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Abstract	55 

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. 56 

Although common mutations are well-studied, little research has characterized how the sequence 57 

of mutations relates to clinical features. Using published, single-cell DNA sequencing data from 58 

three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease 59 

phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were 60 

created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, 61 

and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA 62 

methylation typically preceded those related to cell signaling, but signaling-first cases did occur, 63 

and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger 64 

patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide 65 

an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared 66 

features with signaling mutations, such as WT1-early being proliferative and occurring in younger 67 

individuals, trends that remained in multivariable regression. Some mutation orderings had a worse 68 

prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings 69 

add a dimension to the mutation landscape of AML, identifying uncommon patterns of 70 

leukemogenesis and shedding light on heterogenous phenotypes. 71 

  72 
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Introduction	73 

Acute myeloid leukemia (AML) has a dismal prognosis, with a five-year overall survival 74 

of approximately 30% (1). The poor outcomes are in part due to AML being a heterogeneous 75 

disease, with substantial variability between cases and in the subclones of an individual case (2–76 

4). Recent studies have elucidated the clinical consequences of individual mutations in AML (4) 77 

and their interactions (5), but little research has evaluated whether modes of leukemogenesis like 78 

mutation order, rather than presence of mutations, are associated with clinical features and 79 

outcomes (6,7). Preleukemic cells often harbor mutations related to epigenetic modification, which 80 

usually occur before those related to cell signaling (8,9), but whether mutations can also occur in 81 

atypical orders, such as signaling mutations first, and the relationship between mutation order and 82 

phenotype in AML are poorly characterized. 83 

In a related group of disorders, myeloproliferative neoplasms (MPNs), variable mutation 84 

order is relevant to disease phenotype and provides insight into pathogenesis. The order of 85 

mutations in TET2 and JAK2 is associated with JAK2 homozygosity, patient age, and cell 86 

proliferation (6). The composition of hematopoietic stem and progenitor cells (HSPCs) also 87 

differs, with single-mutant cells dominating HSPCs in TET2-first cases but not in JAK2-first cases, 88 

suggesting that TET2 mutations offer a fitness advantage in HSPCs compared to JAK2 mutations 89 

(6). 90 

Here, we analyzed AML samples for similar patterns related to mutation order by 91 

aggregating large single-cell DNA sequencing (scDNAseq) datasets and using computational tools 92 

to create evolutionary trees. We characterize the co-occurrence and order of select mutations and 93 

the relationship between mutation order and several clinical features. 94 

 95 

Materials	and	Methods	96 

Data	97 

Previously published scDNAseq data of patients with AML came from the MD Anderson 98 

Cancer Center (123 patients, 154 samples) (10), Stanford University (14 patients, 38 samples) 99 

(11), and Memorial Sloan Kettering (MSK) Cancer Center (91 patients, 116 samples) (12) 100 

(Supplementary Figure 1). Three more Stanford patients were included because this analysis 101 

included secondary AML, and each contributed three samples (diagnosis, remission, relapse). 102 

The sequencing has been described in detail in each respective study. Briefly, data were 103 



 

 5 

generated using Mission Bio’s Tapestri platform, and FASTQ files had been processed using 104 

Mission Bio’s Tapestri Pipeline v1. Zygosity was determined using the GATK HaplotypeCaller 105 

(13) and did not distinguish homozygosity from loss of heterozygosity.  106 

All samples from MSK were processed using a custom targeted 31-gene sequencing 107 

panel, and 64 samples from MD Anderson were processed using a custom 37-gene panel. All 108 

other samples underwent sequencing using a 19-gene AML-specific panel created by Mission 109 

Bio (Supplementary Table 1). All panels included those 19 genes, and for the initial descriptive 110 

analyses, all data and mutations were considered. 111 

Identifying	driver	mutations	112 

Variants were included if both 1% of cells were mutated (11), and the lower bound of a 113 

confidence interval for the number of cells containing the mutation was greater than 10 (12). 114 

Variants were considered driver mutations using prior criteria (14,15) (Supplementary Methods), 115 

or if they had experimental evidence supporting their pathogenicity (Supplementary Figure 2). 116 

Variants were excluded if they are not associated with AML but either appeared in most patients 117 

in a dataset or were repeatedly mutated in a low percentage of cells (Supplementary Methods, 118 

Supplementary Figure 3). 119 

Modeling	mutation	acquisition	120 

Single Cell Inference of Tumor Evolution (SCITE) (16,17) was used to create a mutation 121 

tree for each patient. Mutation events were assumed to occur at most once and not to revert to 122 

wildtype during a patient’s course (infinite sites assumption). We assumed that zygosity has 123 

minimal impact on mutation calling and on mutation order inference, so zygosity was ignored 124 

when creating trees. When multiple samples were available for a patient, samples were merged 125 

into a single mutation matrix where mutations absent at one timepoint but not another were 126 

assumed wildtype. When variants of unknown significance were available, they were included in 127 

the mutation matrix to inform tree architecture but not for downstream mutation order inference. 128 

