 = F4 − dy θ̃(F4) , θ̃(F4) = (adrE3E1)E
′
2 , (4.60)

F̃312 = E′
4 − dx θ̃(E

′
4) , θ̃(E′

4) = (adrF3F1)F2 . (4.61)

Let us show the coideal property for the these charges explicitly,

∆(Ẽ312) = F4 ⊗K4 − dy(adr E3E1)E
′
2 ⊗K312 − U ⊗ Ẽ312

− dy(q − q−1)
(
(adr E1)E

′
2 ⊗K12E

′
3

− (adr E3)E
′
2 ⊗K32E

′
1 + q−1E′

2 ⊗K2[E
′
1, E

′
3]q2
)

∈ Q̂ ⊗ B̂X , (4.62)
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and

∆(F̃312) = E4 ⊗K4 − dx(adr F3F1)F2 ⊗K312 − U−1 ⊗ F̃312

− dx q
−1(q − q−1)

(
(adr F3)F2 ⊗K32F1

− q2(adr F1)F2 ⊗K12F3 + F2 ⊗K2[F1, F3]q2
)

∈ Q̂ ⊗ B̂X . (4.63)

The rest of B̂X can be furnished with the help of the right adjoint action of adrMX ,

Ẽ12 = (adrF3) Ẽ312, F̃12 = (adrE3) F̃312, (4.64)

Ẽ32 = (adrF1) Ẽ312, F̃32 = (adrE1) F̃312, (4.65)

Ẽ2 = (adrF1F3) Ẽ312, F̃2 = (adrE1E3) F̃312. (4.66)

As previously, the coideal property for these charges is obvious since B̂X is invariant under

the adjoint action of MX .

The final ingredients of B̂X are the twisted affine central charges
˜̃
C2 and

˜̃
C3 that can

be obtained by anticommuting two twisted affine charges, e.g.

˜̃
C2 = {Ẽ12 , Ẽ32} , ˜̃

C3 = {F̃12 , F̃32}. (4.67)

These twisted affine central charges must be reflective. And because the boundary is a

singlet we require
˜̃
C2 =

˜̃
C2 and

˜̃
C3 =

˜̃
C3. This gives us the following constraints,

1 + dxχ(q + q−1)− d2xχ
2

ξ2 − 1
= 0 ,

1

ξ2 − 1
+

dy
χ
(q + q−1)−

d2y
χ2

= 0 , (4.68)

where χ =
g̃

gαα̃
. These constraints can be solved by introducing the following ansatz,

dy =
g̃

g αα̃
V ′
B and dx = −g αα̃

g̃
V ′
B(1− ξ2) , (4.69)

where

V ′
B = q

1− ξx′B
1− ξ2

= q−1 x′B
x′B − ξ

. (4.70)

Note that V ′
B is related to VB in (4.47) by setting M = 1 and inverting the deformation

parameter, q → q−1, giving ξ → −ξ. Thus x′B may be understood as the spectral parameter

of the oppositely deformed fundamental boundary.4

4It is possible to choose a parametrization of dx and dy that it would agree with the one used for the

Z = 0 giant graviton, i.e. in terms of xB , not x′
B . However this would make expressions of the reflection

matrices much more complicated and the pole structure would not be transparent.
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Symmetry constraints. The structure of the q-deformed reflection matrix is equivalent

to the non-deformed case (2.23) and the corresponding vector space is the same (2.24). The

bosonic charges E1, F1 and E3, F3 constrain the reflection matrix to be diagonal,

Kq |k〉1 = Aq |k〉1, Kq |k〉2 = Bq |k〉2, Kq |k〉α = Cq |k〉α, (4.71)

and we have added the subscript q to distinguish the q-deformed reflection matrix from the

one in (2.25). Next we choose the normalization for the reflection of the state |k〉1 to be

Aq = 1. Then the intertwining equation for the charge Ẽ2 gives

(
Kq Ẽ2 − Ẽ2Kq

)
|k〉1 = 0 =⇒ Bq =

x′B + x+

x′B + κ(x+)

γ

γ
. (4.72)

Equivalently, the same constraint may be found by considering the reflection of states

|0〉α and employing the charge F̃2. Next we consider the reflection of the |k〉2 state. The

intertwining equation in this case leads to

(
Kq Ẽ2 − Ẽ2Kq

)
|k〉2 = 0 =⇒ Cq =

(1 + ξx−)(1 + ξx+)

1− ξ2
(1 + x′Bκ(x

−))(x′B + x+)

(1 + x′Bx
−)(x′B + κ(x+))

γ2

γ2
.

