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Modelling and simulation of metal additive manufacturing processes with
particle methods: A review
Mohamadreza Afrasiabi a,b and Markus Bambach b

aComputational Manufacturing Group, Inspire AG, Zurich, Switzerland; bAdvanced Manufacturing Lab, ETH Zurich, Zurich, Switzerland

ABSTRACT
The critical role that numerical simulation plays in additive manufacturing has stimulated research
on the effectiveness and potential applications of mesh-free, particle-based discretisation
techniques. These methods excel at handling fluid flows and are viable alternatives to the
mesh-based techniques typically used in commercial simulation software. In this paper, we
review recent advances in developing computational models for metal additive manufacturing
(MAM) processes using particle methods, in the theoretical understanding of the fundamental
mechanisms that control such processes at the powder (or melt pool) scale, and in the
predictability of physics-based modelling approaches. The paper explores the applicability and
performance of particle-based methods in simulating powder bed fusion, directed energy
deposition, and binder jetting processes. Since the progress of MAM relies on systematic
material-process-structure realisations which are often impossible to sense or observe
experimentally, developing efficient particle-based and multiscale simulation tools can be
essential to achieving this objective through in-situ process control and optimisation.
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1. Introduction

With more companies embracing Industry 4.0 world-
wide, additive manufacturing (AM) and its Digital Twin
representations will have an ever-expanding role in the
research and development sector. American Society for
Testing and Materials (ASTM) defines AM as one of the
three major manufacturing techniques used to
produce metallic or non-metallic components from an
input CAD file via adding feedstock material layer-by-
layer [1, 2]. Processes in metal AM, henceforth MAM,
are classified according to the source of the energy (i.e.
laser, electron beam, or electric arc) and the form of
the metallic material (i.e. powder or wire). Figure 1
shows a schematic illustration of four MAM modalities,
among which Powder Bed Fusion (PBF) and Direct
Energy Deposition (DED) are more common [3, 4].

Many of the world’s largest manufacturing compa-
nies, including Toyota, General Electric, Airbus, and
Boeing, have recently begun using MAM as integral
parts of their business and product developments [5–
7]. As a result of this momentum, the MAM market size
has grown substantially within the past 9–10 years.
The number of metal 3D printers sold in 2013 was
about 300 worldwide, according to [8], which increased

to above 1800 machines in 2018. Despite this over-
whelming investment and ever-growing share of inter-
est in MAM, these technologies are still far from
widespread industrial adoption. Uncertainty about the
quality of the final product is perhaps the most critical
and serious hurdle to this technology transition - see
[9, 10] for more insights. The key challenges are:

. Over 100 parameters can affect the process and fabri-
cation quality [11].

. Physical phenomena governing the build process are
complex and cover a large range of time and length
scales.

. Formation of defects is generally inevitable due to our
limited knowledge about the process details.

Relying on experimental trial-and-error procedures to
find parameters for optimum part quality is an obvious
but costly and, in many cases, impractical or impossible
solution. Numerical modelling of MAM processes is a
more flexible and efficient alternative that can help
resolve these challenges. The immediate goals are to
understand the sensitivity of part properties to process
parameters and predict the thermo-mechanical
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behaviour of the final part to be able to choose optimal
processing parameters without conducting a series of
trial-and-error experiments.

Developing computational models for MAM is an
active research area being pursued intensively by numer-
ous institutions. The target application of these models
varies from microstructure evolution [12, 13] and melt
pool behaviour [14, 15] to residual stresses [16, 17] and
crack propagation [18], depending on their study scale
and the physics they implement. The quantity and diver-
sity of MAM simulation works are overwhelming, which
has led to a steady stream of review articles on this
topic published within the past few years. Although
mainly centred around their own developments, King
et al. [4, 9] were perhaps the first who classified and
reviewed MAM simulation challenges systematically and
described the multiscale modelling strategy in some
detail. About a year later, Markl and Körner [19] published
a comprehensive review that elaborated different model-
ling approaches for PBF processes without delving into
the mathematical background and equation systems. A
new model classification was suggested in a 2017
review paper by Meier et al. [20], where overall MAM
simulations were divided into micro-, meso-, and macro-
scale studies based on their length scale. The vast
majority of relevant works, including the present review
paper, follow this categorical definition. A few other
surveys focussing on the general aspects of MAM model-
ling [21, 22], the application of FEM (finite element
method) to macroscopic PBF analyses [23], and different
multiphysics modelling strategies across scales [24]
were also carried out between 2017 and 2021. More
recently, Li et al. [25] presented coverage of models for
the numerical simulation of powder recoating and melt
pool dynamics in PBF.

Almost all existing MAM reviews, including the refer-
ences given above, provide useful information by present-
ing a summary and catalog of published works that
categorise different modelling strategies and simulation
activities. For instance, Wei et al. [22, 24] provided a large
number of handy tables and literature listings (e.g. 77
figures and over 580 references cited only in [22]) that
covers a complete overview of the whole subject. In this
sense, the reviews of Lou and Zhao [23] and Cook and
Murphy [27] appear to be the only papers devoted to
either a particular type of numerical technique (i.e. FEM)
or a specific problem in MAM (i.e. melt pool behaviour)
with sufficient technical details, respectively.

Overall, extensive review articles seem to have followed
the rapid pace of MAMmodel developments and comput-
ing power advancements. Nonetheless, there is currently a
lack of reviews on the application of particle-based
numerical methods in MAM simulations. Therefore, it is
necessary to provide a comprehensive overview of the
current state of the art in this area, identify the technical
challenges and opportunities in greater depth, and pave
the way for future research in this exciting field. Our
review aims to do just that–to research new improvement
potentials for developing more efficient particle-based
simulation tools and put them onto the path to compete
with commercial codes in solving real-world MAM pro-
blems. We set our sights on modelling the powder-
based MAM processes, namely PFB and DED (Figure 2),
using mesh-free particle methods, focussing on their tech-
nical merits and drawbacks when applied to the multi-
phase thermal-fluid flow problems encountered in MAM
at the powder scale. These two processes share fundamen-
tal similarities in their modelling aspects and are more
widely used than other MAM processes like binder
jetting (BJ), thus chosen for the critical review here. For

Figure 1. Additive manufacturing processes for metals and their basic features.
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completeness, however, a brief mention of current BJ
simulation approaches is given without detailing their
theoretical background and modelling requirements.

We structure the rest of this manuscript as follows. In
Section 2, the physical background and governing
equations are described in some detail necessary to
understand the requirements and challenges for model-
ling MAM processes. Section 3 gives a brief introduction
of the particle-based techniques commonly used in
MAM, reviews the published works employing these
methods, and elaborates on their simulation capabilities
and limitations. In Section 4, limitations of current
approaches and potential pathways for further develop-
ments are discussed critically. We close the paper by out-
lining the key findings of this survey and summarising
the most salient opportunities for further research direc-
tions in Section 5.

2. MAM simulation theory

The physical phenomena during MAM occur at a wide
range of time and length scales. Fabrication and heat
treatment can easily take minutes or hours, while the
laser-material interaction time is usually not longer
than several micro- or milliseconds. Residual stress
analysis might be carried out on fabricated components
as large as a few meters, whereas the laser penetration

depth is within the range of nanometers. Realizing the
interplay between these complex effects warrants multi-
scale modelling. Nevertheless, due to the extreme com-
putational demands of multiscale modelling
approaches, it is practical (hence more common) to
isolate the effects at an individual scale and utilise an
efficient method for modelling them at that specific
scale. For instance, FEM is currently considered the stan-
dard approach for analysing the residual stresses and
mechanical deformations at the scale of the part–see
[19, 24]. The illustration in Figure 3 gives a graphical
summary of these descriptions and their consequent
mechanisms in a powder-based MAM example, repre-
senting the main physical phenomena to be addressed
by a high-fidelity numerical modelling approach.

2.1. Underlying physics and governing equations

The local PBF and DED processes can be viewed as an
extreme thermally-driven material transformation
problem with complex boundary conditions, as illus-
trated in Figure 3 at the powder scale. Formulation of
this initial boundary value problem begins with an
expression to describe the interaction between the
external heat source (i.e. laser or electron beam) and
material. The energy is partially absorbed by the material
and transferred via conduction, convection, and

Figure 2. Schematic representation of a PBF and a co-axial DED process. Courtesy of Dr. Florian Wirth for the experimental images
taken at the Institute of Machine Tools & Manufacturing at ETH Zurich [26].

VIRTUAL AND PHYSICAL PROTOTYPING 3



radiation. Parts of the energy not absorbed by the
material are reflected at the surface and returned to
the environment. As the beam traverses, it provides
sufficient heat to melt the powder particles along the
scanning path and creates a liquid melt pool that even-
tually solidifies. The input energy is typically high
enough to vaporise the uppermost layer and generate
a gas flow above the liquid surface.

As seen in Figure 3, the melt pool behaviour is affected
by numerous thermo-hydrodynamic effects such as heat
transfer, surface tension, viscosity, wetting, Marangoni
convection, and recoil pressure. Rapid phase changes
occur at the solid-liquid interface, giving rise to the refor-
mation of grain boundaries as a function of the cooling
rate [28]. As mentioned by Gu et al. [29], mechanical
failure like cracking (Figure 3) can occur as a result of sig-
nificant thermal/residual stresses and extreme cooling
rates on the order of 103−108 K/s.

This process description clarifies why modelling PBF
and DED with high fidelity necessitates a multi-phase
multi-physics approach that incorporates various met-
allurgical, thermal, and mechanical effects. In what
follows, we briefly revisit the fundamental balance
equations (i.e. mass, momentum, and energy)

governing the mesoscopic physics of the process as a
prerequisite to numerical modelling. The microscopic
issues, however, are excluded from the discussion as
mesoscale simulation approaches do not take them
into account.

2.1.1. Mass and momentum conservation
To represent the melt pool dynamics in MAM, it is usually
assumed that the liquid is incompressible and the liquid
pool is in a laminar flow regime. As a result of this sim-
plification, the standard Navier–Stokes equations for
mass and momentum conservation in a Lagrangian
frame arrive at the following PDEs:

∂r

∂t
= −r∇ · u (1)

r
∂v
∂t

= −∇p+ m∇2u+ rg+ b (2)

where ∇ · u = 0 maintains the incompressibility con-
dition, ρ is the density, u the velocity vector, p the
pressure, μ the dynamic (shear) viscosity, g the accelera-
tion due to gravity, and b any other volumetric body
forces. To complete the momentum balance in

Figure 3. Different scales of study in modelling MAM processes (top) and the fundamental physical phenomena occurring in and
around the melt pool region at the scale of the powder (bottom).
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Equation (2), the following effects need to be taken into
account.

. Surface tension
Surface tension and thermo-capillary forces, including
the Marangoni convection, are exerted on the melt
surface as a traction boundary condition. These
forces are critical elements for modelling MAM as
they significantly affect the geometry of the melt
pool. See [30] for the experimental evidence. Depend-
ing on the numerical technique employed for model-
ling MAM, various mathematical forms exist for
expressing the contribution of surface tension to
the momentum balance. The mathematical form
expressed below is the most popular/fundamental
one found in the literature. Following a continuum
surface force (CSF) formulation proposed by Brackbill
et al. [31], the normal and tangential surface tension
forces can be transformed into a volume force rep-
resentation and expressed as:

Fst = skn+ ds
dT

∇sT
( )

dint (3)

where σ is the surface tension coefficient assumed to
be a function of temperature only, κ the surface cur-
vature, n the interface unit normal, ∇s the tangential
surface gradient, and dint the interface delta function
which peaks at the interface and decays away from it.
The term ds/dT is also known as the thermo-capillary
coefficient. With this approach, the surface tension
term, Fst , does not attribute to a Neumann boundary
condition and, instead, contributes to the momentum
balance Equation (2) via a body force term b. In MAM,
large normal and tangential surface tension forces are
encountered due to the high values of σ and ds/dT
for liquid metals, as well as extreme curvatures κ at
the melt interface.