See Supplementary Methods for additional modeling details. 129 

  130 

Modeling	FLT3-ITD	variants	131 

 Several samples had multiple distinct insertion sequences in FLT3 exons 14 or 15, where 132 

FLT3 internal tandem duplication (FLT3-ITD) mutations occur. However, we suspected that 133 

different ITDs in the same patient often represented the same ITD event for the purposes of 134 
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evolutionary analyses. This is because seemingly distinct ITDs insertions usually shared similar 135 

DNA sequences, and different datasets had substantially different numbers of ITDs per patient, 136 

suggesting batch effects (Supplementary Figure 4). Thus, we merged ITDs from a patient if 137 

insertions started at the same locus and were subsequences of another insertion, if they were all 138 

terminal events from the same parent event in a tree, or if not merging ITDs resulted in more 139 

poorly supported connections in the tree (“Tree Analysis” below, Supplementary Methods, 140 

Supplementary Figure 4). 141 

 142 

Tree	analysis	143 

 Driver mutations, which were summarized as either the genes or biological pathways 144 

affected (Supplementary Table 2), were analyzed as trees with R v4.3.0 using the igraph package 145 

(18). When merging graphs, the size of an edge or vertex reflected the number of times the same 146 

sequence of events starting from the root node was observed in the entire dataset. A mutation 147 

was considered “early” if no single-cell mutations preceded it (Supplementary Methods). The 148 

binomial test and exact multinomial test (19) were used to evaluate doublet and triplet mutation 149 

orders, respectively. When analyzing the percentage of cells with a certain mutation, the 150 

denominator was the number of cells with a call for that mutation. Comparisons between 151 

mutation order and clinical characteristics were tested with a Wilcoxon rank-sum test unless 152 

otherwise specified. 153 

To ensure that the data supported the paths between every driver mutation in the same 154 

clone, the percent of cells with a later mutation that contained the earlier mutation, the “cell 155 

support,” was calculated for each mutation pair. Paths with <50% cell support were “low-156 

support.” Variants in low-support paths were excluded based on how many low-support paths 157 

they contributed to and their distal position in the tree (Supplementary Methods, Supplementary 158 

Table 3, Supplementary Figure 5). 159 

 160 

 161 

Results	162 

Creating	mutation	trees	163 

 Three targeted single-cell AML DNA sequencing datasets were merged (10–12), resulting 164 

in 207 patients with AML who had at least two driver mutations, 275 samples, 823 mutation 165 
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events, and 1 639 162 cells (Supplementary Figure 1). Most samples were cytogenetically normal 166 

(53%), and datasets had similar patient demographics but varied in distributions of laboratory 167 

values, treatment, and sample availability at diagnosis (Table 1). Although all sequencing panels 168 

covered 19 commonly mutated genes, datasets differed in the size of the sequencing panels 169 

(Supplementary Table 1), number of cells per sample, and the Tapestri Pipeline allele dropout 170 

estimate (Supplementary Figure 6). After aggregating these datasets, mutations were represented 171 

in similar proportions as in the TCGA (20) and BeatAML (21) studies, except for enrichment in 172 

mutations common in AML, such as in NPM1 and FLT3, and in low-level signaling mutations 173 

(Supplementary Figure 7A); for instance, 58% of KRAS mutations were in <10% of the 174 

corresponding sample’s cells. 175 

 Using SCITE (16,17), we created a mutation tree from each patient’s mutation matrix (e.g. 176 

Figure 1A). The trees had variable numbers of pathways and genes per pathway (Figure 1B-C), 177 

and the most common pairwise links between mutations involved NPM1, DNMT3A, FLT3, NRAS, 178 

and IDH2 (Figure 1D). These orderings were corroborated by bulk sequencing since differences 179 

in VAF (variant allele frequency) from sequencing done using the same samples and variants 180 

correlated with differences in the mutated percentage of cells for pairs of variants in the same 181 

clones (Pearson correlation 0.57, p = 2 × 10-51, Supplementary Figure 7B). Of the 101 trees that 182 

had branched evolution, signaling mutations represented 66% of the events that immediately 183 

followed a branching point (Supplementary Figure 8A). In contrast, NPM1 mutations frequently 184 

served as a branching point (Supplementary Figure 8B) because NPM1 often preceded signaling 185 

mutations; if branching occurred after an NPM1 mutation, 93% of such occasions involved a 186 

signaling mutation vs. 28% if branching did not occur. 187 

When summarizing mutations to genes (Figure 1E), 224 distinct evolutionary orderings 188 

occurred across all patients (e.g. DNTM3AàNPM1 is indistinct from DNTM3AàNPM1àFLT3). 189 

Given the complexity of Figure 1E, we merged trees but summarized events according to the 190 

biological pathway corresponding to each gene (Figure 1F, Supplementary Table 2). Mutations 191 

related to DNA methylation (e.g. DNMT3A, IDH1/2) were frequently early, and terminal events 192 

were often signaling mutations. We also noted that DNA methylation mutations often followed 193 

other DNA methylation mutations, which was driven by specific types of DNA methylation 194 

mutations that are less associated with AML progression (22). For example, while DNMT3A R882, 195 

