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1 Introduction

In recent years the study of twistor theory has been undergoing a renaissance, following

work by Witten (see ref. [1]). One of the highlights of these recent developments was

the construction in the N = 4 super-Yang-Mills theory of a supersymmetric non-Abelian

Wilson loop by Mason and Skinner in ref. [2] (the space-time version of this supersymmetric

Wilson loop was constructed independently by Caron-Huot in ref. [3]).

The computation (see refs. [2, 3]) of these supersymmetric Wilson loops on polygonal

contours, revealed that — in the planar limit — they reproduce the planar limit of scat-

tering amplitudes. This supported earlier observations linking polygonal Wilson loops in

N = 4 in the planar limit and MHV scattering amplitudes [4–14]. Remarkably, the equiv-

alence between scattering amplitudes and Wilson loops is supported by strong coupling

computations as well [15, 16]. In ref. [17] it was shown using the loop equations satisfied by

the supersymmetric Wilson loops that their integrand satisfies the same recursion relation

as the loop level extension of the BCFW recursion presented in ref. [13].

Another natural class of observables are correlation functions of local gauge-invariant

operators. The n-point correlation functions depend on n coordinates xi and in the light-

like limit when x2i,i+1 = 0 they simplify dramatically. In a series of papers [18–22] Alday,
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Eden, Korchemsky, Maldacena and Sokatchev have shown that in this light-like limit one

can also extract the same information contained in the scattering amplitudes and in the

Wilson loops. An understanding of this new equivalence from the twistor point of view

was provided in ref. [23] by considering correlation functions of Konishi operators.

One of the striking features of the correspondence between correlation functions and

chiral supersymmetric Wilson loops or scattering amplitudes is that the correlation func-

tions need to be chirally projected in some way. As a consequence a lot of information con-

tained in the correlation functions is lost. After this projection, part of the manifest symme-

try of the correlation functions (like the antichiral Q̄ supersymmetry) becomes anomalous.

A proposal for the anomaly of the Q̄ operator has been put forward in refs. [24, 25].

We may also try to define nonchiral supersymmetric Wilson loop as it was proposed in

ref. [26]. The construction of such a nonchiral supersymmetric Wilson loop was completed

and studied in refs. [27, 28]. It turns out that nonchiral supersymmetric Wilson loops

would most naturally be formulated in ambitwistor space, but ambitwistor theory is poorly

understood.

We are therefore led to consider other nonchiral formulations of N = 4 super-Yang-

Mills theory. One such nonchiral formulation is the N = 3 theory of Galperin et al. [29].

Before we start discussing this theory let us discuss the simpler example of selfdual N = 4

super-Yang-Mills.

In ref. [30] an off-shell action was written for the selfdual N = 4 super-Yang-Mills of

Siegel [31]. The Lagrangian of ref. [30] has the form

tr

(
A++D+αA+

α −
1

2
A+αD++A+

α +A++A+αA+
α

)
, (1.1)

where A++ and A+α are two fields and D+α and D++ are the derivatives. This action can

be written in a better way, by introducing two vielbeine e−α and e−− to form a one-form

connection

A = e−−A++ + e−αA+
α (1.2)

and a ∂̄ operator

∂̄ = e−−D++ + e−αD+
α . (1.3)

With these we can write a three-form Lagrangian

tr

(
A∂̄A+

2

3
A ∧A ∧A

)
, (1.4)

which reproduces the previous one in components. This reformulation is implicit in ref. [1],

for example (see also ref. [32] where the action in terms of component space-time fields was

worked out).

In ref. [29], a similar action was found for the full N = 4 theory which exhibits N = 3

supersymmetry off-shell. That action is more complicated. Its Lagrangian reads

tr
(
A(2,−1)(D(−1,2)A(1,1) −D(1,1)A(−1,2))−A(−1,2)(D(2,−1)A(1,1) −D(1,1)A(2,−1))+

A(1,1)(D(2,−1)A(−1,2) −D(−1,2)A(2,−1))− (A(1,1))2 − 2A(1,1)[A(2,−1), A(−1,2)]
)
, (1.5)
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where A(2,−1), A(1,1) and A(−1,2) are three dynamical fields and D(−1,2), D(1,1) and D(2,−1)

are three derivatives. This action has some of the expected features of a Chern-Simons

action, like being cubic in the fields and first order in derivatives, but it also contains a

slightly puzzling term like (A(1,1))2, which is quadratic but does not have any derivatives.

One could solve for the field A(1,1) by using its equations of motion and plugging the

solution back in the action, but this would lead to a more complicated action which is

quartic in the fields (see ref. [33, chap. 12]). Therefore it is preferable to keep A(1,1).

We will show that the origin of the puzzling term (A(1,1))2 is in the torsion of the coset

SU(3)/(U(1)×U(1)). Schematically, the reason is as follows. We can define a connection

A = e(−2,1)A(2,−1) + e(−1,−1)A(1,1) + e(1,−2)A(−1,2), (1.6)

where e(−2,1), e(−1,−1) and e(1,−2) are one-form vielbeine and we can also define a differential

∂̄ by

∂̄ = e(−2,1)D(2,−1) + e(−1,−1)D(1,1) + e(1,−2)D(−1,2). (1.7)

When computing ∂̄A, the differential ∂̄ can act on the component fields in A, but also

on the vielbeine e(−2,1), e(−1,−1) and e(1,−2). As we will show, the torsion makes the action

of ∂̄ on the vielbeine non-trivial

∂̄e(−1,−1) = −e(−2,1) ∧ e(1,−2), ∂̄e(1,−2) = 0, ∂̄e(−2,1) = 0. (1.8)

With these preparations, the Lagrangian can be written as a holomorphic Chern-Simons

Lagrangian1

tr

(
A∂̄A+

2

3
A ∧A ∧A

)
. (1.9)

When written in components the Lagrangian above matches the one in eq. (1.5). We have

not been able to find this formulation anywhere in the literature.

We should note here that even though the N = 3 Lagrangian looks the same as the

one for the N = 4 self-dual theory, the interpretation is different since the one-forms A are

defined on a different space and the ∂̄ differential is defined in a different way. However,

either way, only three gauge fields are necessary to fully describe N = 4 super Yang-Mills

theory.

Besides its simplicity, the formulation as a holomorphic Chern-Simons theory has the

advantage of emphasizing the underlying geometry of the problem which is helpful when

understanding symmetries. As an example, under superconformal transformations the

components A(2,−1), A(1,1) and A(−1,2) of the connection A mix among themselves but the

one-form A just transforms by a Lie derivative (see section D). Also, when computing the

propagator, it will probably be best to compute 〈A(1)A(2)〉 instead of two-point functions

of component fields.

The paper is organized as follows. In section 2 we present the general philosophy

behind the harmonic superspace constructions in the general setting. In section 3 we

1In order to obtain the N = 4 theory in (3, 1) signature a reality condition must be imposed on the

connection A, as we will discuss below.
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review the construction of the N = 3 theory based on the SU(3)/(U(1)× U(1)) coset and

we present its formulation as a holomorphic Chern-Simons theory. In section 4 we present

the self-dual theory, mostly in the language of ref. [30] and make contact with the twistor

constructions. In the next section 5 we review the construction of super Wilson loops.

These last two sections do not contain anything new, but they cover useful background for

the construction of local operators in section 6. We end with conclusions and a number of

appendices.

2 General philosophy

Before we go on to discuss concrete examples, let us describe the basic strategy in the

harmonic superspace constructions. To start, we need to pick a superspace which contains

space-time and some odd coordinates. Then, as usual, we introduce supersymmetry co-

variant derivatives. In gauge theories to each of these supersymmetry covariant derivatives

corresponds a gauge covariant derivative. In other words, we introduce gauge connections

for each supersymmetry covariant derivative.

From the gauge covariant derivatives we define curvatures, or field strengths, paying

attention to subtracting the torsion terms, which appear in superspace. It is well-known

that these field strengths satisfy some constraints. In cases with maximal (or near maximal)

supersymmetry like N = 4 or N = 3 for four-dimensional Yang-Mills, these constraints

are so strong that they imply the equations of motion. Said differently, when we have

a lot of supersymmetry, the action is uniquely determined.2 Then we can work out the

action of supersymmetry on fields, which turns out to be nonlinear. Moreover, in the most

interesting cases the supersymmetry algebra only closes on-shell which makes it difficult to

work out the consequences of supersymmetry.

The harmonic superspace approach attempts to introduce auxiliary fields such that (at

least some) supersymmetry is realized linearly and off-shell. The construction proceeds by

introducing extra bosonic coordinates u, which parametrize a coset G/H. In fact, space-

time and superspace can themselves be written as cosets. Standard methods allow us to

compute covariant derivatives on G/H. Then, it is sensible to think of the theory as living

on a bigger space so the gauge connections depend on the extra variables u.

