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A Framework for Distributed Estimation with
Limited Information and Event-Based

Communications
Jiaqi Yan, Yilin Mo, and Hideaki Ishii

Abstract—In this paper, we consider the problem of dis-
tributed estimation in a sensor network, where multiple sensors
are deployed to estimate the state of a linear time-invariant
Gaussian system. By losslessly decomposing the Kalman filter,
a framework of event-based distributed estimation is developed,
where each sensor node runs a local filter using solely its own
measurement, alongside with an event-based synchronization
algorithm to fuse the neighboring information. One novelty of
the proposed framework is that it decouples the local filters from
the synchronization process. By doing so, we prove that a general
class of triggering strategies can be applied in our framework,
which yields stable distributed estimators under the requirements
of collective system observability. Moreover, the developed results
can be generalized to achieve a distributed implementation of any
Luenberger observer. By solving a semi-definite programming
(SDP), we further present a low-rank estimator design to obtain
the (sub)optimal gains of a Luenberger observer such that the
distributed estimation is realized under the constraint of message
size. Therefore, as compared with existing works, the proposed
algorithm is implemented with limited information since it enjoys
lower data size at each transmission. Numerical examples are
finally provided to demonstrate the efficacy of the proposed
methods.

Index Terms—Distributed estimation, Event-triggered control,
Limited information, Low-rank estimator design.

I. INTRODUCTION

Due to its wide applications in environment monitoring,
target tracking, and robotics navigation, the problem of state
estimation has attracted significant research attention in the
past couple of decades ([1]–[4]). Within this field, a fun-
damental problem is to estimate the state of a linear time-
invariant (LTI) Gaussian system, of which the optimal estimate
is provided by the centralized Kalman filter ([5]). However,
as both the number of sensors and data size increase in
networks, the classical Kalman filter may not be suitable in
many applications. As such, distributed estimation algorithms
are needed, where each sensor aims to produce a stable
local estimate only using its own measurements and limited
information exchange.

In order to achieve a distributed implementation of Kalman
filter, a number of consensus-based distributed estimators have
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been proposed in the literature including [6]–[14]. For exam-
ple, by performing average consensus on local estimates, a
Kalman-Consensus Filter (KCF) is proposed in [6]. This work
has also motivated the development of a group of distributed
estimators where local estimates are fused by consensus algo-
rithms ([7], [8]). Different from them, Battistelli et al. [9] have
suggested performing consensus algorithms on both measure-
ments and information matrices. They proposed an estimator
that can guarantee the stability of estimation error even when
the system has nonlinear dynamics. Other approaches include
[13] and [15], where distributed estimators are established
by performing consensus on probability densities and coded
estimates, respectively.

In the aforementioned works, the estimation algorithms
require at least one transmission during each sampling pe-
riod. In contrast, inspired by the fact that the sensors are
often powered by energy-limited batteries, another group of
works focuses on developing distributed estimators by using
event-triggered transmission policies ([16]–[23]). For instance,
[21] proposes a consensus-based distributed Kalman filter,
where the transmission instants are triggered by both the
state estimates and error covariance. Under the assumption
that the system matrix is invertible and the communication
topology is strongly connected, the authors have proven the
mean-square boundedness of the estimation error. In [18],
based on a stochastic triggering function determined by local
estimates, a minimum mean-square error estimator is given.
Under similar conditions, the distributed estimator is stable
with a bounded mean-square estimation error. In a recent work
[20], He et al. have suggested determining the transmission
times by evaluating error covariance matrices. They have
further quantified the communication rate which is necessary
to guarantee the stability of estimation error.

Although the existing solutions differ in design and analysis,
their information flow can be illustrated by a unified frame-
work as shown in Fig. 1. In the figure, ∆i(k

i
s) represents the

message transmitted by sensor i, of which the transmission
times could be determined by the triggering functions based on
local estimates ([17], [18]), measurements ([19]), error covari-
ance ([20], [21]), or innovations ([16], [22]). Towards achiev-
ing stable distributed estimators, consensus/synchronization
algorithms are often performed on ∆i(k

i
s).

From Fig. 1, it is also noticed that the local filters are
usually coupled with synchronization algorithms in the ex-
isting solutions. As such, the performances of both processes
are inevitably affected by the triggering mechanisms, bringing
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Fig. 1: The information flow of most existing event-based
distributed estimation algorithms, where sensors i and j are
immediate neighbors.
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Fig. 2: The information flow of the proposed distributed
estimation algorithm, where nodes i and j are immediate
neighbors.

more challenges to algorithm design and analysis. Particularly,
in order to guarantee the stability of local estimators, existing
works usually have additional assumptions on the network
topology or the system matrix. Driven by this concern, a
question thus arises naturally: is it possible to construct a
simpler implementation by decoupling the processes of local
filters and synchronization?

This paper focuses on answering this question. To be
specific, by decomposing the Kalman filter, we prove that
the optimal Kalman estimate can be perfectly recovered as
a weighted sum of a bank of local filters. Based on this
decomposition, this paper presents a novel framework for the
event-based distributed estimation. Here, each sensor performs
local filtering solely with its own measurement, and global
fusion is realized through the information exchange by running
an event-based synchronization algorithm. With the proposed
framework, we show that the local filter can be decoupled from
the synchronization process as illustrated in Fig. 2, which is
different from the existing solutions taking the form in Fig. 1.

With the particular aim of reducing communication burden
of the developed algorithm, two efforts are made in this paper:
1) We apply event-based strategies to reduce the number
of transmissions in the network. 2) By decomposing the
estimation gain K of the Kalman filter according to its basis,
the proposed algorithm is implemented with limited informa-

tion, resulting in low message complexity1 as rank(K) ≤
min{m,n}, where m and n denote the dimensions of the
output and the state of the system. As a result, the size of
data exchanged during each transmission is also limited.

Finally, noticing that the message complexity is equal to
the rank of the estimation gain, we are motivated to study
the design of (sub)optimal gain under a rank constraint.
Specifically, suppose that the message complexity that the
network is willing to tolerate is r̃, where 0 < r̃ ≤ min{m,n}.
We propose a semi-definite programming (SDP) to design a
(sub)optimal estimation gain such that its rank is no more than
r̃ while yielding the minimum estimation error.

The main contributions of this paper are summarized below:
1) By decomposing the Kalman filter, this paper presents

a novel framework for the event-based distributed estimation.
A merit of this framework is that it decouples the local filter
from the synchronization process. As such, the performance
of local filters will not be affected even when no sensors are
triggered to transmit at certain times.

2) Instead of adopting any specific triggering function, we
show that a general class of triggering strategies can be used
in our framework. By proposing a c-martingale convergence
lemma, the proposed estimator is shown as stable at each sen-
sor side under the minimal requirements of collective system
observability and network connectivity for synchronization,
which depends on the instability of the system. To the best
of our knowledge, this is the first time that the stability of
distributed estimators is studied under these conditions and by
using the martingale convergence theory.

3) Existing works such as [18]–[21], [23] usually require
each sensor to send out messages of size n or even n2+n when
triggered. (For more comparison details, see also TABLE I in
Section VII.) This is because in addition to the estimated state,
the error covariance matrix must be transmitted. In contrast,
our estimator requires only the reduced-order state estimate to
be shared. Hence, it is implemented with limited information
at lower message complexity as rank(K) ≤ min{m,n}.

4) We also present a design of the low-rank estimator
which yields the minimum performance loss. Specifically, this
can be done for any r̃ such that 0 < r̃ ≤ min{m,n},
and the designed distributed estimator can be implemented
with message complexity no more than r̃. To the best of
our knowledge, this is the first work considering the optimal
estimator design under the constraint of message complexity.
By using it, computational complexity of our algorithm is also
reduced.

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem of distributed estimation. A
decomposition of the Kalman filter is discussed in Section III,

1In this paper, message complexity refers to the size of message in terms
of the number of real values sent by each sensor to its neighbors at any
transmission. A related notion is that of data rate, which is the number of bits
per unit time required for message transmissions. Since in practice, it usually
takes a fixed number of bits (8 or 16 bits) to transfer a real number, data
rate increases linearly with the message complexity if the transmission times
are the same. In this regard, these two notions are closely related. Note that
under the event-based communication, it is difficult to know the frequency of
transmissions in advance. Hence, in the theoretical analysis, we use the notion
of message complexity. We will compute the frequency of transmissions in
the numerical examples in Section VIII.
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based on which Section IV presents our framework of event-
based distributed estimation. The performance of this algo-
rithm is next analyzed in Section V. We then discuss how
to design the estimation gain under the constraint of message
complexity in Section VI and compare the proposed frame-
work with existing solutions in Section VII. The algorithm
performance is then validated through numerical examples in
Section VIII. Finally, we conclude this work in Section IX.

A preliminary version of this paper has been reported in
[24]. The current version presents a different decomposition
method of the Kalman filter and further proposes the low-rank
estimator design to reduce the message complexity. Also, we
present all the proofs as well as more extensive discussions
and numerical examples here.

Notations: Throughout this paper, we denote by 0n and
1n the n-dimensional vectors of all zeros and all ones,
respectively. We also denote by ρ(A) the spectral radius of
any matrix A. For a group of vectors vi ∈ Rmi , the vector[
vT1 , . . . , v

T
N

]T
is also written as col(v1, . . . , vN ). Moreover,

given a positive semidefinite matrix U , let U1/2 be the positive
semidefinite matrix that satisfies U1/2U1/2 = U . Finally, for
any matrix X ∈ Rn×n, we denote by pX(s) its characteristic
polynomial, i.e., pX(s) , det(sIn −X).