IDH1, and IDH2 mutations commonly preceded NPM1 or signaling mutations (Supplementary 196 
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Figure 9A), DNMT3A non-R882 mutations usually preceded other DNA methylation mutations 197 

(Supplementary Figure 9B). 198 

 199 

Pairwise	mutation	co-occurrence	and	order	200 

 To further characterize the co-occurrence of mutations, we analyzed the frequency at which 201 

mutations occurred in the same or different clones (Figure 2A). Signaling mutations 202 

(Supplementary Table 2) in the same cases typically occurred in different clones. For instance, 203 

different NRAS mutations occurred in distinct clones in 100% of cases. In contrast, NPM1 204 

mutations nearly always (>90% cases) co-occurred in the same clone as mutations in signaling 205 

genes, DNA methylation genes, or transcription factors (Figure 2A). 206 

Many mutations also often had characteristic orderings relative to each other, such as 207 

DNTM3A mutations occurring early and signaling mutations occurring late (Figure 2B, 208 

Supplementary Table 4), similar to prior work (8). However, transcription factors like RUNX1 and 209 

WT1 had variable mutation orderings, appearing both before and after mutations that are typically 210 

early (e.g. DNMT3A) or late (e.g. FLT3). 211 

Analyzing the order of mutation trios (rather than pairs) corroborated these findings, where 212 

trios often began with DNA methylation mutations and terminated with signaling mutations 213 

(Supplementary Table 5). Evolution of DNMT3AàNPM1àFLT3 was common, but other 214 

mutations trios had variable mutation orderings, like combinations with DNA methylation and 215 

splicing mutations. 216 

 217 

Uncommon	mutation	orders	218 

 Although many mutation pairs occurred in characteristic orders, we noted several cases 219 

where mutation order deviated from typical patterns, such as when signaling mutations occurred 220 

before a DNA methylation or NPM1 mutation (Supplementary Figure 10). 221 

Before characterizing these atypical orderings in detail, we validated their presence. First, 222 

if signaling mutations came before NPM1 or DNA methylation mutations, then the percentage of 223 

cells with those mutations should be higher. Indeed, the signaling mutation clone size in diagnostic 224 

samples was higher when the mutation came before (vs. after) the NPM1 or DNA methylation 225 

mutations (p = 1.1 × 10-12, Figure 3A). Interestingly, the percentage of cells with NPM1 or DNA 226 

methylation mutations was high irrespective of relative signaling mutation order (Figure 3B). 227 
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Next, if signaling mutations came first, then both the percentage of mutated cells and the bulk VAF 228 

should be higher than those of NPM1 and DNA methylation mutations. Indeed, across all samples 229 

and driver mutations, the signaling mutation’s percentage of mutated cells and VAF were higher 230 

when it was first (89% [51/57] and 63% [15/24] of pairwise comparisons, respectively) and lower 231 

when second (94% [318/338] and 93% [140/151]). 232 

Although these results corroborated the existence of signaling-first cases, the signaling 233 

mutation-only clones in the signaling-first cases were consistently small. Using the difference in 234 

percentage of mutated cells as a proxy for clone size, the single-mutant clone size was smaller in 235 

signaling-first cases than in NPM1/DNA methylation-first cases (p = 4 × 10-18, Figure 3C). This 236 

difference was also corroborated using the difference in bulk VAFs as a proxy for single-mutant 237 

clone size (p = 7 × 10-5, Figure 3D). 238 

A similar pattern of single-mutant clone size was previously seen in JAK2-first vs. TET2-239 

first MPNs, where JAK2-first cases had fewer single-mutant HSPCs, suggesting that TET2 240 

mutation increased the fitness of JAK2 mutation in HSPCs (6). Thus, we suspected that NPM1 and 241 

DNA methylation mutations offered a selective advantage for signaling mutations among HSPCs 242 

in AML. We explored this phenomenon by examining new mutations across serial samples (25 243 

diagnosis/relapse pairs, 15 relapse/relapse pairs, 34 patients, Figure 4A). Most new mutations at 244 

relapse were signaling mutations (60%, 21/35), and new signaling mutations tended to arise after 245 

a previously present DNA methylation or NPM1 mutation. When considering all potential nodes 246 

in a tree from which signaling mutations could arise (including the possibility of no prior 247 

mutations), NPM1 and DNA methylation mutations disproportionately served as the immediate 248 

parent node for a new signaling mutation (9/10 parent nodes, Fisher’s test p = 0.002). For example, 249 

in Figure 4B, the NRAS mutations arose in the DNMT3A clone, despite the DNMT3A mutation 250 

being present in 41% of the earlier sample’s cells compared to ≥90% of cells for the other 251 

mutations. Because signaling mutations disproportionately followed DNA methylation and NPM1 252 

mutations, NPM1 and DNA methylation mutations may offer an advantage for signaling mutations 253 

in HSPCs. 254 

 255 

Clinical	correlates	with	mutation	order	256 

Because TET2 mutations change the HSPC balance in MPNs (6), we hypothesized that any 257 

advantage conferred by DNA methylation mutations in AML was partially due to expansion of 258 
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more immature HSPCs, apparent as blasts. To explore this, we compared “late” and “early 259 

mutations, which are those that occur with and without any preceding mutations in the scDNAseq 260 

data. Indeed, the bone marrow blast percentage was higher in diagnostic samples with early DNA 261 

methylation mutations compared to late DNA methylation mutations (p = 0.08, Figure 5A), while 262 

the bone marrow granulocyte and monocyte percentages were generally lower (p = 0.15 and p = 263 