The next step is to make a change of coordinates on this bigger space such that the

constraints discussed above take a simpler form. From the covariant derivatives defined

beforehand, we need to pick an integrable distribution which implies the constraints. A

distribution is generated by a set of vector fields (or derivation operators) whose commu-

tator is expressible in terms of themselves. The distributions we will work with contain

both Grassmann even and Grassmann odd elements. In favorable cases the constraints

imposed by the Grassmann odd elements of the distribution can be solved by restricting

the dependence of the connection on the odd coordinates. The simplest example of this

phenomenon is the case of chiral fields where the constraints are D̄φ = 0. After solving

2Up to terms which are supersymmetric by themselves and which do not contribute to the equations of

motion, like
∫
tr(F ∧ F ) for Yang-Mills theory.
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these easy constraints, we are still left with some more. These remaining constraints will

be interpreted as the equations of motion of a new action.

The integrable distribution mentioned above generates a CR3 structure. CR structures

are central in harmonic or twistor constructions. We present a short discussion of CR

structure and work out some explicit examples in section C.

The strategy we have presented can be turned around in the following way. We take

as a starting point a symmetry group G, for example SU(2, 2|3). Then, we look for a

manifoldM with a CR structure defined by an integrable distribution L of even rank three

and arbitrary odd rank κ. The manifold M and the CR structure should be such that

the group of diffeomorphisms of M which preserve the CR structure is isomorphic to the

symmetry group G.

Finding a manifold M with a CR structure which is preserved by G is not necessarily

straightforward, but it can be suggested by the usual analysis of constraints. Using this

data we build a field theory of a connection A on M which is holomorphic Chern-Simons,

and which has the right symmetries.4 In interesting cases like N = 4 super-Yang-Mills the

symmetry group determines the theory completely. Then we are left with the challenge of

writing the local space-time operators in terms of the connection A. They will necessarily

depend on A in a nonlocal way. Ensuring the correct gauge transformations is a useful

constraint in this construction.

3 N = 3 theory as holomorphic Chern-Simons

The presentation in this section is, up to a point, heavily inspired by the book [33] by

Galperin et al. whose conventions we adopt. The original construction of off-shell N = 3

action was done in ref. [29], but with slightly different notations than in [33].

The N = 3 theory in four dimensions is defined on a superspace with coordinates

z = (x, θ, θ̄), where the odd coordinates θαi transform as 3 under SU(3) R symmetry group

and θ̄α̇i transform as a 3̄. The supersymmetry covariant derivatives are denoted by Di
α,

Dα̇i and Dαα̇, with an algebra
{
Di

α, D
j
β

}
= 0,

{
Dα̇i, Dβ̇j

}
= 0,

{
Di

α, D̄α̇j

}
= −2iδijDαα̇. (3.1)

For each supersymmetry covariant derivative we introduce a connection and we define

supersymmetry and gauge covariant derivatives D = D+A. On these derivatives we impose

the constraints
{
Di

α,D
j
β

}
= ǫαβW̄

ij ,
{
Dα̇i,Dβ̇j

}
= ǫα̇β̇Wij ,

{
Di

α, D̄α̇j

}
= −2iδijDαα̇. (3.2)

We have the following reality conditions (Di
α)

† = D̄α̇i, (Dαα̇)
† = −Dαα̇ and (Wij)

† = W̄ ij .

The superfield W̄ ij is antisymmetric, W̄ ij = −W̄ ji and by the reality conditions it is the

only independent curvature. It is well-known that these constraints describe N = 3 super

Yang-Mills theory.

3CR stands for Cauchy-Riemann or Complex-Real, according to taste.
4The only issue that can arise is in defining the integration measure for the Lagrangian in a way which

preserves the symmetries, but usually this does not pose a problem.
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These constraints can be rewritten in an equivalent way by introducing two SU(3)

triplets: ξi transforming in the 3 of SU(3) and ηi transforming in the 3̄ of SU(3) and such

that ξiη
i = 0. Using these variables, we can define Dα = ξiD

i
α and D̄ᾱ = ηiD̄α̇i. The

constraints then become

{Dα,Dβ} = 0,
{
D̄α̇, D̄β̇

}
= 0,

{
Dα, D̄β̇

}
= 0. (3.3)

The triplets ξ and η are defined up to a rescaling so (ξ, η) ∈ Q ⊂ CP2 ×CP2, where Q

is a quadric defined by ξiη
i = 0. The space Q is six (real) dimensional. We note here that

this is very similar to ambitwistor space, which is defined as a quadric in CP3 × CP3.

We can also show that ξ and η parametrize a coset SU(3)/(U(1) × U(1)). If we start

with ξ and η, we form a 3× 3 unitary matrix u of unit determinant,

u =

(
ξ

|ξ|
,
η̄

|η|
,
ξ̄ × η

|ξ||η|

)
, (3.4)

where |ξ|2 = ξ · ξ̄ and similarly for η. However, if we take ξ, η ∈ CP2, then we see that

under ξ → ξeiφ1 , η → ηeiφ2 , the matrix u is not invariant. In order to obtain invariance

we need to identify the matrices obtained by these rescalings, which can be achieved by

taking the coset by this U(1)×U(1) group.

We can decide to work with the variables (ξ, η) or work with the matrix u ∈ SU(3). In

the following we will work with the matrix u. We denote the matrix elements by uIi , with

i = 1, 2, 3 and I is labeled by the U(1)×U(1) charges I = (1, 0), (0,−1), (−1, 1). Sometimes

it is convenient to use a shorter notation where I range over 1, 2, 3, with the understanding

that these labels correspond to the charges (1, 0), (0,−1), (−1, 1). Since u ∈ SU(3), we also

have (uIi )
∗ = uiI and detuIi = 1. Using u’s instead of (ξ, η), the constraints can be written

{
D(1,0)

α ,D
(1,0)
β

}
= 0,

{
D̄

(0,1)
α̇ , D̄

(0,1)

β̇

}
= 0,

{
D(1,0)

α , D̄
(0,1)
α̇

}
= 0. (3.5)

We can now define covariant derivatives on the coset SU(3)/(U(1) × U(1)). They are

computed in detail in section B so we will only list them here

D(−2,1) = u3i
∂

∂u1i
, D(−1,−1) = u2i

∂

∂u1i
, D(−1,2) = u3i

∂

∂u2i
, (3.6)

D(1,−2) = u2i
∂

∂u3i
, D(1,1) = u1i

∂

∂u2i
, D(2,−1) = u1i

∂

∂u3i
. (3.7)

The algebra of the superspace covariant derivativesD
(1,0)
α , D̄

(0,1)
α̇ and the SU(3)/(U(1)×

U(1)) covariant derivatives listed above can be easily computed. We only list the ones which

are relevant for us later

[D(2,−1),D(1,0)
α ] = 0, [D(−1,2),D(1,0)

α ]= 0, [D(1,1),D(1,0)
α ] = 0, (3.8a)

[D(2,−1), D̄
(0,1)
α̇ ] = 0, [D(−1,2), D̄

(0,1)
α̇ ]= 0, [D(1,1), D̄

(0,1)
α̇ ] = 0. (3.8b)

Up to now all the gauge connections were independent on the variables u. We can in-

troduce gauge fields A(q1,q2) and construct gauge covariant derivatives D(q1,q2) = D(q1,q2) +

– 6 –
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Figure 1. The fermionic derivatives and their U(1)×U(1) charges. The boxed generators are the

odd generators of the distribution.

A(q1,q2). We will also allow the gauge connections to depend on u. Of course, the connec-

tions A(q1,q2) are flat so the algebra of gauge covariant derivatives D(q1,q2) is the same as

the algebra of covariant derivatives D(q1,q2) (see eq. (B.51))

[D(−2,1),D(1,−2)] = D(−1,−1), [D(−1,−1),D(−1,2)] = D(−2,1), (3.9)

[D(1,1),D(−2,1)] = D(−1,2), [D(−1,2),D(2,−1)] = D(1,1), (3.10)

[D(1,−2),D(1,1)] = D(2,−1), [D(2,−1),D(−1,−1)] = D(1,−2). (3.11)

After covariantizing the harmonic derivatives, we should replace them in eqs. (3.8) by their

covariant versions.

Now we pick an integrable distribution5 generated by D
(1,0)
α , D̄

(0,1)
α̇ , D(2,−1), D(−1,2)

and D(1,1). All the (anti)-commutators of these derivatives are zero with the exception of

[D(−1,2),D(2,−1)] = D(1,1). As we mentioned before, the constraints involving the fermionic

covariant derivatives can be solved by going to a gauge where their connections vanish

(which is possible because they are flat). Then, the constraints involving even and odd

derivatives can be solved by taking the connections A(2,−1), A(−1,2) and A(1,1) to depend

on a restricted set of variables z =
(
xA, θ

(1,−1)
α , θ

(0,1)
α , θ̄

(1,0)
α̇ , θ̄

(−1,1)
α̇ , u

)
, where xA is such

that D
(1,0)
α xββ̇A = 0 and D̄

(0,1)
α̇ xββ̇A = 0. Finally we are left with three constraints, arising

from the harmonic derivatives.

These constraints can be written explicitly and an action from which they follow as

equations of motion can be found. However, and this is where our approach differs from

the usual treatment, in order to get the holomorphic Chern-Simons action, we will think

of these connections as components of a differential one-form, defined as

A = e(−2,1)A(2,−1) + e(1,−2)A(−1,2) + e(−1,−1)A(1,1), (3.12)

where e(−2,1), e(1,−2) and e(−1,−1) are vielbeine dual to the covariant derivatives D(2,−1),

D(−1,2) and D(1,1), respectively. They are computed in section B, but we also list them

5This choice is not unique. However, it doesn’t seem to be possible to choose a basis of commuting

vectors for this distribution.
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here for convenience:

e(−2,1) = ui1du
3
i , e(1,−2) = ui3du

2
i , e(−1,−1) = ui1du

2
i . (3.13)

We call the p-forms which can be decomposed only on e(−2,1), e(1,−2) and e(−1,−1),

(0, p) forms. For example, the connection A defined in eq. (3.12) is a (0, 1) form.