II. PROBLEM FORMULATION

In this section, we shall discuss the problem of state
estimation. The centralized Kalman filter and our framework
for distributed estimation will be further introduced.

A. System setup for distributed estimator

Let us consider the LTI Gaussian system as given below:

x(k + 1) = Ax(k) + w(k), (1)

where x(k) ∈ Rn is the system state to be estimated, w(k) ∼
N (0, Q) is an independent and identically distributed (i.i.d.)
Gaussian noise with zero mean and covariance matrix Q ≥
0. Moreover, the initial state x(0) also follows the Gaussian
distribution which has zero mean.

A sensor network monitors the above system, where the
measurement of each sensor i ∈ {1, 2, ...,m} is given by2

yi(k) = Cix(k) + vi(k), (2)

where yi(k) ∈ R is the measurement of sensor i and Ci ∈
R1×n. By collecting the measurements from all sensors, we
have

y(k) = Cx(k) + v(k), (3)

where

y(k) ,

 y1(k)
...

ym(k)

 , C ,

 C1

...
Cm

 , v(k) ,

 v1(k)
...

vm(k)

,
and v(k) is a zero-mean i.i.d. Gaussian noise with covariance
R ≥ 0 and is independent of w(k) and x(0).

2Later in Remark 4, we will discuss an extension to the case where each
sensor can output a vector measurement.

The system need not necessarily be Schur stable. That is,
there may exist some eigenvalues of A with magnitudes no
less than 1. Throughout this paper, we make the following
assumption on system observability:

Assumption 1 (Collective observability). The system is col-
lectively observable, i.e., the pair (A,C) is observable, while
(A,Ci) is not necessarily observable for each sensor i.

In this paper, we aim to design a distributed algorithm
to estimate the system state. Communication over the sensor
network is modeled by a connected undirected graph G =
(V, E). Here, V = {1, 2, ...,m} and E ⊂ V × V are the sets
of sensors and edges, respectively. Moreover, the interaction
among sensors is described by a weighted adjacency matrix
A = [aij ], where aij ≥ 0 and aij = aji,∀i, j ∈ V . Notice
that aij > 0 if and only if (i, j) ∈ E . The degree matrix of G
is defined as DG , diag (d1, . . . , dm), where di =

∑m
j=1 aij .

The Laplacian matrix of G is calculated as LG , DG − A.
Since G is connected, let us arrange the eigenvalues of LG as

0 = µ1 < µ2 ≤ · · · ≤ µm. (4)

B. Fundamental limit: Kalman filter

It is well known that if the measurements from all sensors
can be collected by a single fusion center, then the centralized
Kalman filter provides the optimal estimate. Therefore, the
Kalman estimate acts as the fundamental limitation for all
estimation schemes and will be briefly reviewed in this part.

Let P (k) be the error covariance of Kalman estimate at time
k. Under Assumption 1, the error covariance will converge to
the steady state exponentially fast ([5], [25]), and thus let

P , lim
k→∞

P (k). (5)

Since a sensor network typically operates for a long period
of time, we consider the steady-state Kalman filter, which has
the fixed gain

K = PCT
(
CPCT +R

)−1
. (6)

By using K, the optimal Kalman estimate x̂(k) ∈ Rn is
calculated recursively as

x̂(k + 1) = (A−KCA)x̂(k) +Ky(k + 1). (7)

C. Framework of the proposed distributed estimator

The Kalman filter is a centralized solution since the optimal
estimate (7) fuses the measurements of all sensors. To make
the algorithm feasible in distributed networks, this paper aims
to propose a distributed implementation of the Kalman filter
such that each sensor can obtain a stable local estimate by
communicating with only immediate neighbors.

Specifically, our distributed estimation algorithm is devel-
oped based on a lossless decomposition of the centralized
Kalman filter (see Fig. 3). We show that the performance of
Kalman filter is equivalent to a bank of local filters fused by
a weighted sum. In our approach, the distributed estimator is
designed as illustrated in Fig. 2. It has two phases, where
Phase I implements the local filters solely based on the
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Fig. 3: The information flows of centralized Kalman filter (left)
and decomposition of Kalman filter (15) (right).

local measurement of each sensor and Phase II fuses the
neighboring states by replacing the weighted sum in Fig. 3
with a synchronization algorithm. In what follows, we shall
detail the framework by respectively introducing the phases
of decomposing the Kalman filter and synchronizing the local
states.

III. A LOSSLESS DECOMPOSITION OF KALMAN FILTER

This section shows how to decompose the Kalman filter.
To this end, we first prove that the Kalman estimate (7) can
be losslessly recovered as a weighted sum of a bank of local
filters. After that, a low-order decomposition of the Kalman
filter will be developed by performing model reduction. We
highlight that the results in this section are essential for us
to design a framework of distributed estimation later in this
paper.

To begin with, without loss of generality, suppose that the
system matrix A takes a decomposed form as

A =

[
Au

As

]
, (8)

where Au ∈ Rnu×nu

and As ∈ Rns×ns

; any eigenvalue of
Au lies on or outside the unit circle while all the eigenvalues
of As are strictly inside.

A. Preliminaries: Local filter design

We would first present the design of local filters. It was
proposed in our previous work [15] and is an important
preliminary of the approach of this work.

The results are based on the following lemmas:

Lemma 1 ( [26]). For any Λ ∈ Rn, if Λ is non-derogatory3

and in the Jordan form, then (Λ, 1n) is controllable.

Lemma 2 ( [15]). Suppose that (X, p) is controllable, where
X ∈ Rn×n and p ∈ Rn. For any q ∈ Rn, if X+pqT and X do
not share any eigenvalues, then (XT +qpT , q) is controllable.

Lemma 3 ( [15]). Suppose that (X, p) is controllable, where
X ∈ Rn×n and p ∈ Rn. Denote the characteristic polynomial
of X by pX(s) = det(sI −X). Let Y ∈ Rm×m and q ∈ Rm

3A matrix is said to be non-derogatory if every eigenvalue of it has
geometric multiplicity 1.

be such that pX(Y )q = 0 holds. Then there exists T ∈ Rm×n
such that the following equations are satisfied4:

TX = Y T, Tp = q. (9)

Let us decompose the Kalman gain (6) as

K = [K1, · · · ,Km],

namely, Ki ∈ Rn is the i-th column of K, which will be used
as the gain of the i-th local filter. Accordingly, we can rewrite
the Kalman estimate (7) as

x̂(k + 1) = (A−KCA)x̂(k) +

m∑
i=1

Kiyi(k + 1). (10)

Since (A,C) is observable, it is not difficult to conclude
that the matrix A−KCA is strictly stable. As such, one can
always construct a Jordan matrix Λ ∈ Rn×n satisfying that

1) Λ is strictly stable and non-derogatory.
2) The characteristic polynomials of Λ and A −KCA are

the same.

By virtue of Lemma 1, one knows that (Λ, 1n) is controllable.
Then, as guaranteed by Lemma 3, for each i = 1, · · · ,m, a
matrix Fi ∈ Rn×n exists such that

FiΛ = (A−KCA)Fi, Fi1n = Ki. (11)

These matrices Fi will help us to reconstruct the optimal state
estimate x̂(k) from the outputs of the local filters. The relation
Fi1n = Ki in (11) is the key to see that the gain in the local
filter to be presented (in (14)) is 1n.

Next, we would also design β ∈ Rn and S ∈ Rn×n such
that

S = Λ + 1n βT , (12)

and the following statements hold:

1) Let pS(s) and pAu(s) be the characteristic polynomials
of S and Au, respectively. Then it should hold that
pAu(s)|pS(s). Namely, there exists a polynomial σ(s)
such that

pS(s) = pAu(s)σ(s). (13)

2) Any root of σ(s) is strictly within the unit circle but not
an eigenvalue of Λ.

Therefore, the unstable and stable eigenvalues of S are the
roots of pAu(s) and σ(s), respectively. Moreover, the unstable
ones should coincide with the eigenvalues of Au, while the
stable ones can be freely designed (but should not be the
eigenvalues of Λ). Since Λ is strictly stable, S does not share
any eigenvalues with Λ. As a result of Lemma 2, we conclude
that (ST , β) is controllable.

Remark 1. In practice, one can find β and S by following
the procedure below:

i) Pre-determine the eigenvalues of S such that the unstable
eigenvalues are identical to the ones of Au, while the
stable ones are not the same as those of Λ.

4The solution of (9) can be obtained by following the construction proof
of [15, Lemma 2].
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ii) Through pole placement, find β such that the eigenvalues
of Λ + 1n βT are placed at the desired locations. Notice
that β always exists since (Λ, 1n) is controllable.

iii) Calculate S by (12).

Now we propose the local filters, which are performed by
each sensor i solely based on its own measurement yi(k):

zi(k) = yi(k + 1)− βT ξ̂i(k),

ξ̂i(k + 1) = Sξ̂i(k) + 1n zi(k),
(14)

where ξ̂i(k) ∈ Rn is the local response of the i-th local filter
with ξ̂i(0) = 0, and zi(k) ∈ R is the local innovation.

The following lemma shows that the optimal Kalman filter
can be losslessly recovered by a linear combination of the local
responses ξ̂i(k), i ∈ {1, · · · ,m}. Moreover, for any sensor i,
the signal zi(k) is stable5. For the sake of readability, we
provide the proof in Appendix A.

Lemma 4. Suppose that each sensor implements the local
filter (14). Then the following statements hold at any k:

1) For any sensor i, the covariance of zi(k) is bounded.
2) The optimal Kalman estimate x̂(k) in (7) can be losslessly

recovered from the local estimates ξ̂i(k), i = 1, 2, · · · ,m,
by

x̂(k) =

m∑
i=1

Fiξ̂i(k), (15)

where Fi is the solution of (11).