0.09, respectively, Figure 5B-C). 264 

In contrast, signaling mutation order (see Supplementary Methods for justification of the 265 

“early” and “late” categorization of signaling mutations) was not associated with the bone marrow 266 

cell percentages (p ≥ 0.7 for all comparisons), but it was associated with higher peripheral white 267 

blood cell (WBC) counts (p = 0.099, Figure 5D). Although peripheral blast counts were higher in 268 

signaling-early cases (median 14.8 vs. 3.7, rank-sum p = 0.14), so were the peripheral granulocyte 269 

and monocyte counts (p = 0.17 and p = 0.089, respectively, Figure 5E-F). Notably, we consider 270 

signaling mutations to be one group for simpler interpretation, but they have different clinical 271 

phenotypes, such as early NRAS/KRAS mutations having higher monocyte counts than later 272 

NRAS/KRAS mutations (p = 0.056), a trend not seen for FLT3 mutations (p = 0.38). 273 

To ensure that these associations between order and cell composition were not dataset-274 

specific, we used proxies for early and late mutation order, specifically high and low VAFs (cutoff 275 

0.3, previously used to define dominant and clonal mutations (23,24)), for validation in the 276 

BeatAML bulk DNA sequencing data (21). Early DNA methylation mutations were indeed 277 

associated with higher bone marrow blast percentages (p = 0.00041, Supplementary Figure 11A). 278 

In contrast, while early signaling mutations were not associated with bone marrow blast percentage 279 

(p = 0.35), they were associated with higher peripheral white blood cells, granulocytes, and 280 

monocytes (p < 0.05 for all comparisons, Supplementary Figure  11B-D). 281 

Although these mutation orderings had distinct phenotypes, we also wished to distinguish 282 

whether the phenotype was related to the order or the increased clonal burden that resulted from a 283 

mutation occurring earlier. Thus, using the scDNAseq data, we performed multiple linear 284 

regression adjusting for patient age and the percent of cells with the relevant mutation 285 

(Supplementary Table 6). In multivariable analyses, DNA methylation clone size (p = 0.0079), but 286 

not mutation order (p = 0.21), was associated with bone marrow blast percentage, suggesting that 287 

clone size mediated the association between DNA methylation order and blast percentage 288 

(Supplementary Table 6A). In a similar regression, signaling mutation clone size, rather than 289 

mutation order, was significantly associated with peripheral blast percentage (p = 0.0084, 290 
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Supplementary Table 6B). However, signaling mutation order was independently associated with 291 

peripheral granulocyte and monocyte counts (p = 0.088 and 0.035, respectively, Supplementary 292 

Table 6B), suggesting that the order of signaling mutations, not just the clonal burden, contributed 293 

to more mature myeloid cell counts. 294 

We next tested whether mutation orderings in AML could explain other patient and disease 295 

characteristics, such as younger age and increasing signaling mutation homozygosity, which are 296 

associated with JAK2-first MPN cases (6). Indeed, in diagnostic samples with early signaling 297 

mutations, signaling mutations were more often homozygous (median 5% vs. 21% of cells 298 

homozygous, p = 0.049, Figure 6A), and patients were younger (median 52 vs. 59 years old, p = 299 

0.058, Figure 6C). In contrast, the same patterns did not hold for DNA methylation mutations 300 

(Figure 6B,D). Notably, the association with signaling mutation homozygosity was driven by a 301 

minority of cases (Figure 6A) and primarily FLT3 (p = 0.011), for which loss of heterozygosity 302 

has previously been associated with poor prognosis (25). Although detecting zygosity in 303 

scDNAseq data could be confounded by allele dropout, we found no evidence of this since FLT3 304 

mutation homozygosity was also not correlated with the number of cells missing mutation calls 305 

for the relevant mutation or with sample-level allele dropout (Spearman correlation 0.04 [p = 0.78] 306 

and 0.07 [p = 0.65], respectively). 307 

This constellation of evolutionary patterns and clinical correlates involving signaling 308 

mutations also creates potential to better understand other mutations. For example, WT1 mutations 309 

contribute to relapse (26) but have an unclear role in AML pathogenesis (27), and we found that 310 

WT1 mutations share many characteristics with signaling mutations. Like mutations in FLT3 and 311 

NRAS, WT1 mutations frequently occurred in NPM1-mutant clones (Figure 2A, Figure 4A); early 312 