The next ingredient we need is a Dolbeault operator ∂̄. For a CR manifold there is

a standard construction of a Dolbeault operator, described in section C. When acting on

(0, p) forms,6 the Dolbeault operator ∂̄ can be taken to be

∂̄ = e(−2,1)D(2,−1) + e(1,−2)D(−1,2) + e(−1,−1)D(1,1). (3.14)

The action on general (p, q) forms is slightly more involved but fortunately we will not

need it. The presence of torsion makes the action of ∂̄ a bit unusual

∂̄e(−1,−1) = −e(−2,1) ∧ e(1,−2), ∂̄e(1,−2) = 0, ∂̄e(−2,1) = 0. (3.15)

Now we can define a field strength (0, 2) form F = ∂̄A + A ∧ A. In components, this

reads

F = e(−2,1) ∧ e(1,−2)
(
D(2,−1)A(−1,2) −D(−1,2)A(2,−1) + [A(2,−1), A(−1,2)]−A(1,1)

)
+

e(−2,1) ∧ e(−1,−1)
(
D(2,−1)A(1,1) −D(1,1)A(2,−1) + [A(2,−1), A(1,1)]

)
+

e(1,−2) ∧ e(−1,−1)
(
D(−1,2)A(1,1) −D(1,1)A(−1,2) + [A(−1,2), A(1,1)]

)
.

(3.16)

The components of F are exactly the remaining constraints and we see that they can be

interpreted as an equation of motion for A, F = ∂̄A+A ∧A = 0.

The equation of motion setting a connection to be flat F = 0 arises naturally from a

Chern-Simons action with Lagrangian tr
(
A∂̄A+ 2

3A ∧A ∧A
)
. Keeping in mind that this

Chern-Simons Lagrangian is a (0, 3) form, what should we integrate over to get the action?

The answer is to introduce a “form” Ω, defined as

Ω = d4xAd
8θ e(1,1) ∧ e(2,−1) ∧ e(−1,2). (3.17)

which we can use to write the action in N = 3 harmonic superspace as

S[A] =

∫
Ω ∧ tr

(
A∂̄A+

2

3
A ∧A ∧A

)
, (3.18)

Here d8θ = d2θ(1,−1)d2θ(0,1)d2θ̄(1,0)d2θ̄(−1,1). Notice that the U(1) × U(1) weights cancel

between e(1,1)∧e(2,−1)∧e(−1,2) which has weights (2, 2) and d8θ which has weights (−2,−2).

Several comments are in order. First, the fermionic coordinates need to be integrated

since the notion of differential forms does not really apply to them. After the fermionic

integration we are left with an integral over a four-dimensional contour7 in C4 parametrized

by xA, times Q ⊂ CP2 × CP2. Recall that Q = {(ξ, η) ∈ CP2 × CP2| ξ · η = 0}.

6This also includes functions, which are (0, 0) forms.
7It is easy to see that the space coordinates xA are not real.
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The action (3.18) is of holomorphic Chern-Simons type (see ref. [34] for the original

definition and ref. [1] for its version in twistor space). Holomorphic Chern-Simons is a bit

of a misnomer in this case, since what is relevant here is a CR structure, not a complex

structure.

In order to obtain the theory in (3, 1) signature we need to impose a parity constraint.

The theory has to be invariant under the exchange ofDα and D̄α̇. We denote the idempotent

operation which performs this exchange by ˜ . This implies that

D̃α = D̄α̇, ξ̃i = ηi, D̃i
α = D̄iα̇. (3.19)

Said differently, the operation ˜ swaps the two CP2 and performs complex conjugation

on (x, θ, θ̄) coordinates. In terms of u coordinates we have

˜
u
(1,0)
i = u

(0,−1)
i = ui(0,1),

˜
u
(0,1)
i = u

(1,0)
i = ui(−1,0),

˜
u
(−1,1)
i = −ui(1,−1). (3.20)

We can show that the reality condition under ˜ operation is Ã = A. The integration

measure and ∂̄ are invariant.

The gauge connection A has a gauge transformation given by (∂̄ +A) → g−1(∂̄ +A)g,

where g is an element of the gauge group. The usual Chern-Simons action is not gauge

invariant, but under gauge transformations which are not homotopic to identity it acquires

an additive factor. In order for eiS to be invariant under these gauge transformations the

global coefficient of the Chern-Simons theory should be quantized. We don’t know if there

are such disconnected gauge transformations in the case we analyzed above, and whether

they produce an additive term in the transformation of the action which would necessitate

a quantization of the Chern-Simons level.

What are the symmetries of this CR Chern-Simons theory? The usual Chern-Simons

theory is invariant under orientation preserving diffeomorphisms. For holomorphic Chern-

Simons we also need to impose the constraint that the transformations preserve the com-

plex structure. Finally, for the CR Chern-Simons we need to restrict to the orientation

preserving diffeomorphisms which also preserve the distribution which defines the Dol-

beault operator. It is worth noting that if we write the action in terms of component fields

A(1,−2), A(2,−1) and A(1,1) the symmetry algebra is much harder to guess.

4 Selfdual theory

In this section we present the discussion of the selfdual N = 4 super-Yang-Mills theory,

using the language of ref. [30] and the philosophy of section 2. Our discussion does not

contain anything new, but we feel it is important to review it and contrast it with the

features of the SU(3)/(U(1)×U(1)) formulation.

While discussing the selfdual theory we will stay in (2, 2) with Lorentz group SO(2, 2)

or Euclidean signature with Lorentz group SO(4). The group SO(2, 2) is locally isomorphic

to SL(2)L × SL(2)R while SO(4) is locally isomorphic to SU(2)L × SU(2)R. The spinors

transforming under SL(2)L or SU(2)L are indexed by Greek letters from the beginning
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of the alphabet while the spinors transforming under SL(2)R or SU(2)R are indexed by

primed Greek letters from the beginning of the alphabet.

Full superspace has coordinates (xαα
′

, θαa , θ
α′a). The SUSY covariant derivatives are

given by

Da
α =

∂

∂θαa
+

1

2
θα

′a∂αα′ , (4.1)

Dβ′b =
∂

∂θβ′b
+

1

2
θβb ∂ββ′ , (4.2)

∂αα′ =
∂

∂xαα′ (4.3)

and satisfy the algebra

{Da
α, D

b
β} = 0, {Dα′a, Dβ′b} = 0, {Da

α, Dβ′b} = δab ∂αβ′ . (4.4)

To these SUSY covariant derivatives we can associate dual one-forms (or superviel-

beine), which are given by

eαα
′

= dxαα
′

−
1

2
dθαa θ

α′a −
1

2
dθα

′aθαa , (4.5)

eαa = dθαa , (4.6)

eβ
′b = dθβ

′b. (4.7)

The total differential can be written as

d = dxαα
′ ∂

∂xαα′ + dθαa
∂

∂θαa
+ dθβ

′b ∂

∂θβ′b
(4.8)

= eαα
′

∂αα′ + eαaD
a
α + eβ

′bDβ′b. (4.9)

The differentials of these vielbeine can be written as

deαα
′

= eαa ∧ eα
′a, deαa = 0, deβ

′b = 0. (4.10)

Besides the coordinates (xαα
′

, θαa , θ
α′a) we will also use harmonic variables, which

parametrize a coset SU(2)/U(1). A matrix M ∈ SU(2) has elements

M =

(
u+1 u−1

u+2 u−2

)
, (4.11)

where ± marks the charges under a U(1) subgroup. In order to have M ∈ SU(2) we need

to take u±α′ = (u∓α′

)∗ and u+α′

u−α′ = 1, where u±α′ = ǫα′β′u±β′

and ǫ is the antisymmetric

tensor with ǫ12 = −ǫ21 = 1. Notice that we have taken the columns of M to transform as

doublets of SU(2)R.

The standard way to compute vielbeine on a coset is to first compute M−1dM , which

in this case belongs to the sl(2)R algebra and then identify the parts which belong to u(1)

and its complement. Doing this we find the SU(2) vielbeine

e−− = u−α′du
−α′

, (4.12)

e++ = −u+α′du
+α′

, (4.13)

ω0 = −u−α′du
+α′

= −u+α′du
−α′

. (4.14)
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These vielbeine have dual covariant derivatives. Since we are interested in the coset

only, we will not need to use the covariant derivative dual to ω0.

e−− ↔ D++ = u+α′ ∂

∂u−α′ , e++ ↔ D−− = u−α′ ∂

∂u+α′ . (4.15)

It turns out to be convenient to change coordinates from (xαα
′

, θαa , θ
α′a, u±α′

) to a

different set of coordinates. If we define the antichiral version of x to be xαα
′

R = xαα
′

−
1
2θ

α
a θ

α′a, then the new coordinates are given by (x±α ≡ xαα
′

R u±α′ , θ±a = θα
′au±α′ , θαa , u

±α′

).