For illustration, the information flows of the Kalman filter
(7) and its decomposition (15) are presented in Fig. 3.

B. A new decomposition of the Kalman filter with low order

In order to construct a distributed implementation of the
Kalman filter, our next step is to present (15) with a matrix
realization. Here, we provide a new approach by decomposing
the Kalman gain K according to its basis. The intention is to
deal with gains of lower rank.

To this end, let us denote by r the rank of K ∈ Rn×m:

r , rank(K) ≤ min{m,n}. (16)

As a result, there exists a matrix V ∈ Rr×m of rank r such
that K can be decomposed as

K =
[
K1 · · · Km

]
=
[
K̃1 · · · K̃r

]
V = K̃V, (17)

where {K̃i}i∈{1,··· ,r} are linearly independent. Then by (15),
let us rewrite the Kalman estimate as below:

x̂(k + 1) =

m∑
i=1

Fiξ̂i(k + 1)

=

m∑
i=1

Fi(Λ + 1βT )ξ̂i(k) +

m∑
i=1

Fi 1n zi(k)

= (A−KCA)

m∑
i=1

Fiξ̂i(k) +

m∑
i=1

Kiβ
T ξ̂i(k) +

m∑
i=1

Kizi(k),

(18)

5We say a signal is stable if the covariance of it is bounded at all time.

where the second and third equalities hold respectively by (14)
and (11). We next consider the second term of the far right-
hand side, i.e.,

∑m
i=1Kiβ

T ξ̂i(k). By (17), it follows that
m∑
i=1

Kiβ
T ξ̂i(k) =

r∑
i=1

K̃iβ
T

m∑
j=1

vij ξ̂j(k), (19)

where vij is the (i, j)th entry of V . Moreover, it follows from
(14) that

m∑
j=1

vij ξ̂j(k + 1) = S

m∑
j=1

vij ξ̂j(k) +

m∑
j=1

vij 1n zi(k). (20)

To simplify notations, let us denote

ϑ(k) ,


∑m
i=1 Fiξ̂i(k)∑m
j=1 v1j ξ̂j(k)

...∑m
j=1 vrj ξ̂j(k)

 ∈ Rn(r+1). (21)

It thus follows from (18)–(20) that

ϑ(k + 1) = Hϑ(k) + Lz(k), (22)

where

H ,


A−KCA K̃1β

T · · · K̃rβ
T

S
. . .

S

 ∈ Rn(r+1)×n(r+1),

L ,

[
K

V ⊗ 1n

]
∈ Rn(r+1)×m,

z(k) ,
[
z1(k) · · · zm(k)

]T ∈ Rm.
(23)

For convenience, we denote by Li the i-th column of L,
namely,

L =
[
L1 · · · Lm

]
. (24)

In view of (18), the optimal Kalman estimate x̂(k) is indeed
the vector consisting of the first n entries of ϑ(k). Therefore,
the optimal estimate can be losslessly recovered by (14) and
(22). Note that a center is however required to fuse ξ̂i(k) and
zi(k) from all sensors. In the next section, we will show how
to use (14) and (22) to design a distributed implementation of
the Kalman filter.

Remark 2. Our decomposition approach here is an extension
of [15] where the Kalman gain K is used directly. It is noted
that, to achieve a distributed implementation, the message
complexity should be min{m,n} in [15]. In contrast, as will
be shown in Section IV, (22) can be implemented with lower
message complexity, namely, r ≤ min{m,n}. In general,
however, the rank of estimation gain K may not have a lower
rank. Later in Section VI of the paper, we will also provide a
design method to find an estimation gain matrix for a given
rank while minimizing the estimation error. This will allow us
to further reduce the message complexity with some tradeoff
in its estimation performance. Moreover, from the simulation
results in Section VIII, we observe that the performance loss
caused by the designed low-rank estimators can be very minor.
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IV. AN EVENT-BASED DISTRIBUTED IMPLEMENTATION
OF KALMAN FILTER

In this section, we shall show how to perform the distributed
estimation by implementing (14) and (22) in a distributed
manner. In particular, we present event-based communication
strategies to reduce the transmission frequencies for each sen-
sor node. Notice that the conventional distributed estimators
including [6], [8]–[12], [27]–[33] require that each sensor
broadcasts its local information to neighbors at least one time
during the sampling interval. Our approach will solve such
issues with limited loss in estimation performance.

A. Framework of the event-based distributed estimation

We shall leverage the results established in Section III
to design a distributed estimator. Specifically, based on the
decomposition of Kalman filter, for any sensor i, its update
during each sampling period is divided into two phases:

• Phase I: Sensor i performs the local filter (14) solely
using its own measurement without communicating with
others.

• Phase II: For synchronization, sensor i fuses the neigh-
boring information based on (22).

In view of (22), it is clear that the Kalman estimate fuses
ξ̂i(k) and zi(k) from all sensors. However, since each local
sensor is only capable of accessing the information in its
neighborhood, we aim to implement Kalman filter by running
a distributed synchronization algorithm. For the particular
purpose of decreasing the transmission frequency, event-based
communication strategies will be adopted.

To be concrete, let each sensor i keep a local state as below:

ηi(k) ,


η0,i(k)
η1,i(k)

...
ηr,i(k)

 ∈ Rn(r+1), (25)

where ηj,i(k) ∈ Rn, j = 0, 1, · · · , r. In order to approach the
performance of Kalman filter, the local state will be updated
through the following synchronization algorithm:

ηi(k + 1) = Hηi(k) + Lizi(k) +B

m∑
j=1

aij(∆̂j(k)− ∆̂i(k)),

(26)
where ηi(0) = 0, H and Li are respectively defined in (23)
and (24), and

B =

[
0n×r
Ir ⊗ 1n

]
∈ Rn(r+1)×r. (27)

The sensors exchange their local knowledge on ηi(k) but with
limited information in the sense that their dimensions as well
as the transmission frequencies are reduced. First, sensor i
broadcasts the r-dimensional vector ∆̂i(k) ∈ Rr given by

∆̂i(k) = T η̂i(k), (28)

where
T =

[
0r×n Ir ⊗ Γ

]
∈ Rr×n(r+1) (29)

such that 0r×n is the r-by-n matrix of all zeros and Γ ∈ R1×n

is the synchronization gain matrix to be designed. Moreover,
the intermediate state η̂i(k) is the local state from the recent
past updated based on the triggering function. Specifically,
letting kis be the triggering instants, it is given by

η̂i(k) = Hk−kisηi(k
i
s), k ∈ [kis, k

i
s+1), (30)

To determine the triggering instants kis, each sensor i
considers a triggering function fi(k) in the following form:

fi(k) = ||εi(k)||2 − hi(k), (31)

where
εi(k) = η̂i(k)− ηi(k), (32)

and hi(k) is a threshold function as will be discussed later in
Section IV-B. Once the triggering function satisfies fi(k) ≥ 0,
sensor i will be triggered. It then broadcasts ∆i(k) to neigh-
bors, resetting εi(k) to zero. Hence, the sequence of triggering
instants is determined recursively as

kis+1 , min
{
k > kis | fi(k) ≥ 0

}
, ki0 = 0. (33)

That is, the local state is transmitted only when the difference
between the current local state ηi(k) and its processed version
η̂i(k) is sufficiently large.

By collecting Phases I and II together, the update of sensor i
is summarized in Algorithm 1. Fig. 2 presents the information
flow of Algorithm 1, which requires no fusion center and is
achieved in a distributed manner. As compared with Fig. 1,
the novelty of the proposed algorithm lies in the decoupling
of the local filter from the fusion process. Therefore, the
communication occurs only in Phase II, and the performance
of local filters will not be affected even when no sensors are
triggered to transmit at certain times. As we will see later,
this structure also enables us to simplify the analysis by using
arguments based on martingales.

Algorithm 1 An event-based distributed estimation algorithm
for sensor i at time k > 0
1: (Phase I) Solely using its own measurement, sensor i
computes zi(k) and updates the output of the local filter by
(14).
2: (Phase II) By fusing the information most recently received
from its neighbors, sensor i updates ηi(k+1) according to the
synchronization algorithm (26), (28), and (29).
3: Sensor i obtains the local estimate as

x̆i(k + 1) = mη0,i(k + 1). (34)

4: Sensor i checks the triggering function (31). If fi(k) ≥ 0,
it broadcasts ∆i(k + 1) to neighbors.

Remark 3. By (28), instead of directly transmitting the
local state η̂i(k) ∈ Rn(r+1), each sensor node broadcasts
a “coded” vector ∆i(k) ∈ Rr. Therefore, the data size
for each transmission is r = rank(K) ≤ min{m,n}. As
compared with existing works, e.g., [18]–[21], [23], which
usually require information exchange on the local covariance
matrix of size n2 + n, the proposed algorithm can perform
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with lower message complexity.

Considering the computational complexity of Algorithm 1,
although matrix H has a size of n(r+1)×n(r+1), it is sparse.
Thus, it can be verified that the computational overhead for
performing (26) is O(rn2), which is lower than many existing
solutions with a complexity of O(n3). These differences will
be further discussed later in Section VII.

Remark 4. Now, we extend the current results on scalar
measurements to vector scenarios. In this generalized setting,
each sensor i ∈ 1, · · · , s outputs a vector measurement as
follows:

yi(k) = Cix(k) + vi(k), (35)

where yi(k) = [y1
i (k), · · · , ymi

i (k)]T ∈ Rmi , Ci ∈ Rmi×n,
and vi(k) ∈ Rmi represents the mi-dimensional Gaussian
white noise.