WT1 mutations often occurred in younger patients; and WT1-first cases had small single-mutant 313 

clones when co-occurring with NPM1 mutations (Supplementary Figure 12). In multivariable 314 

analyses, early WT1 mutations were also associated with age and higher neutrophil and monocyte 315 

counts (Supplementary Table 6C). 316 

Although we found several phenotype differences associated with mutation order between 317 

DNA methylation and signaling mutations, patients with these different orderings did not have 318 

significantly different overall survival (Cox regression age-adjusted p = 1 for signaling vs. DNA 319 

methylation first). Among relatively prevalent mutation orderings, SF3B1àFLT3 was nearly 320 

significantly associated with a worse prognosis after false discovery rate (FDR) correction (age-321 

adjusted hazard ratio 5.6, q-value = 0.056, Supplementary Figure 13A). However, this association 322 
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was no longer significant after adjusting for the presence of an SF3B1 mutation (p = 0.44), which 323 

itself carries a poor prognosis (4). 324 

Still, exploratory analyses of other phenotypes at diagnosis (Supplementary Figure 13B-E) 325 

revealed meaningful associations, such as evolution involving IDH1/IDH2 mutations and lower 326 

granulocyte (median 1.7 vs. 3.0, p = 3.6 x 10-6) and monocyte counts (median 1.2 vs. 1.9, p = 327 

0.0063), or orderings with SRSF2 occurring predominantly in older individuals (median age 73 vs. 328 

59, p = 0.017). 329 

 330 

 331 

 332 

Discussion 333 

We showed that although AML evolution is heterogeneous, mutations tend to occur in 334 

characteristic orders, both at the levels of the genes and the biological pathways involved. This is 335 

consistent with prior findings that certain mutations, such as those related to epigenetics, often 336 

occur early in evolution whereas signaling mutations occur later (8).  337 

However, we expanded on these findings through analysis of large-scale single-cell 338 

sequencing data, identifying important patterns in clonal architecture and how those relate to 339 

clinical phenotype in AML. We found that many AML cases are characterized by linear 340 

evolution, with branching evolution primarily involving signaling mutations. Our analyses also 341 

revealed several cases with atypical or poorly characterized mutation orderings, such as signaling 342 

mutations preceding DNA methylation mutations or DNA methylation mutations preceding other 343 

DNA methylation mutations. Early signaling mutations were associated with 1) proliferative 344 

disease, 2) increased signaling mutation homozygosity, and 3) younger patient age. These results 345 

are analogous to previous findings in MPNs (6), but we established these conclusions in a more 346 

acute, aggressive, and heterogeneous disease. Additionally, the mutation order framework 347 

provided insight into poorly understood mutations, like in WT1, which had evolutionary patterns 348 

and phenotypic associations similar to signaling mutations but where the associations with age 349 

and proliferation were independent of the effects of signaling mutations in multiple regression. 350 

By using serial samples, we also showed that signaling mutations commonly arise in 351 

clones containing mutations in NPM1 and those related to DNA methylation, suggesting that 352 
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these mutations may offer a relative fitness advantage for signaling mutations in HSPCs. This 353 

was further corroborated by the small clone size of single-mutant clones in signaling-first cases. 354 

Because the size of the DNA methylation clones correlated with the bone marrow blast 355 

percentage in our scDNAseq dataset and the BeatAML dataset, any advantage may be mediated 356 

by a shift to immature cells in the bone marrow. 357 

This study has several strengths. First, to our knowledge, this is the largest analysis to 358 

date of single-cell DNA sequencing data, an increasingly important data type (28), within a 359 

single disease, and the first to benefit from merging multiple clinically relevant datasets together. 360 

Second, we leveraged the granular clonal architecture revealed by these data to develop an 361 

algorithm to model FLT3-ITD evolution. This is important because the presence of multiple 362 

ITDs is associated with a worse prognosis (29), but if multiple ITDs are detected, they may not 363 

represent distinct evolutionary events because ITD sequences can be unstable (30) or may be the 364 

result of technical artifacts. Third, we used state-of-the-art algorithms to create mutation trees 365 

and derive mutation order for each patient’s samples, allowing us not only to identify which 366 

mutations tend to occur early vs. late but also to identify the order of mutations in a sample. 367 

Most importantly, this study adds a new dimension to typical analyses of mutations in 368 

AML by examining the order of mutations rather than their presence, co-occurrence, or clonal 369 

burden, and this order was associated with clinically relevant traits. Although there is 370 

tremendous excitement about how patterns of clonal evolution contribute to the disease course 371 

(10–12,28,31), it is crucial to distinguish the effects of clonal architecture from the effects of 372 

common clinical measurements that can be derived from bulk sequencing. For example, in some 373 

analyses, we found that mutation order itself was independently associated with a phenotype, 374 

while in others, we found that the presence of clonal burden of select mutations, rather than the 375 

mutation order, mediated association with clinical features. Regardless, considering mutation 376 

order will likely be clinically useful, especially when selecting targeted therapies. For example, 377 

when IDH and FLT3 mutations co-occur, they virtually always occur in the same clone (Figure 378 

2A). Because IDH mutations usually come first in evolution (Figure 2B), the cells that have 379 