(4.73)

Let us perform some consistency checks. It is straightforward to check that this re-

flection matrix satisfies the unitarity condition Kq(p)Kq(−p) = 1. In the q → 1 limit

the q-deformed reflection coefficients Aq, Bq and Cq specialize to the non-deformed ones

given in (2.26) as required. Finally we also explicitly verified that it satisfies the reflection

equation when the total bound state number M ≤ 5. Thus it is good indication to expect

it to hold for any M .

5 Discussion

In this work we have constructed the twisted Yangian describing the boundary symmetries

and the worldsheet boundary scattering of the left factor of the open string attached to

the Z = 0 D7-brane in the AdS5 × S5 background. This was the last unknown boundary

symmetry algebra and now all of the (generalized) twisted Yangians for the well known

AdS/CFT boundaries have been constructed. We have also given an elegant form of the

Yangian generators of the Z = 0 giant graviton.

We have computed the q-deformed analogues of the reflection matrices corresponding

to the aforementioned D7-brane and the Z = 0 giant graviton. The latter was earlier

considered in [67]. In this language we have found a rather compact way of expressing the

corresponding symmetry algebras as the coideal subalgebras of the quantum affine algebra

Q̂ constructed in [62].

We have explicitly calculated the q-deformed fundamental (KAa
q ) and two-particle

bound-state (KBa
q and KAb

q ) reflection matrices of the Z = 0 giant graviton. We have

checked that these reflection matrices obey both non-affine and twisted-affine symmetries

and satisfy the reflection equation. We have also performed these tests for some higher order

bound-state reflection matrices which we have calculated numerically only. The analytic
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form of the generic bound-state reflection matrix could be found using the same approach

as in [63], where the bound-state S-matrix for the q-deformed worldsheet scattering was

found. The matrix structure of the S-matrix and the reflection matrix of the Z = 0 giant

graviton is of the same form, however the boundary algebra is of a much more complicated

structure than the bulk one, thus finding the generic bound-state reflection matrix would

be a highly complicated exercise and goes beyond of the scope of the present work.

The coideal subalgebras we have constructed in the rational q → 1 limit are required

to reproduce the corresponding twisted Yangian algebras. We have checked that the sub-

algebra B̂X of the q-deformed left factor of the Z = 0 D7-brane reproduces its twisted

Yangian. However finding the rational limit of the subalgebra B̂Z of the q-deformed Z = 0

giant graviton is rather involved and leads to a complicated combination of the level-2 and

level-0 Yangian generators. Thus we have limited our goal to checking if the q-deformed

reflection matrices in the q → 1 limit reproduce the regular ones and we found this to be

in a perfect agreement.

The q-deformed boundaries we have considered support only some subalgebra B̂ ⊂ Q̂.

One could ask if it would be possible to construct such an integrable boundary that it

would support all of the algebra Q̂. Our answer is that this is not possible. This is

because the commutation relations of Q̂ and the coreflectivity of the (non-twisted) central

charges, both regular and affine, can not be satisfied simultaneously. Interestingly, for the

representations of the psu (2|2)C algebra there is a simple bulk-to-boundary map. However

for the q-deformed case we do not see any obvious bulk-to-boundary map.