It is important to note that for any sensor i, it has direct
access to all components of yi(k). In other words, it can access
y`i (k) for ` ∈ 1, · · · ,mi. Consequently, after performing the
local filter (14) and calculating z`i (k) from each y`i (k), the
sensor fuses information within itself before communicating
with other sensors. To accommodate this vector scenario, we
extend the synchronization algorithm in (26) as follows:

ηi(k + 1) = Hηi(k) + Lizi(k) +B

s∑
j=1

aij(∆̂j(k)− ∆̂i(k)),

where ηi(k) ∈ Rn(r+1) and

Li , [L1
i , · · · , L

mi
i ] ∈ Rn(r+1)×mi ,

zi(k) , [z1
i (k), · · · , zmi

i (k)]T ∈ Rmi .

With the same design in (28)–(33), it follows that ∆̂i(k) ∈ Rr.
Hence, we can verify that all the results in this paper remain
valid, including the convergence results and discussions on
communication and computation costs.

B. A general class of triggering functions

Instead of adopting any specific triggering function, we
show that a general class of triggering strategies can be
applied in our framework to yield stable distributed estimates.
Specifically, we intend to design the triggering function (31)
such that ||εi(k)||2 is upper bounded by some ~ <∞, namely,

||εi(k)||2 ≤ ~, ∀k ≥ 0. (36)

Clearly, this requires the threshold hi(k) to be carefully
chosen. We now present several designs of hi(k) that are
commonly used in the literature:

1) Static time-dependent triggering function ([34]–[36]):

hi(k) = c0 + c1α
k, (37)

where c0 > 0, c1 ≥ 0, and α ∈ (0, 1).

2) Static state-dependent triggering function ([37], [38]):

q̂i(k) = min

1

2

m∑
j=1

aij
∣∣∣∣∆̂j(k

j
s)− ∆̂i(k

i
s)
∣∣∣∣2, `

 ,

hi(k) = αi(k)q̂i(k),
(38)

where ` > 0 and αi(k) takes nonnegative values and
exponentially decreases to zero.

3) Dynamic triggering function ([37], [38]):

χi(k + 1) = βiχi(k) + αi(k)q̂i(k)− ||εi(k)||2,

hi(k) =
1

θi
χi(k) + αi(k)q̂i(k),

(39)

where χi(0) > 0, βi ∈ (0, 1) and θi > 1/βi. Moreover,
q̂i(k) and αi(k) are defined in (38).

It is not difficult to verify that (36) can be guaranteed by
each of these designs.

As will be shown later in Section IV, one merit of our
framework is that, by decoupling the local filters from the
communication process, we can reformulate the problem of
distributed estimation to that of stochastic linear systems
synchronization. We will further prove that any event-based
algorithm guaranteeing (36) can facilitate the synchronization
of stochastic linear systems. Therefore, any of them including
(37)–(39) can be used in our framework to produce stable dis-
tributed estimators. However, as one might imagine, different
triggering functions result in different triggering frequencies
and estimation accuracy.

V. ESTIMATION PERFORMANCE ANALYSIS

This section will theoretically analyze the performance of
Algorithm 1. To this end, we will first resort to probability
theory and propose a c-martingale convergence lemma. By
using this lemma, we are able to establish the mean-squared
synchronization of local states, namely ηi(k)’s. This result
will then be leveraged to prove stability of the distributed
estimators.

A. Synchronization of local states

In order to establish the synchronization among local states,
let us introduce the following lemma. Here, we provide a
method for the design of the feedback gain Γ used in the
update law (26) through the transformation (28) and (29).

Lemma 5. Suppose that the Mahler measure6 of matrix S
meets the following condition:∏

j

|λuj (S)| < 1 + µ2/µm
1− µ2/µm

, (40)

where λuj (S) represent the unstable eigenvalues of S and µj
are the eigenvalues of the Laplacian matrix LG from (4). Let

Γ =
2

µ2 + µm

1Tn PS
1Tn P 1n

∈ R1×n, (41)

6The Mahler measure of a matrix is defined as the absolute product of its
unstable eigenvalues.
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where P > 0 solves the following modified algebraic Riccati
inequality:

P − STPS +
(
1− ζ2

) STP 1n 1Tn PS
1Tn P 1n

> 0, (42)

and ζ satisfies that∏
j

∣∣λuj (S)
∣∣ < ζ−1 ≤ 1 + µ2/µm

1− µ2/µm
. (43)

Then for any j ∈ {2, ..., n}, it holds that

ρ(H − µjBT ) < 1. (44)

Proof. The proof is provided in Appendix B.

In this lemma, the condition (40) implies that the more
unstable the system whose state is to be estimated is, the more
connected the network topology of the local estimators should
be. Such conditions appear in consensus problems of agents
with general linear dynamics (see, e.g., [39]).

Let us denote the average of local states of all sensors as

η̄(k) ,
1

m

m∑
i=1

ηi(k). (45)

We next show the synchronization among local states:

Theorem 1. Suppose that the condition (40) holds, and Γ is
designed based on (41) and (42). By applying the synchro-
nization algorithm (26) with an event-based communication
strategy that guarantees (36), synchronization among local
states is reached in the mean square sense. That is, the
following statements hold at any time k:

1) Consistency condition:

η̄(k + 1) = Hη̄(k) + L̄z(k), (46)

where L̄z(k) , 1
m

∑m
i=1 Lizi(k).

2) Consensus condition: There exists Ξ > 0 such that

cov[ηi(k)− η̄(k)] ≤ Ξ, ∀k. (47)

Before proving Theorem 1, we shall introduce some useful
lemmas. Because of the presence of stochastic signals zi(k),
the approach of Lyapunov stability for deterministic systems
cannot be directly used. We therefore resort to a stochastic
analogue of it. Notice that in our previous work [15], we
have provided a framework for showing the stability of local
estimation error in full transmission scenario. Specifically, it
is established by using Cauchy-Schwarz inequality assuming
that the communication among sensors is independent of the
system states and sensor measurements. However, in Algo-
rithm 1, the communication inevitably relies on these states
since it is triggered by certain events depending on them.
This prevents the methodologies in [15] from being used.
Therefore, this paper instead views the local estimation errors
as c-martingales.

To see this, let {F(t)}t≥0 be a filtration in the probabil-
ity space (Ω,F ,P) and {V (k)} is a nonnegative stochastic
process. Let us define

∆V (k) , V (k + 1)− V (k).

We can write

E[∆V (k)|F(k)] = E[V (k + 1)|F(k)]− V (k). (48)

In order to analyze the systems which have non-zero noises
at the origin, we shall extend the classical results on stability
of supermartingales. Specifically, we will consider processes
that are almost supermartingales, in the sense that

E[∆V (k)|F(k)] ≤ −ρV (k) + c(k), (49)

for some F(k)-measurable random process c(k). Such pro-
cesses are termed as c-martingale in the literature [40]–
[42]. Based on their definitions, we propose a c-martingale
convergence lemma:

Lemma 6 (c-martingale convergence lemma). Suppose that
there exist ρ > 0 and c̄ > 0 such that (49) holds and E[c(k)] ≤
c̄ <∞. Then it follows for any k ≥ 0 that E [V (k)] is bounded.

Proof. It follows from (49) that

0 ≤ E[V (k + 1)|F(k)] ≤ (1− ρ)V (k) + c(k). (50)

By taking expectation on both sides of (50), it yields that

0 ≤ E [V (k + 1)] ≤ (1− ρ)E [V (k)] + c̄

≤ (1− ρ)
k+1 E [V (0)] + c̄

k∑
t=0

(1− ρ)
t
.

(51)

The proof is thus completed.

Proof of Theorem 1. In order to prove Theorem 1, we shall re-
spectively establish the consistency and consensus conditions.

Consistency: By (28) and (32), we rewrite the dynamics of
the local state of sensor i in (26) as

ηi(k + 1) = Hηi(k) + Lizi(k) +BT

m∑
j=1

aij(ηj(k)− ηi(k))

+BT

m∑
j=1

aij(εj(k)− εi(k)).

(52)
The consistency condition is verified by summing (52) over
i ∈ {1, · · · ,m}.

Consensus: To simplify the notation, let us define the
aggregated vector of the states ηi(k) and the matrix of local
gains Li (given in (24)) as below:

η(k) ,

 η1(k)
...

ηm(k)

 , Lη ,

L1

. . .
Lm

 .
Collecting (52) from each sensor yields:

η(k + 1)

= (Im ⊗H)η(k)− [Im ⊗ (BT )](LG ⊗ In(r+1))η(k)

− [Im ⊗ (BT )](LG ⊗ In(r+1))ε(k) + Lηz(k)

= [Im ⊗H − LG ⊗ (BT )]η(k)− [LG ⊗ (BT )]ε(k)

+ Lηz(k),

(53)
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where z(k) is defined in (23). Let us rewrite η̄(k) in (45) as

η̄(k) =
1

m

m∑
i=1

ηi(k) =
1

m
(1Tm⊗In(r+1))η(k). (54)

Since 1Tm LG = 0, it follows that

η̄(k + 1) =
1

m
(1Tm⊗In(r+1))

(
[Im ⊗H − LG ⊗ (BT )]η(k)

− [LG ⊗ (BT )]ε(k) + Lηz(k)
)

= Hη̄(k) +
1

m
(1Tm⊗In(r+1))Lηz(k).

Furthermore, we define for each sensor i that

δi(k) , ηi(k)− η̄(k).

