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Thomas Städler, Edward S. Buckler,

Sanwen Huang

Correspondence
huangsanwen@caas.cn

In brief

Deep phylogenomic analyses of 92

species reveal evolutionary constraints in

the nightshade family and deleterious

mutations in potato genomes, increasing

genome prediction accuracy and

supporting the counterintuitive selection

of inbred founders to facilitate hybrid

potato breeding.
ll

mailto:huangsanwen@caas.cn
https://doi.org/10.1016/j.cell.2023.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2023.04.008&domain=pdf


OPEN ACCESS

ll
Article

Phylogenomic discovery of deleterious mutations
facilitates hybrid potato breeding
Yaoyao Wu,1,2,16 Dawei Li,1,3,16 Yong Hu,1,4,16 Hongbo Li,1,17 Guillaume P. Ramstein,5,17 Shaoqun Zhou,1 Xinyan Zhang,1

Zhigui Bao,1,6 Yu Zhang,1,7 Baoxing Song,8 Yao Zhou,1,9,10 Yongfeng Zhou,1 Edeline Gagnon,11 Tiina Särkinen,12
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SUMMARY
Hybrid potato breeding will transform the crop from a clonally propagated tetraploid to a seed-reproducing
diploid. Historical accumulation of deleterious mutations in potato genomes has hindered the development
of elite inbred lines and hybrids. Utilizing a whole-genome phylogeny of 92 Solanaceae and its sister clade
species, we employ an evolutionary strategy to identify deleterious mutations. The deep phylogeny reveals
the genome-wide landscape of highly constrained sites, comprising �2.4% of the genome. Based on a
diploid potato diversity panel, we infer 367,499 deleterious variants, of which 50% occur at non-coding
and 15% at synonymous sites. Counterintuitively, diploid lines with relatively high homozygous deleterious
burden can be better starting material for inbred-line development, despite showing less vigorous growth.
Inclusion of inferred deleterious mutations increases genomic-prediction accuracy for yield by 24.7%. Our
study generates insights into the genome-wide incidence and properties of deleterious mutations and their
far-reaching consequences for breeding.
INTRODUCTION

The reinvention of potato from a clonally propagated autotetra-

ploid to an inbred line-based diploid hybrid reproducing via

seeds may transform the breeding of the most important tuber

crop from a slow, non-accumulative mode to a fast iterative

one.1–5 The clonally propagated potato has accumulated a

markedly large number of deleterious mutations.6 Deleterious

mutations are masked or partially masked in the heterozygous

state, and their detrimental effects are exposed during the pro-
Cell 186, 2313–2328, M
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cess of developing inbred lines by repeated rounds of self-fertil-

ization (selfing),6 which makes developing highly homozygous

inbred lines a challenging enterprise. We previously developed

two highly homozygous inbred lines by purging of large-effect

deleterious mutations via phenotypic screening and genetic an-

alyses; however, these two inbred lines still have large numbers

of mild, moderate, and even some highly deleterious mutations

in their genomes.4 Jointly, these deleterious variants result in

large negative fitness effects as evidenced by frail growth,

reduced fertility, and low yield.4 Recent genetic investigations
ay 25, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 2313
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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suggest that crop breeding could be facilitated by the inference

and purging of deleterious mutations.7–10 To accelerate hybrid

potato breeding, it is imperative to identify and understand the

properties of deleterious mutations with their effects on fitness

at genome-wide scales. Many existing methodologies of pre-

dicting deleterious mutations, however, focus on protein-coding

regions or face challenges to measure the effect of individual

mutations.11–13 Genomic Evolutionary Rate Profiling (GERP)

methodology, a generally validated and effective method based

on evolutionary constraints, can identify and quantify deleterious

mutations at genome-wide scales including synonymous and

non-coding sites.14–17 A deep phylogeny and genome-wide

alignment are crucial for robust prediction of evolutionary con-

straints and deleterious mutations by this approach.