The SUSY covariant derivatives in these new coordinates read

Da
α =

∂

∂θαa
, D±

α =
∂

∂xα∓
, (4.16)

Dβ′b = u+β′

(
∂

∂θ+b
+ θαb

∂

∂x+α

)

︸ ︷︷ ︸
D−

b

+u−β′

(
∂

∂θ−b
+ θαb

∂

∂x−α

)

︸ ︷︷ ︸
D+

b

, (4.17)

D±± = u±α′ ∂

∂u∓α′ + x±α ∂

∂x∓α
+ θ±a ∂

∂θ∓a
. (4.18)

The dual vielbeine to the SUSY covariant derivatives in the new coordinates are

Da
α ↔ eαa = dθαa , (4.19)

D−
b ↔ e+b = Dθ+b + θ−bu+α′du

+α′

, (4.20)

D+
b ↔ e−b = Dθ−b − θ+bu−α′du

−α′

, (4.21)

D−
α ↔ e+α = Dx+α + θαbDθ

+b + (x−α − θ−aθαa )u
+
α′du

+α′

, (4.22)

D+
α ↔ e−α = Dx−α + θαbDθ

−b − (x+α − θ+aθαa )u
−
α′du

−α′

, (4.23)

D++ ↔ e−− = u−α′du
−α′

, (4.24)

D−− ↔ e++ = −u+α′du
+α′

, (4.25)

where

Dx±α = dx±α ± ω0x±α, Dθ±a = dθ±a ± ω0θ±a. (4.26)

The transformation from the old vielbeine to the new ones is given by

eα
′a = u+α′

e−a − u−α′

e+a, eαα
′

= u+α′

e−α − u−α′

e+α. (4.27)

Let us now formulate the constraints defining the selfdual theory. Our approach will

be similar to the construction of ref. [35], but will differ from it in some details. In ref. [35]

the theory was not formulated in terms of differential forms on superspace, as we will do

below. We start in N = 4 antichiral superspace. The chiral coordinate θαa will not appear

explicitly in the rest of the analysis and it can be thought of as taking some fixed value.

Also, we will not use the chiral derivative Da
α at all.

It can be shown that the right constraints defining the N = 4 selfdual theory are

{Daα′ ,Dbβ′} = ǫα′β′Wab, (4.28a)

[Dα′a,Dββ′ ] = ǫα′β′χβa, (4.28b)

[Dαα′ ,Dββ′ ] = ǫα′β′Fαβ . (4.28c)
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They can be written in an equivalent way as

[D+
α ,D

+
β ] = 0, [D+

a ,D
+
α ] = 0, {D+

a ,D
+
b } = 0, (4.29)

[D++,D+
a ] = 0, [D++,D+

α ] = 0, (4.30)

where we have introduced a connection for the covariant derivative D++ defined above.

We see that the derivatives D+
α , D

+
a , D

++ generate an integrable distribution. Like

explained in section 2, we can solve the constraints involving the fermionic derivative D+
a

by going to a gauge where A+
a = 0 and taking the remaining components A+

α and A++ to

be such that D+
a A

+
α = 0 and D+

a A
++ = 0. Such constraints are solved by restricting their

dependence on superspace coordinates such that they depend on (x±α, θ+a, u±).

The remaining constraints can be written as a flatness condition. If we define a (0, 1)

connection A = e−αA+
α + e−−A++ and introduce the Dolbeault operator ∂̄ = e−αD+

α +

e−−D++, then the constraints can be concisely written as F ≡ ∂̄A+A ∧A = 0.

In order to write an action which reproduces these constraints as equations of motion,

we also define a (3, 0) form Ω = d4θ+ e+α ∧ e+α ∧ e++. The action is then

S[A] =

∫
Ω ∧ tr

(
A∂̄A+

2

3
A ∧A ∧A

)
. (4.31)

The U(1) charge cancels between the form e+α ∧ e+α ∧ e++ and d4θ+.

This is exactly the form of the action found by Witten in ref. [1] as a twistor action.

In his notation Z = (u+, x+), Z̄ = (u−, x−) and ψ = θ+ and the connection A depends on

(Z, Z̄, ψ). It is not hard to show that Ω ∝ ǫijklZ
idZjdZkdZ l. The variables Z and Z̄ are

holomorphic and antiholomorphic coordinates on CP3, but in the (u±, x±) parametrization

only the SL(2)L symmetry is completely manifest.

In fact, this holomorphic Chern-Simons action has far more symmetry than just

SL(2)L. Given that the action (4.31) depends only on the complex structure, this means

that any holomorphic change of coordinates is a symmetry. We should note that if we

write the action in components then the action of this symmetry group is obscured. Also,

one has to perform compensating gauge transformations in order to preserve the gauge. In

contrast, if we ask what transformations preserve the integrable distribution used to define

the Dolbeault operator, the answer is easy.

We should note that there are no local gauge invariant observables in the Chern-

Simons formulation of this theory. There are however holomorphic Wilson loops, which

are discussed in more detail in section 5.

How can we extract space-time fields from the connection A? Let us define the following

quantities

φab(x, θ) =

∫

CP1
e++ ∧D−

a D
−
b A, (4.32a)

ψaα′

(x, θ) =
1

3!
ǫabcd

∫

CP1
u+α′

e++ ∧D−
b D

−
c D

−
d A, (4.32b)

Gα′β′

(x, θ) =
1

4!
ǫabcd

∫

CP1
u+α′

u+β′

e++ ∧D−
a D

−
b D

−
c D

−
d A. (4.32c)
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Using integration by parts, the algebra of covariant derivatives and the fact that D+
a A

+
α = 0

and D+
a A

++ = 0, it can be shown that these fields are invariant under Abelian gauge

transformations8 A → A+ ∂̄λ. However, they are not invariant under non-Abelian gauge

transformations A → A + ∂̄λ + [A, λ]. We should note that for fixed x and θ the vielbein

e−α vanishes so we can replace A by e−−A++ in the equations above. The vielbein e−−

can also be pulled through the covariant derivatives and brought next to e++ where they

form the measure on CP1.

Nevertheless, it is possible to add terms whose linearized gauge transformation cancels

the nonlinear gauge transformation of the previous terms. For example let us look for a

term whose linearized gauge transformation cancels the gauge transformation of φab

δφab(x, θ) =

∫

CP1
e++ ∧ e−−[D−

a D
−
b A

++, λ]. (4.33)

In order to write the term which will cancel this gauge transformation, let us introduce

the notation (D++)−1 for the inverse of the operator D++, when acting on functions of

u±. Since D++ has a kernel, (D++)−1 is not unique. We define (D++)−1 when acting on

a function f++(u) to be

(D++)−1f++(u) =

∫

CP1
e++(v) ∧ e−−(v)

u+v−

u+v+
f++(v). (4.34)

It can be shown (see, for example, ref. [33, chap. 4]) that D++(D++)−1f++(u) = f++(u).

The difference λ0 ≡ λ− (D++)−1D++λ is independent on u (since it has charge zero and

D++λ0 = 0), but it may be nonzero. This is not surprising since when taking the derivative

D++λ we lose all the information about the zero mode of λ, i.e. the term of degree zero in

the u expansion.

Then, we have the linearized gauge transformation

δlin

(
−

∫

CP1
e++ ∧ e−−[D−

a D
−
b A

++, (D++)−1A++]

)
=

= −

∫

CP1
e++ ∧ e−−[D−

a D
−
b A

++, λ− λ0]. (4.35)

If we add these two terms, then the gauge transformation of φab becomes

δφab = [φab, λ0] + terms quadratic in A++, (4.36)

so λ0 plays the role of space-time gauge transformation. The terms quadratic in A++ can

be canceled by adding more correction terms. We can now write the answer to all orders

φab(x, θ) =

∫

CP1
e++ ∧ e−−

∞∑

p=1

[(D++)−1A++, . . . , [(D++)−1A++

︸ ︷︷ ︸
p−1

, D−
a D

−
b A

++] · · · ]. (4.37)

The other space-time fields can be written similarly.

8In the following we will restrict to gauge transformations λ which do not depend explicitly on odd

variables, but we keep the dependence on u± arbitrary. It is natural to restrict to D+
a λ = 0 in order to

preserve the constraints D+
a A

+
α = 0 and D+

a A
++ = 0 but now we also require D−

a λ = 0. This restriction

is not so great since gauge transformations of the superfields imply the gauge transformations of all the

component fields.
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The other space-time superfields of interest are the bosonic and fermionic components

of the superspace connection Aαα′ and Aα′a. In the Abelian theory they can be written as

Aαα′(x, θ) =

∫

CP1
e++ ∧ u−α′D

−
αA, (4.38a)

Aα′a(x, θ) =

∫

CP1
e++ ∧ u−α′D

−
a A. (4.38b)

Here as well we can see that the only component of A which contributes is the A++

component (the A+
α component is multiplied by the vielbein e−α which vanishes for fixed

(x, θ)). The new feature of these integrals with respect to the ones in eqs. (4.32) is the

appearance of u− in the integrand. This u− is responsible for the inhomogeneous term in

the gauge transformations.