Some interesting further questions that would be worthwhile to investigate would in-

clude the role of the secret symmetry and finding the q-deformed analogue of the achiral

boundary [61]. This would include the important question of constructing the diagonal

embedding of the quantum deformed algebras. Also certain boundary scattering matrices

were shown to display extra symmetries [80] corresponding to the so-called secret symmetry

of the S-matrix [81, 82]. The secret symmetry is also a symmetry of the of the q-deformed

S-matrix [83] and it would be interesting to see if the q-deformed K-matrices accommodate

the corresponding extra symmetries.
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A q-deformed reflection matrices

In this appendix we present the explicit forms of the q-deformed reflection matrices for the

Z = 0 giant graviton. We enumerate the basis for fundamental particles as

e1 = |0, 0, 1, 0〉 , e2 = |0, 0, 0, 1〉, e3 = |1, 0, 0, 0〉, e4 = |0, 1, 0, 0〉 . (A.1)
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and two-particle bound states as

ê1 = |0, 0, 2, 0〉 , ê2 = |0, 0, 1, 1〉 , ê3 = |0, 0, 0, 2〉 ê4 = |1, 0, 1, 0〉
ê5 = |1, 0, 0, 1〉 , ê6 = |0, 1, 1, 0〉 , ê7 = |0, 1, 0, 1〉 ê8 = |1, 1, 0, 0〉 . (A.2)

We will use the symbol “ ◦ ” to denote the tensor product of states to keep the expressions

as compact as possible. For the same reason we will also omit writing the subindex q.

Our normalization is such that K e1 ◦e1 = e1 ◦e1 and equivalently for the bound-states.

We have checked that these reflection matrices satisfy the reflection equation and unitarity

requirement, K(−p)K(p) = 1.

Reflection matrix KAa
q .

K ea◦ea = ea◦ea ,
K ea◦eα = k3 eα◦ea + k2 ea◦eα ,
K eα◦ea = k8 eα◦ea + k4 ea◦eα ,
K eα◦eα = k9 eα◦eα ,
K e1◦e2 = k1 e2◦e1 + (1− q−1k1) e1◦e2 − q−1k6 e4◦e3 + q−2k6 e3◦e4 ,
K e2◦e1 = (1− qk1) e2◦e1 + k1 e1◦e2 + k6 e4◦e3 − q−1k6 e3◦e4 ,
K e3◦e4 = −qk5 e2◦e1 + k5 e1◦e2 + k7 e4◦e3 + (−q−1k7 + k9) e3◦e4 ,
K e4◦e3 = q2k5 e2◦e1 − qk5 e1◦e2 + (−qk7 + k9) e4◦e3 + k7 e3◦e4 . (A.3)

Here a = 1, 2 and α = 3, 4 , and the coefficients ki are

k1 =

[
U2(ξ + x+)− q(ξ + x−)

xB − x−
− U2(1− U2V 2)

xB + ξ

xB − x−
x− − κ(x−)

ξ + x+

]
V 2

U2
,

k2 =
q(ξ + xB)− U2(ξ + x+)

qU2(xB − x−)
,

k3 = q
1

2 (1− U2V 2)
x− − κ(x−)

x− − xB

V

U

γB
γ

,

k4 = zq−
1

2
(x− − κ(x−))(xB + ξ)

(xB − x−)(ξ + x−)

V

U

γ

γB
,

k5 =
q−

3

2

α

[
q (ξ + x−)− U2 (ξ + x+)

(xB − x−)
+

z (x+ − κ (x+)) (xB + ξ)

q2 (xB − x−) (ξ + x−)

]
V

U
γγB ,

k6 = αq
1

2
U4 − 1

U2

[
qV 2 ξ + x+

xB − x−
+

(1− U2V 2)(xB + ξ)

x− − xB

]
V

U

1

γγB
,

k7 =

[
zV 2

q

U4 − 1

U2

xB + ξ

xB − x−
+

(1− U2V 2)(x+ − κ(x+))

xB − x−

]
γ

γ
,

k8 =
zU2(xB + ξ) + ξ + x−

x− − xB

γ

γ
,

k9 = z
xB − κ(x−)

x− − xB

γ

γ
. (A.4)
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Reflection matrix KBa
q .