Using the 100 assembled genomes of 92 species in the plant

family Solanaceae and its sister clade Convolvulaceae to

construct a deep phylogeny, we here identify constrained sites

across the potato genome. Subsequently, our deep-phylogeny

approach empowers the prediction and quantification of dele-

terious mutations, guiding the selection of starting materials

for inbred-line development (inbred founders). Moreover,

including deleterious burden significantly improves the

genomic-prediction (GP) accuracy for agronomically important

traits, facilitating genomic selection (GS) and thus hybrid potato

breeding.

RESULTS

A deep phylogeny of Solanaceae
Potato (Solanum tuberosum L.) belongs to the nightshade family

Solanaceae, which includes several economically important

crop species such as tomato, chili pepper, eggplant, and to-

bacco.18,19 A deep phylogeny encompassing sufficient numbers

of substitutions at neutral sites and based on a genome-wide

alignment is crucial for robust prediction of evolutionary

constraint, estimated by the number of ‘‘rejected’’ substitu-

tions.14,15 The currently available Solanaceae reference ge-

nomes (details in STAR Methods), however, represent a limited

number of unevenly distributed phylogenetic branches that

omit many of the major lineages in the family. To infer a deep

and densely sampled phylogeny of Solanaceae, we de novo

sequenced 32 additional species (38 genomes) (Table S1).

Jointly, the 87 Solanaceae species in our analysis cover most

major clades (nine out of 13) in the family,19 with an emphasis

on the genus Solanum to which potato belongs.

We assembled the genomes of the 32 species (38 genomes)

using Pacific Biosciences (PacBio) high-fidelity (HiFi) data with

a mean sequencing depth of 253 (Table S1). The assembled

monoploid genome sizes range from 0.8 Gb (Lycianthes biflora,

a diploid) to 5.0 Gb (Tubocapsicum anomalum, an allopolyploid),
Figure 1. Inferred phylogeny and synteny of Solanaceae

(A) Phylogenetic relationships among the 95 Solanaceae and fiveConvolvulaceae

time (million years ago [mya]). Species whose genomes were assembled de nov

indicate the number of species contained in the corresponding collapsed branc

Solanum section Lycopersicon.

(B) Genome-wide synteny among 11 representative Solanaceae species. The nu

See also Figure S1 and Table S2.
consistent with those estimated by flow cytometry (Table S1).

The mean contig N50 length of these 38 assemblies is 39 Mb,

indicating their high continuity (Table S1). In addition, 20 of the

38 genomes were assembled at the chromosome level using

high-throughput chromatin conformation capture (Hi-C) data

(Table S1; Data S1). BUSCO evaluation20 indicates an average

score of 98%, suggesting near-completeness of our assemblies

(Table S1). Combining ab initio gene prediction, transcript align-

ment, and evidence of protein homology, we predict 30,621–

102,090 protein-coding genes in these genomes (Table S1).

The number and length of genes, exons, and introns are compa-

rable with other published Solanaceae genomes, and 58%–77%

of putative genes could be assigned functional protein families

using the Pfam database21 (Table S1). These 38 assemblies

and their annotation represent one of the highest-quality Solana-

ceae genomic datasets to date.

We performed whole-genome multiple alignments among the

95 Solanaceae genomes (87 species) and five published Convol-

vulaceae genomes, the sister clade of Solanaceae (see STAR

Methods and Table S1). This generated between 32 Mb (5%)

and 446 Mb (61%) of segments aligned to the potato genome,

with their alignment length declining with increasing phyloge-

netic distance (Figures S1A and S1B). We next inferred a species

tree for the 95 Solanaceae genomes using 4-fold degenerate

sites, with five Ipomoea species (Convolvulaceae) as the out-

group (Figure 1A; Table S2). The phylogeny was time-calibrated

by constraining the stem node age of the Berry clade as 52.2

million years ago (mya).22 We estimate the Solanaceae stem

node at 80 mya (95% highest posterior density interval, 70–86

mya) and the extant genus Solanum to have started diversifying

25 mya (95% highest posterior density interval, 22–29 mya;

Figure 1A).