Under the linearized gauge transformation δlinA
++ = D++λ we can show after using

the algebra of covariant derivatives and integration by parts that

δlinAαα′ = ∂αα′λ0, δlinAα′a = 0, (4.39)

where λ0 =
∫
e++ ∧ e−−λ. The gauge parameter λ0 is the same as the one found in

the transformation of gauge covariant fields. This can be shown as follows: an arbitrary

function of the harmonic variables u can be decomposed on an orthogonal basis of sym-

metrized products of u±. Integration over the CP1 projects on the zeroth order term in

the expansion, while the rest of the terms vanish by orthogonality to the identity.

These space-time operators can be used to write the full (non-selfdual) N = 4 theory

in twistor space. The constraints for the full theory in space-time are

{Daα′ ,Dbβ′} = ǫα′β′Wab, (4.40a)

[Dα′a,Dββ′ ] = ǫα′β′χβa, (4.40b)

[Dαα′ ,Dββ′ ] = ǫα′β′Fαβ + ǫαβFα′β′ , (4.40c)

where we have added an extra term ǫαβFα′β′ in the right-hand side of the commutator

[Dαα′ ,Dββ′ ]. Because of this extra term the constraints will not be writable as a flatness

condition anymore. Still, as we will see, the constraints can be written out explicitly in

terms of the same two fields A+
α and A++ as before.

The constraints can be equivalently written in chiral harmonic twistor space as

[D+
a ,D

+
b ] = 0, [D+

α ,D
+
a ] = 0, [D+

α ,D
+
β ] = ǫαβF

++, (4.41)

where F++ = u+α′

u+β′

Fα′β′ . If we write the equations of motion in the Chalmers-Siegel

form (see ref. [36]), we need to set Fα′β′ = g2YMGα′β′ , where gYM is the coupling constant

and Gα′β′ is an auxiliary field which, in the Abelian theory is written eq. (4.32c). In the

non-Abelian theory this expression is modified to make it gauge invariant as in eq. (4.37).

An action describing these equations of motion is necessarily not solely of the holo-

morphic Chern-Simons form, but has to be augmented by an additional term to include

the local operator F++. This has the effect of adding an interaction term of the form
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ln det(∂̄ + A), as first suggested by Witten in ref. [1]. Adding all the terms we obtain the

action of the full theory in chiral harmonic superspace

SF [A] =

∫
d4θ+ Ω ∧ tr

(
A∂̄A+

2

3
A ∧A ∧A

)
+

+ g2YM

∫
d4xd4θ+d4θ− ln det (∂̄ +A)

∣∣
X
, (4.42)

where X is the line in twistor space corresponding to the point (x, θ) in superspace.

5 Super-Wilson loops

In this section we review the construction of super-Wilson loops in twistor space (see ref. [2]

for the original paper and ref. [37] for a review).9 Later we will apply similar ideas to the

SU(3)/(U(1)×U(1)) coset formulation of N = 4 super-Yang-Mills theory.

In twistor space the harmonics parametrize a CP1 manifold and the full space on

which the theory is formulated is CP3|4. Space-time points correspond to lines, or CP1

embeddings in CP3|4. We will generically denote such CP1 ⊂ CP3|4 by X.

When restricted to a line X the twistor connection A is flat so there exists a gauge

transformation h satisfying

(∂̄ +A(σ))
∣∣
X
h(σ) = 0, (5.1)

up to multiplication of h by a constant group element to the right. Then we define an

analog of a Wilson line operator

U(σ1, σ0) = h(σ1)h(σ0)
−1, (5.2)

with properties

U(σ, σ) = 1, U(σ1, σ0)
−1 = U(σ0, σ1), U(σ2, σ0) = U(σ2, σ1)U(σ1, σ0). (5.3)

Under a gauge transformation (∂̄+A′) = g(∂̄+A)g−1 the Wilson line operator transforms as

U ′(σ1, σ0) = g(σ1)U(σ1, σ0)g(σ0)
−1. (5.4)

We can solve iteratively for U in terms of the connection using

U = 1+ ∂̄−1(AU), (5.5)

where ∂̄−1 acting on a (0, 1) form f is defined by

(∂̄−1f)(σ) =
1

π

∫

CP1

(
dσ1

σ − σ1
−

dσ1
σ0 − σ1

)
∧ f. (5.6)

This satisfies the boundary condition (∂̄−1f)(σ0) = 0.

9In the abelian case Wilson loops in holomorphic Chern-Simons have been considered in refs. [38–40].

The space-time version of the super-Wilson loop was constructed in ref. [3].
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Now we can explicitly write the expansion of U as a power series in A:

U(σ, σ0) = 1+ (∂̄−1A)(σ) + ∂̄−1(A(∂̄−1A))(σ) + · · · =

1+
1

π

∫

CP1
dσ1 ∧A(σ1)

σ − σ0
(σ − σ1)(σ1 − σ0)

+

1

π2

∫

CP1
dσ1 ∧A(σ1)

∫

CP1
dσ2 ∧A(σ2)

σ − σ0
(σ − σ2)(σ2 − σ1)(σ1 − σ0)

+ · · · . (5.7)

So far we defined a Wilson line operator between two points σ0 and σ on a line X. The

light-like Wilson loops of Mason and Skinner are defined as follows. We have a contour

C which is made up of pairwise intersecting lines Xi such that two successive lines Xi

and Xi+1 intersect at a point in twistor space. Each line Xi has two distinguished points

(whose local coordinates we denote by σi and σi+1), where it intersects the previous line

Xi−1 and the next line Xi+1. Then, the supersymmetric Wilson loop of Mason and Skinner

is defined as

W = tr(UX1(σ1, σ2)UX2(σ2, σ3) · · ·UXn(σn, σ1)). (5.8)

These Wilson loops are also useful when defining local operators. For example, the

local operator φab(x, θ) can be written as

φab(x, θ) =

∫

X

e++(σ)UX(τ, σ)(D−
a D

−
b A)(σ)UX(σ, τ), (5.9)

where X is the line corresponding to (x, θ), UX is the Wilson line along X and (σ, τ) are

local coordinates on X. Changing τ amounts to a global gauge transformation (see ref. [23]

for a related discussion).

6 Local operators

We now turn to a discussion of (space-time) local gauge covariant operators in the N = 3

theory. We will try to write down the scalar superfields φi(x, θ, θ̄) and φ̄
i(x, θ, θ̄).

In order to write these space-time operators we need to eliminate the harmonic vari-

ables. The way to do this is to integrate over them. Recall that we denote the space of

harmonics as Q ⊂ CP2 × CP2. We normalize the integral over Q by
∫
Q
vol = 1.

Just as in the twistor case we will first look for fields with zero charges under U(1)×

U(1), with the right dimension and global symmetries and which are invariant under

Abelian gauge transformations.

Before writing down the answers, we list some useful identities which can be proven

by integration by parts
∫

Q

u
(1,0)
i f (−1,0) = −

∫

Q

u
(−1,1)
i D(2,−1)f (−1,0) = −

∫

Q

u
(0,−1)
i D(1,1)f (−1,0), (6.1)

∫

Q

u
(0,−1)
i f (0,1) = −

∫

Q

u
(1,0)
i D(−1,−1)f (0,1) = −

∫

Q

u
(−1,1)
i D(1,−2)f (0,1), (6.2)

∫

Q

u
(−1,1)
i f (1,−1) = −

∫

Q

u
(0,−1)
i D(−1,2)f (1,−1) = −

∫

Q

u
(1,0)
i D(−2,1)f (1,−1), (6.3)

where f is some arbitrary function.
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There are several candidates for the scalar superfield φi, with the right properties
∫

Q

ǫαβu
(0,−1)
i D(−1,1)

α D
(−1,1)
β A(2,−1), (6.4a)

−

∫

Q

ǫαβu
(−1,1)
i D(0,−1)

α D
(0,−1)
β A(1,1), (6.4b)

∫

Q

ǫαβ
(
−2u

(−1,1)
i D(0,−1)

α D
(−1,1)
β A(2,−1) + u

(1,0)
i D(0,−1)

α D
(0,−1)
β A(−1,2)

)
, (6.4c)

∫

Q

ǫαβ
(
2u

(0,−1)
i D(0,−1)

α D
(−1,1)
β A(1,1) − u

(1,0)
i D(0,−1)

α D
(0,−1)
β A(−1,2)

)
. (6.4d)

For the conjugate scalar superfield φ̄i we use the ˜ conjugation and we also get four

candidates. Using integration by parts we can show that these fields are invariant under

linearized gauge transformations δA(p,q) = D(p,q)λ. In checking gauge invariance we can

use the fact that the component fields A(2,−1), A(1,1) and A(−1,2) are analytic so when we

apply D
(1,0)
α to them we obtain zero.

Note that these scalar superfield candidates are very similar to the expressions for the

space-time fields in terms of twistor fields (see eq. (4.32)), at linearized level.

It is perhaps surprising that there are four candidates for the φi superfield. However,

when restricting on-shell and using the three linearized equations of motion we can show

that all four candidates agree. Off-shell, however, the four superfields in eq. (6.4) are

different.

In twistor space an axial gauge was used for quantizing the theory (see refs. [2, 41]).