. Wetting
The wetting ability of metals is key to obtaining a
smooth surface for stable melt pools. Since processed
layers in MAM are solid, co-existence of three fluid
phases in mutual contact can be simplified to planar
geometry, where one of the fluid phases is replaced

by a flat rigid surface. See Figure 4. This simplification
is known as Young’s relation [32], which allows us to
rewrite the net force equilibrium equation as:

gSL + gLG cos u− gSG = 0 (4)

in which θ is the equilibrium contact angle and gab
the surface tension component with its ab subscript
indicating the solid (S), liquid (L), and gas (G)
phases. Consequently, the magnitude of the wetting
force at the gas-liquid-solid interface, i.e. triple line,
is calculated from:

Fw = gLG cos u− cosũ
( )

(5)

where ũdenotes the contact angle at thenon-equilibrium
state, inferring that the equilibrium is reached when
ũ = u. Accurate calculation of the contact angle at
the triple line is essential to apply Fw in the correct
direction, which typically requires special numerical
treatments.

. Recoil pressure
The recoil pressure induced by the evaporation process
occurring at the surface of a melt pool is the dominant
mechanism of keyhole generation during laser-metal
processing. Semak and Matsunawa [33] demonstrated
this behaviour by performing a theoretical analysis.
Klassen et al. [34] provided detailed descriptions of
recoil pressure, which, although presented for electron
beam melting applications, set the basis for (re-)adop-
tion in other similar processes. In order to account for
this substantial effect within the numerical modelling
framework, an additional force needs to be included
in the balance of momentum as the contribution of
the recoil pressure term, p̂(T), through:

p̂(T) = j Pa exp −HvMm

R
1
T
− 1

Tv

( )[ ]
(6)

wherein j , 1 is the recoil pressure factor, Pa the
ambient pressure, Hv the enthalpy of evaporation, Mm

the molar weight, R the molar gas constant, and Tv
the boiling temperature. Previous studies of MAM
have frequently taken 0.53 , j , 0.57 for the recoil
pressure factor, e.g. [30, 35, 36]. Since the recoil force
is perpendicular to the surface of the vaporised metal,

Figure 4. Schematic of Young’s relation: simplification to planar geometry in wetting surfaces.
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this term is applied to the discretization nodes located
on the melt interface during the numerical implemen-
tation process.

2.1.2. Energy conservation
MAM processes are essentially a thermally-driven
problem. Therefore, it makes sense to express the
system’s energy conservation in terms of heat transfer.
A complete representation of the thermal field contains
all the external thermal powers, including the mechan-
ical heating power. Since the spherical component of
the stress power for incompressible materials is zero,
the mechanical heating power consists only of a
viscous heating term induced by the shear stress t.
The final heat transfer PDE to be solved becomes:

rcp
∂T
∂t

= t:∇v + ∇ · (k∇T)+ Qs − Ql (7)

where cp is the specific heat capacity, k the thermal con-
ductivity, and Qs the input thermal energy generated by
a laser (or electron) beam, which can be expressed by:

Qs = a I(r, z) (8)

if α indicates the absorption coefficient and I the inten-
sity. In most cases, the intensity of the laser in the
radial direction is computed from a normalised Gaussian
distribution as:

I(r) = 2PL
pR2

exp −2
r2

R2

( )
(9)

with PL indicating the laser power and R the laser beam
radius. Several models with different levels of complexity
exist to describe the correlation between the laser inten-
sity and the penetration depth z. A popular choice is to
exponentially decrease the absorptivity when the pen-
etration depth increases by following the Beer-Lambert
attenuation law:

I(z) = b exp (− bz)
1− exp (− bL)[ ] (10)

where L is the powder layer thickness and β the extinc-
tion coefficient, often taken as a constant value accord-
ing to [37]. The term Ql in Equation (7) is the
environmental heat loss via radiation and convection
given by:

Ql = hc (Ts − T1)+ es(T4s − T41)
[ ]

(11)

in which hc is the heat convection coefficient, ε the
emissivity factor, σ the Stefan–Boltzmann constant,
and Ts and T1 are the surface and background
temperatures.

2.1.3. Phase change
During the melting/re-solidification process in MAM, a sig-
nificant amount of energy is released/absorbed as the sub-
stance undergoes a change of state. This energy is also
known as the latent heat associated with the material
phase change. Most commonly, the phase change calcu-
lation is performed by assigning liquidus (Tl) and solidus
(Ts) temperatures to the metal and considering a linear
variation of liquid fraction F(T) between 0 and 1 as:

F(T) =
0 T , Ts
T−Ts
TL−Ts

Ts ≤ T ≤ Tl

1 Tl , T

⎧⎪⎨
⎪⎩ (12)

Similarly, as shown by Hashemi and Sliepcevich [38], the
latent heat effect can be taken into account by modifying
the heat capacity coefficient and calculating an apparent
temperature-dependent heat capacity of the form:

cp(T) =
cSp T , Tm − dT

cSp+cLp
2 + L

dT Tm − dT
2 , T , Tm + dT

2

cLp Tm + dT , T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(13)

where cSp and cLp are the solid and liquid heat capacities, Tm
is the melting temperature, L the latent heat of melting,
and dT the size of a phase-change temperature
bandwidth.

2.2. Modelling requirements and challenges

Numerical simulation of MAM processes is intertwined
with a number of challenging tasks that can be cate-
gorised into the following groups:

(1) Material data
(2) Powder behaviour
(3) Heat source and laser-material interaction
(4) Melt pool dynamics
(5) Computational cost

While the importance and intensity of these groups
for the overall modelling framework may vary with the
study scale and required outputs, this classification is
deemed general but inclusive enough for mesoscale
MAM analyses.

2.2.1. Reliable material data
A consistent set of input material data is a necessary pre-
requisite for any high-fidelity materials processing simu-
lation. Due to the intricate multi-physics nature of MAM
processes, the numerical models require numerous
input parameters, such as material viscosity, density,

6 M. AFRASIABI AND M. BAMBACH



thermal conductivity, heat capacity, and latent heat,
most of which feature a non-negligible temperature
dependence, as well as a dependence on the kinetics
of the solidification and phase transformation processes,
which determine the phases and their composition that
are present. Additional parameters, such as emissivity or
absorptivity, or even the powder particle geometry, may
also be required for model generation. Ideally, these
data need to be measured directly from the exper-
iments. Heat capacity can be determined using fast
differential scanning calorimetry (DSC) in a realistic
manner for PBF, but for most other parameters, lab
equipment is unable to mimic the actual MAM proces-
sing conditions. For example, thermodynamic databases
rely on Gibbs free enthalpies and can provide excellent
material data under equilibrium conditions. However,
both PBF and DED are far from thermodynamic equili-
brium and it is unknown whether CALPHAD (i.e. CALcu-
lation of PHAse Diagrams introduced by Larry Kaufman
[39]) data is reliable and useful.

In most cases, the material properties are collected
from other references and provided as simulation
inputs. In application to a 3D DEM (discrete element
method) model of selective laser sintering (SLS), Ganeri-
wala and Zohdi [40] set the material properties for 316 L
stainless steel as a function of temperature and phase.
The lookup table provided in this reference was taken
from [41]. In another setup assuming phase- and temp-
erature-dependent material properties, Russell et al. [42]
chose the reference density equations from Mills [43]
and the surface tension coefficient from Sahoo et al.
[44] while taking some other thermo-physical properties
from He et al. [45]. In more complex applications, the
number of references for material data might be even
more excessive. For instance, in the work of Wessels
et al. [46], followed by its first author’s doctoral disser-
tation in [47], there are a dozen different references
used for different material properties. Indicatively: the
latent heat of melting from [48] while the latent heat of
vaporisation from [40]; the temperature-dependent
thermal expansion modulus from [49]; viscosity of
molten metal from [45]; surface tension coefficient [30];
the initial yield stress from [50]; Young’s modulus based
on a linear approximation of the data given by Hodge
et al. [51]. In this way, the set of input material data can
hardly be considered consistent.

Collecting material data from other work is, in fact, a
worrisome uncertainty in much of the simulation litera-
ture because there is no guarantee that the experimental
data assumed from other work match the conditions and
properties of the fabricated materials at hand. King et al.
[9] underline this issue by stating: ‘Other variables in the
simulations, such as the material properties, may not be

known precisely, or maybe known within a certain range’.
One way to resolve this problem is to conduct either
direct measurements or inverse analysis combined with
direct measurements. A more detailed argument follows.

Instead of reading material data from other refer-
ences, a physically sound (thus more realistic) approach
is to identify these parameters in-situ when possible.
Direct measurements then need to be conducted since
the conditions of PBF cannot easily be mimicked by
lab-scale material characterisation techniques, such as
dilatometer and laser flash experiments. Although very
limited in number, a few researchers have already
attempted to use their self-measured data as inputs of
the MAM simulation. Examples include, but are not
limited to, the effective conductivity of the powder
bed for two types of Ti6Al4V alloys presented by Neira
Arce [52], and the FEM-based PBF simulation of
Andreotta et al. [53] with in-situ thermal conductivity
measurements of Inconel 718. The recent AM review
paper [27] compiles a list of relevant attempts, indicating
that the reported material property in almost all cases is
just the heat conductivity of the powder bed. Besides
direct measurement, an indirect approach for character-
ising material parameters is also possible by performing
an inverse analysis of the experimental data. Neither an
inverse numerical-experimental approach nor a direct
measurement of material data has been used in par-
ticle-based MAM simulations as of yet.

2.2.2. Powder behaviour
Powder deposition in PBF and DED is a crucial com-
ponent of the process, as it supplies the material from
which the 3D object is built. There are two main
approaches for modelling powder behaviour during
the deposition process:

. The continuum approach. It treats the powder bed as
a homogeneous continuum, where the powder par-
ticles are treated as a continuous medium. This
approach is often used for simulations that focus on
macroscopic and part-scale features, including
thermal and fluid flow characteristics of the powder
bed during the printing process. The continuum
approach is computationally inexpensive and useful
for studying the overall behaviour of the powder
bed, but it does not capture the individual behaviour
of each powder particle.

. The discrete approach. It resolves the individual
powder particles and is thus better suited for simu-
lations that focus on micro- and meso-scale features,
such as powder packing density, particle interaction,
melting behaviour, and keyhole formation. This
approach requires a detailed description of the

VIRTUAL AND PHYSICAL PROTOTYPING 7



geometry and properties of each powder particle in
the bed, hence computationally more intensive than
the continuum approach.

The choice of the modelling approach for the powder
deposition process in MAM depends on the specific
research questions being addressed and the level of
detail required to answer them. To better explain the
underlying mechanisms of laser-material interactions,
recent studies have been looking at the powder as indi-
vidual particles, modelling them using discrete element
methods (DEM). The powder in such frameworks is mod-
elled as a collection of discrete particles, where the
contact (i.e. collision and friction) and cohesion forces
between particles are calculated based on inter-particle
interactions. A brief technical description of DEM is given
in Section 3.1 for completeness.