Previous studies documented incongruence between in-

dividual gene trees across several nodes of Solanum within

wild potatoes (Solanum section Petota) and wild tomatoes

(Solanum section Lycopersicon) and within the pepper tribe

Capsiceae23–26; however, the extent of such discordance at

the whole-genome scale has not been investigated along deeper

nodes across Solanaceae. To assess the levels of discordance

between the species tree and individual window trees, we split

the whole-genome alignment into 3,627 windows (1-Mb length

with 200-kb step size), followed by the construction of local phy-

logenies for each sliding window (Figure S1C). We found that the

topology of the main branches is consistent with previous

studies,19,23 but shallower internal nodes exhibit broad incon-

gruence (Figure S1C). These results are consistent with a sce-

nario where different regions of Solanaceae genomes might

have undergone diverse evolutionary trajectories, possibly due

to variable levels of selective constraint and rapid diversification

resulting in incomplete lineage sorting.
outgroup accessions. Numbers next to nodes denote the estimated divergence

o are in bold face, and polyploids are indicated by #. Numbers in parentheses

h. Petota, species from Solanum section Petota. Lycopersicon, species from

mbered white ellipses denote chromosomes 1–12.

Cell 186, 2313–2328, May 25, 2023 2315
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The total branch length of the reconstructed deep phylogeny

(indicating the number of substitutions for neutral sites) is 4.05,

representing a 5.7-fold increase compared with a recently

reported whole-genome phylogeny that mainly covers species

of Solanum section Petota (total branch length of 0.71;

Table S2).27 Generating a deeper and more densely sampled

phylogeny facilitates the quantification of the high-density level

of evolutionary constraint and thus the characterization of dele-

terious mutations across the potato genome.

Evolutionary constraint in the potato genome
To investigate whether the whole-genome alignment of Solana-

ceae species allows robust prediction of evolutionarily con-

strained sites, we studied genome-wide synteny by assembling

segments of syntenic genes among 93 Solanaceae genomes

(Table S2; two species used in our phylogenetic reconstruction

lack genome annotation). Species of Solanum exhibit the highest

proportions of syntenic genes with potatoes, averaging 86%

(Figure 1B; Table S2). Synteny remains high (72%) even between

potato and Petunia axillaris, the species with the largest phyloge-

netic distance to potato among our sampled Solanaceae taxa

(Table S2). This largely retained synteny hints that the whole-

genome alignment can serve as a reliable dataset to predict

levels of evolutionary constraint.

Previous research suggested that evolutionarily constrained

sequences are likely to indicate biological functions with fitness

consequences upon disruption, i.e., that mutations at these sites

potentially reduce fitness.14,15,17,28 Consequently, identification

of such sites by GERP,14,15 leveraging the deep phylogeny of

Solanaceae, offers an avenue for discovering deleterious muta-

tions in potato and other solanaceous crops. To characterize

evolutionary constraints across the potato genome, we lever-

aged the whole-genome alignment and the inferred phylogeny

of the 100 genomes by computing the GERP score for each

assessable nucleotide site in the potato genome (Figures 2A,

2B, and S2A–S2D). Higher GERP scores indicate a larger evolu-

tionary constraint level. A total of 267,915,549 genomic sites

(36.64% of the potato genome) could be probed via high-confi-

dence GERP scores, i.e., those based on a minimum of 15

aligned species (genomes). A total of 2.4% (17,362,955 bp) of

the potato genome exhibits signals of evolutionary constraint

(moderately and strongly constrained sites at GERP score

R2.75; those including additional mildly constrained sites are re-

ported in the supplemental information [Figures S2E and S2F;

Table S2]), of which 36% is in non-coding regions (Figure 2C).