The gauge condition in an axial gauge sets to zero a linear combination of the components

of the twistor connection. Since the three components of the gauge connection become

dependent, in this gauge the cubic term A3 in the Chern-Simons action vanishes. As a

result, the holomorphic Chern-Simons theory becomes free and the Feynman rules simplify.

We can ask whether such a gauge is possible here. It is not hard to see that this is not

possible for a generic choice of the vector defining the axial gauge. For example, if we set

any of the components A(2,−1), A(1,1) or A(−1,2) to zero, we find that the scalar fields are

set to zero, which is inconsistent.

A similar issue arises for the ambitwistor action of Mason and Skinner (see ref. [42]),

where the action is also of holomorphic Chern-Simons type, but formulated on ambitwistor

space A[3] which can be thought of as a quadric in CP3|3 ×CP3|3. In this case also it is not

clear why the axial gauge can not be imposed. Probably one way to understand why this

gauge is inconsistent is by working out its counterpart in space-time as done above for the

N = 3 formulation of N = 4 super-Yang-Mills.

Let us now turn to writing down the local space-time operators which are invariant

under nonlinear gauge transformations. Clearly if we continue in the same spirit as for the

selfdual theory, by adding correction terms, we will encounter great algebraic difficulties. As

we have seen, this is due to the fact that we have several candidates even for the linearized

theory. Thus, as we go to higher orders, we have more and more possible correction terms

to add. This is a major difference with respect to the twistor formulation of N = 4

super-Yang-Mills, where fixing a point in superspace (x, θ) picks only one component of

– 17 –
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Figure 2. The coset SU(3)/(U(1) × U(1)) can be represented as a quadric Q ⊂ CP2 × CP2. Two

families of lines rule Q. Each line in the first family sits at a fixed point in the second CP2 while

each line in the second family sits at a fixed point in the first CP2. Since the ˜ conjugation swaps

the two CP2, it also interchanges the two families of lines. For lack of space we have not represented

the X3 submanifolds.

the twistor connection, namely A++. In that case it is natural to integrate over the line

X ⊂ CP3|4 corresponding to (x, θ).

However, in theN = 3 formulation no such distinguished line exists, once we fix a point

(x, θ, θ̄) in superspace. There are however three distinguished types of submanifolds. The

first one, denoted by X1, is defined by setting u1i and ui1 to be constant. The submanifolds

X2 and X3 are defined by analogy. The submanifolds X1 and X2 are lines in the CP2×CP2

which contains Q = SU(3)/(U(1)×U(1)) (see figure 2).

When imposing the defining constraints for X1, X2 and X3 only two vielbeine survive,

while the rest are set to zero by the constraints. The nonvanishing ones are

X1 : e(−1,2) = ui2du
3
i , e(1,−2)= ui3du

2
i , (6.5)

X2 : e(−2,1) = ui1du
3
i , e(2,−1)= ui3du

1
i , (6.6)

X3 : e(−1,−1)= ui1du
2
i , e(1,1) = ui2du

1
i . (6.7)

The space of lines X1 is parametrized by CP2, with coordinates u1i and their complex

conjugates ui1. We denote this space by Y1 and we define Y2 and Y3 by analogy. These

spaces come with natural volume forms,10 which in terms of vielbeine can be written as

µY1 = e(1,1) ∧ e(2,−1) ∧ e(−1,−1) ∧ e(−2,1), (6.8)

µY2 = e(1,−2) ∧ e(−1,−1) ∧ e(−1,2) ∧ e(1,1), (6.9)

µY3 = e(−2,1) ∧ e(−1,2) ∧ e(2,−1) ∧ e(1,−2). (6.10)

10In terms of homogeneous coordinates [Z0, . . . , Zn] the volume form on CPn can be written as

ǫi0···inZ
i0dZi1 ∧ · · · ∧ dZinǫj0···jn Z̄j0dZ̄j1 ∧ · · · ∧ dZ̄jn

(Z · Z̄)n+1
.

Up to a constant multiplicative factor this is the same as Ωn, where Ω is the Kähler form Ω = i
2
∂∂̄ ln(Z · Z̄).
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Now we can write the local operators invariant under linearized gauge transforma-

tions as11

ǫαβφi = −

∫

Y3

µY3

∫

X3

e(1,1) ∧ u
(−1,1)
i D(0,−1)

α D
(0,−1)
β A =

∫

X1

e(−1,2) ∧ e(1,−2)

∫

X2

e(−2,1) ∧ e(2,−1)

∫

X3

e(1,1) ∧ u
(−1,1)
i D(0,−1)

α D
(0,−1)
β A.

(6.11)

The result of the inner integration is invariant under linearized gauge transformations but

it still depends, via X3, on u3i and ui3 variables. The integral over Y3 eliminates this

dependence.

By the same reasoning as the one leading to eq. (5.9), the operator which is invariant

under nonlinear gauge transformations12 is

∫

X1(ξ)
e(−1,2)(ζ) ∧ e(1,−2)(ζ)UX1(ξ, ζ)

∫

X2(ζ)
e(−2,1)(τ) ∧ e(2,−1)(τ)UX2(ζ, τ)

∫

X3(τ)
e(1,1)(σ) ∧ UX3(τ, σ)(u

(−1,1)
i D(0,−1)

α D
(0,−1)
β A)(σ)UX3(σ, τ)UX2(τ, ζ)UX1(ζ, ξ),

(6.12)

where X1(ξ) is the line X1 containing the point13 ξ ∈ Q, X2(ζ) is the line X2 containing

the point ζ ∈ Q and X3(τ) is the line X3 containing the point τ ∈ Q. The Wilson line

UXI
can be constructed as in section 5 in terms of the connection A and the inverse of the

Dolbeault operator restricted to XI . The definition in eq. (6.12) depends on a choice of a

reference point ξ ∈ Q.

Just like in the linearized case, there are several ways (in fact an infinite number!) to

construct local space-time fields starting from the connection A on harmonic superspace.

On-shell the connection A is flat on Q so the contours for the Wilson lines can be freely de-

formed. This implies that all the different representations of the local space-time operators

in terms of the connection A are equivalent on-shell.

7 Conclusions

The formalism developed here allows us in principle to compute physical quantities while

preserving a large amount of off-shell supersymmetry. One natural class of observables are

correlation functions of gauge-invariant local operators. In harmonic language such corre-

lation functions become Wilson loops with operator insertions as we showed in section 6. It

may be interesting to see whether it would be easier to compute anomalous dimensions in

this formalism and how integrability manifests itself. One thing to understand here would

11The volume form on X3 is e(1,1) ∧ e(−1,−1) and we normalize the integrals
∫
X3

e(1,1) ∧ e(−1,−1) = 1 and∫
YI

µYI
= 1. The differential forms appearing in the inner integral are pulled back from Q to X3.

12Here also we impose that these are proper i.e. not supergauge transformations.
13Here by abuse of notation we denote by ξ the point in Q and also its local coordinate on X1(ξ) and

similarly for ζ, τ and σ.
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be how dualities between scattering amplitudes, Wilson loops and correlation functions are

realized in this harmonic language.

However, we are left with numerous questions.

First of all, we would like to understand how to quantize the N = 3 theory. We

have mentioned above the similarity with the ambitwistor action which makes us confident

that the difficulties in quantization are the same in both cases. In general, the study of

non-chiral harmonic superspace may shed some light on the more mysterious ambitwistor

formulation of N = 4 SYM.

In ref. [43] the two-point function of the gauge fields was computed. However, in the

gauge of ref. [43] the ghosts do not decouple, which complicates the Feynman rules. Is it

possible to impose an algebraic gauge condition where the ghosts decouple?

Another vexing problem is the problem of regularization. These Chern-Simons-type

actions are finite but some interesting “observables” require regularization. So far a lot

could be computed while mostly ignoring regularization issues. Nevertheless, we should

strive to obtain these results rigorously. One regularization proposal has been put forward

in ref. [44], but so far it has not been used for explicit computations.

What other terms can be added to the action which are gauge invariant and also

invariant under SU(2, 2|3)? This is related to the question, to our knowledge still unsolved,

of how to write the analog of the θ angle in the twistor case.

For usual Chern-Simons one can make gauge transformations by a group element g

which is not continuously connected to the identity, in which case the action transforms by

an additive term. It is unclear to us what happens in the holomorphic Chern-Simons case.

All of the constructions presented in this paper require an integrable distribution of

rank (3|κ), where κ is the odd rank of the distribution. We can naturally ask what would

be the space-time interpretation of higher holomorphic Chern-Simons forms, which can be

constructed in all odd dimensions.

As explained in ref. [45], there are other subtleties in the construction of Chern-Simons

theory if the gauge group is not connected or simply connected. It would be interesting to

see if such subtleties also occur for holomorphic Chern-Simons theories or the ones built

from a CR structure.

We should mention here a curious formulation of N = 4 five-dimensional super-Yang-

Mills obtained by Sokatchev in ref. [35]. The off-shell formulation in ref. [35] is also of Chern-

Simons type which hints that five-dimensional super-Yang-Mills might be finite [46–49]. In

order to investigate this more closely one would at least want to study the compactification

of this theory on a circle. Another useful test would be to compute the partition function

on S5. However, the off-shell formulation is only available for the theory defined on flat

space-time R1,4.