The strength of DEM in representing particulate solids
is not limited to simple particle geometries, and powder
modelling with non-spherical DEM particles has a long
history of developments as well–see Figure 5(B), for
instance. Nevertheless, in the MAM simulation domain,
the vast majority of published works consider spherical
DEM particles for modelling the powder. Figure 5(A)
shows an example of this approach in studying the
powder layer generation of 316L during PBF and
clarifies why representing the metal powder by spherical
particles is a reasonable approximation.

The suitability of DEM in representing the powder
deposition process is easy to comprehend; however,
incorporating DEM into mesoscopic MAM simulations
can be nontrivial due to two reasons: (1) conversion of
each DEM particle into a set of powder-scale discretiza-
tion points is a numerical approximation that may
violate the conservation properties of the system; and
(2) coupling-decoupling procedures between DEM and
the discretization method is not easy to implement,
especially for multi-layer applications where switching

between the two solvers (i.e. powder depositor and
process simulator) must be performed layer-to-layer.

In MAM, powder characteristics play a pivotal role in
determining the quality and attributes of the final
printed components. Key powder characteristics, includ-
ing flowability and packing density, are significantly
influenced by various powder properties, such as par-
ticle shape (e.g. spherical or irregular), size, and their
respective distributions. These characteristics and
powder properties are interconnected. For instance, in
PBF, particle shape and particle size distribution (PSD)
influence the powder flowability, which subsequently
affects the uniformity of powder bed spreading and its
density. Loose powder beds with insufficient packing
densities can deteriorate the thermo-mechanical proper-
ties of 3D-printed metal components by influencing
melt pool behaviour and microstructure formation,
potentially resulting in lack-of-fusion porosity.

Figure 6 follows the structure outlined by Spierings
et al. [56], utilising an Ishikawa diagram to show these
interrelationships between properties and character-
istics. It breaks down key parameters that impact the
quality of metal powders used in AM. These parameters
can significantly impact the printability, mechanical
properties, and overall performance of the MAM
process. Consequently, powder qualification and charac-
terisation techniques appear as vital considerations in all
powder-based AM systems, constituting a dynamic field
of ongoing research and development. Common charac-
terisation techniques employed to assess packing
density include the Hall flow-meter [57] and tapped
density [58] tests. To evaluate flowability, powder flow
testers, such as angle of repose (AOR) tests and shear
cell testers, are frequently employed (see [59, 60]).
Recently, Cordova and Chen [61] introduced a virtual
characterisation procedure for evaluating flowability in
PBF. This procedure utilises a revolution powder analyser
based on dynamic AOR and avalanche dynamics.

Figure 5. Discrete powder models in MAM: (A) Spherical powder model using DEM adapted from Chen et al. [54]; (B) non-spherical
powder models represented by multi-spheres and super-ellipsoids adapted from [55].
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2.2.3. Heat source and laser-material interaction
One of the most crucial aspects of MAM simulations is
modelling the heat source and its interaction with the
material, as it defines the thermal boundary condition
of the energy balance equation throughout the
process. In powder-based applications, the heat source
model describes how the beam interacts with the
powder particles and the resulting thermal profile.

A significant body of current research in the field of
laser-material interactions has been focussed on investi-
gating the relationship between absorbed laser energy
and powder morphology. Within this context, compu-
tational modelling approaches based on electromag-
netic wave theory have demonstrated excellent
predictive capabilities. For example, in 2020, Zhang
et al. [62] developed a modified electromagnetic
wave–heat transfer model, which proved capable of
resolving spatial particle distribution and preheating
effects resulting from induced current and magnetic
heating. A laser-powder interaction model with such
capabilities plays a critical role in accurately predicting
process outcomes by allowing energy splitting
between preheated particles and direct laser heating.
Another notable contribution in this field is the develop-
ment of a novel volumetric heat source model by Yao
and Zhang [63]. This model is derived from statistical
analysis of particles in spatial distribution and, when
applied to a single-track PBF simulation, demonstrates
remarkable ability in predicting temperature history

and melt pool geometry (see Figure 7). For further
understanding of the theoretical background and basic
mechanisms, additional reading can be found in [64–66].

Overall, realistic modelling of the heat source remains
an active research topic and is very challenging due to
several reasons:

. Complex physics. The interaction of the laser beam
with the metal powder bed involves complex physical
phenomena, including absorption, reflection, scatter-
ing, and re-emission of radiation. The heat transfer is
also affected by factors such as the size and shape of
the powder particles, their effective thermal conduc-
tivity, and the surrounding environment. Modelling
these interactions accurately is a major challenge.

. Geometry. The stochastic nature of the powder bed
adds another layer of complexity to the heat course
modelling from a geometric point of view. It is clear
that the local packingof thepowderbed strongly influ-
ences the laser penetration depth and plays a non-
negligible role in the process modelling outcome.

. Laser beam characteristics. The characteristics of
the laser beam, such as its power, spot size, and
shape, can affect the thermal profile of the powder
bed. Moreover, the laser beam can vary in intensity
over time, leading to non-uniform heating of the
powder bed. Accurately modelling these character-
istics is critical to the reliability of heat source
models and obtaining accurate simulation results.

Figure 6. Ishikawa diagram representing key parameters affecting the metal powder quality in AM.

VIRTUAL AND PHYSICAL PROTOTYPING 9



. Scale. The scale of PBF and DED is relatively small,
with typical layer thicknesses of around 20-100
micrometers. This makes it difficult to measure and
validate the thermal profiles experimentally, high-
lighting the need for high-resolution modelling and
simulation techniques.

. Lack of experimental data. There is limited exper-
imental data available for validating the heat source
models used in MAM simulations. This makes it chal-
lenging to develop accurate models and to quantify
the uncertainties associated with these models.

Addressing these challenges requires the develop-
ment of accurate and validated heat source models
that can be used to optimise MAM processes and to
guide the design of new materials and structures. Pre-
vious studies have recognised these problems and
developed different models with varying levels of accu-
racy and efficiency.

Zohdi [67] classifies such models into four degrees of
sophistication, two of which are sufficiently accurate on
the powder scale and more common. The first model,
referred to as ‘Method 2’ in [67], distributes the incident
power into a cylinder assuming a volumetric intensity
distribution (e.g. see in [68]). In this way, the laser heat
input is typically decomposed into a horizontal intensity
distribution, often modelled as a bell-shaped Gaussian
density function (e.g. [69–71]), and a vertical absorption
distribution. The second model, referred to as ‘Method

3’ in [67], performs a complete ray-tracing scheme by
discretizing the heat source into discrete energy por-
tions or ‘rays’ (e.g. see in [72]). Figure 8 shows a graphical
sketch of these two models.

Due to their ease of implementation and lower com-
putational cost, volumetric heat source models are more
prevalent than the ray-tracing approaches in AM simu-
lations. Wessels et al. [46] suggest an adaptation of
Gusarov’s scheme [37], where the intensity distribution
in the radial direction is computed from an analytical sol-
ution of the radiation transfer equation. For resolving
the refraction, the intensity profile in this formulation
is a function of the penetration depth (see the shaded
volume in Figure 8). Another variant of the volumetric
heat source approach widely used in MAM simulations
follows the Beer-Lambert law to determine the intensity
attenuation, as expressed in Equation (10). Volumetric
models are computationally efficient but can easily
degrade the modelling fidelity if absorptivity and extinc-
tion coefficients are not identified properly.

Depending on the application, a volumetric model is
prone to generate highly inaccurate or completely
invalid results. According to experimental and numerical
observations in previous studies (e.g. [4, 73, 74]), most of
the laser energy inPBF/DED is reflected, andonly a fraction
of this heat input is absorbed to a depth of several nan-
ometers. It is, therefore, more realistic to model the laser
input as a surface heat source instead of a volumetric
one. Different heat source models more sophisticated

Figure 7. A close-up of the laser-powder interaction in PBF for two selected particles (A) and the temperature isosurface of the two
particles (B), taken from [63].
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than a volumetric approach do exist in the literature, two
of which are more widespread in AM simulations. (1) The
Monte Carlo approach introduced in [75], motivated by a
physically-informed foundation in tracing thebeam trajec-
tories. (2) The ray-tracing method, as a popular choice
among the optics community (cf. [76, 77]) to describe
the laser-material interaction in detail. According to the
conclusions of previous investigations by Yan et al. [75,
78, 79], it is expected for these two advanced heat
source models to have a significant impact on the pre-
dicted peak temperatures, thus influencing the recoil
pressure, evaporation, and melt pool dynamics.

Ray tracing (RT) is a purely geometrical method as long
as there is no diffraction. This is the case in most PBF and
DED systems, where the wavelength of the incident radi-
ation is orders of magnitude smaller than the diameter of
powder particles. Previous studies have shown that simu-
lation results with a ray-tracing heat source modelling
approach are significantly more accurate than those
obtained by a volumetric scheme–see [80–86] for further
insights. RT models are computationally intensive and,
from the algorithmic point of view, hard to couple with
numerical discretizationmethods due to their dependence
on resolution consistency and local surface reconstructions.

2.2.4. Melt pool dynamics
The term ‘melt pool’ in AM refers to the localised molten
material generated by a heat source that melts and fuses
the powdered or wire-form material during the layer-by-

layer fabrication process. Intuitively, while it does not
function in the same way as a (physical) cutting tool in
subtractive manufacturing, the melt pool can be
viewed as a non-physical tool that guides MAM pro-
cesses. Figure 9 illustrates this conceptual definition.

Themelt pool region in MAM is themost critical area for
modelling as it plays a central role in determining the
overall process and can significantly impact the occurrence
of manufacturing defects. The melt pool temperature field
and its evolutionwithin this region are essential parameters
that influence the temperature gradient (G) and solidifica-
tion rate (R), navigating the microstructure evolution. The
local processes in and around the melt pool are highly-
dynamic, thermally-driven,multi-phasematerial transform-
ations that occur on a microsecond time scale. Conse-
quently, a broad range of numerical and material
challenges is involved in the computational modelling of
the melt pool. Cook and Murphy [27] presented a compre-
hensive review of themelt pool behaviour, focussing on its
mesoscopic simulation aspects. They provide good cover-
age of melt pool simulations up to 2020 by summarising
the simulation capabilities of the (subjectively) leading
research groups in this field.

To predict the melt pool geometry and temperature
distributionduring ametal AMprocess, the computational
modelling framework requires a coupled solution of heat
transfer and fluid flow incorporating several physical
effects, such as surface tension, wetting, Marangoni con-
vection, evaporation of liquid, recoil pressure, and phase

Figure 8. Two heat source modelling approaches widely used in simulating MAM processes: volumetric and ray tracing.

Figure 9. Perceptual analogy between subtractive and additive manufacturing: Similarity of the critical regions (blue frames) and
viewing the melt pool as a non-physical tool in AM.
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change–see the close-up illustration in Figure 3. Compu-
tational fluid dynamics (CFD) is the most frequently used
approach in high-fidelity melt pool simulations that has
shown great predictive capabilities in capturing fluid
flows involved with these complex dynamics. Even
though the application of CFD codes for melt pool simu-
lations in MAM is outside the scope of our review paper,
we may digress here to briefly mention a few published
works using FVM and FEM approaches.