A total of 28.8% of all coding sequences (CDSs) are predicted

as evolutionarily constrained sites, followed by untranslated re-

gions (UTRs) (7.6%) and introns (4.5%; Figure 2D) for which con-

strained sites tend to be enriched compared with intergenic re-

gions (fold change, 3833, 1013, and 603, respectively; c2

test, p values < 0.001; Figure S2F; Table S2). Moreover, con-

strained sites are significantly more enriched in 0-fold degen-

erate sites (0d) than in 4-fold degenerate sites (4d; 4.083; c2

test, p < 0.001; Figure S2F), consistent with the well-established

phenomenon that 0d sites are evolutionarily more conserved

than 4d sites (Table S2). These patterns are even more pro-

nounced for strongly constrained sites (GERPR3.5, FigureS2F).

Moreover, the more strongly evolutionarily constrained sites
2316 Cell 186, 2313–2328, May 25, 2023
encompass higher relative proportions of regions of 0d sites (Fig-

ure S2E; Table S2). The overall components and enrichment of

evolutionarily constrained sites among these bona fide func-

tional elements suggest the robustness of our inferences.

Gene ontology (GO) enrichment reveals that the top 1% con-

strained genes are significantly enriched in primary biological

processes such as carbohydrate biosynthesis, protein glycosyl-

ation, and transport (Figure S2G). Among these genes, Sol-

tu.DM.01G028520.3, encoding a citrate synthase, catalyzes

the first step of the tricarboxylic acid cycle, a major energy-pro-

ducing metabolic pathway.29 A total of 83.5% of its CDS and

95.9% of 0-fold degenerate sites (773 out of 806) were identified

as evolutionarily constrained by our pipeline (Figure S2H). The

catalog of genome-wide constrained sites opens avenues to

further characterize functional elements, especially in previously

underrepresented non-coding regions in Solanaceae species.

A genome-wide atlas of deleterious variants
Robust identification of deleterious mutations is pivotal for

developing elite inbred lines.4,6,17,30 However, research in po-

tatoes has thus far focused solely on large-effect deleteriousmu-

tations or nonsynonymous variants in gene-coding regions,4,6

neglecting possible mild, moderate ones, as well as those in

non-CDSs and synonymous variants. The above analyses of

whole-genome constrained sites facilitate a broader under-

standing of the landscape of deleterious mutations across the

potato genome. To identify deleterious variants in diploid po-

tatoes, we used a representative diploid potato diversity panel,

consisting of two inbred lines and 190 landrace potatoes,

covering the four main subgroups of diploid potato landraces,

S. tuberosum group Stenotomum, S. tuberosum group Phureja,

S. tuberosum group Goniocalyx, and S. tuberosum group Ajan-

huiri.27 These diploid landraces, with 0.02 average heterozygos-

ity, are valuable germplasm resources for diploid hybrid potato

breeding, especially with the purpose of searching for potential

inbred founders.

Single-nucleotide polymorphisms (SNPs) within the diploid

potato diversity panel at evolutionarily constrained sites were

considered deleterious variants (Figures 3A and 3B). The

GERP scores for such sites also enable a rough quantification

of the magnitude of deleterious variants’ potential effects. A total

of 367,499 SNPs (0.6% of 58,597,787 SNPs in this panel) were

thus classified as putatively harboring moderately and highly

deleterious variants at the threshold GERP R 2.75. Those

including the inferred mildly deleterious variants were reported

in the supplemental information (Table S3). The majority of puta-

tively deleterious variants are rare (274,003 of 367,499 [75%];

Figures 3C and S3A). Moreover, rare variants are more likely to

be inferred as deleterious for both coding and non-coding re-

gions (Figures 3D, S3B, and S3C). These results are in accor-

dance with previous observations that purifying selection keeps

deleterious variants at a low frequency in population.31,32

It is increasingly recognized that mutations in non-coding re-

gions and synonymous variants may also contribute to reduced

fitness.31,33–35 In this diploid diversity panel, about 50.5% of in-

ferred deleterious variants reside in non-coding regions (Fig-

ure 3E) and 15.1% of the inferred deleterious variants are synon-

ymous (Figure S3D), which were previously inaccessible to
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Figure 2. Evolutionary constraint across the potato genome

(A) Levels of genomic constraint of potato chromosome 1 in terms of the genomic evolutionary rate profiling (GERP) scores, visualized by splitting the chro-

mosome into 8,860 non-overlapping 10-kb windows. Gene density is represented as the number of genes per 500 kb, and transposable element (TE) density in

terms of number of TEs (size >1 kb) per 500 kb.