K ê1◦e1 = ê1◦e1 ,
K ê1◦e2 = qk3 ê2◦e1 − k5

q ê8◦e1 +
(
1− k3 − k3

q2

)
ê1◦e2 − k4

q ê6◦e3 + k4
q2

ê4◦e4 ,
K ê1◦e3 = k1 ê4◦e1 + k2 ê1◦e3 ,
K ê1◦e4 = k1 ê6◦e1 + k2 ê1◦e4 ,
K ê2◦e1 = (1− q2k3) ê2◦e1 + k5 ê8◦e1 +

(
1
q + q

)
k3 ê1◦e2 + k4 ê6◦e3 − k4

q ê4◦e4 ,
K ê2◦e2 =

(
1 + 1

q2

)
k3 ê3◦e1 +

(
1− k3

q2

)
ê2◦e2 − k5

q2
ê8◦e2 − k4

q2
ê7◦e3 + k4

q3
ê5◦e4 ,

K ê2◦e3 = k1
q ê5◦e1 + k1 ê4◦e2 + k2 ê2◦e3 ,

K ê2◦e4 = k1
q ê7◦e1 + k1 ê6◦e2 + k2 ê2◦e4 ,

K ê3◦e1 = (1− (1 + q2)k3) ê3◦e1 + k3 ê2◦e2 + k5 ê8◦e2 + k4 ê7◦e3 − k4
q ê5◦e4 ,

K ê3◦e2 = ê3◦e2 ,
K ê3◦e3 = k1 ê5◦e2 + k2 ê3◦e3 ,
K ê3◦e4 = k1 ê7◦e2 + k2 ê3◦e4 ,
K ê4◦e1 = k6 ê4◦e1 +

(
1
q + q

)
k11 ê1◦e3 ,

K ê4◦e2 = k12 ê5◦e1 +
(
k6 − k12

q

)
ê4◦e2 + qk11 ê2◦e3 − k13

q ê8◦e3 ,
K ê4◦e3 = k7 ê4◦e3 ,
K ê4◦e4 = k8 ê2◦e1 + k10 ê8◦e1 − 1+q2

q3
k8 ê1◦e2 + k9 ê6◦e3 +

(
k7 − k9

q

)
ê4◦e4 ,

K ê5◦e1 = (k6 − qk12) ê5◦e1 + k12 ê4◦e2 + k11 ê2◦e3 + k13 ê8◦e3 ,
K ê5◦e2 = k6 ê5◦e2 +

(
1
q + q

)
k11 ê3◦e3 ,

K ê5◦e3 = k7 ê5◦e3 ,
K ê5◦e4 =

(
1 + 1

q2

)
k8 ê3◦e1 − k8

q2
ê2◦e2 + k10 ê8◦e2 + k9 ê7◦e3 +

(
k7 − k9

q

)
ê5◦e4 ,

K ê6◦e1 = k6 ê6◦e1 +
(
1
q + q

)
k11 ê1◦e4 ,

K ê6◦e2 = k12 ê7◦e1 +
(
k6 − k12

q

)
ê6◦e2 + qk11 ê2◦e4 − k13

q ê8◦e4 ,
K ê6◦e3 = −qk8 ê2◦e1 − qk10 ê8◦e1 +

(
1 + 1

q2

)
k8 ê1◦e2 + (k7 − qk9) ê6◦e3 + k9 ê4◦e4 ,

K ê6◦e4 = k7 ê6◦e4 ,
K ê7◦e1 = (k6 − qk12) ê7◦e1 + k12 ê6◦e2 + k11 ê2◦e4 + k13 ê8◦e4 ,
K ê7◦e2 = k6 ê7◦e2 +

(
1
q + q

)
k11 ê3◦e4 ,

K ê7◦e3 = −(1q + q)k8 ê3◦e1 + k8
q ê2◦e2 − qk10 ê8◦e2 + (k7 − qk9) ê7◦e3 + k9 ê5◦e4 ,

