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Quantitative Description of Metal Center Organization and
Interactions in Single-Atom Catalysts

Kevin Rossi, Andrea Ruiz-Ferrando, Dario Faust Akl, Victor Gimenez Abalos,
Javier Heras-Domingo, Romain Graux, Xiao Hai, Jiong Lu, Dario Garcia-Gasulla,
Nuria López,* Javier Pérez-Ramírez,* and Sharon Mitchell*

Ultra-high-density single-atom catalysts (UHD-SACs) present unique
opportunities for harnessing cooperative effects between neighboring metal
centers. However, the lack of tools to establish correlations between the
density, types, and arrangements of isolated metal atoms and the support
surface properties hinders efforts to engineer advanced material
architectures. Here, this work precisely describes the metal center
organization in various mono- and multimetallic UHD‑SACs based on
nitrogen-doped carbon (NC) supports by coupling transmission electron
microscopy with tailored machine-learning methods (released as a
user-friendly web app) and density functional theory simulations. This
approach quantifies the non-negligible presence of multimers with increasing
atom density, characterizes the size and shape of these low‑nuclearity
clusters, and identifies surface atom density criteria to ensure isolation.
Further, it provides previously inaccessible experimental insights into
coordination site arrangements in the NC host, uncovering a repulsive
interaction that influences the disordered distribution of metal centers in
UHD-SACs. This observation holds in multimetallic systems, where
chemically-specific analysis quantifies the degree of intermixing. These
fundamental insights into the materials chemistry of single-atom catalysts are
crucial for designing catalytic systems with superior reactivity.
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1. Introduction

Designing materials with atomically-
precise architectures has become a
cutting-edge research area with broad
applications in electronics, energy storage,
and catalysis.[1,2] Single-atom catalysts
(SACs) exemplify this approach, aiming
to maximize active metal atom accessibil-
ity by minimizing metal ensemble sizes.
This control offers numerous advantages,
from unlocking novel functionality to en-
hancing resource utilization. SACs have
demonstrated exceptional efficiency and
unique reactivity patterns in specific ap-
plications compared to catalytic materials
containing supported nanoparticles.[3–8]

In recent years, the design of SACs has
evolved from merely stabilizing isolated
metal atoms to engineering precise metal
environments. This shift encompasses tai-
loring interactions with supports, con-
trolling the type and degree of ligation
of metal centers, and manipulating their
spatial organization.[1–9] Different metal
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Figure 1. a) The spatial arrangement of metal centers in SACs spans a variety of geometries. In distant configurations, metal centers are well-isolated
and, in principle, non-interacting. In proximal configurations, multiple metal centers are located within short distances (a few atoms separation), but
do not form metal-metal bonds, and are thus still classified as single atoms. The organizational complexity increases in SACs containing multiple metal
types. b) Various structural features of SACs can impact the arrangement of metal centers, including the proximity and geometry of anchoring sites,
preferential adsorption of metal centers in specific host coordination motifs, and the surface density of deposited metal atoms. Control and optimization
of these properties could enable superior catalytic properties in SACs.

center arrangements exist, from distant and isolated to proxi-
mal and interacting, with distinct potential influences and par-
ticipations in catalytic cycles (Figure 1a). Inadequate synthesis
conditions may also result in the coexistence of clusters such as
dimers and other multimeric species in SACs. Interest is grow-
ing in structures integrating closely positioned metal centers, as
seen in dual-atom catalysts,[10,11] which can exhibit distinct cat-
alytic behaviors and cooperative effects (Figure S1, Supporting
Information).[10–21] Achieving control over metal center proximity
in SACs requires advanced synthesis methods that yield high sur-
face coverages, such as those found in ultra-high-density SACs
(UHD-SACs).[12] Factors such as the number, type, and arrange-
ment of metal anchoring sites in the support, the adsorption
properties of the metal centers, and the synthesis conditions can
all influence metal center organization (Figure 1b).[12–15,22–24]

Characterizing metal center organization in SACs heavily re-
lies on advanced microscopy techniques like aberration-corrected
scanning transmission electron microscopy (AC-STEM). How-
ever, current approaches primarily focus on visually comparing
metal centers dispersion, with limited attempts to extract addi-
tional quantitative information, for example, on metal atom sur-
face density and proximity. Moreover, the statistical robustness of
the observations derived has been hampered by the limited sam-
pling, related to the small field of view of AC-STEM images (typ-
ically below 100 nm2) and the time-consuming nature of manual
atom detection, with typical analyses considering 1–2 images per
specimen. Furthermore, atom detections have traditionally relied
on the manual inspection of images by domain-experts, which
are prone to biases due to differences in visual perception, par-
ticularly concerning the contrast between the single atoms and
the support material. This limitation is exacerbated when analyz-
ing multimetallic systems, where classifying distinct atoms based
on their relative contrast becomes challenging. The absence of
standardized approaches and potential arbitrariness in detection
decisions further hinder informative analysis.

In this context, machine learning methods offer a solution, en-
abling standardized structure characterization, automated imag-

ing conditions optimization, and unbiased model selection,
across various disciplines, including materials science.[25–37]

While machine learning has been applied for tasks like
denoising,[33] shape classification,[34,35] segmentation,[36,37] and
atom detection.[38] quantitative frameworks for interrogating
metal center organization in SACs have lagged behind.