(B) Distribution of GERP scores in whole-genome sequences (ALL) and protein-coding sequence (CDS).

(C) Distribution of constrained sites across the potato genome.

(D) Proportion of constrained sites estimated as the number of constrained sites divided by all sites, shown separately for coding regions, introns, UTRs, pro-

moters (1-kb upstream of CDS), UpDown5K (5-kb upstream and downstream of genes), and intergenic regions.

See also Figure S2 and Table S2.
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scrutiny.6 As the deleterious threshold increases, the number of

inferred deleterious variants decreases, the proportion of non-

synonymous deleterious variants increases, and the fraction

of non-coding deleterious variants decreases (Figure S3D;

Table S3). Within the diploid diversity panel, our pipeline predicts

only 0.33% of all SNPs in non-coding regions to be deleterious,

in contrast with the much higher predicted fraction of deleterious

variants in coding regions (8.15%; Figure 3F), a 25-fold enrich-

ment in coding compared with non-coding regions. In addition,

deleterious variants are more enriched in nonsynonymous sites,

followed by synonymous sites, UTRs, and introns, compared
with those in intergenic sites (Figure S3E). Moreover, the enrich-

ment level increases for highly deleterious variants (Figure S3F).

Our inferred proportions are broadly compatible with data in

other species.31,36

Annotating all deleterious variants using snpEff,37 we found

2,042 deleterious variants leading to premature stop codons

(Figures S3G and S3H). The genes with deleterious variants

caused by premature stop (stop gained) are enriched in impor-

tant biological processes such as DNA replication and tRNA-

related processes (Table S3). We identified deleterious muta-

tions in all nine loci previously reported to be associated with
Cell 186, 2313–2328, May 25, 2023 2317
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Figure 3. Deleterious variants in the diploid potato diversity panel

(A) Pipeline for identifying deleterious variants.

(B) Genome-wide distribution of deleterious mutation burden, calculated by summing GERP scores of all deleterious variant sites in 73,135 non-overlapping

10-kb windows. Previously reported fitness-related genes and quantitative trait loci (QTLs) underlying deleterious phenotypes are marked with black arrows.

(C) Allele-frequency spectrum of inferred deleterious variants in the diploid potato diversity panel.

(D) Decrease in the proportion of deleterious variants per SNP with increasing minor allele frequency in the diploid potato diversity panel.

(E) Distribution of all inferred deleterious variants among different genomic regions. The proportion was estimated by the rounding-off method.

(F) Proportion of deleterious variants per SNP among CDS and non-coding sites in the diploid potato diversity panel, calculated as the number of deleterious

variants divided by the number of all SNPs within CDS and non-coding regions, respectively.

(legend continued on next page)
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unfavorable phenotypes,4,6,38 including three previously cloned

genes: abnormal rooting 1 (ar1), floral bud abortion 1 (fba1),

and yellow margin (ym) (Table S3). This represented a retrospec-

tive investigation of deleterious mutations affecting fitness-

related phenotypic traits. We then focused on the gene FBA1,

encoding a basic helix-loop-helix transcription factor that has

previously been mapped using a self-fertilizing population of a

diploid potato clone, PG6359.4 It is orthologous to Arabidopsis

DYSFUNCTIONAL TAPETUM 1 (DYT1), which regulates stamen

development.39 Mutants in potatoes exhibit a significantly lower

expression of fba1 than the wild type, and knockout of this gene

yields flower-bud abortion phenotype.4 We identified 18 nucleo-

tide variants between the two haplotypes of the diploid genome

of PG6359 in FBA1’s promoter region (1-kb upstream of CDS).