FLT3 mutations typically also have IDH mutations, suggesting that IDH could be targeted to 380 

treat the FLT3-mutant cells. However, if FLT3 comes first, there could be residual FLT3-positive 381 

cells if only the IDH mutation is targeted. 382 

Our study also has some limitations. First, we focus on mutations in individual genes 383 

rather than also analyzing large structural rearrangements, which are important in classifying 384 
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AML (4). Second, this study does not incorporate single-cell surface protein markers (10,12), 385 

which may be helpful to distinguish AML cells from other non-leukemic clonal hematopoiesis 386 

cells in a sample (32). However, this limitation would not affect the conclusions of this study 387 

since many of the mutations analyzed, such as those in NPM1, are specific to AML (33) or are 388 

uncharacteristic of clonal hematopoiesis. Third, the available data cannot be leveraged to 389 

estimate how quickly the AML evolved, unlike recent whole genome sequencing studies focused 390 

on MPNs (34,35). However, by using clinical data, we noted that patients whose disease had 391 

early signaling mutations were usually younger, suggesting a faster evolution to AML. Fourth, 392 

given the lack of single-cell whole-genome sequencing, we cannot rule out that other driver 393 

mutations absent from the sequencing panels that are essential for the clonal evolution were 394 

excluded. However, this does not invalidate the orderings and overall trends we observed. Lastly, 395 

to identify correlations between mutation order and clinical variables, we used retrospective data, 396 

and unknown confounders could explain the observed associations. 397 

Future studies could model AML evolution in the context of surface protein markers 398 

(34,35) or gene expression (36), or with either larger targeted sequencing panels or a larger 399 

dataset. It also remains unclear how specific treatments, such as targeted therapies, affect the 400 

clonal architecture of AML, and this could be studied more closely. 401 

AML is increasingly understood as a heterogenous disease that evolves from other 402 

conditions, such as clonal hematopoiesis and myeloproliferative neoplasms. We foresee a future 403 

where treatment is decided not only based on what is observed in a case of the disease, but how 404 

that disease came to existence. Modeling the development of AML by placing mutations in their 405 

context rather than focusing on the traits of a static sample may open new avenues of both 406 

clinical and basic research. These large-scale evolutionary models are a step towards that future. 407 
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Figure	and	table	legends	571 

	572 

Tables	legends	573 

 574 

Table 1: Characteristics of patients from each dataset either as a proportion of the dataset or as a 575 

median and a range. *Only diagnostic samples used for these variables. 576 

	577 

Figures	legends	578 

Figure 1:  A) Example tree. Distributions of B) the number of distinct evolutionary pathways per 579 

tree (number of trees = 207), and C) the average number of mutations per pathway. D) Most 580 

common two-gene evolutionary pathways mutated, when mutations were summarized by gene. 581 

E) All trees merged, summarized by the gene in which the mutation is present, where size of 582 

node represents the number of times a particular pathway occurs, starting from the root node. 583 

Colors correspond to mutations, where genes with similar functions have similar colors (e.g. blue 584 

shades for DNA methylation and red/orange shades for signaling mutations). F) All trees 585 

merged, where the mutation events were summarized by pathway, and only evolutionary 586 

pathways with at least five events are depicted.		587 

 588 

Figure 2: A) Plot showing whether two mutations occur in the same or different clone, 589 

summarized by gene. Size of each dot represents the number of times mutations in two genes 590 

occur in the same patient sample, and color represents the frequency they are in the same clone. 591 

B) Whether one mutation occurs before another mutation. Size of dot represents the number of 592 

times they are in the same clone (not just in the same patient sample), and color represents the 593 

proportion of times a mutation in a gene on the y-axis came before a mutation in a gene on the x-594 

axis. 595 

  596 

Figure 3: Boxplots showing the A) percentage of mutated cells containing a signaling mutation 597 

vs. whether the signaling mutation came before (First) or after (Second) an NPM1 or DNA 598 

methylation mutation. B) Same plot as (A) except that the focus is on the NPM1 or DNA 599 

methylation mutation percent cells mutated. C) Size of a single-mutant clone stratified by which 600 

mutation came first. Single-mutant clone size was estimated by subtracting the proportion of 601 

cells with each mutation after removing cells where there was no call for the mutation. This plot 602 

shows that the single-mutant clones for NPM1/DNA methylation-first cases were higher than in 603 

signaling-first cases. D) Difference in variant allele frequency (VAF) using bulk sequencing data 604 

from the same samples and variants. In A) and B), only diagnostic samples were used since the 605 

absolute amount of disease may vary with treatment, and the n = 148 for NPM1/DNA 606 

methylation-first and n = 23 for signaling-first. In C) and D), since the focus was on relative 607 

sizes of clones, all samples were used, with n = 338 and n = 57 for NPM1/DNA methylation-first 608 

and signaling-first groups, respectively, and because of missing bulk sequencing data in D), n = 609 

151 and n = 24, respectively.  610 
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 611 
Figure 4 : A) All new pathways at relapse across all available paired serial samples in the single-612 

cell dataset (derived from 25 diagnosis/relapse and 15 relapse/relapse pairs, 34 patients total). 613 