In this work, we bridge this knowledge gap by combining mi-
croscopy, unsupervised and supervised machine-learning meth-
ods, and numerical tools to quantitatively characterize metal cen-
ter identity, spatial organization, and interactions in mono- and
multimetallic UHD-SACs, across a range of surface atom densi-
ties. After efficient metal center detection facilitated by machine
learning, we estimate the number of atoms in low-nuclearity
clusters, analyze their geometry, quantify metal dispersion using
pair distance statistics, and assess short- and long-range order-
ing, also with chemical specificity. Our analysis of these struc-
tural descriptors, establishes criteria for metal center isolation
and characterizes nearest neighbor distance distributions as a
function of the metal surface density. Density functional theory
(DFT) simulations support our findings and enable quantifica-
tion of geometric and electronic structure contributions to inter-
atomic interactions determining metal center spatial organiza-
tion. To promote standardized characterization and analysis, we
release a user-friendly web app for automated characterization,
as well as software and simulations input/output in open-source
repositories. This approach advances fundamental understand-
ing of SAC chemistry and enhances the design of catalytic mate-
rials for targeted conversion processes, offering a basis for quan-
titative structure-performance relationships.

2. Results and Discussion

2.1. Single-Atom and Multimer Detection

We focus on UHD-SACs comprising metal atoms adsorbed on
nitrogen-doped carbon (NC) as the most commonly used host
material.[1] The use of high atom densities, with occupation of
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Figure 2. a) AC-STEM images of distinct UHD-SACs, illustrating the variation in contrast of the metal centers with the NC host material. All scale bars
correspond to 2 nm. b) AC-STEM image of Pt1/NC SAC with machine learning-detected atoms overlaid (yellow circles). The zoom inset highlights
potential multimers (blue circles) that require detection and quantification. c) Representative prediction maps generated by the CNN for multimers
assigned in (b) exemplifying the analysis of interatomic distances (left panel) and, the use of GMM assignments to resolve overlapping features (central
and right panels). d) Bar charts illustrating the performance metrics of the machine-learning model compared to manual assignments carried out by a
domain expert. The comparison involved images of samples with different metal identities, density (in atoms nm−2, indicated in parentheses after the
metal), imaging resolutions, and measurement conditions. The (graphics processing unit accelerated) machine-learning model detections for these test
images are produced in minutes, whereas the human-expert assignments took a few hours.

virtually all surface coordination sites, presents a realistic sce-
nario for systems where cooperative effects may occur but
presents significant challenges for establishing the degree of site
isolation. We account for various degrees of atom detection com-
plexity by considering widely studied catalytic metals (Rh, Ni, Pd,
and Pt) that exhibit distinct contrasts in STEM imaging. To en-
sure a robust statistical analysis, we consider multiple images
containing over 40 000 metal centers.

Reflecting common experimental practice, the operator care-
fully determines the conditions for capturing UHD-SAC images
to maximize the visibility of individual atoms (Figure 2a). For
instance, the imaging of Ni samples used a higher accelerating
voltage (200 kV) compared to other metals (80 kV) to improve
atomic contrast. Dwell time settings are varied to balance achiev-
ing sufficient contrast and minimizing potential sample degra-
dation or shifting during image acquisition. The magnifications

used for imaging, expressed as nm px−1, cover a range where
the atomically resolved isolated features are well visible. This
non-standardized data set differs from previous atom detection
efforts,[38] which precisely controlled the acquisition conditions,
including scanned image dimensions and pixel size. Analysis of
recent literature shows that full details of acquisition parameters
are rarely reported (Table S1, Supporting Information), but the
range that we study (Figure S2b, Supporting Information) are
representative of typical imaging conditions.

With the goal of rapid and standardized atom detection
(Figure 2b), we develop a customized workflow that consists
of both supervised and unsupervised elements (Figure S2a,
Supporting Information) and is made available open-source and
through a web-app (Figure S3, Supporting Information). The
supervised step builds on a previously proposed protocol,[38]

where we train a convolutional neural network (CNN) to assign
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a probability to each pixel in the image of whether it belongs to
a metal center. A thresholding and bounding box approach then
allows the identification of metal atom coordinates. New steps
in this study include incorporating image intensity clipping
to remove outliers during pre-processing (Figures S4 and S5,
Supporting Information) and a hard-negative sampling strategy
to improve the sharpness of model predictions (Figure S6, Sup-
porting Information). Additionally, we adopt a Gaussian mixture
model (GMM) to identify in an unsupervised fashion multiple
atoms where features overlap in the generated prediction maps
(Figure 2c, and Figure S7, Supporting Information). This ap-
proach is instrumental toward determining the fraction of metal
centers associated with low-nuclearity clusters in the AC-STEM
images and their respective geometries. Further, we leverage low-
dimensional representation learning and unsupervised cluster-
ing to discriminate metal centers of different chemical identities
in multimetallic samples (Figure S8, Supporting Information).

To minimize the need for extensive labeling of new images, we
train the supervised component of the pipeline using an open-
source dataset.[38] The latter consists of images of a low-density
(≈0.3 atoms nm−2) Pt1/NC SAC, acquired with carefully chosen
and fixed imaging conditions, and including a comprehensive set
of imperfections (high noise levels, emission current variations,
defocus) commonly encountered when imaging SACs with AC-
STEM.