Among them, we posit the A-to-C change at a site with the high-

est GERP score (GERP = 2.84) to represent a deleterious muta-

tion that may be involved in regulating the expression of FBA1

(Figure 3G). This is but one example of how the whole-genome

map of deleterious alleles empowers further identification and

characterization of functional sites or elements, which could

guide targeted purging of deleterious mutations in potato

breeding, especially those in non-coding regions.

Prediction of deleterious mutations guides hybrid
potato breeding
To quantify the deleterious mutation burden of each accession

in the diploid diversity panel, we first counted the number of

deleterious mutations in the heterozygous and homozygous

states, respectively (Figure S4A), and then enumerated the

genome-wide deleterious burden in heterozygous and homozy-

gous states, respectively (see STAR Methods and Table S4).

Across the diploid landraces, the deleterious burden in the het-

erozygous state (heterozygous burden) is strongly negatively

correlated with that in the homozygous state (homozygous

burden, R = �0.94, p < 2.2 3 10�16; Figure 4A).

The diploid potato landraces constitute a valuable germplasm

resource for inbred founders.6 During inbred-line development,

deleterious mutations masked or partially masked in the hetero-

zygous state are exposed, making it difficult to develop highly

homozygous inbred lines. This is exemplified by the line ‘‘Solyn-

tus,’’ which is still heterozygous for 20% of the genome despite

nine generations of selfing.40 The total burden includes both

masked and exposed burdens, here referred to as the genetic

burden (numerically equal to the additive burden), that represent

the potential fitness burden that can be passed on to offspring

and affect the fitness of its descendants (see STAR Methods

for details).41,42 Hence, robust prediction of genetic burden

can guide and inform the selection of founders for inbred-line

development (inbred founders).

To identify promising candidate material for inbred-line devel-

opment, we quantified the genetic burden for each landrace in

the diploid diversity panel. Intriguingly, we found that their ge-

netic burden is strongly negatively correlated with homozygous
(G) A 24-bp nucleotide alignment of part of the FBA1 promoter (Soltu.DM.02G01

species. S. tuberosum cv. PG6359 H1 and H2 represent the two haplotypes of the

PG6359.

See also Figure S3 and Table S3.
burden (recessive burden; R = �0.67, p = 3.8 3 10�21) but

strongly positively correlated with the heterozygous burden

(R = 0.89, p = 8.63 10�57; Figures 4A and S4B). This pattern sug-

gests that promising inbred founders (i.e., landraces with rela-

tively low genetic burden) should be sought among lines with

higher homozygous burden and lower heterozygous burden.

The expressed burden (homozygous burden + heterozygous

burden weighted by the dominance coefficient h; here

genome-wide average h = 0.1) contributes to decreasing fitness

(see STAR Methods for details).41–43 A corollary of these deduc-

tions is that those promising inbred founders likely exhibit more

expressed burden and thus should be less vigorous (B_Genetic

vs. B_Expressed, R = �0.54; B_Heter vs. B_Expressed,

R = �0.87; B_Homo vs. B_Expressed, R = 0.99, p < 1 3 10�12;

Figures S4C and S4D). Traditional selection criteria based on

phenotypic performance tend to retain individuals with strong

vigor. Our analyses, however, suggest that vigorous individuals

(i.e., landraces with a low expressed and homozygous burden

but high heterozygous burden) are likely to harbor higher genetic

burden (Figures 4A and S4B–S4D), implying that they will trans-

mit a higher deleterious burden to offspring, thus leading to

eventual failure of inbred-line development. Therefore, we pro-

pose that individuals with a lower total genetic burden, despite

being less vigorous owing to the relatively higher expressed

burden and higher homozygous burden, should be considered

the better founder material for inbred-line development.