The top layer of events represents events present in the prior sample, although not necessarily the 614 

initial event of a tree, and the lower layers represent events gained on a subsequent sample. 615 

Genes with more than one instance are labeled directly. B) Example tree for which serial samples 616 

are available, where the events circled in yellow are new events on a subsequent sample. 617 
 618 
 619 
Figure 5: Earlier DNA methylation mutations were associated with higher bone marrow blast 620 

percentages while earlier signaling mutations were associated with higher peripheral myeloid 621 

cell counts. A-C) Distributions of A) bone marrow blast percentage, B) bone marrow 622 

granulocyte percentage, and C) bone marrow monocyte percentage compared to whether a DNA 623 

methylation mutation was early, late, or not present in the sample. D-F) Distributions of D) log 624 

peripheral blast count, E) log peripheral granulocyte count, and F) log peripheral monocyte count 625 

compared to whether a signaling mutation was early, late, or not present.  626 
 627 
Figure 6: Signaling mutation (A-B) zygosity and patient age (C-D) at diagnosis compared to 628 

whether signaling (A, C) and DNA methylation (B, D) mutations were early or late (or there was 629 

no mutation, in the age comparison) among diagnostic samples. “Early” means that no mutations 630 

are known to occur before it based on the scDNAseq dataset. 631 
 632 

	633 

Supplementary	table	legends	634 

 635 

Supplementary Table 1: Panels used for sequencing in each respective study. 636 

 637 

Supplementary Table 2: Genes and their corresponding biological pathways used for analysis. 638 
l 639 
Supplementary Table 3: Connections in each tree that are poorly supported, specifically that 640 

<50% cells with later mutation contain early mutation. 641 

 642 

Supplementary Table 4: Table showing whether one mutation tends to occur before another, 643 

among mutations occurring in the same clones and with mutations summarized to genes. P-644 

values were derived using a binomial test and adjusted to Q-values using the Benjamini-645 

Hochberg method (37). 646 

 647 

Supplementary Table 5: Triplet mutation orderings. A trio of mutations was considered for 648 

ordering analysis if more than two patients had the three mutations in the same clone. P-values 649 

were derived from the exact multinomial test, except for when the binomial coefficient was 650 

greater than 106, in which case a Monte Carlo approach was used. Both the number of clones 651 

with the three mutations (“Number clones”) and the number of clones with the most common 652 

ordering (“Ordering count”) are shown. P-values were calculated both at the A) gene level and 653 

B) pathway level and were adjusted using the Benjamini-Hochberg method (37). 654 

 655 

Supplementary Table 6: Multivariable regression analyses. A) Linear regression of DNA 656 

methylation mutation order compared to bone marrow blast, granulocyte, and monocyte 657 
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percentages, before and after adjusting for patient age and DNA methylation mutation burden (% 658 

mutated cells). B) Similar regressions as in (A), but predictor variable is signaling mutation order 659 

instead of DNA methylation mutation order, and response variable is peripheral white blood cell, 660 

granulocyte, and monocyte counts. C) WT1 mutation order at diagnosis vs. patient age, adjusting 661 

for signaling mutation order. 662 

 663 

Supplementary Table 7: Variants from whole exome or extended targeted sequencing data from 664 

17 cases with signaling mutations first that would have met criteria for inclusion in this study but 665 

were missed on the sequencing panel. 666 

 667 

	668 

Supplementary	table	legends		669 

 670 

Supplementary Figure 1: Diagram showing studies included in the analysis, including number of 671 

patients and samples from Stanford, MD Anderson, and Memorial Sloan Kettering (MSK). 672 

 673 

Supplementary Figure 2: Number of additional driver mutations discovered on manual review of 674 

variants that were initially of unknown significance, stratified by gene. 675 

 676 

Supplementary Figure 3: Plots showing statistics about variants. A) Number of unique driver 677 

mutations, variants of unknown significance (VUS), and variants that were excluded 678 

(blacklisted) because they were not known to be associated with AML and either 1. occurred in 679 

most patients (Excluded – recurrent) or 2. occurred repeatedly in less than 5% of cells (Excluded 680 

– low level). B) Source of different types of variants broken down by dataset. C) Distribution of 681 

the number of events per driver mutation (where FLT3-ITD is considered a single type of driver 682 

mutation), or D) per blacklisted variant. 683 

 684 

Supplementary Figure 4: A) Number of FLT3-ITDs per sample across each dataset. P-value was 685 

calculated with a Kruskal-Wallis test. Total ITDs = 151, and total patients = 58. B) Number of 686 

FLT3-ITD variants that result with different types of merging strategies (see Supplementary 687 

Methods). C) The number of cases that underwent different merging strategies based on our 688 

algorithm for choosing a merging strategy. D) The reasons for merging across all cases, where 689 