To validate the transferability and accuracy of the model,
we compare the machine-learning model assignments with
human-expert “ground truth” assignments (Figure 2d and
Figures S9–S22, Supporting Information). This comparison in-
cludes images with the highest metal atom density for each sys-
tem (Ni1/NC, Pd1/NC, Rh1/NC) and images with varying densi-
ties for Pt1/NC. We assess the model accuracy and transferabil-
ity using classical computer vision metrics, such as recall, preci-
sion, F1 scores, and receiver operating characteristic curve. The
comparison demonstrates satisfactory agreement across distinct
metal types and atom densities (Figure 2d, and Figure S23, Sup-
porting Information).

In general, the performance increases with the atomic num-
ber of the metal centers, as expected due to the higher contrast
exhibited by heavier atoms in AC-STEM imaging. While it was
shown that the model rarely introduces false-positives in sam-
ples without metal centers,[38] the slightly lower performance for
lighter atoms mirrors the inherent challenges in their detection
(Figure S24, Supporting Information). Notably, this challenge
was also evident to the domain-expert when labeling these im-
ages, underscoring the complexity in ensuring rigorous analysis.
In this regard, the comparison of SAC descriptors derived from
domain-expert and machine learning assignments will provide a
holistic assessment of our automated detection pipeline’s effec-
tiveness. Initial explorations further confirm the model general-
ity for the case of an alternative non-crystalline support, namely
polymeric carbon nitride (Figures S25 and S26, Supporting In-
formation).

2.2. Metal Center Organization

Following the successful validation of the improved atom de-
tection pipeline, we perform a high-throughput analysis of the

available AC-STEM images of UHD-SACs to gain quantitative
insights into the spatial arrangement of the metal centers. As a
first step, we measure the share of metal centers in multimer
configurations based on analysis of the proximity of neighboring
atoms. According to DFT simulations most metal dimers have in-
termetallic distances of 2.2 Å. Consequently, we consider a metal
center to belong to a multimer if it finds any neighbor at equal
or shorter distances (Figure S27, Supporting Information). The
value obtained serves as an upper bound, since we cannot exclude
small errors due the presence of overlapping atoms and the pro-
jection of the 3D sample into a 2D image (Figure S27, Supporting
Information).

The results reveal a positive correlation between the extent of
multimer formation and the surface atom density (Figure 3a, and
Figures S28a and S29a, Supporting Information). When averag-
ing results obtained from images of the same UHD-SAC sam-
ple, we find that the amount of non-isolated atoms is sometimes
non-negligible, ranging from 0% up to 50% of the total number
of detections. Since trends appear general across different metal
species, we conclude that the threshold for accommodating metal
centers comprising exclusively or predominantly single atoms
(fewer than 5% of atoms in multimers) on the NC host studied is
1 atom nm−2.

Measuring the number of atoms in each multimer reveals that
dimers are the most frequent nuclearity, followed by trimers and
tetramers (Figure 3c). The relative amount of atoms in multi-
mers with nuclearity larger than 2 is typically small, in the range
of 0–10%. The analysis of the number of metal-metal bonds per
atom indicates that although both structures may form, clusters
with a more isotropic structure are less common than chain-like
geometries (Figure S30, Supporting Information). While X-ray
absorption spectroscopy (XAS) characterization is the standard
technique to exclude large metal aggregates, the average nature
of XAS data coupled to the detection limits make the identifica-
tion of low-nuclearity metal species challenging. Our real-space
analysis offers a platform for analyzing metal cluster sizes and
geometrical features and confirms the absence of larger aggre-
gates in the samples under scrutiny. By the same token, the auto-
mated detection and characterization of low-nuclearity catalysts
geometrical arrangements may be instrumental to shed light on
the materials chemistry and structure-property relationships be-
yond the single-atom regime.

Following the characterization of metal center dispersion,
metal atom organization can be further analyzed in terms of the
nearest-neighbor distance distributions (NND) between metal
centers and their mean value (<NND>). Indeed, the latter
has been proposed as a descriptor to rationalize UHD-SACs
reactivity.[10,18] We report this observable for each of the ana-
lyzed AC-STEM images as a function of the atom surface den-
sity (Figure 3c, and Figures S28b and S29i, Supporting Infor-
mation), evidencing an inverse correlation between the mean
nearest-neighbor distances and densities. At a surface density of
1 atom nm−1 the<NND> is 0.50± 0.05 nm. This quantity sharply
decreases to 0.25 ± 0.02 nm at a surface density equal to or larger
than 6 atoms nm−1. By examining the pair distance distribution
functions among all the metal centers, we establish the absence
of short- or long-range ordering in the metal center spatial orga-
nization (Figure S31, Supporting Information). When contrast-
ing trends for systems of different composition, no significant
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Figure 3. a) Percentage of atoms present in multimers and b) mean nearest-neighbor distance between metal centers detected in the automated analysis
of AC-STEM images of various UHD-SACs versus atom density. We verify that similar trends also appear when considering structural descriptors derived
from human-expert assignments (Figures S18 and S19, Supporting Information). The dashed lines show the expected trends from numerical models
assuming a random distribution of points mediated by a neutral (null) interaction. c) Average distribution of multimers of a given nuclearity derived from
the analysis of each UHD-SAC image available, representative examples of multimers are shown inset. d) Distribution of nearest-neighbor distances
and share of atoms in multimers averaged over 100 independent runs for the low- and high-density cases illustrated under the assumption of attractive,
neutral, or repulsive interactions. Inset display example regions of the numerical sampling accounting for attractive, neutral, or repulsive interactions
on the spatial organization of randomly arranged metal centers.

discrepancies appear. This result suggests that, at least for the
set of metal atoms considered, the spatial arrangement of metal
centers on NC supports does not depend strongly on the metal
identity.