RH89-039-16 (hereafter referred to as RH) is one of the hetero-

zygous diploids in the diploid diversity panel with ideal perfor-

mance for several agronomic traits (Figures 4A and S4B, red

dot). Previous efforts, however, have failed to develop it into an

inbred line by multi-generation selfing.4 PG6359 and E86-69

(Figures 4A and S4B, blue dots) are two accessions from the

diploid diversity panel that has been successfully developed

into highly homozygous diploid inbred lines A6-26 and E4-63,

respectively (Figures 4A and S4B, orange dots).4 In accordance

with our observations from the diploid potato landraces, RH

carries 17% and 21% higher genetic burden than E86-69 and

PG6359, respectively. A similar pattern can be observed for

C10-20, another diploid landrace that could not be developed

into an inbred line (11% and 15% higher genetic burden

than E86-69 and PG6359, respectively; Figure 4A, red dot;

Table S4). These observations on available inbred founders

support our inference that a lower total genetic burden is an

excellent predictor of successful inbred founders.

When a pair of neighboring heterozygous deleterious muta-

tions resides on two different homologous chromosomes (so-

called ‘‘repulsion-phase’’ deleterious mutations), the efficacy of

purging deleterious mutations is reduced due to Hill-Robertson

interference, and recombination is needed to purge both delete-

rious alleles.9,44 Typically, however, there are well below 100

recombination events per generation per individual.45–47 Hence,

development of inbred lines may be hindered by abundant dele-

terious mutations in repulsion phase. Approximately 40% of
9340.1, chr02: 33,595,387–33,596,386) among 20 representative Solanaceae

PG6359 genome assembly. The red asterisk marks the deleterious variants in
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different burdens are also shown. ***p < 0.001 in Pearson correlation tests. Failed inbred founders RH and C10-20 are highlighted as red dots. Successfully inbred
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(B) A zoom-in view of the distribution of heterozygous deleterious mutations in the repulsion phase within a 500-kb heterozygous genomic fragment of RH on

chromosome 1 (chr01: 74,385,000–74,910,000). Heterozygous regions in RH and RH10-15 are shown in gray. Repulsion-phase deleterious mutations present in

the two haplotypes of RH, PG6359 and E86-69, are illustrated in light blue and pink, respectively, and their numbers are listed on the right.

See also Figure S4 and Table S4.
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deleterious heterozygous mutations in these three diploid lines

are in the repulsion phase, with RH harboring 46% and 78%

more deleterious mutations in the repulsion phase than

PG6359 and E86-69, respectively (Figure S4E; Table S4). This

suggests that additional recombination events will be required

for purging these mutations in line RH.

Following four generations of recurrent selfing of line RH, we

observed an unexpectedly high proportion of genomic regions

that remain heterozygous. For example, 30.92 Mb of heterozy-

gous genomic regions (heterozygous fractionR 2%) characterize

the RH10-15 genome, a progeny of the RH S4 population (Fig-

ure S4F). Among them, 11.2 Mb are significantly enriched for

higher deleteriousmutations in the heterozygous state, compared

with those being homozygous after four generations of selfing

(Table S4). We zoomed in on a �500-kb heterozygous fragment

with a markedly higher number of repulsion-phase deleterious

mutations in RH compared with PG6359 and E86-69 (Figure 4B;

Table S4). Genomic regions that could not be made homozygous

in RH usually carry higher numbers of heterozygous deleterious

mutations in the repulsion phase. Homozygosity for these regions

would possibly lead to an intolerably high deleterious burden, thus

resulting in substantially reduced fitness.

Weighted deleterious mutation burden improves GP
GP has become a powerful tool to predict the genetic value

among candidate individuals in animal and plant breeding, and
2320 Cell 186, 2313–2328, May 25, 2023
incorporating deleterious mutations should be useful for GP

and GS.48–52 Unlike in other major crops with sexual propaga-

tion, deleterious mutations in cultivated potatoes have accumu-

lated in an unmitigated fashion, plausibly associated with their

long-term clonal propagation.6,38,53 However, contributions of

deleterious mutations to the accuracy of GP in potato have not

yet been evaluated. To examine this issue, we used an F2 popu-

lation with genotype and phenotypes well measured, which was

generated by selfing the diploid F1 hybrid potato whose parents

are the diploid inbred lines A6-26 and E4-63.4,54 Across this F2
panel, there were 5,527,427 SNPs with an average heterozygos-

ity of 0.51. Across the 2,603 recombination bins among the 1,064

F2 individuals with a mean bin length of 282.4 kb, we identified a

total of 23,655 SNPs with deleterious variants, with 1,960 of the

2,603 bins containing at least one deleterious variant. The dele-

terious burden (weighted sum of GERP scores of all deleterious

alleles) across these bins ranges from 0 to 844.8 (Figure S5A).