By stacking δi(k) together, let us denote δ(k) ,
col(δ1(k), · · · , δm(k)). We therefore have

δ(k + 1) = [Im ⊗H − LG ⊗ (BT )]δ(k)

+ [(Im −
1

m
1m 1Tm)⊗ In(r+1)]Lηz(k)− [LG ⊗ (BT )]ε(k).

(55)

By [39], there always exists a unitary matrix Φ ,
[ 1√
m

1m, φ2, · · · , φm], with which the Laplacian matrix can
be diagonalized as

ΦTLGΦ = diag(0, µ2, · · · , µm).

One hence concludes

(Φ⊗ In(r+1))
T [LG ⊗ (BT )](Φ⊗ In(r+1))

= diag(0, µ2BT, ..., µmBT ),

(Φ⊗ In(r+1))
T [Im ⊗H − LG ⊗ (BΓ)](Φ⊗ In(r+1))

= diag(H,H − µ2BT, ...,H − µmBT ),

(56)

which holds by the property of Kronecker product. Denote

δ̃(k) , (Φ⊗ In(r+1))
T δ(k), ε̃(k) , (Φ⊗ In(r+1))

T ε(k).
(57)

Let us further partition δ̃(k) into two parts, i.e., δ̃(k) =
[δ̃T1 (k), δ̃T2 (k)]T , where δ̃1(k) ∈ Rn(r+1) consists of the first
n(r + 1) entries of δ̃(k). One thus obtains from (55) that

δ̃1(k + 1) =
1√
m

m∑
i=1

δi(k + 1) = 0,

δ̃2(k + 1) = Aδ δ̃2(k) + Lzz(k) +Bεε̃2(k),

(58)

where Aδ , diag(H − µ2BT, · · · , H − µmBT ), Bε ,
diag(−µ2BT, · · · ,−µmBT ), and Lz is formed by the last
mn(r+1)−n(r+1) rows of [(ΦT− 1

mΦT 1m 1Tm)⊗In(r+1)]Lη .

Clearly, δ̃1(k + 1) is stable. We thus focus on the stability
of δ̃2(k+ 1). In view of Lemma 5, Aδ is stable. Hence, there
exist P̂ > 0,Q > 0 and σ1, σ2 > 0 such that

(1 + σ1 + σ2)ATδ P̂Aδ − P̂ +Q = 0. (59)

Then let us consider the following Lyapunov candidate:

V (k) = δ̃T2 (k)P̂ δ̃2(k). (60)

It thus follows that

V (k) = tr(δ̃T2 (k)P̂ δ̃2(k)) = tr(P̂ δ̃2(k)δ̃T2 (k))

≤ tr(P̂) tr(δ̃2(k)δ̃T2 (k)) = tr(P̂)||δ̃2(k)||2.
(61)

The difference of V (k) along (58) is given by

E[∆V (k)|F(k)] , E[V (k + 1)− V (k)|F(k)]

= δ̃T2 (k)(ATδ P̂Aδ − P̂)δ̃2(k) + 2δ̃T2 (k)ATδ P̂LzE[z(k)|F(k)]

+ 2δ̃T2 (k)ATδ P̂Bεε̃(k) + 2E[zT (k)|F(k)]LTz P̂Bεε̃(k)

+ LTz P̂LzE[zT (k)z(k)|F(k)] + ε̃T (k)BTε P̂Bεε̃(k).

Now using Young’s inequality, one concludes that

E[∆V (k)|F(k)]

≤ δ̃T2 (k)[(1 + σ1 + σ2)ATδ P̂Aδ − P̂]δ̃2(k)

+ (1 + σ−1
2 + σ3)LTz P̂LzE[zT (k)z(k)|F(k)]

+ (1 + σ−1
1 + σ−1

3 )ε̃T (k)BTε P̂Bεε̃(k)

≤ −λmin(Q)||δ̃2(k)||2 + c(k)

≤ −λmin(Q)

tr(P̂)
V (k) + c(k),

(62)

where σ1, σ2 are given in (59), and the last inequality holds
by (61). As proved in Lemma 4, cov(zi(k)) is bounded at
any time. Moreover, ||ε(k)||2 is also bounded by (36). It thus
follows that E[c(k)] <∞. In view of Lemma 6, we conclude
that E[V (k)] is bounded. As a result of (61), cov(δ̃2(k)) <∞.
Combining it with (57), we have cov[ηi(k)− η̄(k)] is bounded
for any i, which completes the proof.

The consistency condition (46) claims that the dynamics
of η̄(k) is governed by z(k) only. Therefore, the interaction
among sensors only affects the evolution of each local state
but not their average value η̄(k). On the other hand, (47) states
that, despite the signal z(k), each local state can track η̄(k)
with bounded error covariance. These conditions will next help
us establish the stability of local estimators.

Remark 5. As implied by Theorem 1, a general class of
triggering functions that guarantee (36) can be used to
synchronize the local states governed by stochastic linear
dynamics (26). This problem is known as stochastic linear
systems synchronization in the literature ([43]–[45]).

B. Stability analysis of local estimators
In Theorem 1, we have proven that the synchronization

algorithm (26) facilitates both the consistency and consensus
conditions among local states. We shall, in this subsection,
show how these conditions will help to achieve a stable local
estimate at each sensor side.

First, we show that the average of the local estimates of
all sensors is indeed the optimal Kalman estimate (7). This is
particularly guaranteed by the consistency condition (46):

Lemma 7. Suppose that the condition (40) holds, and Γ is
designed based on (41) and (42). By performing Algorithm 1,
it holds at any k ≥ 0 that

1

m

m∑
i=1

x̆i(k) = x̂(k). (63)
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Proof. By (46), it follows for any j ∈ {1, · · · , r} that
m∑
i=1

ηj,i(k + 1) = S

m∑
i=1

ηj,i(k) +

m∑
i=1

vji 1n zi(k). (64)

Comparing it with (14), we can obtain for any time k that∑m
i=1 vjiξ̂i(k) =

∑m
i=1 ηj,i(k). Therefore, it follows at any

k ≥ 0 that:
m∑
i=1

η0,i(k + 1) = (A−KCA)

m∑
i=1

η0,i(k)

+

r∑
j=1

K̃jβ
T

m∑
i=1

ηj,i(k) +

m∑
i=1

Kizi(k)

= (A−KCA)

m∑
i=1

η0,i(k) +

r∑
j=1

K̃jβ
T

m∑
i=1

vjiξ̂i(k)

+

m∑
i=1

Kizi(k).

Comparing it with (18) and (19), one concludes that

x̂(k) =

m∑
i=1

η0,i(k) =
1

m

m∑
i=1

x̆i(k). (65)

On the other hand, it is also desired to analyze the stability
of local estimators. We shall prove it by using the consensus
condition (47), as stated in the following theorem:

Theorem 2. Suppose that the condition (40) holds, and Γ is
designed based on (41) and (42). By performing Algorithm 1,
it holds at any k ≥ 0 that

cov(x̆i(k)− x(k)) <∞, ∀i. (66)

Namely, the error covariance of each local estimate is
bounded.

Proof. Let us consider the local estimate of any sensor i, i.e.,
x̆i(k). By virtue of (47), we conclude that cov(η0,i(k)−η̄0(k))
is bounded at any time k, where η̄0(k) = 1

m

∑m
i=1 η0,i(k).

Then in order to prove the boundedness of cov(x̆i(k)−x(k)),
let us denote

ēi(k) , x̆i(k)− x̂(k), (67)

which is the distance between x̆i(k) and the optimal Kalman
estimate. Combining it with (65) yields

ēi(k) = m(η0,i(k)− η̄0(k)). (68)

Thus, the local estimation error of sensor i is calculated as

ĕi(k) , x̆i(k)− x(k) = (x̆i(k)− x̂(k)) + (x̂(k)− x(k))

= ēi(k) + ê(k),
(69)

where ê(k) is the estimation error of Kalman filter. According
to the orthogonality principle [46], ēi(k) is orthogonal to ê(k).
Therefore, it follows that

cov(ĕi(k)) = cov(ēi(k)) + cov(ê(k))

= m2 cov(η0,i(k)− η̄0(k)) + P,
(70)

where P is the steady-state error convariance of the Kalman
filter as defined in (5). Since cov(η0,i(k)− η̄0(k)) is bounded,
we complete the proof.

Based on Theorem 2, we establish that each sensor provides
a stable local estimate under the minimum requirement of
collective system observability and condition (40) for syn-
chronization. Furthermore, analyzing (70), we conclude that
the performance gap between our estimator and the opti-
mal Kalman filter results purely from the consensus error
cov[η0,i(k)−η̄0(k)]. This insight allows us to leverage existing
results on synchronization algorithms for stochastic linear sys-
tems within our proposed framework to address this consensus
error. Consequently, our distributed estimation problem can
be effectively solved by employing any algorithm designed
for achieving synchronization in stochastic linear systems, as
supported by Theorems 1 and 2. This finding bridges the gap
between these two fields.

Additionally, in the proof of Theorem 1, we observe that
the consensus error is introduced by the local innovation
signals {zi(t)}t≤k and the event-triggering function. Notably,
if we allow for infinite consensus iterations between two
consecutive sampling times to generate {zi(t)}, the consensus
error diminishes, and the performance of our local estimator
aligns with that of the Kalman filter.