2.3. Interactions Governing Metal Center Organization

The quantitative characterization of a statistically relevant num-
ber of images and metal centers provides a platform to interro-
gate the material chemistry of SACs with unprecedented detail.
As a paradigmatic case study, we test the theory that the metal
centers’ spatial arrangements in UHD-SACs are random, a hy-
pothesis occasionally used to model the spatial organization of
metal centers.[38–40] Indeed, when the number of metal atoms is
much lower than the number of coordination sites, random spa-
tial arrangements are likely to be observed if there is no prefer-

ential ordering of the coordination sites or adsorption of metal
centers, which is the case for the NC host. Yet, the validity of
this assumption in samples with high metal content, where metal
atoms occupy almost if not all the coordination sites present and
repulsive or attractive interactions may occur, has remained un-
proven so far.

To this end, we conduct a preliminary numerical analysis (see
Methods) and sample random distributions of points (repre-
senting metal centers) on a 2D grid (representing the support).
Estimation of the share of non-isolated atoms (Figure 3a) in
the 1–8 atom nm−2 surface atom density range, reveals that
the proportion of atoms in low-nuclearity clusters determined
from analysis of the UHD-SACs is consistently lower than that
anticipated by numerical models. Comparative analysis of the
mean nearest-neighbor distance (Figure 3b) shows that the
experimentally observed <NND> is larger than the one corre-
sponding to a purely random model distribution, indicating that

Adv. Mater. 2024, 36, 2307991 2307991 (5 of 11) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 4. a) Dimer formation energy from two adsorbed isolated metal centers in M1/NC (M = Pt, Pd, Ru, Ni) SACs as a function of the coordination
site geometry and metal center species. 3N, 4N, and 6N label square-planar, trigonal, and hexagonal coordination site geometries, respectively. b) De-
pendence of the potential energy of neighboring coordination sites in an NC carrier on their separation. Energies are renormalized with respect to the
one of the system with the furthest arrangement of the two coordination sites. c) Dependence of the potential energy of neighboring square-planar
coordination sites (2 × 4N) in an NC carrier on the number of C atoms separating the nitrogen coordination sites and on the comparative electron
charge density redistribution to the N atoms.

additional factors likely influence the organization. Considera-
tion of two additional scenarios introducing an attractive or a
repulsive term, reveals that such interactions can significantly
affect the atom arrangement (Figure 3d). The nearest-neighbor
distance distributions are centered at and spread over shorter
(attractive interaction) or longer (repulsive interaction) distances
with respect to the neutral case. We conclude that an apparent
repulsive interaction mediates the disordered spatial arrange-
ments of metal centers in UHD-SACs. The relationships that
link surface atom density, <NND>, and the proportion of atoms
in multimers, hold regardless of the metal type. For this reason,
we hypothesize that the interatomic interactions governing the
spatial arrangement of the host coordination sites are key to ra-
tionalize the apparent repulsion between metal centers. We then
resort to DFT simulations to screen energetic trends, geometric
and electronic structure effects, and to assess their role in deter-
mining the apparent repulsion between SACs metal centers.

For a comprehensive analysis, we consider diverse host coordi-
nation site geometries and perform DFT minimization of more
than 800 different configurations, describing the bare NC carrier
with one or multiple coordination sites and one or more metal
atoms adsorbed. To assess the likelihood of observing dimers ex-
perimentally, we probe the formation energy of dimers from the
gas phase (simulating the adsorption process) or from isolated
metal centers adsorbed in a coordination site (simulating forma-
tion due to metal centers mobility). We find that dimerization
is generally less favorable than the formation of isolated metal
centers. Nevertheless, alternative synthetic pathways might lead
to dimer formation (Figure 4a and Figure S32, Supporting Infor-
mation). These configurations would likely form, after all the host
coordination sites coordinate a single metal atom, if a surplus of
metal precursor is available.

For additional insight into the driving forces determining
metal center organization, we probe the energetic landscape of
a nitrogen-doped carbon sheet containing two separate coordina-
tion sites as a function of their distance (Figure 4b and Figures
S33 and S34, Supporting Information). We observe that coordi-
nation sites which share a N─N bond are highly unfavorable,

while an inter-coordination site separation of ≈5 Å corresponds
to the minimum energy configuration. We rationalize energetic
trends in terms of geometric and electronic effects (Figure 4c and
Figure S33, Supporting Information), which are consistent in all
the coordination site geometries considered. Also, we verify that
trends hold when metal centers (Figure S35, Supporting Infor-
mation) or precursors in the form of metal-ligand complexes are
adsorbed (Figure S36, Supporting Information).

From the DFT simulations, we determine that the apparent
repulsion in the spatial organization of metal centers in UHD-
SACs stems from i) the unfavorable formation of multimers com-
pared to isolated metal centers and ii) the energetic preference
for coordination sites in an NC carrier to lie at a distance of
≈5 Å. These driving forces are sizable when the support pos-
sesses abundant coordination sites, and almost all adsorb isolated
metal atoms. Vice versa, they will be vanishingly small when the
synthetic route results in lower surface atom densities. Numeri-
cal models accounting for driving forces biasing the metal center
organization toward disorder arrangements and for the energetic
trends inferred from DFT calculations (see Methods) support this
conclusion (Figure S37, Supporting Information).