“Max connection support” means that the tree minimized low-support connections, “Same clonal 690 

evolution” means that all ITDs were terminal events in the tree and had the same parent event, 691 

and “One ITD” means either there was only one ITD or that the sequence of all ITDs were 692 

subsequences of another ITD. 693 

 694 

Supplementary Figure 5: After low-support connections were identified in a tree (<50% cells 695 

with the later mutation also contained the earlier mutation), mutations were excluded either 696 

because they contributed to the most low support connections or were more distal in the tree 697 

(Supplementary Methods). A) Bar plot of the number of variants excluded per gene because of 698 

low support, across the entire dataset. B) Distribution of proportion of cells mutated among those 699 

excluded variants. C) An example tree with a low-support connection (NRAS à KRAS). 700 

 701 

 702 

Supplementary Figure 6: A) Allele dropout estimate and B) number of cells per sample stratified 703 

by dataset and sequencing panel. Stanford and the “MDA 19-gene panel” are the same Mission 704 
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Bio sequencing panels at different institutions. The “MDA custom panel” is a 37-gene panel 705 

created by collaborators at MD Anderson, and “MSK” refers to the 31-gene panel created by 706 

collaborators at Memorial Sloan Kettering. P-values were calculated with the Kruskal-Wallis 707 

test. 708 

   709 

Supplementary Figure 7: A) Distribution of mutations across different datasets. The top plot is 710 

from the current study, second plot from the most recent BeatAML study 11, and third plot from 711 

The Cancer Genome Atlas 12 study. “Subclonal” means that the mutation was present in < 10% 712 

of cells. B) Comparison of the difference in percentage of cells mutated in single-cell data and 713 

the difference in variant allele frequency (VAF), which is a proxy for the number of cells 714 

mutated, in bulk sequencing data. The line represents the predicted association between these 715 

values if all variants were heterozygous. Plot B) was created using all available bulk sequencing 716 

data from the samples and variants in the single cell data, a total of 577 pairwise comparisons, 717 

377 variants, and 139 patients. 718 

 719 

Supplementary Figure 8: A) Percent of mutation events for that gene that immediately follow a 720 

branch point, ordered by this percentage. Signaling mutations mostly follow branch points while 721 

others generally do not. B) Percentage of times a gene’s mutations serve as a branching point. 722 

NPM1 mutations most commonly serve as branching points in evolution, largely because they 723 

often immediately precede signaling mutations. 724 

 725 

Supplementary Figure 9: A) Percentage of mutations that immediately followed either DNMT3A 726 

R882 or IDH1/2 mutations. B) Percentage of mutations that immediately followed non-R882 727 

DNMT3A mutations vs. IDH1/2 mutations. P-values calculated with Fisher’s exact test. 728 

 729 

Supplementary Figure 10: Considering all cases where a signaling mutation preceded another 730 

mutation (n = 39), sub-trees were created using the signaling mutation as the starting node, and 731 

all such sub-trees were merged. This figure shows what mutations tend to follow signaling 732 

mutations, and they are predominantly NPM1 and DNA methylation mutations, although many 733 

transcription factor mutations (primarily in WT1) also commonly followed different signaling 734 

mutations. 735 

 736 

 737 

Supplementary Figure 11: Using the BeatAML data 11, A) distribution of bone marrow blast 738 

percentage compared to whether DNA methylation mutations were early, late, or absent. B-D) 739 

Similar plots comparing signaling mutations to B) log peripheral white blood cell count, C) log 740 

peripheral granulocyte counts, and D) log peripheral monocyte counts. Using these bulk 741 

sequencing, early and late were defined as VAF (variant allele frequency) ≥ 0.3 or < 0.3, 742 

respectively. 743 

 744 

Supplementary Figure 12: A) Single-mutant proportions for WT1-first cases and NPM1-first 745 

cases. B) Similar comparison using variant allele frequency (VAF) differences between NPM1 746 

and WT1 from bulk sequencing using the same variants and samples. A) Early, late, or no WT1 747 

mutation at diagnosis compared to age. 748 

 749 
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 750 

Supplementary Figure 13: Pairwise mutation orderings compared to different distributions of 751 

clinical variables, specifically A) hazard ratio of overall survival, B) age, C) peripheral blood log 752 

blasts), D) peripheral blood log neutrophils, and E) peripheral blood log monocytes compared to 753 

all patients without that pairwise path. 754 

Supplementary Figure 14: Fraction of trees in the posterior distribution that are identical to the 755 

final tree used in the analysis. Generally, the posterior distribution was dominated by one tree. 756 

 757 

Supplementary Figure 15: Extreme example of the consequences of merging FLT3-ITD variants 758 

using case AML-88 from the MD Anderson dataset. In this case, A) merging all variants resulted 759 

in the FLT-ITD variant to be higher in the tree than with B) conservative merging. However, the 760 

FLT3-ITD variant ultimately could not be used because it contributed to too many low support-761 

connections, result in C) the final tree. 762 

 763 

Supplementary Figure 16: Distance of FLT3-ITD variants from root node to the variant when a 764 

conservative ITD merging strategy is used (light red) or all ITD variants are merged (blue, 765 

becomes purple when mixed with light red in figure). This shows that when merging ITD 766 

variants, the more distal ITD variants in the tree are most affected. 767 

 768 
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