Gürtler et al. [87] used a finite-volume scheme for
simulating the melt pool behaviour in a laser welding
application. Although presented in low resolution, the
results are seemingly the first 3D simulation of powder
melting and re-solidification. Khairallah and Anderson
[14] developed and advanced CFD-based modelling
framework and simulated a single-track laser PBF
process using a hybrid FEM-FVM code, which was mas-
sively parallelised. These results demonstrate a fully-
resolved particle bed geometry and match with exper-
imental observations to some extent; nevertheless,
they rely on a crude surface tension model and
neglect the wetting and thermal gradient effects. Focus-
ing on the PBF of Ti6Al4V, Qui et al. [73] applied FVM to
investigate the effects of melt pool dynamics on the
surface roughness of fabricated parts. King et al. [4]
employed the same model as [14] to investigate over-
hang geometries, where they observed severe balling
effects due to high melt pool fragmentation. Although
this method does not include a number of crucial phys-
ical phenomena (e.g. Marangoni forces, evaporation,
and radiation), it gives a good overview of 3D multiscale
numerical models for laser PBF problems. Megahed et al.
[88] followed an approach similar to [73] and applied a
finite-volume formulation of a discrete ordinate radi-
ation model, through which they presented temperature
and surface morphology predictions for nickel alloy.

2.2.5. Computational cost
Regardless of the method used, the computational
demand for mesoscopic modelling of MAM processes
is generally very high because of spatio-temporal

resolution requirements and numerical stability issues.
Particle methods, in particular, have been recognised
to have a relatively higher computational cost com-
pared to their mesh-based counterparts, as argued by
many review papers (e.g. see in [89–91]). MAM simu-
lation using particle methods combines the two and
faces a prohibitively high cost of computation.
Approaches for addressing this challenge include paral-
lel computing (i.e. hardware acceleration) and adaptive
discretization (i.e. software acceleration), or the combi-
nation thereof.

To achieve high-resolution and high-fidelity simu-
lations of MAM processes with particle methods, it is
necessary to minimise the runtime by exploiting both
hardware and software capabilities. This is because par-
ticle methods require very small discretization sizes and
long simulation times, which can become computation-
ally infeasible without parallel computing. This necessity
is also evident from the fact that existing works that
simulate PBF and DED processes in 3D with reasonable
uniform resolutions are all performed on more than
one computing core, ranging from multiple to hundreds
or even thousands of CPU or GPU cores (see Table 1).
Therefore, parallel computing is a crucial requirement
for conducting particle-based MAM simulations with
high fidelity, as it enables simulations with increased
spatial and temporal resolution, and reduces the compu-
tational burden of such simulations to a manageable
level.

3. Particle methods for MAM simulations

The majority, but not all, of mesh-free techniques are
particle-based. Figure 10 provides a categorical over-
view of numerical methods to avoid this confusion
and specify the class of particle-based methods
reviewed here. Particle methods are therefore a
subset of mesh-free techniques used for simulating
various physical systems–from astrophysics and com-
puter graphics to solid and fluid flows. A mesh-free
particle method does exactly what it says on the tin:

Table 1. Summary of publications from the leading research groups in MAM simulations with hardware-accelerated particle methods.
Weirather et al. Fürstenau et al. Fan et al. Dao & Lou Meier & Fuchs et al.

Reference(s) [36] [92] [93] [94, 95] [96, 97]
Year published 2019 2020 2020 2021 2021–2022
Institution TUM, Germany IKM, Germany CWRU, USA IHPC, Singapore TUM, Germany
Application(s) PBF PBF PBF PBF & DED PBF & DED
Materials(s) IN718 316L Ti6Al4V 304/316L & IN718 SS
Software In-house In-house In-house parallelSPHYSICS In-house
Method SPH SPH OTM SPH SPH
Parallelization GPU GPU CPU CPU CPU
# cores (max) 3584 2880 30 24 384
Resolution 1 μm 1 μm unknown 2.5 μm unknown
Simulated track 0.5 mm 1mm 1–1.6 mm 1–8 mm ≈1 mm
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It solves differential equations by a finite set of par-
ticles as discretization points without requiring a
mesh (i.e. a connection between nodes of the compu-
tational domain). The approximation procedure in par-
ticle methods is based on the interaction of each
particle with its neighbours.

In principle, a particle method is an interpolation
technique developed from a simple idea: Consider par-
ticles as material interpolation points and follow them
in their motion. These particles discretise a continuum
in space and carry its extensive and intensive quantities
in a Lagrangian frame. Since there is no computational
mesh in such methods, particle-based interpolation is
merely based on the particle position and the use of a
weighting function. It can be realised from this descrip-
tion that particle methods are mesh-free and inherently
mass-conservative. As a result, the physical entities are
carried by a set of moving interpolation points being
advected by the motion, conserving the mass over
time. This numerical approximation procedure reveals
several advantages of particle-based methods over
mesh- and grid-based techniques:

(1) Conservation of mass is simple (and usually
guaranteed).

(2) Handling large deformations is easy with no theor-
etical limit.

(3) Great ability to follow free-surface flows and
material/phase interfaces.

(4) Ideal for parallel computing due to local and pair-
wise interactions.

These attractive features match the modelling
requirements discussed in Section 2.2, making particle
methods a prime candidate for efficient MAM simu-
lations. Two particle-based methods currently used for
such applications on the powder scale are SPH

(smoothed particle hydrodynamics) and OTM (optimal
transport meshfree). Other mesh-free techniques such
as the material point method (MPM) and lattice Boltz-
mann method (LBM) have also been used for power-
scale MAM simulations. Examples include a 2D LBM
approach of Körner et al. [98] for modelling PBF and a
basic MPM numerical framework developed by Mae-
shima et al. [99] for an AM sintering application. Never-
theless, we leave these approaches out of the present
review as they do not fall into the category of ‘particle-
based’ methods specified in Figure 10.

In what follows, we first revisit the basic theory of
DEM as the most prominent method for modelling
powder behaviour in MAM. Then, a brief description of
SPH and OTM, including the basic steps for computer
implementation, is given without delving into their deri-
vation details.

3.1. Discrete element method (DEM)

Introduced by Cundall and Strack [100] in the late 70 s,
DEM is a numerical technique for modelling the behav-
iour of systems of discrete bodies (i.e. granular assem-
blies) that interact with each other. This method is
well-suited for studying the intricate properties and
behaviour of powder particles in AM.

The equation of motion of each powder particle in
DEM is Newton’s second law, including both transna-
tional and rotational terms:

a =
∑

F/m+ g (14)

v̇ =
∑

M/I (15)

where a is the acceleration, m the mass, F the total
contact force comprising of the normal and tangential
components (see Figure 11), g the gravity, ω the
rotational velocity, M the total contact torque, and I the

Figure 10. A general classification of numerical techniques, highlighting the category of particle-based methods.
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moment of inertia. These two accelerations are numeri-
cally integrated over a time step to update the velocity
and position of each DEM particle. The primary task in
DEM powder modelling is to detect particle collisions
and compute the contact forces. The contact force com-
putation is typically performed through a soft-sphere
approach, where deformations during contact are rep-
resented by an artificial overlap between two rigid DEM
particles. Figure 11 shows a 2D schematic representation
of this contact model, in which Kn and Cn are the spring
stiffness and dashpot damping in the contact normal
direction, respectively. The tangential spring stiffness Kt
together with the friction coefficient μ represent friction
between particles i and j.

3.2. Smoothed particle hydrodynamics (SPH)

Introduced independently by Monaghan and Gingold
[101] and Lucy [102] in 1977, SPH is a Lagrangian
mesh-free method originally used for solving astrophysi-
cal problems in three-dimensional open space. While
not being the first particle method in general, SPH is
definitely the most popular and well-studied meshfree
scheme to date–often regarded as the oldest modern
meshfree particle method.

The interpolation procedure in SPH solutions begins
with a property of the Dirac delta function δ and is
carried out through a smoothed weighted averaging, fol-
lowed by a numerical quadrature. Therefore, two kinds of
approximation errors are encountered in the derivation of
SPH: the kernel approximation error, and the particle
approximation error. Expressed mathematically:

(1) Kernel approximation: f (x) = �
V
f (x′)d(x − x′) dx′ ≈�

V
f (x′)W(x − x′, h)dx′ = 〈f (x)〉

(2) Particle approximation: 〈f (xi)〉 ≈
∑N

j=1 f (xj)W(xi − xj ,
h)Vj

where f (x) is an arbitrary function at location x in a
bounded domain Ω, dx′ the weight of integration, and
W(x − x′, h) the SPH kernel function. The smoothing
length h in W(x − x′, h) is defined as the parameter
that determines the size of a finite smoothing domain,
i.e. the support domain, which contains a set of N neigh-
bouring particles. Figure 12 shows the support domain
of particle i at the initial (V0) and current (Vc) configur-
ations, as well as the nearest neighbours of i highlighted
in green. Since the smoothing kernel W is the only term
that is spatially sensitive, SPH discretizations for deriva-
tives can be obtained by just transferring the differential
from f onto the smoothing function W. A verbose
analytical proof of this procedure for deriving differential
operators can be found in SPH textbooks [103] and
review papers [89, 104].

Algorithmic 1 Main implementation tasks for a computation step in
SPH

Require: Initial set of particles (or material points P)
Require: Updated boundary conditions
Ensure: There is no physically invalid particle in the system
1: Re-construct the list of nearest neighbours
2: Compute kernel approximations
3: Solve governing equations (i.e. constitutive update)
4: Update the position of particles (or material points P)

The SPH formalism can be described in either a
‘total’ or ‘updated’ Lagrangian frame. An updated
Lagrangian SPH (i.e. ULSPH) framework describes the
continuum in its current configuration, whereas the
total Lagrangian SPH (i.e. TLSPH) formulation rep-
resents the continuum at the initial state. Searching lit-
erature shows no result in modelling AM processes
with a TLSPH scheme. Consequently, the abbreviation
SPH throughout this manuscript refers to the
updated Lagrangian SPH formalism unless otherwise

Figure 11. Illustration of the contact interactions between two DEM particles and the diagram of resultant forces acting on particle j.
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stated. The key tasks for implementing a computation
step in SPH are outlined in Algorithm 1.

3.3. Optimal transportation meshfree (OTM)

Introduced by Li et al. [105] in 2010, OTM is a par-
ticle-based method formulated in the updated
Lagrangian framework for simulating solid and fluid
flows. The OTM methodology can be realised as a
combination of the optimal transport theory with
material point sampling and meshfree interpolation
kernels. As shown in Figure 13, the computational
domain in OTM is discretised by two sets of points:
(1) Nodal points; (2) Material points. The nodal
points (xa white squares in Figure 13) carry the kin-
ematic information of the body, such as displacement,

velocity, and acceleration. At these nodes, primary
variables are computed by solving the discretised
equations of motion. The material points (xp red
circles in Figure 13) are used as integration points,
where quantities like strain, stress, internal variables,
and material properties are evaluated. In OTM, the
material point sampling facilitates efficient numerical
integration without a background mesh. The
method requires a search algorithm to establish the
connectivity between the nodal and material
points for interpolation purposes. This algorithm
dynamically reconstructs the nodal-material
points connection on-the-fly based on the local defor-
mation at each time step. The key tasks for imple-
menting a computation step in OTM are outlined in
Algorithm 2.

Figure 12. Illustration of the SPH approximation scheme in 2D. Spatial discretization by material points or particles (red circles) is
shown at the initial (V0) and current (Vc) configurations. Support domain of material point or particle i and its affected neighbours
(i.e. green circles) are updated at each time step.