2.4. Chemically-Specific Spatial Arrangements

Allowing for the presence of metal centers of multiple chemi-
cal species in SACs gives rise to opportunities for tuning their
properties, but also increases the challenges in their structural
characterization. Here we show how the synergy between super-
vised and unsupervised methods allows to capture the additional
complexity in the description of multimetallic SACs structure,
enabling chemically-specific assignments of elemental labels to
each metal center, provided they display differences in contrast.

As a demonstrative case, we focus on bimetallic Ni1Pd1/NC
samples. A coarse characterization of these sample by means
of energy-dispersive X-ray spectroscopy (EDX) suggested in-
termixing of the two chemical species, yet an atomic and
chemically-specific resolution of the metal centers spatial
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Figure 5. a) AC-STEM image of a bimetallic Ni1Pd1/NC. The inset illustrates the difference in contrast between Ni and Pd atoms b) corresponding
atomic position assignments inferred by the CNN model, where atom chemical identity is predicted by the VAE latent space clustering approach.
c) Breakdown of nearest-neighbor distance distributions when accounting for any possible neighbors (gray) or when considering element-specific pairs
in a multimetallic Ni1Pd1/NC SAC. The dashed line shows statistics for two non-interacting species A and B on a finite-size grid, where A and B have
the same atom density of Ni and Pd, respectively.

organization was not accessible through EDX or electron energy
loss spectroscopy.[12]

For this system, we validate our approach by observing the
good consistency between the atom detection, element labels,
and signal intensity, for assignments made by the machine learn-
ing pipeline and by a human expert (Figure 5a-b, and Figures S8
and S38, Supporting Information). Following the atom detection
and labeling, we compare the nearest-neighbor distributions for
Ni-Ni, Ni-Pd, Pd-Ni, and Pd-Pd metal center pairs with the ones
found for a corresponding random distribution of two species A
and B on a 2D grid (see Methods). As for the monometallic UHD-
SACs, the experimental nearest-neighbor distance distributions
find a peak of similar magnitude to the one predicted for a ran-
dom spatial arrangement with the same total atom density, but
slightly off-shifted to larger distances (Figure 5c, and Figure S39,
Supporting Information). The latter observation represents an
additional manifestation of the repulsive character mediating the
organization of metal centers. The former result indicates the ab-

sence of preferential arrangement of Pd and Ni atoms. This out-
come parallels that of the DFT simulations, where we observe
similar energy trends in the adsorption of Pd or Ni atoms in the
neighborhood of one another (Figure S40, Supporting Informa-
tion). Extending the analysis to a trimetallic Ni1Pd1Pt1/NC sam-
ple, we also verify the absence of chemical ordering in this system
(Figure S41, Supporting Information).

These key studies illustrate how automated metal center de-
tection, endowed with a chemical accuracy, paves the way to the
rigorous determination of potential chemical ordering in the ar-
rangement of metal centers, beyond circumstantial or qualitative
evidence. Furthermore, these characterizations highlight the het-
erogeneity in the adsorption site local environments present in
bi- and multi-metallic SACs. Different numbers of neighbors, of
the same or different chemical species, distributed over a variety
of distances, are consistently observed. This knowledge, in turn,
will play a key role for more precisely rationalizing, modelling,
and predicting SACs catalytic properties.

Adv. Mater. 2024, 36, 2307991 2307991 (7 of 11) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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3. Conclusions and Outlook

This work establishes a new paradigm in characterizing the struc-
ture of SACs, moving away from a qualitative analysis to a sys-
tematic and quantitative description using microscopy, machine-
learning, and numerical methods. We introduced methods for
the automated detection of metal centers in AC-STEM images,
enabling accurate quantification of advanced structural descrip-
tors, such as the fraction of low-nuclearity metal clusters present,
their size and geometries, the proximity and pair-distance distri-
butions of isolated metal centers, with chemical specificity. Ad-
ditionally, systematic DFT screening provided insights into the
geometric and electronic structure contributions governing coor-
dination sites and metal center spatial organization.

By analyzing geometric and electronic structure descriptors,
we establish criteria for achieving surface isolation, and eluci-
date the repulsive interaction that mediates the spatial arrange-
ment of metal centers in UHD-SACs supported on a N-doped car-
bon host. Extending our analysis to bi- (Ni1Pd1/NC) and multi-
(Ni1Pd1Pt1/NC) metallic systems offering quantitative evidence
for the absence of preferential ordering in these systems.

We foresee that the ability to efficiently access an array of de-
scriptors of SAC structures will play a pivotal role in advancing
not only our fundamental understanding of the materials chem-
istry of SACs but also in facilitating the inference and engineer-
ing structure-property relationships. Our characterization high-
lights the heterogeneity in the UHD-SACs metal centers local
environments, a crucial consideration when rationalizing or pre-
dicting their catalytic properties.