Remark 6. As shown in Figs. 1 and 2, this paper provides
a novel framework which decouples the local filter from the
synchronization process. Notice that this decoupling structure
also simplifies our convergence analysis. To be concrete, in
this work, the stability of local estimates is studied through
the supermartingale convergence theory. Moreover, for the
synchronization of the local states, we assume (40), which
relates the network topology and the instability of the system.
To the best of our knowledge, this is the first time that the
algorithm convergence is analyzed under these conditions
in the context of distributed estimation. This is because the
coupling structure in the existing solutions makes it difficult
to properly define a supermartingale or c-martingale. Instead,
these works establish the stability under stronger assumptions
which make the proof possible. For example, the authors
in [21] and [18] proved the stability of estimation errors
by assuming that the system matrix is invertible and the
network is strongly connected. Moreover, in [17], Meng et
al. conducted the proof by ignoring noises in the system.

Remark 7. In Theorem 2, we have established the bound-
edness of the estimation error. Nevertheless, it is crucial to
acknowledge that in this study, the communication is triggered
by noisy states. The interplay between communication and
random noises introduces complexity, making it challenging to
exactly calculate the convergence rate and estimation error.
This challenge is aligned with investigations conducted in
other event-based distributed estimation algorithms, such as
[17]–[21], [47], [48].

VI. LOW MESSAGE COMPLEXITY ESTIMATOR DESIGN

In practice, a communication channel is usually limited by a
finite bandwidth. Inspired by it, this section further investigates
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the design of distributed estimators under the constraint of
message complexity. Specifically, suppose that the message
complexity that the network is willing to tolerate is r̃ > 0. We
shall show how to design the distributed estimate algorithm
such that each sensor only needs to send out a message of
length no greater than r̃ at each transmission.

A. Extension to Luenberger observers

Our design is achieved by implementing a centralized
Luenberger observer with the proposed framework. To see this,
we start with a Luenberger observer for estimating (1) given
by

x̂(k + 1) = (A−Kr̃CA)x̂(k) +Kr̃y(k + 1), (71)

where Kr̃ is the estimation gain of the Luenberger observer.
Clearly, the steady-state Kalman filter (7) also belongs to the
class of Luenberger observers.

By replacing the Kalman gain K with Kr̃, it is not difficult
to verify that all results in Sections III–V still hold. That
is, we can generalize the results in Section III to obtain a
lossless decomposition of the Luenberger observer (71). Based
on this decomposition, Algorithm 1 can be applied to achieve a
distributed implementation of (71), where all parameters (e.g.,
K̃, V , F , Γ, etc.) are calculated by using Kr̃ instead of K.
Notice that, as stated in Remark 3, the message complexity of
this implementation is rank(Kr̃). As a result, one can reduce
the message complexity by using a Luenberger observer with
a gain Kr̃ such that rank(Kr̃) ≤ r̃.

In what follows, we show how to design the (sub)optimal
estimation gain Kr̃ such that its rank is upper bounded by
r̃ while yielding the minimum estimation error. It is obvious
that for any Kr̃ ∈ Rn×n, it can be factorized as

Kr̃ = K̄W, (72)

where K̄ ∈ Rn×r̃ and W ∈ Rr̃×m. Therefore, the
(sub)optimal gain Kr̃ can be obtained as follows:

1) Suppose that W is given. We first show that the optimal
K̄ can be directly calculated through a function of W .
As such, Kr̃ purely depends on W .

2) The second step finds the (sub)optimal W under the
constraint that rank(W ) ≤ r̃.

3) Finally, one can obtain the (sub)optimal Kr̃ via (72). It
is easy to verify that rank(Kr̃) ≤ rank(W ) ≤ r̃.

Particularly, if r̃ ≥ min{m,n}, the (sub)optimal Kr̃ ob-
tained from the above procedure is indeed the Kalman gain.
In the rest of this section, we shall detail these steps.

B. Optimal K̄ when W is given

First, we shall show how to design the optimal K̄ with a
given W . Let us consider the following measurements given
by a “virtual” sensor network:

ỹ(k) = C̃x(k) + ṽ(k), (73)

where

ỹ(k) = Wy(k), C̃ = WC, ṽ(k) = Wv(k). (74)

Suppose that this “virtual” sensor network is monitoring the
system (1) and a Luenberger observer is performed with esti-
mation gain K̄, where K̄ is defined in (72). Let us respectively
denote by x̃(k) and P̃ the corresponding estimate and error
covariance. Specifically, they can be expressed as

x̃(k + 1) = (A− K̄C̃A)x̃(k) + K̄ỹ(k + 1), (75)

and
P̃ (k) = cov(x̃(k)− x(k)), P̃ = lim

k→∞
P̃ (k). (76)

The following result is immediate:

Lemma 8. Let Pr̃ be the steady-state estimation error covari-
ance of the Luenberger observer (71). Then it follows that

Pr̃ = P̃. (77)

As a result of Lemma 8, we now focus on finding the
optimal K̄ which minimizes tr(P̃ ). Since W is given, clearly
this optimal solution is provided by the Kalman filter, where
the steady-state error covariance can be calculated as

P̃ = [(AP̃AT +Q)−1 + C̃T (R̃)−1C̃]−1, (78)

where
R̃ = WRWT . (79)

Moreover, the optimal K̄ is given by

K̄ = (AP̃AT +Q)C̃T [C̃(AP̃AT +Q)C̃T + R̃]−1. (80)

C. Towards finding the (sub)optimal W

As seen from (78) and (79), the error covariance P̃ is a
function of W . Therefore, we next aim to find the optimal
W in the sense that tr(P̃ ) is minimized under the constraint
that rank(W ) = r̃. Notice that W appears only in the term
C̃T (R̃)−1C̃ of (78). We thus rewrite it as

C̃T (R̃)−1C̃ = CTWT (WRWT )−1WC

= CTR−1/2[R1/2WT (WRWT )−1WR1/2]R−1/2C.
(81)

Let us denote

X , R1/2WT (WRWT )−1WR1/2 ∈ Rm×m, C̄ , R−1/2C.
(82)

It is easy to verify that X is a symmetric projection matrix,
namely, X2 = X and X = XT . Moreover, rank(X) =
rank(W ) = r̃. On the other hand, given any symmetric
projection matrix X which is of rank r̃, one can also find
a matrix W as

W =
(
R−1/2

[
v1 · · · vm

] )T
, (83)

where {v1, · · · , vm} is an orthonormal basis of the column
space of X . We can verify that this W satisfies (82). Therefore,
instead of minimizing tr(P̃ ) over W , we can minimize it over
X . That is,

minimize
X, P̃

tr(P̃ )

subject to P̃ = [(AP̃AT +Q)−1 + C̄TXC̄]−1,

XT = X, X2 = X, rank(X) = r̃.

(84)
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We shall follow [49] and manipulate the first constraint into
Linear Matrix Inequalities (LMIs). Moreover, since the last
constraint on rank is not convex, we further use the convex
relaxation proposed in [49] and compute X by solving the
following SDP:

minimize
X, P̃,Θ

tr(P̃ )

subject to
[
P̃ I
I Θ

]
≥ 0,[

Q−1 −Θ + C̄TXC̄ Q−1A
ATQ−1 Θ +ATQ−1A

]
≥ 0,

XT = X, 0 ≤ X ≤ Im, tr(X) = r̃.
(85)

Remark 8. The SDP (85) is always solvable for r̃ > 0, since
one can verify that X = r̃

mIm is a feasible solution of it.

Remark 9. Since we have relaxed the non-convex constraint
on rank, the SDP (85) is no longer equivalent to the original
problem (84). However, as proved in [49, Lemma 4], the
feasible region of this SDP is the convex hull formed by
all feasible solutions of the original problem. Moreover, the
optimal value of (85) provides a lower bound on the optimal
value of (84). Importantly, if the optimal solution of this SDP
is feasible for (84), it coincides with the optimal solution of
the original problem.

For (85), we can obtain the optimal solution X∗ and P̃∗.
However, since the constraint on the rank of X has been
relaxed, the matrix X∗ may not be a projection with rank
r̃. In such a case, one can obtain an approximation based on
X∗. Specifically, we apply an eigendecomposition to X∗ as

X∗ = U∗ diag (λ1, . . . , λm)UT∗ ,

where U∗ is orthonormal and λ1 ≥ · · · ≥ λm are the
eigenvalues of X∗. We thus can obtain a projection matrix
X0 as

X0 = U∗ diag(1, . . . , 1︸ ︷︷ ︸
r̃

, 0, . . . , 0︸ ︷︷ ︸
m−r̃

)UT∗ .

It is easy to verify rank(X0) = r̃. Therefore, from X0, the
(sub)optimal W can be obtained via (83). Then combining
(72), (78), and (80), we finally obtain a (sub)optimal estima-
tion gain Kr̃, the rank of which is no more than r̃. As discussed
previously, one can implement the Luenberger observer with
Kr̃ in a distributed manner by performing Algorithm 1, where
the message complexity is at most r̃.

Remark 10. As observed from Remark 3, using a low-rank
estimator also reduces the computational overhead of perform-
ing (26). This point will be discussed further in Section VII.

Our motivation for proposing the low-rank estimator design
is driven by the objective to reduce message complexity in
the developed distributed framework. The use of a low-rank
gain offers a promising solution to achieve this goal. To the
best of our knowledge, this work represents the first attempt
to explore the design of the (sub)optimal Luenberger observer
with a low-rank estimation gain.

In the literature, one relevant problem is the design of

reduced-order Luenberger observers (see [26]). Under the
assumption that the number of states is no less than that
of measurements, i.e., n ≥ m, and the measurement matrix
C ∈ Rm×n is of low rank, i.e., rank(C) = p < m, the results
therein effectively reduce the order of estimators from n to
n − p, and yields an estimation gain K̂ ∈ R(n−p)×p in the
noise-free environment. Since rank(K̂) ≤ min(n − p, p), the
reduced-order Luenberger observer also leads to an estimation
gain with low rank.