Figure 13. Initial triangulation of the domain and illustration of the OTM approximation scheme in 2D. Spatial discretization by nodal
points (white squares) and material points (red circles) is shown at the initial (V0) and current (Vc) configurations. Support domain of
material point i and its affected nodes (i.e. green squares) are updated at each time step.
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Algorithmic 2 Main implementation tasks for a computation step in
OTM

Require: Initial sets of nodal point A and material points P
Require: Updated boundary conditions
Ensure: There is no physically invalid material point in the system
1: Compute local mass matrix and local force vector at nodal points
2: Update kinematic variables and the position of nodal points
3: Update the position of material points
4: Solve governing equations (i.e. constitutive update) at material

points
5: Apply search algorithm and construct the list of nearest

neighbours (support domain update)
6: Re-compute shape functions

Due to its incremental updated Lagrangian formu-
lation, the original OTM method is prone to numerical
instabilities and inconsistency issues–just like SPH.
Current approaches to mitigate these shortcomings are
the stabilised OTM scheme developed by Weissenfels
and Wriggers [106] and the hot OTM (HOTM) method
proposed by Wang et al. [107]. For simplicity, we use
the OTM acronym as a unified indication of these
different schemes in MAM simulations.

3.4. DEM capabilities in MAM simulation

DEM is primarily employed for modelling powder behav-
iour and deposition in various applications. However,
this versatile tool can also be utilised for heat transfer
analyses. The following subsections categorise the
respective developments in the MAM domain.

3.4.1. Powder modelling
The applications of DEM for the numerical analysis of
powder behaviour in AM are numerous. One significant
group of these applications focuses on the use of DEM
for investigating powder metallurgy and for qualification
purposes without simulating the laser-material inter-
action. Another group couples DEM powder modelling
with fluid flow simulations to study the effects of
powder particles on melt pool geometry and process
outcomes. We summarise some notable works cate-
gorised into these two groups:

. Purely DEM frameworks Chen et al. [108] employed
DEM to analyse the effect of packing density on the
quality of fabricated parts. Han et al. [109] investigated
the influence of powder layer thickness on various
powder-bed characteristics and validated their results
through experiments. Meier et al. [110] conducted a
detailed study of the impact of particle characteristics
on powder layer uniformity (see Figure 14). Further
studies on various other aspects of AM powder
flowability, spreading dynamics, and size/shape distri-
bution effects can be found in [111–114].

Table 2 provides a summary of key information from
published works investigating powder spreadability in
MAM using DEM. Notably, it reveals a gap in the litera-
ture concerning DEM-based powder spreadability ana-
lyses in DED processes. For a more in-depth discussion,
readers are referred to a 2021 review paper by Sehhat
andMahdianikhotbesara [115], which primarily focuses
on powder spreading aspects in PBF processes.

DEM has also been utilised to evaluate powder
flowability indirectly through proxy powder character-
isation techniques. Bouabbou and Vaudreuil [121]
devised a virtual Hall flow-meter characterisation tech-
nique for PBF and validated their model using static
AOR and mass flow rate measurements. Another note-
worthy application of DEM is its use in investigating
powder flow tests with the well-known Freeman FT4
powder rheometers. This approach has demonstrated
satisfactory results in various application fields, includ-
ing pharmaceutical [122] and chemical engineering
[123], although it has not yet been developed for use
in AM processes.

. DEM coupled with a continuum-based numerical
technique Coupling DEM with continuum-based
numerical methods such as FEM and SPH is an estab-
lished and effective way to tackle fluid flow and
hydrodynamic problems in particulate media. In the
MAM domain, Steuben et al. [124] demonstrated
the applicability of DEM for capturing the varying dis-
tributions of heat and mechanical forces within the
laser sintering process. A particularly notable work
in this field is the integrated DEM-CFD modelling
framework of Yan et al. [125], which was developed
to simulate multiple powder spreading-melting
sequences. See Figure 15. Within a meshfree
process simulation framework, Fan et al. [93] provided
a systematic approach for modelling the powder
spreading process during PBF that adopts an adjusta-
ble powder packing procedure with experimental
thresholds. They coupled their DEM powder model
with an OTM-based melt pool simulation.

Broader coverage of recent DEM developments
within and beyond the AM simulation domain can be
accessed in Chen et al. [126, 127], respectively.

3.4.2. Thermal modelling
DEM models that are capable of capturing heat transfer
mechanisms are also referred to as thermal DEM-based
models in the literature. These models, which have seen
continuous development over decades and wide indus-
trial applications (see in [128, 129]), can offer significant
advancements for MAM process simulations. This poten-
tial improvement is due to the following reasons:
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. They allow for solving the heat transfer equation
within the powder system without the need to
discretise each powder particle using continuum-
based numerical methods like SPH or OTM. This
results in substantial runtime acceleration and
memory savings.

. They efficiently capture the thermal interactions
between the heat source and powder particles
before reaching the substrate, which is particularly
important in DED, where partial melting of powder
particles is a critical consideration.

For more details, interested readers are referred to a
comprehensive review by Peng et al. [130] that provides
an in-depth discussion of thermal DEM-based models
from theoretical and application perspectives.

3.5. Current SPH and OTM approaches for
modelling PBF

High-fidelity simulation of MAM processes using particle
methods began 5-6 years ago and has been a continuing
activity ever since. The application of these methods,
namely SPH and OTM, to 2D and simplistic MAM geome-
tries is limited to a small number of SPH developments.
In 2018, Russell et al. [42] pioneered the use of SPH in 2D
single-track PBF simulations considering all dominant
material-thermal-mechanical effects, marking the begin-
ning of ongoing research in this area. Figure 16(A) shows
the velocity field for the melt pool region, as well as two
snapshots of the material state and temperature con-
tours for the laser melting of a 2D particle bed. During
a similar time-frame, Liu et al. [131] devised another
2D mathematical model of PBF utilising the SPH

Figure 14. Screenshots of a powder recoating model using DEM (left) and particle size distribution with its colour code definition
(right), reprinted from Meier et al. [110] with permission from Elsevier.

Table 2. Summary of notable DEM-based powder spreadability analyses in MAM (since 2018).
Process Material Powder shape Powder size Experimental validation Ref. Year

PBF 316L, IN718 spherical random yes [116] 2018
PBF 316L spherical, non-spherical random yes [117] 2018
PBF 316L spherical, non-spherical random yes [118] 2019
PBF Ti6AlV4 spherical uniform no [119] 2020
PBF Ti-48Al-2Cr-2Nb spherical random yes [112] 2022
PBF Ti-48Al-2Cr-2Nb spherical, non-spherical random yes [120] 2023

VIRTUAL AND PHYSICAL PROTOTYPING 17



method to simulate the deformation patterns of the
longitudinal morphology of a molten pool during laser
melting, taking into account the impact of surface
tension (Figure 16(B). Their modelling framework was
comparatively less advanced than that of Russell et al.
[42], and in general, 2D models of PBF lack reliable
experimental validation, making them susceptible to
producing precise predictions.

In addition to the advancements mentioned above,
there have been two notable developments that
extend the 2D high-fidelity SPH model for larger MAM
simulations. The first development, presented by Afra-
siabi et al. [132], proposed a multi-resolution approach
that incorporates dynamic zone refinement (Figure 16
(C)). This resulted in a significant reduction in compu-
tational time, saving up to 50%. The second develop-
ment, presented in [133], is the integration of a rigid
powder model into the SPH thermal-fluid solver that
enabled the simulation of multi-layer PBF processes
through capturing the layer-by-layer build-up pro-
cedure. Figure 16(D) taken from [133] is a simulation
frame at the 10th layer, where the scanning laser and
temperature distribution are shown. This advancement
allows for a more comprehensive simulation of the AM
process by considering the interaction between the
solid powder particles and the liquid or solidified track.

Subsequently, these extensions marked the culmination
of 2D works in the field, as researchers have shifted their
focus towards the development of 3D models, driven by
concerns regarding accuracy and reliability.

While earlier publications lacked the necessary resol-
ution and/or modelling accuracy, they established the
initial understanding of the particle-based methods’
effectiveness in AM simulations. These studies also
derived the basic mathematical framework governing
the mesoscopic multi-physics analyses. For instance,
see the DEM-SPH thermomechanical modelling frame-
work of Park and Zohdi [137] used for droplet-based
AM processes. Another notable example of the potential
of particle-based thermomechanical simulations in AM is
the work by Hu and Eberhard [85]. They conducted
numerical simulations of a laser spot welding process
involving aluminum and demonstrated promising
results, suggesting that SPH has significant potential
for large-scale manufacturing simulations. Additionally,
Trautmann et al. [138] developed a 3D SPH modelling
framework for a material processing application, specifi-
cally Tungsten Inert Gas (TIG) welding. Although it falls
outside the realm of AM, their work is worth mentioning
due to some fundamental similarities in problem formu-
lation. They validated their numerically computed
results by comparing them to experimentally measured

Figure 15. Coupled DEM-CFD modelling framework of powder packing and melt pool simulation in a multi-layer electron beam
melting process by Yan et al. [125], reprinted with permission from Elsevier.
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penetration profiles at different weld currents. These
early advancements in particle-based simulations have
paved the way for further exploration and refinement
of MAM processes.

As mentioned, a 2D model of PBF and DED processes
would be theoretically questionable and inaccurate for
several reasons. These processes involve the deposition
of material and heat transfer, which occur in a three-
dimensional environment. Additionally, the powder par-
ticles exhibit stochastic orientations, and the laser (or
electron) beam can interact with the material from
various off-plane angles. Due to these factors, the 2D
assumption is unrealistic for real experimental vali-
dation, leading researchers to focus primarily on devel-
oping 3D models. Weirather et al. [36] presented a
rigorous SPH model for laser beam melting simulation
of Inconel 718 (Figure 17(B)). Using GPU parallel

computing, they employed 11 million SPH particles,
achieving a fine spatial resolution of 1 μm. In a similar
vein, Fürstenau et al. [92] developed a GPU-accelerated
3D SPH model for laser PBF, which also demonstrated
high-resolution SPH simulations with a particle size of
1 μm, the finest achieved to date (Figure 17(A). Dao
and Lou [94] applied SPH to simulate both PBF and
DED processes, validating their work with experimental
data from other references (see Figure 17(F)). They
claimed their SPH model to be the most comprehensive
and complete for laser fusion AM simulations. Although
their model used 13 million SPH particles and ran on 240
CPU cores in parallel, the finest resolution in their study
was 2-3x coarser than what Fürstenau et al. [92] achieved
through GPU acceleration.

The most complete and efficient SPH scheme for
MAM simulations is still under exploration, but two

Figure 16. 2D mesoscopic SPH simulations of PBF. (A) Russell et al. [42] using a robust weakly-compressible SPH for simulating a PBF
process at the powder scale, spending ≈ 36 hours for simulating a 1-mm long track; (B) The distributions of the velocity field temp-
erature in a single-layer PBF track performed by Liu et al. [131]; (C) The first multi-resolution SPH simulation of a PBF process, running
2x faster than a single-resolution model, developed by Afrasiabi et al. [132]. The state scale is linear, starting from the liquid state
represented by red, down to the solid state shown in blue.; (D) Multi-layer PBF simulation enabled by integrating a rainfall-like
rigid powder model into the SPH thermal-fluid solver, presented in [133].
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research groups have made important headway in this
area. Meier and Fuchs et al. [96, 97, 136] have devel-
oped a versatile in-house code capable of modelling
various MAM processes, including PBF. Their code
incorporates a detailed physical formulation and
achieves high numerical resolution due to massive par-
allelisation. Additionally, they utilise a powerful DEM
tool to accurately model large-scale power deposition
and recoating processes (Figure 17(E)). The second
group has recently published works, led by Afrasiabi
and Lüthi et al. [139, 140], that focus on the compu-
tational performance of particle-based MAM simu-
lators. They specifically address software acceleration
in their in-house SPH code, ‘iMFREE’, through adaptiv-
ity. This approach significantly reduces runtime by up
to 80%, enabling multi-track PBF simulations without
the need for extensive parallelisation. See Figure 18
for more a detailed demonstration. Although
additional 3D MAM simulations using SPH exist (e.g.
the works of Liu et al. [134, 135] shown in Figure 17
(C–D), they are not as advanced or comprehensive as
the references discussed above in terms of geometry,
modelling fidelity, and resolution.