While challenges persist in systematic high-quality imaging of
SACs, we anticipate that ongoing developments and the synergy
between automated calibration, image acquisition, and atom de-
tection will pave the way for advances. Furthermore, unbiased
and automated methods, combined with collaborative commu-
nity efforts and benchmarks, will improve characterization stan-
dards and enable the analysis of complex scenarios. These in-
clude tridimensional detection of metal centers distributed over
3D host materials. Finally, as this work provides insights into
the spatial arrangement of metal centers, we foresee the devel-
opment of tailored machine learning algorithms to extract atom-
istic details of metal-coordination site motifs from microscopy or
spectroscopy.

4. Experimental Section
Catalyst Synthesis: M1/NC UHD-SACs (M1 = Ni, Ru, Pd, Pt or com-

binations thereof) presented in this study were prepared following a two-
step annealing method previously described,[12] using an NC carrier de-
rived from carbonized ZIF-8. The ZIF-8 initial template ensured high N-
content and surface area, which in turn lead to the formation many coor-
dination sites that could host a large amount of isolated metal atoms. The
two-step annealing protocol further provided a robust route toward metal
center isolation also at high metal loadings. For the multimetallic systems,
the metal precursors were deposited on the carrier simultaneously. The
corresponding metal contents are indicated in Table S2, Supporting Infor-
mation.

AC-STEM imaging: An aberration-corrected JEOL ARM-200F system
equipped with a cold field emission gun was exploited to perform the
SAC imaging. All images were collected with a half-angle range between
80 and 280 mrad, while the convergence semi-angle was fixed at circa

30 mrad. The microscope acceleration voltages were adjusted between
80 and 200 kV for optimal contrast (see Figure S2b, Supporting Informa-
tion, for parameter summary). For reference, the authors recall that the
intensity of the signal in AC-STEM measurement was approximately cor-
related with the square of the atomic number Z of the probed atoms. De-
pending on the specific sample type and damage mechanisms, prolonged
acquisition times may induce structural alterations and charging effects,
which can lead to image artifacts and unrepresentative observations.

Atomic positions in all images were assigned manually and revised
three times, by considering independent visualizations and zoom-ins;
these positions served as “ground truths” for the machine learning model
benchmarking. More than 8000 metal centers and corresponding coordi-
nates were identified by the human-expert during this process. The authors
recall here that visual perception of the human is affected by numerous
factors and detection criteria may be non-trivially expressed in mathemat-
ical expressions. Partial disagreement between the automated atom de-
tection and the labels proposed by a human-expert is then tolerated, since
inconsistent assignments might occur also among domain experts. The
segmentation of the sample area from the background was performed by
thresholding, where the value was optimized for each image.

Automated Atom Detection: As the cornerstone in the detection of
metal centers a supervised machine learning model was built to classify
whether crops of a determined size contain a metal atom or not. This de-
sign choice was motivated by the need of i) avoiding overfitting to train-
ing images, since a model might memorize the locations of the atoms in
each image, rather than learning how to detect each distinct atom therein,
ii) ensuring transferability of the process to new data of different sizes
and resolutions, iii) requiring only visual patterns of its neighborhood to
detect metal centers, and iv) simplifying the optimization criteria of the
task to those of traditional classification, which is well studied. The train-
ing workflow consisted of 5 steps (Figure S2a, Supporting Information).
First, a set of training images was acquired and considered. Second, these
images were analyzed by a human-expert, whose task is to annotate all
metal center positions, which was considered as ground truths. Third, an
image preprocessing was applied to standardize image intensities. This
consisted of an intensity clipping at the 99.9 percentile, followed by back-
ground subtraction and intensity normalization in the 0 to 1 range.

The final preliminary step before training the model consisted in se-
lecting the training points. Positive training crops were taken by randomly
selecting 90% of the ground truth positions previously annotated by the
human-expert. An equal amount of negative examples was also consid-
ered. These comprise either crops uniformly sampled in any region of the
AC-STEM image 10 px away from any metal atom (75% of the total number
of negative crops), or negative examples sampled from the neighborhood
(exactly 18 px away in a random direction) of a metal atom (25% of the to-
tal number of negative crops). These last crops were added to the training
data to increase the difficulty of the task, as classifying atoms against ran-
dom parts of the image presents a less challenging case. Implementing a
contrastive-like sampling of the negative crops improved the sharpness of
areas around the predicted atoms and decreased unwanted blurriness in
the prediction maps (Figure S6, Supporting Information).

Following these preliminary steps, a supervised model was trained on
the task of classifying whether 21 × 21 px2 crops find a metal atom at
their center. Building on previous reports, the supervised model leveraged
a CNN architecture[41] comprising three convolutional layers, followed by
three fully connected layers (Table S3, Supporting Information).

During inference, the CNN model was exploited on newly acquired im-
ages, which were appropriately pre-processed, to output for each pixel in
the image the probability that a metal center was located at that particular
position. To transform this map into a set of coordinates, a discretization
step was required. For most cases, it was enough to discretize the proba-
bilities with a threshold (0.8), and for each of the connected components,
associate the bounding box center to the location coordinate of a single
atom. However, in the case of multimer structures, the model may merge
together in a single large area detections associated with multiple atoms.
To better identify these instances, a Gaussian mixture model (GMM) was
employed when a region exceeds a size of 200 px2. The CNN output
probability distributions are sampled numerically, and a GMM is used to

Adv. Mater. 2024, 36, 2307991 2307991 (8 of 11) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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determine the number and position of 2D Gaussians, which best fit the
distribution (Figure S7, Supporting Information). The GMM centroids lo-
cations are then used as the atom coordinates. A modified Bayesian In-
formation Criterion score is adopted, to accurately tag metal centers posi-
tions by disfavoring i) the fit of an unphysically large number of too close
metal centers, ii) the fit of metal centers with unphysically large extensions.