K ê7◦e4 = k7 ê7◦e4 ,
K ê8◦e1 = k14 ê2◦e1 + k16 ê8◦e1 − 1+q2

q3
k14 ê1◦e2 + k15 ê6◦e3 − k15

q ê4◦e4 ,
K ê8◦e2 =

(
1 + 1

q2

)
k14 ê3◦e1 − k14

q2
ê2◦e2 + k16 ê8◦e2 + k15 ê7◦e3 − k15

q ê5◦e4 ,
K ê8◦e3 = −qk17 ê5◦e1 + k17 ê4◦e2 + k18 ê8◦e3 ,
K ê8◦e4 = −qk17 ê7◦e1 + k17 ê6◦e2 + k18 ê8◦e4 . (A.5)
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The reflection coefficients of KBa
q are

k1 =
√

q
1+q2

q(U4 − 1)(ξ + x−)

xB − x−
V

U

γB
γ

,

k2 =
q2(xB + ξ)− U2(ξ + x+)

q2U2 (xB − x−)
,

k3 =
U4 − 1

1 + q2
ξ + x−

xB − x−

[
q2 +

1

U2z

xB + ξ − U2(ξ + x+)

(xB + ξ)x+
1 + ξx+

χ+ x−

]
,

k4 =
k13

1 + χx+

[[
1

xB
+ ξ − ξ

U2z

]
x+ − 1

U2z

]
γ

γ
,

k5 = α
U4 − 1

1 + q−2

x+ − κ(x+)− z−1(q2 − 1)(ξ + x−)

χ+ x−
ξ + x−

xB − x−
V 2 − U−2

γ2
,

k6 =

[
z U2 xB + ξ

x− − xB
+

ξ + x−

x− − xB

]
γ

γ
,

k7 =
U2(ξ + x−) + (xB + ξ)z

x− − xB

γ

γ
,

k8 =
√

q
1+q2

V

zU

xB + ξ − U2(ξ + x+)

κ(x−)− xB

U2(ξ + x−) + z(xB + ξ)

x− − xB

1 + ξx+

xB + ξ

κ(x−)− x−

x+ (χ+ x−)

γγB

qα
,

k9 = qz
x+

x−
x− − κ(x−)

xB − x−




(
1
xB

+ ξ
)
x+ − 1+ξx+

U2z

q2U2(1 + χx+)

U2(ξ + x−) + z(xB + ξ)

χ+ x−
− 1


 γ

γ
,

k10 = −
k1(ξ + x+)

(
q2U2 (1 + ξx+)− (xB + ξ)V 2x−

)
γ

q4 (1 + xBξ + (xB + ξ)x−)x+γ
,

k11 =
√

q
1+q2

U

qξV

xB + ξ

x− − xB

[
z

κ(x−)
+

V 2

x+

]
γ

γB
,

k12 =
√

q
1+q2

1

UV

[
qk11(x

− − x+)γB
x−γ

+
k13γγB
qα

]
,

k13 =
√

q
1+q2

α(x− − x+) (x+ − κ(x+))

q UV (χ+ x−)x−
U2(ξ + x−) + (xB + ξ)z

x− − xB

γ

γ2γB
,

k14 =
q2 (x+ + ξ)− (κ(x+) + ξ)

(1 + q2)(xB − κ(x−))

U2(ξ + x−) + (xB + ξ)z

V 2(χ+ x−)(x− − xB)

[
1

x−
− 1

κ(x−)

]
γ2

α
,

k15 = −
√

q
1+q2

U

qξV

xB + ξ

x− − xB

[
z

κ(x−)
+

V 2

x+

] [
ξ + x−

χ+ x−
− U2z

xB

1 + xBξ

χ+ x−

]
γ2

γγB
,

k16 = αk14V
2 (ξ + x+)(x+ − x−)

(1 + ξx+) γ2
+ k15

√
1+q2

q3
V

U

ξ + x+

xB + ξ

γB
γ

+ k6
ξ + x+

ξ + κ(x+)

γ

γ
,

k17 =
√

q
1+q2

q−2(ξ + x+) + (xB + ξ)z

UV x−(x− − xB)

1 + ξx+

xB + ξ

κ(x−)− x−

χ+ x−
γBγ

2

qαγ
,

k18 =
q−2(ξ + x+) + (xB + ξ)z

x− − xB

[
ξ + x−

χ+ x−
− U2z

q2xB

1 + xBξ

χ+ x−

]
γ2

γ2
, (A.6)

here χ = 1+ξxB

xB+ξ .
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Reflection matrix KAb
q .