Another interesting question regards theories with fewer supersymmetries. Mason

and Skinner gave an ambitwistor formulation for pure Yang-Mills, whose ambitwistor La-

grangian contains a triple derivative of a delta function δ′′′(Z · W ). The fact that the

equations of motion of pure Yang-Mills theory correspond to extensions to the triple neigh-

borhood about the Z ·W = 0 locus has been known before from work by Witten [50] and

Isenberg, Iasskin and Green [51]. The derivatives of the delta functions serve to cancel the
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twistor scaling which in the supersymmetric case was canceled by integrations over odd

variables. We expect that a similar mechanism is at work in the construction based on the

SU(3)/(U(1)×U(1)) coset.

In ref [52] a Chern-Simons type string field theory was proposed which describes scat-

tering amplitudes of N = 4 SYM coupled to N = 4 conformal supergravity. There are two

types of interaction terms. One is the usual cubic term of Chern-Simons theories while the

other contains an insertion of a spectral flow operator. At loop level we encounter the usual

difficulties with conformal supergravity, so this action has not been used for any explicit

loop-level computations. Nevertheless, this is an exotic example of solving the constraints

in a way which is different from the usual harmonic approach.

Finally, another important question would be to understand the analogs of the con-

structions we presented for gravity. The analog of holomorphic Chern-Simons for gravity

was discussed in ref. [53], where the gauge group was identified with the group of holo-

morphic Poisson transformations of supertwistor space, but this only describes the selfdual

supergravities. An understanding of non-selfdual theories may be possible by reexamining

the lessons of the harmonic approach.
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A Conventions

We raise and lower indices with the antisymmetric tensor ǫ, uα = ǫαβu
β , uα = ǫαβuβ.

Raising and then lowering an index of a spinor leaves the spinor invariant, so we have

ǫαβe
βγ = δγα and ǫαβǫβγ = δαγ .

Whenever we need explicit forms for the ǫ tensors we use

ǫ·· =

(
0 1

−1 0

)
, ǫ·· =

(
0 −1

1 0

)
. (A.1)

B Coset space generalities

Let G be a Lie group and H a subgroup and let g and h be the corresponding Lie algebras.

We denote the generators of h by Xi and the remaining generators in g by Yα.

We parametrize the coset G/H by Ω = exp(ξαYα) ∈ G and ξ can be seen as coordinates

on the coset manifold. The action of G on the coset is given by

g exp(ξαYα) = exp(ξ′α(ξ, g)Yα)h(ξ, g), (B.1)

where g ∈ G and h(ξ, g) ∈ H.
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For a matrix group we can form the quantity Ω−1dΩ ∈ g, which can then be decom-

posed as

Ω−1dΩ = eαYα + ωiXi. (B.2)

Under a transformation by g, we have Ω → Ω′ = gΩh−1 and for the components

e′αYα = heαYαh
−1, (B.3)

ω′iXi = hωiXih
−1 + hdh−1. (B.4)

The transformation properties justify our identification of e as vielbeine and of ω as con-

nections.

We can compute the derivatives of e and ω and we get

deαYα + dωiXi = d(Ω−1dΩ) = −
1

2
eα ∧ eβ [Yα, Yβ]−

eα ∧ ωi[Yα, Xj ]−
1

2
ωi ∧ ωj [Xi, Xj ]. (B.5)

Define the structure constants of the algebra g by

[Xi, Xj ] = fkijXk, (B.6)

[Xi, Yα] = fβiαYβ , (B.7)

[Yα, Yβ] = f iαβXi + fγαβYγ . (B.8)

Using this we can write down the derivatives of eα and ωi very explicitly as

deα + eβ ∧ ωifαβi = −
1

2
fαβγe

β ∧ eγ , (B.9)

dωi +
1

2
ωj ∧ ωkf ijk = −

1

2
eα ∧ eβf iαβ . (B.10)

The first equation above gives the covariant derivative of e. When fαβγ 6= 0, the connection

we defined has torsion. Only when [Y, Y ] ∼ X the connection does not have torsion. The

second equation gives the curvature.

We should note that, since [X,Y ] ∼ Y , whenever we make a transformation by g ∈ H,

we have that h(ξ, g) = g.

Let us now introduce a class of functions (or fields) on G/H with the following trans-

formation properties under G

φ′(ξ′(ξ, g)) = ρ(h(ξ, g)) · φ(ξ), (B.11)

where ξ′ and h have been defined above and ρ is a representation of H and φ(ξ) transforms

under this representation. For example, the quantity eαYα transforms in this way under

the adjoint representation. It is then easy to see that the covariant derivative defined as

Dφ = (d+ ωiρ(Xi)) · φ (B.12)

transforms in the same way as φ. This covariant derivative can be decomposed on the

vielbeine as D = eαDα, this decomposition defining the components Dα of the covariant

derivative.
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Using the vielbeine we can also construct an integration measure |µ| on the coset by

taking

|µ| = dnξ det e, (B.13)

where the coset is n-dimensional and ξ are the coordinates parametrizing it and e is the

vielbein matrix eαβ extracted from eα = eαβdξ
β . We can also write the measure as a top

form

µ = e1 ∧ . . . ∧ en. (B.14)

Let us discuss the example of SU(2)/U(1) coset. We set

Ω =

(
u+1 u−1

u+2 u−2

)
, (B.15)

with u+1u−2 − u+2u−1 = 1 and u−1 = −(u+2)∗ and u−2 = (u+1)∗. The U(1) action is

u± → e±iφu±. It can be embedded in SU(2) as
(

eiφ 0
0 e−iφ

)
and it acts to the right on Ω.

Then, computing Ω−1dΩ we find the vielbeine and connection

e−− = −u−1du−2 + u−2du−1 = u−α′du
−α′

, (B.16)

e++ = u+1du+2 − u+2du+1 = −u+α′du
+α′

, (B.17)

ω0 = −u−1du+2 + u−2du+1 = −u+1du−2 + u+2du−1 = −u−α′du
+α′

= −u+α′du
−α′

,

(B.18)

where we have indicated the charges of the vielbeine under the U(1) group.

Since the field H is U(1) in this case, the representations are multiplication by phases

eiqφ. Then, the covariant derivative when acting on a function f (q) of charge q, reads

Df (q) =

(
du+α′ ∂

∂u+α′ + du−α′ ∂

∂u−α′ + qω0

)
f (q). (B.19)

Given the transformation of u± under the U(1) charge, we have that the the function f (q)

is homogeneous so (
u+α′ ∂

∂u+α′ − u−α′ ∂

∂u−α′

)
f (q) = qf (q). (B.20)

Using this in the expression of the covariant derivative we find

D = e++D−− + e−−D++, (B.21)

with

D++ = u+α′ ∂

∂u−α′ , D−− = u−α′ ∂

∂u+α′ . (B.22)

These covariant derivatives are dual to the vielbeine we constructed

〈D±±, e∓∓〉 = 1, 〈D±±, e±±〉 = 0. (B.23)

The top form on the coset SU(2)/U(1) is given by

µ = u+α′du
+α′

∧ u−β′du
−β′

. (B.24)
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Let us now discuss the SU(3)/(U(1) × U(1)) coset. Following Galperin at al. we

parametrize the SU(3) group by a 3 × 3 matrix uIi , with i = 1, 2, 3 and while I is labeled

by the U(1) × U(1) charges I = (1, 0), (0,−1), (−1, 1). Occasionally it will be convenient

to use a short notation and then we will let I range over 1, 2, 3, with the understanding

that these labels correspond to the charges (1, 0), (0,−1), (−1, 1). Under the U(1) × U(1)

transformations these matrix elements u transform as

ui1 → e−iφ1ui1, u1i → eiφ1u1i , (B.25)

ui2 → eiφ2ui2, u2i → e−iφ2u2i , (B.26)

ui3 → ei(φ1−φ2)ui3, u3i → e−i(φ1−φ2)u3i . (B.27)

The inverse matrix is denoted by uiI and therefore we have uIi u
j
I = δji and uiIu

J
i = δJI .

Since the matrix u is unitary we also have (uIi )
∗ = uiI . Finally, we have detu

I
i = 1. Since uIi

has unit determinant we can write the inverse explicitly ui1 = ǫijku2ju
3
k and cyclicly related

identities. Then, if we take the differential of ǫijku1iu
2
ju

3
k = 1 and we use the formula for

the inverse, we obtain uiIdu
I
i = 0.