If the sample under scrutiny was known to contain two or multiple
chemical species, clustering and representation learning methods were
adopted to automatically assign the elemental label to each metal cen-
ter in an unsupervised fashion (Figure S8, Supporting Information). After
each metal center was identified through the CNN + GMM approach, 21
× 21 px2 crops centered at each metal center coordinate were considered.
Next, the crops were fed to a variational autoencoder (VAE),[42] which fea-
tured rotational equivariance[43] and was tasked to re-generate these im-
ages (Table S4, Supporting Information). As a by-product of this learning
exercise, the VAE evolved its latent space to encode a sensible and reduced
dimensionality representation of each crop.

A GMM was used to identify clusters in the VAE latent space and distin-
guish atoms of different chemical species. Top-5 percentile median inten-
sity statistics over crops in each cluster, were used to rank the cluster in
terms of contrast, and, in turn, assign the elemental label accordingly. In-
deed, for identical measurement conditions, the signal intensity was pro-
portional to the square root of the element atomic number. For the case of
Pd and Ni, for example, Pd atoms were the one with the strongest contrast,
and Ni the ones with the lesser. In the Pt-Pd-Ni case, Pt atoms were instead
the ones displaying the highest contrast, Ni the ones with the weakest, and
Pd atoms were assigned to the cluster with the intermediate median in-
tensity. In the current approach, a new VAE model was trained for each
image being analyzed. As a potential extension, the use of a pre-trained
VAE that was fine-tuned for each image can be foreseen to accelerate the
atom label assignment process.

Numerical Models and Descriptors of Spatial Arrangement: This work
worked under the assumption that the surfaces of the UHD-SACs were
predominantly flat and estimate atom densities and metal center dis-
tances projected in two dimensions. This assumption was motivated by
the geometry and chemistry of the carrier, which was not expected to dis-
play large corrugations. On one hand, the densities and distances reported
represent a lower bound with respect to the 3D one, on the other hand it
was verified through DFT models (Figure S27, Supporting Information)
that projection errors are low (10−2 Å).

From the list of metal center coordinates, nearest-neighbor distances
were evaluated from the full set of all pair distances. The mean nearest-
neighbor distance was, by definition, evaluated by averaging over all the
nearest-neighbor distances. The number of atoms, which belong to a mul-
timer (i.e., dimer or other low-nuclearity clusters), was estimated by enu-
merating the atoms that find a nearest-neighbor at a distance of 2.2 Å or
less.

To analyze proximity statistics in random distributions mediated by at-
tractive, neutral, or repulsive forces in a finite-size 2D surface, in-house
python scripts were developed. Random sampling was enforced by extract-
ing coordinates on a 10 × 10 grid through the random uniform generator
implemented in SciPy.[44] When sampling multi-species distribution, the
same sampling strategy was adopted, by repeating the sampling for each
species under consideration. Statistics were drawn from at least 40 inde-
pendent runs.

The mediation of an attractive term, on top of the random distribution
was modeled by first sampling an arbitrary number of coordinates on the
10 × 10 grid, and, in second instance, sampling an additional number of
coordinates in a 1 × 1 area centered at each of the coordinates selected in
the first stage. Depending on the choice of the first and second amounts
of coordinates sampled the attractive term may result in proximity statis-
tics which display an extreme or small deviation from the ones of a ran-
dom case. Trivially, if no coordinates were picked up during this second
sampling phase, the sampling maps back to the purely random case. The
example regions in Figure 3d were extracted from sampling including re-
spectively 100 or 400 points for the low and high density case, where an
initial set of 50 points was first sampled for the high-density case.

To simulate the presence of a repulsive term affecting the random dis-
tribution, an iterative sampling was performed. First a coordinate was cho-
sen at random. A successive coordinate was proposed at random, and was
selected if R ∈ {0,1} + C < NN(d), where R labels a random number be-
tween 0 and 1, NN(d) is the distance which would separate the proposed
point to its nearest neighbor, and C is an arbitrary value, which biases the
sampling of points so that only distances above the latter are accepted.
The examples in Figure 3d corresponded to statistics gathered for 100 and
400 points and C = 0.2.

To develop a numerical model which encodes both contribution to-
ward disordered arrangements, as well as the energetic trends observed
in the DFT simulations, this work again resorted to an iterative sampling
scheme. After the first two coordinates were chosen at random, a probabil-
ity field was evaluated by multiplying one term, which biased the nearest-
neighbor distance distribution to match a Rayleigh distribution, with an-
other one, which approximated the population distribution inferred from
DFT energetics. The next points were then chosen randomly, according to
the weighted probability field, the latter was then also updated to account
for the presence of the newly selected point.

DFT Simulations: DFT simulations were performed via the Vienna ab
initio simulation Package (VASP 5.4.4).[45] Generalized gradient approx-
imation with the Perdew‑Burke‑Ernzerhof (GGA‑PBE)[46] functional was
used to evaluate the exchange-correlation interactions. Dispersion contri-
butions (D3)[47] were accounted for and spin polarization was allowed for
single-atom simulations. Core electrons were described by projector aug-
mented waves,[48] while valence mono-electronic states were expanded in
plane waves with cut‑off energy of 450 eV. For all the investigated systems,
structures were relaxed using convergence criteria of 10−4 and 10−5 eV for
the ionic and electronic steps, respectively.