K e1◦ê1 = e1◦ê1 ,
K e1◦ê2 =

(
1 + 1

q2

)
k5 e2◦ê1 +

(
1− k5

q2

)
e1◦ê2 − k7

q2
e4◦ê4 + k7

q3
e3◦ê6 − k6

q2
e1◦ê8 ,

K e1◦ê3 = qk5 e2◦ê2 +
(
1− k5 +

k5
q2

)
e1◦ê3 − k7

q e4◦ê5 + k7
q2

e3◦ê7 − k6
q e2◦ê8 ,

K e1◦ê4 =
(
1
q + q

)
k9 e3◦ê1 + k1 e1◦ê4 ,

K e1◦ê5 = qk9 e3◦ê2 + k8 e2◦ê4 +
(
k1 − k8

q

)
e1◦ê5 − k10

q e3◦ê8 ,
K e1◦ê6 =

(
1
q + q

)
k9 e4◦ê1 + k1 e1◦ê6 ,

K e1◦ê7 = qk9 e4◦ê2 + k8 e2◦ê6 +
(
k1 − k8

q

)
e1◦ê7 − k10

q e4◦ê8 ,
K e1◦ê8 = −(1 + q2)k2 e2◦ê1 + k2 e1◦ê2 + k4 e4◦ê4 − k4

q e3◦ê6 + k3 e1◦ê8 ,
K e2◦ê1 = (1− (1 + q2)k5) e2◦ê1 + k5 e1◦ê2 + k7 e4◦ê4 − k7

q e3◦ê6 + k6 e1◦ê8 ,
K e2◦ê2 = (1− q2k5) e2◦ê2 +

(
1
q + q

)
k5 e1◦ê3 + k7 e4◦ê5 − k7

q e3◦ê7 + k6 e2◦ê8 ,
K e2◦ê3 = e2◦ê3 ,
K e2◦ê4 = k9 e3◦ê2 + (k1 − qk8) e2◦ê4 + k8 e1◦ê5 + k10 e3◦ê8 ,
K e2◦ê5 =

(
1
q + q

)
k9 e3◦ê3 + k1 e2◦ê5 ,

K e2◦ê6 = k9 e4◦ê2 + (k1 − qk8) e2◦ê6 + k8 e1◦ê7 + k10 e4◦ê8 ,
K e2◦ê7 =

(
1
q + q

)
k9 e4◦ê3 + k1 e2◦ê7 ,

K e2◦ê8 = −q2k2 e2◦ê2 +
(
1
q + q

)
k2 e1◦ê3 + k4 e4◦ê5 − k4

q e3◦ê7 + k3 e2◦ê8 ,
K e3◦ê1 = k12 e3◦ê1 + k11 e1◦ê4 ,
K e3◦ê2 = k12 e3◦ê2 + k11

q e2◦ê4 + k11 e1◦ê5 ,
K e3◦ê3 = k12 e3◦ê3 + k11 e2◦ê5 ,
K e3◦ê4 = k13 e3◦ê4 ,
K e3◦ê5 = k13 e3◦ê5 ,
K e3◦ê6 = −(1 + q2)k14 e2◦ê1 + k14 e1◦ê2 + k16 e4◦ê4 +

(
k13 − k16

q

)
e3◦ê6 + k15 e1◦ê8 ,

K e3◦ê7 = −q2k14 e2◦ê2 +
(
1
q + q

)
k14 e1◦ê3 + k16 e4◦ê5 +

(
k13 − k16

q

)
e3◦ê7 + k15 e2◦ê8 ,

K e3◦ê8 = −qk17 e2◦ê4 + k17 e1◦ê5 + k18 e3◦ê8 ,
K e4◦ê1 = k12 e4◦ê1 + k11 e1◦ê6 ,
K e4◦ê2 = k12 e4◦ê2 + k11