Compared to SPH, the availability of developments
for modelling PBF using OTM is relatively limited.
Figure 19 provides a summary of the most notable pub-
lications in this context, with the single-track simulation
results of Fan et al. [93] shown in Figure 19(B) being the
most comprehensive among them. The authors
employed DEM to create realistic a powder bed with
essential statistical information and coupled it with a
stabilised OTM method for describing the thermo-
visco-elastic response of the metallic particles in PBF.
In 2019, Fan and Li [141] presented a less advanced
development with simpler modelling features based

on OTM, simulating laser melting of a solid substrate
without powder (Figure 19(A). Although tested on a sim-
plistic laser melting of only two metal powder particles
(Figure 19(C), which can hardly be considered a full
PBF process, the stabilised OTM scheme of Wessles
et al. [46] in 2018 is considered the origin of OTM devel-
opments for PBF simulations. Their subsequent study
[142] focussed on the heat source modelling aspect of
fusion-based AM simulations using OTM, introducing
an efficient ray tracing algorithm to resolve detailed
laser-material interactions, which works effectively with
an OTM-like meshfree discretization (Figure 19(D)).

Apart from the SPH and OTM approaches, there is
another numerical technique used for melt pool simu-
lation which can still be considered mesh-free according
to the classification in Figure 10: The lattice Boltzmann
method (LBM) [143]. This kinetic approach is particularly
well-suited for handling complex inter-phase bound-
aries and can run efficiently on massively parallel archi-
tectures. Körner et al. [70] developed the first 2D fine-
scale model of the LPBF process on the powder scale
using an LBM approach, where they predicted the
melting behaviour as a function of some process par-
ameters like the scan speed and powder properties.
The model, however, misses some crucial physical
effects, such as the Marangoni forces and recoil pressure.
Ammer and her co-workers [144] adopted a statistical
powder bed generation algorithm and developed a 3D
model of selective electron beam melting on Ti6Al4V.
The simulation results of electron beam melting in this
work are presented without validation, however.
Overall, commercial software using LBM is still immature,
and the implementation of some important physics such
as temperature-dependent surface tension and complex
boundary conditions is not straightforward.

Figure 17. 3D SPH simulations of PBF: (A) Fürstenau et al. [92]; (B) Weirather et al. [36]; (C) Liu et al. [134]; (D) Qiu et al. [135]; (E) Meier
et al. [96, 136]; (F) Dao and Lou [94]. Images are adapted from the original publications with permission.
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Figure 18. 3D high-fidelity simulation with single- and multi-resolution SPH. (A) High-fidelity PBF simulation with a single-resolution
SPH scheme to quantify the effects of recoil pressure and Marangoni forces on the melt pool geometry, taken from Afrasiabi et al.
[139]; (B) Four solidified parallel tracks and surface height values in a multi-track PBF process simulated by the multi-resolution
SPH code of Lüthi et al. [140]. The discretization size varies from 61.8 (coarsest) to 3.8 (finest) μm.

Figure 19. Overview of fusion-based MAM simulation using OTM schemes. (A) A 7 mm PBF track simulated by Fan and Li [141] using
adaptive (mesh) discretization size ranging from 25–1000 μm in an HOTM setup; (B) Fan et al. [93] using the same method but at a
much higher resolution using about 1.3 million material points for a 1.6 mm track; (C) Work of Wessels et al. [46] on modelling the
fusion of two metal particles fusion with a stabilised OTM code; (D) A similar metal particle fusion example simulated by Wessels et al.
[142] with an enhanced ray-tracing heat source model.
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3.6. Current SPH and OTM approaches for
modelling DED

Numerical modelling and simulation of DED is inherently
more challenging compared to PBF, irrespective of the
method used, including particle-based approaches. In
DED, material is deposited directly onto the substrate
or previously deposited layers as the printing head
moves along a predefined path. The material is melted
by a focussed energy source (such as a laser or electron
beam) as it is being deposited. The deposition happens
continuously and ‘on the fly’, meaning the material is
added in real time during the printing process. This
dynamic and continuous deposition process introduces
an additional level of complexity to modelling DED in
terms of material delivery rates, energy input, heat trans-
fer effects, and resolving the solid-liquid interactions.

While continuum-based particle methods like SPH and
OTM have demonstrated their efficacy in capturing fluid
behaviour in MAM, a complete representation of the
entire DED process requires their coupling with a discrete
modelling approach for real-time powder deposition. This
coupling of continuum-based particle methods (SPH/
OTM) with a discrete model (most commonly DEM) adds
yet another layer of complexity to the simulation, render-
ing the overall modelling process highly demanding. The
seamless interaction between the fluid and solid phases
in DED processes necessitates accurate and efficient com-
munication between the continuum and discrete models.
However, this coupling can introduce numerical instabil-
ities and challenges in preserving mass, momentum, and
energy conservation across the fluid-solid interface.
Achieving the necessary computational efficiency and
stability in such coupled models remains an ongoing

research area, contributing to the limited application of
particle methods in DED simulations.

Very few existing published works on particle-based
DED simulation have emerged within the last three
years. In 2020, Wang et al. [107] presented the first high-
fidelity DED simulation with a particle method using
OTM (Figure 20(C)). They modelled 200 metallic particles
and simulated about 3ms of the processwithout coupling
solid-liquid interactions, facing thermodynamic inconsis-
tencies during phase transition and inaccuracies in calcu-
lating surface properties such as the Marangoni effect.
Dao and Lou [94] developed a more comprehensive and
fully SPH-based computational framework for simulating
DED, which accounted for solid-liquid interactions
without using DEM for solid particle representation
(Figure 20(A)). In their follow-up study [95], the authors uti-
lised the samemethodology but extended the size of their
DED simulation throughmassive parallelisation, leading to
higher-resolution results (Figure 20(B)).

3.7. Current meshfree simulation approaches for
modelling BJ

Unlike PBF and DED, which involve complex coupling of
thermo-hydrodynamic and material phase change
effects, BJ is primarily concerned with binder flow and
powder dynamics. Consequently, achieving high-
fidelity modelling of the BJ process is relatively less com-
plicated. Surprisingly, however, there is a notable scar-
city of research in this domain, particularly on the
application of meshfree particle-based simulation frame-
works. To the best of our knowledge, the only available
high-fidelity simulation of BJ employing particle
methods was published by Fuchs et al. [97] a year ago.

Figure 20. State of the art in particle-based simulation of DED. (A) Dao and Lou [94] using approximately 1.2 million SPH particles in
their initial attempt and spending about 7h on 24 supercomputer CPU cores for 0.5 ms of a DMD process; (B) Dao and Lou [95] using
1.6 million SPH particles and spending about 230 h on 24-core parallel CPU nodes to simulate 0.5 s of the DED process in their more
recent work; (C) work of Wang et al. [107] using an in-house serial OTM code to simulate a single-track DED with depositing 200
metallic particles.
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Figure 21 illustrates sectional and complete views of two
BJ simulation results from this study, where they mod-
elled the coupled microfluid-powder dynamics using a
CPU-accelerated SPH code.

Most other BJ simulation studies rely on CFD codes,
with a primary focus on the saturation equilibrium
[145] and droplet penetration [146] issues of liquid
binder droplets without coupling the effects of microfl-
uid and powder dynamics. An exception to this is the
very recent publication by Yang et al. [147], which
came out only during the revision process of this
review paper. The computational process model in
[147] was used to reproduce the impingement of
binder droplets, binder penetration, and the movement
of powder particles. The right image in Figure 21 dis-
plays a few selected screenshots from this research.

Table 3 summarises this review by presenting
a non-exhaustive collection of papers that have uti-
lised particle methods for MAM simulations, as dis-
cussed in Sections 3.5–3.7. The papers are
categorised based on their focus of application:
PBF, DED, and BJ.

3.8. Capabilities and limitations in modelling
MAM processes

While the discussion and literature research in the pre-
ceding sections primarily centred around SPH and
OTM methods, the strengths of particle methods can
be conclusively addressed as a collective group, taking
into account their combined contributions and demon-
strated abilities in achieving detailed simulations of

Table 3. Overview of notable particle-based MAM simulations published in the past five years.
Process Geometry Powder Heat # of # of # of Simulation Runtime Ref. Year

model source layers tracks materials method accel.

PBF 2D – volumetric 1 1 1 SPH – [42] 2018
2D – volumetric 1 1 1 SPH – [131] 2019
2D – volumetric 1 1 1 SPH adaptive [132] 2020
2D SPH volumetric 10 1 1 SPH – [133] 2022
3D – volumetric 1 1 1 SPH – [134] 2019
3D – volumetric 1 1 1 SPH – [135] 2021
3D – volumetric 1 1 1 SPH GPU [36] 2019
3D – volumetric 1 1 1 SPH GPU [92] 2020
3D DEM surface BC 1 1 1 OTM CPU [93] 2021
3D SPH volumetric 1 1 1 SPH CPU [94] 2021
3D SPH volumetric 1 1 1 SPH CPU [95] 2022
3D – volumetric 1 1 2 SPH GPU [148] 2021
3D DEM volumetric 1 1 1 SPH CPU [96] 2021
3D DEM volumetric 1 1 1 SPH CPU [97] 2022
3D DEM volumetric 1 4 1 SPH adaptive [140] 2022

DED 3D OTM surface BC 1 1 1 OTM CPU [107] 2020
3D SPH volumetric 1 1 1 SPH CPU [95] 2022
3D DEM volumetric 1 1 1 SPH CPU [97] 2022

BJ 3D DEM N.A. >1 N.A. 1 SPH CPU [97] 2022

Figure 21. State of the art in multiphysics high-fidelity modelling of BJ with meshfree particle-based [97] and mesh-based CFD [147]
simulation approaches.

VIRTUAL AND PHYSICAL PROTOTYPING 23



MAM processes. Their main capabilities in such appli-
cations include:

. Straightforward multi-physics coupling. Particle
methods facilitate the coupling of multiple physical
phenomena involved in MAM processes like PBF
and DED. They can handle simultaneous interactions
between fluid flow, heat transfer, mechanical defor-
mations, and material phase changes due to their
Lagrangian, point-wise formulations.

. Strength in handling complex geometries. Particle
methods excel at handling complex geometries, as
they do not require a fixed computational mesh. This
flexibility allows them to simulate intricate shapes
encountered in MAM processes without the need for
mesh (re-)generation, simplifying themodellingprocess.

. Ideal for capturing material flow and large defor-
mations. Particle methods are well-suited for pro-
blems involving large deformations and material
flow phenomena like PBF/DED processes as repre-
senting the material with moving particles enables
them to accurately track the material behaviour and
flow dynamics during the process.