Now, we compute the one-form uiJdu
J
i and we find the vielbeine

e(−1,−1) = ui1du
2
i , e(1,1) = ui2du

1
i , (B.28)

e(−2,1) = ui1du
3
i , e(2,−1) = ui3du

1
i , (B.29)

e(−1,2) = ui2du
3
i , e(1,−2) = ui3du

2
i . (B.30)

The connections ω can be chosen to be

ω1 = −ui1du
1
i = ui2du

2
i + ui3du

3
i , (B.31)

ω2 = ui2du
2
i = −ui1du

1
i − ui3du

3
i . (B.32)

These choices for ω have the advantage that their transformations under U(1) × U(1) are

simple

ω1 → ω1 − idφ1, (B.33)

ω2 → ω2 − idφ2. (B.34)

Let us compute the covariant derivative when acting on functions with charges (q1, q2)

under U(1)×U(1). According to the general theory presented above, we have

Df (q1,q2) =

(
duIi

∂

∂uIi
+ q1ω1 + q2ω2

)
f (q1,q2). (B.35)

The homogeneity properties imply

(
u1i

∂

∂u1i
− u3i

∂

∂u3i

)
f (q1,q2) = q1f

(q1,q2), (B.36)

(
−u2i

∂

∂u2i
+ u3i

∂

∂u3i

)
f (q1,q2) = q2f

(q1,q2). (B.37)
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Then, after using the following equalities

du1i = u3i e
(2,−1) + u2i e

(1,1) − u1iω1, (B.38)

du2i = u1i e
(−1,−1) + u3i e

(1,−2) + u2iω2, (B.39)

du3i = u1i e
(−2,1) + u2i e

(−1,2) + u3i (ω1 − ω2), (B.40)

in the formula for the covariant derivative, we find

D =
∑

(q1,q2)

e(q1,q2)D(−q1,−q2) = e(2,−1)u3i
∂

∂u1i
+ e(1,1)u2i

∂

∂u1i
+ e(1,−2)u3i

∂

∂u2i
+

+ e(−1,2)u2i
∂

∂u3i
+ e(−1,−1)u1i

∂

∂u2i
+ e(−2,1)u1i

∂

∂u3i
. (B.41)

These covariant derivatives are dual to the vielbeine

〈D(−q1,−q2), e(r1,r2)〉 = δq1,r1δq2r2 . (B.42)

Under complex conjugation (uIi )
∗ = uiI we have

(ω1)
∗ = −ω1, (ω2)

∗ = −ω2, (B.43)

(e(q1,q2))∗ = −e(−q1,−q2), (D(q1,q2))∗ = −D(−q1,−q2). (B.44)

We now list the derivatives of the vielbeine

De(−1,−1) ≡ de(−1,−1) + (−ω1 − ω2) ∧ e
(−1,−1) = −e(−2,1) ∧ e(1,−2), (B.45)

De(−2,1) ≡ de(−2,1) + (−2ω1 + ω2) ∧ e
(−2,1) = −e(−1,−1) ∧ e(−1,2), (B.46)

De(−1,2) ≡ de(−1,2) + (−ω1 + 2ω2) ∧ e
(−1,2) = −e(1,1) ∧ e(−2,1), (B.47)

De(1,1) ≡ de(1,1) + (ω1 + ω2) ∧ e
(1,1) = −e(−1,2) ∧ e(2,−1), (B.48)

De(2,−1) ≡ de(2,−1) + (2ω1 − ω2) ∧ e
(2,−1) = −e(1,−2) ∧ e(1,1), (B.49)

De(1,−2) ≡ de(1,−2) + (ω1 − 2ω2) ∧ e
(1,−2) = −e(2,−1) ∧ e(−1,−1). (B.50)

The covariant derivatives satisfy commutation relations which are dual to these relations

[D(−2,1), D(1,−2)] = D(−1,−1), [D(−1,−1), D(−1,2)] = D(−2,1), (B.51a)

[D(1,1), D(−2,1)] = D(−1,2), [D(−1,2), D(2,−1)] = D(1,1), (B.51b)

[D(1,−2), D(1,1)] = D(2,−1), [D(2,−1), D(−1,−1)] = D(1,−2). (B.51c)

C CR manifolds

The cosets we are using have a CR structure which is essential in the construction of the

action and in writing the equations of motion. We will review the essential points of the

construction below, illustrating the definitions by examples of interest. A good reference
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Figure 3. The covariant derivatives of the coset SU(3)/(U(1)×U(1)). We can choose an integrable

distribution in several ways. One choice is marked by boxes, but other possibilities can be obtained

by rotation.

for the material in this section is the book [54]. A short but useful discussion can also be

found in refs. [42, 55].

We say that a manifold M with dimension 2n+m has a CR structure if it has a rank

n distribution L of the complexified tangent bundle of M and L ∩ L̄ = 0.

The coset SU(3)/(U(1) × U(1)) has a CR structure. The integrable distribution L is

generated by D(−2,1), D(1,−2), D(−1,−1). The integrability follows from

[D(−2,1), D(1,−2)] = D(−1,−1), [D(−2,1), D(−1,−1)] = 0, [D(1,−2), D(−1,−1)] = 0. (C.1)

The distribution L̄ is generated by D(2,−1), D(1,1), D(−1,2). Since these vector fields are all

independent, it follows that L ∩ L̄ = 0.

Starting with a CR structure we can construct a Dolbeault operator as follows. By

definition, L is a subbundle of the complexified tangent bundle of M . The subbundle L

has a dual bundle L∗ of one-forms and moreover there is projection π from the cotangent

bundle of M to L∗. Using these ingredients we can define the Dolbeault operator ∂̄ acting

on a function f by

∂̄f = πdf. (C.2)

Then the action of ∂̄ on (0, q)-forms can be defined such that the usual rules of differential

calculus apply. The definition is the same as above, but now π projects to
∧(q+1) L∗.

In the SU(3)/(U(1) × U(1)) case with L generated by D(−2,1), D(1,−2), D(−1,−1), we

have that L∗ is generated by e(2,−1), e(−1,2) and e(1,1). The projection π sends the one-forms

ω1, ω2, e
(−2,1), e(1,−2) and e(−1,−1) to zero. Therefore, when acting on a function f we have

∂̄f =
(
e(−2,1)D(2,−1) + e(1,−2)D(−1,2) + e(−1,−1)D(1,1)

)
f. (C.3)
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The action on the one-forms is very simple. We only list here the action on the one-

forms e(q1,q2)

∂̄e(−1,−1) = −e(−2,1) ∧ e(1,−2), ∂̄e(−2,1) = 0, (C.4)

∂̄e(−1,2) = 0, ∂̄e(1,1) = 0, (C.5)

∂̄e(2,−1) = 0, ∂̄e(1,−2) = 0. (C.6)

Using the integrability of L it can be shown that ∂̄2 = 0. In the case of the coset

SU(3)/(U(1)×U(1)) this can also be checked explicitly.

D Killing vectors for N = 3 harmonic superspace

Killing vectors for N -extended harmonic superspaces with a CR structure can be effectively

calculated using the algorithm given in [55]. Let V = V0 + Vu be a Killing vector with

V0 = Fαα̇∂αα̇ + f iαDiα − f̄ α̇i D̄
i
α̇, Vu = f (−q1,−q2)D(q1,q2)

where D(q1,q2) are the harmonic derivatives. Following [55] the functions F and f̄ can be

shown to satisfy

∂
(α̇
(αF

β̇)
β) = 0, DiαFββ̇ = −iǫαβ f̄iβ̇ (D.1)

and

f (−q1,−q2) = f IJ =
1

2
(DJα)f

αI −
1

3
δIJDαKf

αK

in the notation given above.

The components of the Killing vector are constrained by the requirement that a su-

perconformal transformation preserves the CR structure under commutation. Given the

distribution of N = 3 harmonic superspace

{D(1,0)
α , D̄

(0,1)
α̇ , D(2,−1), D(−1,2), D(1,1)}

the conditions on V are

[D(p,q), V ] = 0, (D.2)

[D(1,0)
α , V ] ∝ D(1,0)

α , D(2,−1), D(1,1) (D.3)

[D̄
(0,1)
α̇ , V ] ∝ D̄

(0.1)
α̇ , D(−1,2), D(1,1) (D.4)

The first condition implies that the Killing vector is uncharged under U(1) × U(1) and

the components of V0 are independent of the harmonics. It further implies some relations

among the components of Vu, i.e.

D(p,q)f (−k,−l) ± f (p−k,q−l) = 0

whenever the superscript (p − k, q − l) is an allowed combination of weights, otherwise

the second term is zero. Finally, the last two constraints imply analyticity of some of the

components of the vector fields V0 and Vu.
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These component functions have mass dimensions

[F ] = 1, [f ] = [f̄ ] =
1

2
, [f (−q1,−q2)] = 0

and the parameters of the superconformal algebra su(2, 2|3) have mass dimensions

[a] = 1, [q] = [q̄] =
1

2
, [s] = [s̄] = −

1

2
, [k] = −1

and all others zero. The fermionic expansion of the components of the Killing vector field

are uniquely determined by the above constraints, the mass dimensions and the harmonic

charges.

Since F satisfies (D.1) there exists an expansion [56]

Fββ̇ = aββ̇(θ, θ̄) + b(θ, θ̄)xββ̇ + (δα̇
β̇
cαβ(θ, θ̄) + δαβ c̄

α̇
β̇(θ, θ̄))xαα̇

+ dββ̇(θ, θ̄)x
2 − 2(d(θ, θ̄) · x)xββ̇. (D.5)

The coefficient superfunctions a through d have fermionic expansions with fixed parameters.

In fact dαα̇ = kαα̇ is restricted to be purely bosonic while the rest have fermionic expansions

of varying length thus containing all the superconformal transformations of the algebra

su(2, 2|3).

Given the Killing vector field V it is now possible to find the action on the gauge

connection one-form A. A transforms like a scalar

A′(X ′) = A(X)

and its transformation is given concisely by the Lie derivative along the vector field V

δA = LVA.
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