With a focus on the formation energy of dimers adsorbed on an NC
support, this work considered a monolayer 6 × 9 slab of graphitic carbon
(22.14 Å × 25.56 Å) with a gamma-centered grid of 2 × 1 × 2 k-point
grid, and tri‑pyridinic (3N, here referred to as 3 × N6), tetra‑pyridinic (4N,
here referred to as 4 × N6), and hexa-pyridinic (6N, here referred to as 6
× N6) coordination sites. These motifs were chosen as they provide rep-
resentative and varied examples of trigonal, square-planar, and hexagonal
defects (Note S1, Supporting Information). To form coordination sites, N
atoms were introduced in the carbon sheet by replacing C atoms and sat-
urating the valence. Representative configurations for these models were
displayed in Figure 1b and Figures S27, S33, and S34, Supporting Infor-
mation.

To analyze the potential energy and electronic structure of NC configu-
rations and investigate the driving forces governing proximity effects be-
tween coordination sites, this work modeled a monolayer 6 × 9 slab of
graphitic carbon (22.14 Å × 25.56 Å) with a gamma-centered grid of 2 × 1
× 2 k-point grid and consider tri‑pyridinic (3 × N6) and tetra‑pyridinic (4 ×
N6) defects, respectively acting as representatives of trigonal and square-
planar geometries. Similar to the dimer case, carbon atoms were substi-
tuted with nitrogen ones and saturating the valence. This work considered
three sets of NC sheets, which combine 3×N6 and/or 4×N6 coordination
sites, namely, i) 3 × N6-3 × N6, ii) 4 × N6-4 × N6, and iii) 3 × N6-4 × N6.
Simulations were performed solely on symmetry-inequivalent structures.
Example configurations were reported in Figure 4b for reference. To gen-
erate sets of configurations with two coordination sites, first the authors
considered one, containing a single coordination site, which acted as the
seed structure. Next, a second coordination site was constructed with dis-
tances between coordination sites ranging from the minimum possible (3
to 4 Å depending on the coordination site geometry) to 9 Å.

Bader charge analysis was performed on the electronic charge density
distributions of all the bare NC structures.[49] To assess in a quantitative
and interpretable fashion the changes in the electronic charge density as
a function of the distance between the two coordination sites, the au-
thors considered the descriptor <B>, which was evaluated by averaging
the Bader charge of the nitrogen atoms in the seed coordination site. This
work then reported on the difference in charge density between <B> and
the charge density of nitrogen atoms in the minimum energy crystalline
phase.

Adv. Mater. 2024, 36, 2307991 2307991 (9 of 11) © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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While GGA-PBE functional was a well-established and informative mod-
eling choice, it was acknowledged that the electron density distribution
may exhibit over delocalization in these simulations. To address this, an
analysis was performed on a select but representative set of structures ac-
counting for a Hubbard U term.[50] Since selecting U values is non-trivial
for NC supports, a range of different strengths were evaluated.[51,52] These
findings (Figure S34a, Supporting Information) indicated that there was
no qualitative difference between the results obtained from GGA-PBE cal-
culations and those including a U term. This reinforces the robustness of
the conclusions drawn from the GGA-PBE approach.

To investigate the adsorption trends of the metals under study at dif-
ferent distances, Ni, Pd, Pt, and Ru single atoms were placed in the center
of one (M/4 × N6-4 × N6) or both (M/4 × N6-M/4 × N6) coordination
sites for the 4 × N6-4 × N6 subset. Example configurations are reported
in Figures S34, S36, and S40, Supporting Information.

To assess the adsorption energy of Ni or Pd metal atoms, as a function
of the presence and distance of Ni or Pd metal atoms hosted at a neighbor-
ing coordination site, the Eint quantity was measured. For square-planar
and trigonal coordination sites Eint is calculated as:

Eint,sq = E (M∕4 × N6 − M∕4 × N6) + E (4 × N6 − 4 × N6) −

2E (M∕4 × N6 − 4 × N6) (1)

Eint,tr = E (M∕3 × N6 − M∕3 × N6) + E (3 × N6 − 3 × N6) −

2E (M∕3 × N6 − 3 × N6) (2)

For the mixed coordination sites, Eint is equal to:

Eint,mix = E (M∕3 × N6 − M∕4 × N6) + E (3 × N6 − 4 × N6) −

E (M∕3 × N6 − 4 × N6) − E (3 × N6 − M∕4 × N6) (3)

In the presence of two different chemical species, two possible Eint are
distinguished:

EAB
int,mix = E

(
MA∕3 × N6 − MB∕4 × N6

)
+ E (3 × N6 − 4 × N6) −

E
(
MA∕3 × N6 − 4 × N6

)
− E

(
3 × N6 − MB∕4 × N6

)
(4)

EBA
int,mix = E

(
MB∕3 × N6 − MA∕4 × N6

)
+ E (3 × N6 − 4 × N6) −

E
(
MB∕3 × N6 − 4 × N6

)
− E

(
3 × N6 − MA∕4 × N6

)
(5)

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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