However, this work takes stochastic noises into account,
presenting a departure from the above-mentioned approach. In
our design, we directly optimize estimation performance over
the gain K, under the constraint that rank(K) ≤ r̃. Notice
that, given any 1 ≤ r̃ ≤ min(m,n), the proposed optimization
problem is always feasible. This means that our design is more
general than the ones using reduced-order observers, since r̃
need not be determined by rank of the measurement matrix C.
Consequently, our method remains effective even when n < m
or when C is of full rank. Furthermore, our approach finds the
optimal gain among all feasible ones, resulting in the minimum
performance loss among all solutions, including the gains of
the reduced-order observers. This highlights the superiority of
our method in achieving the reduced message complexity and
the optimal estimation performance.

VII. COMPARISON WITH EXISTING WORKS

Before closing the main sections of this paper, we finally
compare our algorithm with some existing works.

Recall that, the framework proposed in this paper is built
based on our previous work [15]. However, in order to save
the communication efforts, we non-trivially extend the results
therein from three aspects: 1) We apply event-based strategies
to reduce the number of transmissions in the network. 2) A
new method for decomposing the Kalman filter is proposed
to reduce the message complexity. By doing so, the size of
message exchanged at each transmission is also limited. 3) We
propose the design of low-rank estimators, which allows us to
further reduce the message complexity with some tradeoff in
its estimation performance.

In TABLE I, we also present a comparison between our
work and several existing event-based solutions. In particular,
from the table, it is observed that both message complexity and
computational overhead are fixed in the existing works. In con-
trast, our framework, as indicated in Remark 3, allows these
complexities to be determined by rank(K). This characteristic
introduces a new level of flexibility, enabling us to reduce these
complexities effectively through the design of an estimation
gain with a lower rank, as proposed in Section VI. Moreover,
since rank(K) ≤ min(m,n), the proposed algorithm always
outperforms existing works in terms of message complexity
and computational overhead, regardless of the network size.
The table also reveals that our algorithm achieves superior
applicability and performance by not requiring the invertibility
of the system matrix A and by accommodating a wide range
of triggering functions.
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Algorithm Consensus on Message transmitted
to neighbors

Message
complexity

Computational
overhead

Triggering func-
tion

Stability

[21] Information Information matrices
and vectors

n2 + n O(n3) Specific Yes (requires
that A is in-
vertible)

[17] Estimates Estimates n O(n2) Specific Yes (requires
that A is in-
vertible)

[18] Information Information matrices
and vectors

n2 + n O(n3) Specific Yes (requires
that A is in-
vertible)

[20] Estimates Covariance matrices
and estimates

n2 + n O(n3) Specific Yes (requires
that A is in-
vertible)

This
work

Estimates “Encoded” estimates 1≤ r̃≤min(m,n) O(r̃n2) A large class of
triggering func-
tions can be used

Yes (no re-
quirement on
A)

TABLE I: Comparison with different event-based distributed estimation algorithms.
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Fig. 4: The topology of 30 sensors in the 12× 12 grid.

VIII. NUMERICAL EXAMPLES

In this section, we aim to verify the established results
through some numerical examples.

As shown in Fig. 4, let us consider a network of m = 30
sensors, which is deployed to monitor the temperature within
a region represented by a 12 × 12 grid. Each sensor has
the communication radius of 6. By discretizing the partial
differential equation which describes heat transfer process, this
problem can be modeled as a linear Gaussian system as in
(1) and (2). Due to space limitation, we omit the detailed
constructions but refer the readers to [50].

The temperature of each grid is taken as a state. Therefore,
n = 144. The covariances of system and measurement noises
are respectively chosen as Q = 0.8In and R = Im.

A. Performance of Algorithm 1 at different communicate rates

In this example, (37) is selected as the triggering function.
Adjusting parameters in the function yields different commu-

nication rate, which is defined by

σ ,
1

m

m∑
i=1

# of triggering instants of sensor i
# of total instants

. (86)

In Fig. 5, we show the performance of Algorithm 1 at different
communicate rates. Specifically, we characterize the estimation
performance by averaging the norm of estimation error among
all sensors.

From the figure, it is observed that similar performances
are achieved at the beginning stage. This is because at this
stage, estimation error is far from the steady state. Therefore,
the sensors are always triggered in all situations. However,
it is clear that the steady-state error increases when the
communication becomes less frequent at the later stage.

Fig. 6 further demonstrates the steady-state estimation error
at different communication rates. The results are obtained
through 1000-run Monte Carlo trials, where the initial states
and noises are randomly set for each trial. They are given in
box and whisker diagrams where the bottom and top of the
box represent the first and third quartiles, the (red) band inside
the box represents the median of the data, and the ends of the
whiskers represent the minimum and maximum of the data.
From this figure, it is easy to conclude the trade-off between
the communication rate and estimation performance.

B. Performance comparison of different algorithms
Next, we compare the estimation performance of our al-

gorithm with the centralized Kalman filter and other event-
based distributed estimators listed in TABLE I, i.e., those
from [21], [17], [18], and [20]. We repeat the simulation for
100 times. From Fig. 7, it is observed that with the similar
communication rate at around 80%, our algorithm enjoys the
largest convergence rate as compared to the others.

Notice that, although the estimator in [21] yields less
steady-state error than ours, from TABLE I, we know that

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3309373

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 30,2023 at 13:03:41 UTC from IEEE Xplore.  Restrictions apply. 



14

0 10 20 30
0

20

40

60

Time

N
or

m
of

es
tim

at
io

n
er

ro
r

σ = 0.66

σ = 0.73

σ = 0.81

σ = 0.91

σ = 1

Fig. 5: Time responses of Algorithm 1 at different communi-
cate rates, where the black dashed line denotes the steady-state
error of the Kalman filter.
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Fig. 7: Time responses of different event-triggered distributed
algorithms, where the black dashed line denotes the steady-
state error of Kalman filter. Communication rates in differ-
ent algorithms are 80.60% (our algorithm), 81.13% ([21]),
80.05% ([17]), 81.22% ([18]), and 79.80% ([20]).

this is achieved at the expense of high message complexity.
Specifically, at each transmission, the sizes of data to be
transmitted in different algorithms are rank(K) = 30 (the
proposed algorithm), n2 + n = 20880 ([21]), n = 144 ([17]),
n2 +n = 20880 ([18]), and n2 +n = 20880 ([20]). Therefore,
although with the almost same number of transmissions, we
require the least size of data to be transmitted. Clearly, our
advantage in reducing the data size will be more apparent in a
larger network with increasing number of states and sensors.
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Fig. 8: Time responses of the designed low-rank estimators.

C. Performance of low-rank estimators

Using the system above, we present the performance of
the low-rank estimators designed in Section VI. In Fig. 8,
we depict the estimation errors of these designed estimators
for different ranks: r̃ = 1, 3, 5, 10, 30. Notably, the estimator
with r̃ = 30 corresponds to the optimal Kalman filter. It is
evident from the figure that even with r̃ = 10, meaning that
only one-third of the degrees of freedom are utilized for the
estimator design, the performance loss is minor, approximately
at the level of 10%. Therefore, we can significantly reduce the
message complexity by implementing this rank-10 estimator
in a distributed manner using our algorithm.

IX. CONCLUSION

This paper has addressed the problem of distributed estima-
tion with event-based communication protocols. By decom-
posing the centralized estimator, we have reformulated the
problem of distributed estimation to that of stochastic linear
systems synchronization, in which a large class of triggering
functions are effective in yielding a stable local estimate at
every sensor side. Given any r̃, an SDP has been presented,
which gives the (sub)optimal gain of centralized estimator. By
implementing it with our distributed algorithm, we have shown
that the proposed estimator requires lower message complexity
of no more than r̃.

APPENDIX A
PROOF OF LEMMA 4

The local filters of the form (14) were proposed in [15].
Lemma 4 is included in the results there, but not explicitly.
Here we present the proof for the sake of completeness.

1) It follows from (1) and (8) that

xs(k + 1) = Asxs(k) + Jw(k), (87)

where J =
[
0 1ns

]
∈ Rns×n and x(k) = col(xu(k), xs(k))

with xu(k) ∈ Rnu

and xs(k) ∈ Rns

. Moreover, let us partition
Ci in accordance with (8) as Ci =

[
Cui Csi

]
, with Cui ∈

R1×nu

and Csi ∈ R1×ns

.
It is not difficult to verify from (12) and (14) that ξ̂i(k) can

be rewritten as

ξ̂i(k + 1) = Λξ̂i(k) + 1n yi(k + 1). (88)
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By Lemma 2, (ST , β) is controllable. From (13), we also
conclude pST (Au) = 0. Then, by Lemma 3, for any i ∈ V ,
we can find Gui ∈ Rn×nu

such that

(Gui )TST = (Au)
T

(Gui )T , (Gui )Tβ = (Cui A
u)T ,

which implies that

Gui A
u − 1nC

u
i A

u = SGui − 1n βTGui
= (Λ + 1n βT )Gui − 1n βTGui = ΛGui ,

βTGui = Cui A
u.

(89)
Therefore, we conclude[
Gui 0

]
A− 1nCiA =

[
Gui A

u 0
]
− 1n

[
Cui A

u CsiA
s
]

= Λ
[
Gui 0

]
− 1n

[
0 CsiA

s
]
,

βT
[
Gui 0

]
=
[
Cui A

u 0
]

= CiA−
[
0 CsiA

s
]
.

(90)
For simplicity, let us denote Gi ,

[
Gui 0

]
∈ Rn×n.