. Facilitating adaptive refinement. Particle methods
offer an optimal solution for adaptive refinement by
enabling adjustments in particle distribution or size
based on local criteria. This capability proves particu-
larly advantageous in tackling multi-scale problems
such as PBF/DED, where a wide range of phenomena
occurs across different length scales (i.e. satisfying
different spatial resolution requirements).

. Suitability for massive runtime accelerations
through parallel computing. Particle methods are
well-suited for leveraging the power of parallel com-
puting architectures. The inherent parallelism in par-
ticle-based simulations allows for efficient utilisation
of modern computing resources, such as multi-core
CPUs or GPUs, enabling significant runtime accelera-
tion. This parallel computing capability makes par-
ticle methods particularly suitable for addressing
the computational demands of fine-scale MAM
simulations.

Particle methods are not without their limitations and
shortcomings inMAM simulations. Someof the key issues
concluded from the reviewed publications are as follows:

. Numerical dissipation, stability, and convergence
issues. Meshfree methods face numerical dissipation,
stability, and convergence challenges. These issues
can lead to the damping of high-frequency oscil-
lations and inaccuracies in capturing small-scale
details, common in MAM processes. Achieving

stability and convergence often involves adjusting
parameters, such as smoothing length and time
step, through an iterative process. Implementing
stabilisers and corrective terms can be complex and
not easily transferable between applications.

. Challenges in surface representation and bound-
ary treatment. Particle methods cannot explicitly
represent surfaces, posing challenges in processes
like PBF/DED, where laser/electron beam interactions
with material surfaces are critical. Without explicit
surface representation, accurately resolving these
interactions is difficult. Handling surface effects in
particle-based MAM models requires extra treatment
and is less straightforward than in grid-based models.

. Complexity in implementing advanced heat
source models. The (over)simplicity of heat source
modelling approaches in current particle-based
MAM simulations can be largely attributed to the
lack of an explicit surface representation inherent in
meshfree methods. Standard mesh-based models of
MAM processes are devoid of this issue. High-fidelity
heat source modelling techniques, such as ray
tracing, heavily rely on surface information, making
them less straightforward to implement in particle-
based simulations. Particle methods require cumber-
some and time-consuming procedures to reconstruct
an explicit material surface (e.g. by surface triangu-
lation), which serves as a prerequisite for incorporat-
ing high-precision heat source models.

. High computational cost. Particle methods typically
incur higher computational costs compared to mesh-
based methods due to a relatively larger number of
interacting neighbours and shorter time step sizes.
The calculations involved in MAM process modelling
using particle methods require significant compu-
tational resources, resulting in long simulation
times. Without runtime acceleration techniques,
simulating even a few millimeters of the PBF/DED
process at high resolution becomes impractical,
often taking several days or weeks to complete.

. Unavailability of dedicated software tools. Commer-
cial or non-proprietary software specifically tailored for
particle-based MAM simulations is currently lacking in
the market. Although powerful multiphysics and CFD
simulation packages like Flow3D-AM [149, 150] exist,
these tools predominantly rely on mesh discretization
methods, which may not offer native support or opti-
mised capabilities for efficiently handling particle-
based simulations in the context ofmetal AMprocesses.
Additionally, the use of in-house codes for particle-
based simulations necessitates additional efforts for
verification and validation, including benchmark
testing and comparison with experimental
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measurements, to ensure their reliability and accuracy
in real-world metal AM scenarios.

. Visualization and post-processing issues. The
nature of the data output in particle simulations is
typically in the form of ‘points’ containing
columns of particle positions, velocities, forces,
and other relevant properties. Unlike grid-based
methods, MAM simulation results using particle
methods are represented as a point cloud, which
lacks depth information in three dimensions,
making it difficult to interpret without additional
post-processing steps. Moreover, generating basic
visualisation forms for modelling analysis, such as
contour plots, streamlines, or slices, based on
point cloud data is not feasible due to the lack of
connectivity between particles.

A summary of particle methods’ strengths and limit-
ations in MAM simulation compared to the mesh-
based approaches is presented in Figure 22.

4. Discussion

The exploration of published works in Sections 3.5–3.6
revealed the evolution and successful application of
SPH and OTM in simulating MAM processes (refer to
Table 3). In this section, our focus shifts to a critical analy-
sis of the methodological and phenomenological limit-
ations inherent in current MAM process modelling with
particle methods, with a particular emphasis on their rel-
evance to addressing multi-physics and multi-scale pro-
blems. By discussing these points, we aim to highlight
the complementary benefits that arise from coupling
different methods in MAM simulations -- see Figure 22.
Furthermore, we categorise the core technical character-
istics of SPH and OTM within the context of MAM
process modelling and provide further insights from
most recent results obtained by other competitive and
established approaches. This classification enables us
to outline clear and targeted pathways for future

research, emphasising the potential advancements in
developing particle-based simulation techniques for
metal additive manufacturing.

4.1. Summary of current particle-based MAM
simulations

As Table 3 indicated, SPH is currently the dominant
choice for modelling MAM processes with a particle
method and without mesh. The relatively limited
availability of OTM developments and other mesh-
free techniques such as MPM [99, 151] or PFEM
[152, 153] in this context can be attributed to SPH’s
overwhelming development, algorithmic maturity,
and more established track record across various
fields of application.

The prevalence of SPH over OTM in modelling MAM
processes is also linked to a process-specific technical
aspect, which directly affects the accuracy of melt pool
simulations. The SPH method satisfies the requirements
for conserving balance equations with no (or negligible)
violation of the integration constraint. Moreover, it effec-
tively avoids the well-known ‘tensile instability’ issue
often encountered in solid mechanics applications,
which is of limited concern in MAM processes. However,
the SPH shape (or kernel) functions do not fully meet
the reproducing conditions unless corrective schemes
such as CSPM [154, 155], or higher-order kernels like
[104, 156, 157] are adopted. Unlike SPH, the OTM
method excels in fulfilling reproducing conditions and
preserving momentum and angular momentum.
However, it violates the integration constraint, which is
crucial for normal vectors, curvature, and surface force
calculations. Additional correction schemes (e.g. [106])
are necessary to address these issues and ensure conver-
gent surface force approximations.

To conclude, the key issues and knowledge gaps we
have identified in the preceding discussions are sum-
marised below as potential development areas for
future particle-based MAM simulations:

Figure 22. Comparative analysis of particle-based and mesh-based methods for multi-physics MAM process simulation at the powder
scale, highlighting their respective capabilities and limitations. The utilisation of emojis serves to visually elucidate that the manage-
ment of ‘Aspect X’ in MAM simulations is inherently more intuitive and efficient when employing particle-based or mesh-based
techniques.
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(1) Incorporation of realistic powder morphology and
recoating process into the laser melting model.

(2) Validated and more accurate heat source modelling
beyond traditional volumetric approaches that can
resolve multiple reflection-absorption scenarios.
This is one of the most crucial elements for precise
predictions of keyhole formation.

(3) Identification of (at least crucial) material data, such
as absorption and heat capacity coefficients, instead
of borrowing them from other, and not necessarily
consistent, references.

(4) Accounting for the gas and evaporationmodels, which
play a pivotal role in different defect formation mech-
anisms and are lacking from existing frameworks.

(5) Design and conduction of preliminary validation
experiments with less uncertainties before evaluat-
ing the solver’s performance in a full process
simulation.

(6) Combination of parallel computing and adaptive
resolution for optimal runtime acceleration.

(7) Effective coupling of particle methods with other
discrete (e.g. DEM) and continuum (e.g. FEM or
FVM) approaches to facilitate multiscale modelling
of real-world AM scenarios.

4.2. Future development directions

Guided by the overarching goal of this review paper–
offering concrete development ideas to scientists and
researchers engaged in computational modelling of
MAM processes–we set forth a series of distinct yet poten-
tially intersecting directions that involve particle methods
in enhancing the computational models of MAM pro-
cesses. The subsequent sections present five avenues,
each addressing a unique facet of the field’s current chal-
lenges, collectively contributing to the progress and
enhancement of additive manufacturing as a whole.

4.2.1. Improvement of numerical modelling
Although qualitatively, Figure 23 compares two recent
high-fidelity PBF simulations and hints at the capability
of particle methods to produce CFD outcomes that
exhibit comparable levels of resolution and intricate
details. Yet, delving deeper into the existing body of litera-
ture unveils the fact that some crucial physical phenom-
ena, such as evaporation, are adequately accounted for
in state-of-the-art CFD models but absent in particle-
based implementations.

This void underscores an imperative for improvement
at two different fronts: the enhancement of mathemat-
ical formulation and the increase of modelling fidelity.
Two possibilities for improving the mathematical formal-
ism and algorithmic aspect of particle methods in MAM
simulation are:

. Total Lagrangian alternative. As mentioned in
Section 3.2 and elaborated in [159–161], the alterna-
tive formalism in TLSPH and ULSPH leads to some fun-
damental differences between the two approaches.
For instance, the nearest neighbour list in the TLSPH
formalism is constructed once at the initial configur-
ation (in general) and does not need to be updated
every time step. However, the list of neighbouring par-
ticles in ULSPH is re-constructed at every deformation
step, which increases the computational effort signifi-
cantly. Furthermore, themajority of numerical instabil-
ity issues of SPH in the updated Lagrangian frame (e.g.
the tensile instability) does not exist in its total Lagran-
gian formalism. As a result, the need for implementing
stabilisation measures (the artificial stress and vis-
cosity) and tuning their non-physical tuning par-
ameters can be released.

. Incompressible SPH formulation. Current SPH
approaches for MAM simulation are based on a
weakly compressible formulation (i.e. WCSPH), which

Figure 23. High-fidelity simulation of single-track laser PBF using: (left) DEM-SPH presented in [97]; (right) DEM-CFD presented in [158].
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approximates the true incompressible nature of fluids.
One strategy to elevate the numerical precision in par-
ticle-based MAM models involves relinquishing this
simplifying assumption and instead adopting an
incompressible SPH (ISPH) formulation–see [162] for
more details. While directly imposing the incompressi-
bility condition is well-suited for capturing scenarios
with high curvature and violent free-surface flows as
observed in applications like PBF and DED, it intro-
duces new challenges regarding the consistency of
time integration due to the semi-implicit and iterative
nature of ISPH schemes.

On the ‘modellingfidelity’ front,weenvision two immedi-
ate opportunities for future work on particle-based MAM
simulations: Accounting for gas-evaporation effects and
more realisticheat sourcemodelling. These tasks are integral
to realising a level of thoroughness and sophistication akin
to the current state of the art (as depicted in Figure 24):

. Gas and evaporationmodel. The absence of a gas and
evaporation model critically limits the simulation’s
capacity to capture some intrinsic phenomena in

MAM, including gas entrapment, keyhole-induced por-
osity, and the formation of pores (Figure 24). These
effects are influenced by vaporised species interactions,
heat transfer mechanisms, and material behaviour, and
are decisive to the structural integrity and overall
quality of manufactured metal parts. To comprehen-
sively replicate real-world experimental conditions and
establish a reliable predictive tool, future particle-based
computational models of MAMmust take gas dynamics
and the evaporation phenomenon into account.

. Enhanced heat source and absorption model.
High-fidelity heat source modelling techniques, such
as ray tracing, rely heavily on surface information, ren-
dering them less straightforward to implement within
particle-based simulations. Mesh-free particle
methods necessitate intricate and time-consuming
procedures for reconstructing an explicit material
surface (e.g. through surface triangulation), a prere-
quisite for integrating high-precision heat source
models. Overcoming this limitation and enhancing
the sophistication of heat source modelling in par-
ticle-based MAM simulations paves a clear path
towards process modelling improvement, thereby

Figure 24. Current state of the art in high-fidelity PBF simulation: the advanced DEM-CFD framework of Yu and Zhao [163] accounting
for nearly all physical effects, published in 2022. Images are adapted from the reference article with permission.
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yielding more precise predictions of energy absorp-
tion and laser-material interactions -- see a schematic
2D illustration in Figure 25.