q e2◦ê6 + k11 e1◦ê7 ,
K e4◦ê3 = k12 e4◦ê3 + k11 e2◦ê7 ,
K e4◦ê4 = (q + q3)k14 e2◦ê1 − qk14 e1◦ê2 + (k13 − qk16) e4◦ê4 + k16 e3◦ê6 − qk15 e1◦ê8 ,
K e4◦ê5 = q3k14 e2◦ê2 − (1 + q2)k14 e1◦ê3 + (k13 − qk16) e4◦ê5 + k16 e3◦ê7 − qk15 e2◦ê8 ,
K e4◦ê6 = k13 e4◦ê6 ,
K e4◦ê7 = k13 e4◦ê7 ,
K e4◦ê8 = −qk17 e2◦ê6 + k17 e1◦ê7 + k18 e4◦ê8 . (A.7)
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The reflection coefficients of KAb
q are

k1 =
(xB + ξ)− U4(ξ + x−)

U2(xB − x−)
,

k2 =
q−1k4 + qU−2k9

α
√

1 + q2
UV γγB
U2V 2 − 1

,

k3 =
k10 − αU2k4

αq
√

1 + q2 (1− U2V 2)

V

U
− k18

γ

zU2
,

k4 =
αq2k17
γγ

κ(x+)x−

(U2 − V 2)−1
− k16

q2UV

z
√
1 + q2

x− + ξ

xB + ξ

γB
γ

,

k5 =
U2 − U−2

1 + q2

[
V 2U2

ξq2
1 + xBξ

xB − x−
q2 − 1

1− xBx+

[
1 + ξx+

U2
− x+(xB + ξ)

U2 − V 2

]

+ q
ξ + x+

xB − x−

[
1− V 2 − U2

qκ(x−)x+
+

qV 2(ξ2 − 1)

(xB + ξ)(ξ + x+)

] ]
,

k7 = −qα
√

1 + q2k5
1− U2V 2

UV γγB
+

q3α√
1 + q2

1− U2V 2

UV γγB
− q3αk12√

1 + q2
1− U−2V 2

UV γγB
,

k6 =
1√
1+q2

UV

U2 − V 2

xB + ξ

ξ + x+
γ

γB
(k10U

2 − k7) ,

k8 =
q

q2 + 1

(1 + x2B + 2xBξ)x
+

(xB − x−)(1− xBx+)

U4 − 1

V 2 − U2

V 2

U2
,

k9 =
U2 − U−2

√
1 + q2

V

U

ξ + x+

xB − x−
,

k10 = α
U2 − U−2

√
q2 + 1

V

U

ξ + x+

xB − x−

[
1 +

(1− q4)xB(1 + ξx+)

ξ(1− xBx+)

]
,

k11 =
√

1
1+q2

U4 − 1

U2 − V 2

V

U

xB + ξ

xB − x−
,

k12 = −
[

ξ + x−

xB − x−
+ zU2 xB + ξ

xB − x−

]
,

k13 = − ξ + x+

q(xB − x−)
− z

xB + ξ

xB − x−
,

k14 =
U2 − U−2

αq4
√
1 + q2

V

U

1 + xBξ

xB − x−

[
U2V 2

U2 − V 2

[
(q2 − 1)(1 + ξx+)

ξ(1− xBx+)
− 1

xB

]
− z

q2xB

xB + ξ

ξ + x−

]
,

k15 =
q−1

U2V 2 − 1

[
k16

UV√
1 + q2

+ α−1k10

]
,

k16 =
U4 − 1

xB − x−
V 2

U2

[
z(xB + ξ)

q2(x+ + ξ)− (1 + xBξ)x
+

q3ξ(1− xBx+)
− (x+ + ξ)

]
,

k17 =
1

αq
√

1 + q2
V

U

qz(xB + ξ) + (ξ + x+)

κ(x+)(1− xBx+)

x+ − κ(x+)

xB − x−
,

k18 =
(xB + ξ)x− + (ξ + x+) 1

κ(x+)

xB − x−
qz(xB + ξ) + (ξ + x+)

1− xBx+
V 2

q
. (A.8)
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