Moreover, define

εi(k) , Gix(k)− ξ̂i(k). (91)

Following [15], it is verified that cov(εi(k)) is bounded.
Next, by (14) and (91), it follows zi(k) = yi(k + 1) −

βT (Gix(k)− εi(k)). Then, by (1), (2), and (90),

zi(k) = Ci(Ax(k) + w(k)) + vi(k + 1) + βT εi(k)

− (CiA−
[
0 CsiA

s
]
)x(k)

= βT εi(k) + CsiA
sxs(k) + Ciw(k) + vi(k + 1).

(92)

From (8), xs(k) has bounded covariance. Since εi(k) is stable,
we conclude that cov(zi(k)) is also bounded.

2) To prove (15), let us multiply both sides of (88) by Fi
from the left, which gives

Fiξ̂i(k + 1) = FiΛξ̂i(k) + Fi 1n yi(k + 1). (93)

Since Fi solves (11), one obtains

Fiξ̂i(k + 1) = (A−KCA)Fiξ̂i(k) +Kiyi(k + 1). (94)

Summing up (94) for all i ∈ {1, · · · ,m} yields that
m∑
i=1

Fiξ̂i(k+1) = (A−KCA)

m∑
i=1

Fiξ̂i(k)+

m∑
i=1

Kiyi(k+1).

By comparing this with (10), we complete the proof.

APPENDIX B
PROOF OF LEMMA 5

Consider any j ∈ {2, . . . .., n}. It follows that

H−µjBT =


A−KCA K̃1β

T · · · K̃rβ
T

S − µj 1n Γ
. . .

S − µj 1n Γ

.
As (Λ, 1n) is controllable, (S, 1n) is also controllable by (23).
Hence, by the choice of ζ, there exists P > 0 that solves (42)
([39]). Then, following similar arguments as presented in [15,
Lemma 6], one concludes that ρ(S − µj 1n Γ) < 1. Since
A−KCA is stable, our proof is completed.
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[27] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus

filters,” in Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005, pp. 8179–8184.

[28] W. Li and Y. Jia, “Consensus-based distributed multiple model UKF
for jump Markov nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 227–233, 2011.

[29] K. Ma, S. Wu, Y. Wei, and W. Zhang, “Gossip-based distributed tracking
in networks of heterogeneous agents,” IEEE Communications Letters,
vol. 21, no. 4, pp. 801–804, 2016.

[30] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2069–2084, 2010.

[31] J. Hu, L. Xie, and C. Zhang, “Diffusion Kalman filtering based on co-
variance intersection,” IEEE Transactions on Signal Processing, vol. 60,
no. 2, pp. 891–902, 2011.

[32] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion strategies
for distributed Kalman filtering: Formulation and performance analysis,”
Proc. Cognitive Information Processing, pp. 36–41, 2008.

[33] A. Haber and M. Verhaegen, “Moving horizon estimation for large-
scale interconnected systems,” IEEE Transactions on Automatic Control,
vol. 58, no. 11, pp. 2834–2847, 2013.

[34] Y. Kadowaki and H. Ishii, “Event-based distributed clock synchroniza-
tion for wireless sensor networks,” IEEE Transactions on Automatic
Control, vol. 60, no. 8, pp. 2266–2271, 2014.

[35] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication
and control of networked systems for multi-agent consensus,” Automat-
ica, vol. 105, pp. 1–27, 2019.

[36] L. Xing, H. Lin, C. Wang, Z. Liu, and M. Liu, “Event-triggered
controller design from the control input perspective,” International
Journal of Robust and Nonlinear Control, vol. 32, no. 10, pp. 5866–
5880, 2022.

[37] X. Yi, K. Liu, D. V. Dimarogonas, and K. H. Johansson, “Dynamic
event-triggered and self-triggered control for multi-agent systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3300–3307, 2018.

[38] R. K. Mishra and H. Ishii, “Dynamic event-triggered consensus control
of discrete-time linear multi-agent systems,” International Journal of
Robust and Nonlinear Control, vol. 33, no. 1, pp. 159–176, 2023.

[39] K. You and L. Xie, “Network topology and communication data rate
for consensusability of discrete-time multi-agent systems,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 10, pp. 2262–2275, 2011.

[40] Q.-C. Pham, N. Tabareau, and J.-J. Slotine, “A contraction theory
approach to stochastic incremental stability,” IEEE Transactions on
Automatic Control, vol. 54, no. 4, pp. 816–820, 2009.

[41] J. Steinhardt and R. Tedrake, “Finite-time regional verification of
stochastic non-linear systems,” International Journal of Robotics Re-
search, vol. 31, no. 7, pp. 901–923, 2012.

[42] M. Wang and D. P. Bertsekas, “Stochastic first-order methods with
random constraint projection,” SIAM Journal on Optimization, vol. 26,
no. 1, pp. 681–717, 2016.

[43] L. Ma, Z. Wang, and H.-K. Lam, “Event-triggered mean-square consen-
sus control for time-varying stochastic multi-agent system with sensor
saturations,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3524–3531, 2016.

[44] D. Ding, Z. Wang, B. Shen, and G. Wei, “Event-triggered consensus
control for discrete-time stochastic multi-agent systems: The input-to-
state stability in probability,” Automatica, vol. 62, pp. 284–291, 2015.

[45] L. Cheng, Z.-G. Hou, and M. Tan, “A mean square consensus protocol
for linear multi-agent systems with communication noises and fixed
topologies,” IEEE Transactions on Automatic Control, vol. 59, no. 1,
pp. 261–267, 2013.

[46] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, 1993.

[47] Q. Liu, Z. Wang, X. He, and D. Zhou, “Event-based distributed filtering
over Markovian switching topologies,” IEEE Transactions on Automatic
Control, vol. 64, no. 4, pp. 1595–1602, 2019.

[48] D. Shi, T. Chen, and M. Darouach, “Event-based state estimation of
linear dynamic systems with unknown exogenous inputs,” Automatica,
vol. 69, pp. 275–288, 2016.

[49] Y. Yuan and Y. Mo, “Security in cyber-physical systems: Controller
design against known-plaintext attack,” in Proceedings of the 54th IEEE
Conference on Decision and Control (CDC). IEEE, 2015, pp. 5814–
5819.

[50] Y. Mo, R. Ambrosino, and B. Sinopoli, “Sensor selection strategies
for state estimation in energy constrained wireless sensor networks,”
Automatica, vol. 47, no. 7, pp. 1330–1338, 2011.

Jiaqi Yan received the bachelor’s degree in Au-
tomation from Xi’an Jiaotong University, China, in
2016 and the Ph.D. degree from Nanyang Tech-
nological University, Singapore, in 2021. She is
currently working as a postdoc research fellow at
Tokyo Institute of Technology, Japan. Prior to this,
she was a Research Assistant with the Tsinghua
University, China, from August 2020 to July 2021,
and a Visiting Scholar with the California Institute
of Technology, USA, from February 2019 to August
2019. Her research interests include distributed es-

timation and security and resilience of cyber-physical systems. She received
JSPS Postdoctoral Fellowship for Research in Japan (Standard) in 2021.

Yilin Mo is an Associate Professor in the De-
partment of Automation, Tsinghua University. He
received his Ph.D. in Electrical and Computer En-
gineering from Carnegie Mellon University in 2012
and his Bachelor of Engineering degree from Depart-
ment of Automation, Tsinghua University in 2007.
Prior to his current position, he was a postdoctoral
scholar at Carnegie Mellon University in 2013 and
California Institute of Technology from 2013 to
2015. He held an assistant professor position in
the School of Electrical and Electronic Engineering

at Nanyang Technological University from 2015 to 2018. His research
interests include secure control systems and networked control systems, with
applications in sensor networks and power grids.

Hideaki Ishii (M’02-SM’12-F’21) received the
M.Eng. degree in applied systems science from Ky-
oto University, Kyoto, Japan, in 1998, and the Ph.D.
degree in electrical and computer engineering from
the University of Toronto, Toronto, ON, Canada,
in 2002. He was a Postdoctoral Research Associate
with the Coordinated Science Laboratory at the Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL,
USA, from 2001 to 2004, and a Research Associate
with the Department of Information Physics and
Computing, The University of Tokyo, Tokyo, Japan,

from 2004 to 2007. Currently, he is a Professor at the Department of Computer
Science, Tokyo Institute of Technology, Yokohama, Japan. He was a Humboldt
Research Fellow at the University of Stuttgart in 2014–2015. He has also held
visiting positions at CNR-IEIIT at the Politecnico di Torino, the Technical
University of Berlin, and the City University of Hong Kong. His research
interests include networked control systems, multiagent systems, distributed
algorithms, and cyber-security of control systems.

Dr. Ishii has served as an Associate Editor for the IEEE Control Systems
Letters and the Mathematics of Control, Signals, and Systems and previously
for Automatica, the IEEE Transactions on Automatic Control, and the IEEE
Transactions on Control of Network Systems. He is the Vice President for the
IEEE CSS since 2022 and has served on the IEEE CSS Board of Governors as
an elected member in 2014-2016. He is the Chair of the IFAC Coordinating
Committee on Systems and Signals since 2017 and was the Chair of the
IFAC Technical Committee on Networked Systems for 2011–2017. He was
the IPC Chair for the IFAC World Congress 2023 held in Yokohama, Japan.
He received the IEEE Control Systems Magazine Outstanding Paper Award
in 2015. Dr. Ishii is an IEEE Fellow.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3309373

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 30,2023 at 13:03:41 UTC from IEEE Xplore.  Restrictions apply. 