4.2.2. Massive parallelisation on clusters
Figure 23 demonstrated a recent publication’s achieve-
ment, wherein 384 cores accommodated over 17
million SPH particles to simulate only a 960-μm line of
PBF [97]. The computational workload of detailed MAM
simulations is currently too high to use them for realistic
process control and optimisation, which is the ultimate
goal of developing such simulations in the first place.
Massive parallelisation on clusters and HPC centres is a
viable workaround for the efficient execution of large-
scale and rapid MAM process models, particularly
when employing particle methods. In light of this chal-
lenge, leveraging the inherent potential for parallelisa-
tion and scalability in particle methods through the
combination of HPC clusters and MPI for multiple
GPUs emerges as a logical and essential way forward.
This approach promises to substantially alleviate
runtime constraints in modelling a few tracks of PBF
and DED, prerequisites for generating process maps
and conducting inverse analyses.

4.2.3. Multi-track and multi-layer applications
Real parts manufactured by AM are built through the
layer-by-layer deposition of material, with each layer
being formed by numerous laser scan vectors.
Figure 26 shows an 8× 8× 8mm cube of 316L stainless
steel with an average layer thickness of 50 μmwhich was
3D-printed by over 150 PBF layers, each encompassing
several hundreds of scan vectors. Modelling multiple
tracks and layers of PBF/DED is inevitable to linking
the part-scale mechanical behaviours and defects with
powder-scale local and transient phenomena.

Some research teams have ventured into modelling
multiple tracks and layers of metal PBF through com-
bined DEM-CFD simulations, as shown in Figure 27(C–
D). Nevertheless, the utilisation of particle-based
approaches for simulations of MAM remains primarily
constrained to scenarios involving the melting of single
tracks, with rare instances of exploring multi-track
phenomena within a single layer using DEM-SPH [140,
164], or two-dimensional multi-layer scenarios using a
purely SPH solver [133]. Thus, researchers are encouraged
to explore a coupled DEM-SPH/OTM approach to address
more expansive problem sizes, allowing for the represen-
tation of multiple tracks and layers of PBF or DED.

Figure 25. Enhancing the current Beer-Lambert volumetric heat source model to a surface heat source modelling approach. Enhanced
absorption model includes multiple laser-material interactions and provides more accurate results.

Figure 26. 3D-printed cube of 316L fabricated by more than 150 layers of PBF and several thousands of scan vectors.
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4.2.4. In-situ alloying and multi-material
applications
The allure of additive manufacturing lies in its capability
to incorporate more than one material during proces-
sing, unlocking novel possibilities for tailoring desired
mechanical properties and beyond. This has motivated
the publication of several review papers in the past 1–
2 years encompassing the general aspects of multi-
material PBF/DED techniques, such as [166–168], and
research focussed on modelling these processes, as
exemplified by Tang et al. [169] and Li et al. [170]. Key
challenges in the modelling and simulation of MAM
with more than one material are primarily rooted in
the microstructural complexities and materials aspect
of such processes. Multi-material PBF is currently one
of the hottest research topics within the AM community,
which has garnered substantial attention recently and
resulted in a few notable publications on (mostly) bi-
metal powder systems.

Figure 28(A) showcases a 2021 publication byWimmer
et al. [148], where they employed an SPH-based process
simulator to predict mixing behaviour and material con-
centration. Another noteworthy work from the same

year is the 2D lattice-Boltzmann framework of Köng et al.
[171] for in-situ alloying of AB with two distinct pure
element powders A and B. Nonetheless, the precision, res-
olution, and fidelity of these process models appear to fall
short of the benchmark set by single-material simulations
(compare to Figures 23 and 24), underscoring the need for
further research in this burgeoning field. As an illustration
of ongoing progress, a proof-of-concept PBF simulation
involving 316L-Cu, utilising our multiphysics DEM-SPH
solver, is presented in Figure 29.

4.2.5. Integration of AI and ML techniques
The application of ML in AM can be classified into three
stages with different objectives:

. Pre-process� objective:material and structural design

. In-process � objective: control and parameter
optimisation

. Post-process � objective: property and quality
prediction

Since process control is the ultimate goal of develop-
ing high-fidelity AM simulations in the first place, it is

Figure 27. Multi-track and multi-layer MAM simulations: (A) Buildup of 10 PBF layers simulated by a 2D SPH framework in [133]; (B) A
coupled DEM-SPH model of PBF for a few tracks of Ti-6Al-4V PBF [164]; (C) Single-track multi-layer PBF simulation of [165] using DEM-
CFD; and (D) Multi-track multi-layer electron beam melting simulation of [78, 125] using a multiphysics DEM-CFD framework.
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reasonable to anticipate that leveraging ML algorithms
in the ‘in-processing’ stage would be effective and
more promising. The concept of integrating simulation
data into closed-loop mechanisms is a hot topic, particu-
larly in AM. In this sense, combining meshfree particle-
based simulations with feedback control is a completely
unexplored area that requires original research. Given
the short process times in MAM, the main challenge to
achieving simulation-informed closed-loop control feed-
back lies in the development of ‘fast’ predictive models
that can feed real-time monitoring systems.

While numerous scholars in the AM domain have
shifted their research focus from traditional process mod-
elling and simulation to MLmethodologies, there remains
a clear gap in the literature concerning interpretable (i.e.
explainable) and generalisable data-drivenML algorithms.

In the quest for a physics-based surrogate model that
encompasses these qualities, an opportunity for future
investigation involves exploring various neural network
architectures to expedite the prediction of melt pool
shapes and temperatures -- see Figure 30 for two recent
applications. This would offer the potential to enhance
the overall efficiency and accuracy of MAM simulations,
without being restricted to the use of particle methods.

4.3. Outlook

The preceding sections outlined several representative
areas where future research in meshfree MAM simu-
lations could be fundamentally beneficial. The following
two groups highlight the primary challenges in MAM
technologies, where further development of meshfree

Figure 28. Recent multimaterial PBF models: (A) the 3D SPH framework of [148] for a bi-metal powder system; (B) the 2D lattice-
Boltzmann framework of [171] for in-situ alloying of AB with two pure element powders A and B. Both works were published in 2021.

Figure 29. 3D multimaterial PBF simulation using a combined DEM-SPH approach. The colour of DEM grains in the left image rep-
resents their diameter.
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particle-based numerical simulation frameworks can be
of significant help from a more practical perspective.

. Processmodelling, control, and optimisation.Mesh-
freeparticle-based simulationmethodsprovide a viable
alternative to create high-fidelity models of AM pro-
cesses that are potentially more efficient than existing
CFD techniques for solving complex microfluid,
thermo-hydrodynamics, and powder metallurgy pro-
blems. This would ultimately enable online process
control by generating insights intomaterial deposition,
melting, (re)solidification, and microstructure evol-
ution. It also allows for the optimisation of process par-
ameters, scan strategies, and the prediction of residual
stresses, distortions, and the onset of failures.

. Reliable predictive tool for manufacturing quality.
Meshfree process simulations need further enhance-
ments to be considered ‘reliable predictive tools’ for
assessing manufacturing defects and part quality.
They will assist in identifying potential issues such
as balling, cracking, and lack-of-fusion porosity. This,
in turn, results in more efficient and cost-effective
AM processes with fewer iterations and improved
final part quality.

. Basis for digital twinning. Physics-based mechanistic
models ofMAMare an essential component in establish-
ing the digital twining technology, a pivotal element of
modern manufacturing during the Industry 4.0 era.
Seamless integration of detailed process simulations,
data analytics (via ML), and in-situ sensing is imperative
for achieving representative digital twins of MAM pro-
cesses, facilitating real-time process monitoring.

5. Conclusion

The popularity of particle methods in solving the
complex physics and material transformations inherent
in MAM problems has surged significantly within the
past 4–5 years. Aligned with this trend, we reviewed
the recent advancements in the modelling and simu-
lation of powder-based processes and discussed their
capabilities and limitations in a systematic fashion.

The majority of existing models are tailored for fusion-
based processes, namely PBF and DED, that involve
powder deposition and laser-material interactions. This
preference stems from the fundamental similarities in
the modelling aspects of these two processes, and their
prevalence in comparison to other MAM techniques,
like BJ. Within this context, the number and quality of
published works on PBF simulation exceed those on
DED (refer to Table 3). The DEM-SPH combination
emerges as the most effective modelling approach for
simulating the entire process: powder deposition, laser
melting, fluid flows, and solidification. However, the
current simulation capabilities are constrained to a few
millimeters of scan vectors within a single layer of metal
powder, utilising a (spatial) discretization resolution of 1
μm. A full DEM-SPH process simulation at this resolution
would encompass over 25 million discretization particles
and require approximately 4–5 days to complete, necessi-
tating the utilisation of parallel computing techniques.

Despite the impressive capabilities of developed
models, particularly in predicting melt pool behaviour,
several key issues remain unresolved. Some essential
phenomena, such as the vaporisation of molten metal
and the resolution of fluid-solid interaction, must be

Figure 30. Promising applications of ML in metal additive manufacturing: (A) Prediction of melt pool dynamics and temperature using
FEM and physics-informed neural networks (PINN) compared to experiment presented by Zhu et al. [172]; (B) An efficient convolu-
tional neural network architecture for fast melt pool temperature predictions in MAM that is about 5 orders of magnitude faster than
Flow3D simulations, proposed by Hemmasian et al. [173].

VIRTUAL AND PHYSICAL PROTOTYPING 31



incorporated into the physical models. Additionally, more
accurate heat source modelling using methods like ray
tracing, which is fundamental for representing keyhole
formation, would increase accuracy and offer significant
value. Another considerable challenge stems from the
substantial computational resources required by simu-
lations, necessitating massive parallelisation on GPU and
CPU clusters. Without such parallelisation, multi-track
multi-layer MAM simulations would be practically imposs-
ible. Moreover, the integration of particle-based, physics-
informed MAM process models with fast ML and data-
driven approaches presents exciting opportunities to
shift the focus of current model development activities,
leading to unprecedented computational efficiency and
savings. From a material-process perspective, the inte-
gration of in-situ alloying and multi-material applications
holds great potential for expanding the capabilities of
MAM, enabling the use of simulation feedback in fabricat-
ing functional components with tailored material proper-
ties. In brief, the prospects of developing meshfree
particle-based methods in MAM can be outlined as:

. Application to assess manufacturing defects,
especially lack-of-fusion porosity.

. Potential to be embedded in predictive model control
and in-situ process monitoring systems.

. Further exploration of runtime acceleration for larger
simulations.

As we navigate the landscape of MAM, it is evident
that while current computational models exhibit remark-
able capabilities, they also reveal various unresolved
drawbacks and significant challenges. Researchers and
developers in the MAM field are therefore encouraged
to explore the potential of particle methods and collab-
orate across disciplines to maximise progress in this
rapidly evolving domain. Of particular interest and
importance would be the feasibility of recasting particle
methods into the ML-assisted surrogate models of multi-
scale MAM processes, which is likely to become an inte-
gral part of digital twining, in-situ process control,
optimisation, and design in the near future.
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