To assess how the magnitude of deleterious burden may

affect agronomic traits, we calculated thewhole-genome burden

separately for each F2 individual. Among these F2 progeny, the

heterozygous burden displays a strongly negative correlation

with the homozygous burden, consistent with our results from

the diploid diversity panel (Figure S5B). We analyzed the distri-

bution of five agronomical phenotypes (yield, plant height, tuber

number, tuber size, and flowering time) in this population (Fig-

ure 5A). Notably, the homozygous burden is significantly
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See also Figure S5 and Table S5.
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negatively correlated with agronomic traits, among which bona

fide fitness-related agronomical traits reveal higher levels of

negative correlation: R = �0.33, �0.25, and �0.22 for yield,

plant height, and tuber number, respectively (Figure 5B). Given

the strong negative correlation between homozygous burden
and heterozygous burden among individuals (Figure S5B),

we calculated partial correlation coefficients between homozy-

gous burden, heterozygous burden, and phenotypic traits.

Both homozygous burden and heterozygous burden are nega-

tively correlated with fitness-related agronomical traits, with
Cell 186, 2313–2328, May 25, 2023 2321
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homozygous burden revealing higher partial correlation coeffi-

cients for yield and plant height (Figure S5C). These results indi-

cate that deleterious mutation burden is significantly associated

with fitness and thus should be more emphasized in potato

breeding.

Given the significantly negative correlation between delete-

rious mutation burden and these fitness-related agronomical

traits in this population, we performed GP for the five traits.

Based on our baseline model, which accounts for the genomic

relationship without considering the effects of deleterious muta-

tions (see STAR Methods), the prediction accuracy (r2) is 0.183,

0.212, and 0.248 for yield, plant height, and tuber number,

respectively (Figure 5C; Table S5). After fitting the homozygous

and heterozygous burden in a linear mixed model, the prediction

accuracy rose to 0.264, 0.250, and 0.289 for yield, plant height,

and tuber number, respectively, corresponding to 44.6%,

17.8%, and 16.4% improvements compared with the baseline

model (Figure 5C; Table S5). We also observed significant rela-

tive increases (24.7% for yield, 7.2% for plant height, and

7.6% for tuber number; all p values < 0.05) compared with the

prediction accuracy based on 100 permutations of deleterious

mutation burden (see STAR Methods, Figure 5C, and

Table S5). Furthermore, our GP accuracy reaches �50% of the

broad-sense heritability for these three traits reported in previous

studies55–58 (Table S5). However, the prediction accuracy for

tuber size and flowering time did not increase substantially

(Figure 5C). Overall, our results suggest that the inclusion of

deleterious mutations improves the power of GP for complex

fitness-related agronomical traits controlled bymultiple small-ef-

fect loci, revealing the potential to enhance the efficacy of GS.

The breeding value predicted by this model (i.e., including dele-

teriousmutation) can be applied to enhance the decision-making

process, reducing the costs of phenotyping and time spent on

early-generation decisions during the potato breeding process

such as selection of parental lines and genomics-assisted purg-

ing of deleterious mutations.

DISCUSSION

Utilizing the genome-wide signature of the evolutionary

constraint, we unveiled the landscape of deleterious mutations

in the potato genome. The allele-frequency spectra of inferred

genome-wide deleterious mutations and their enrichment in

bona fide functional elements are consistent with expectations

from evolutionary genetics and artificial selection, as well as

the retrospective investigation of previously known candidate

loci; all these features indicate the robustness of our genome-

wide identification and quantification of deleterious mutations.

Inclusion of inferred deleterious mutations increases the accu-

racy of GP for complex fitness-related agronomic traits, further

suggesting that deleterious mutations are reliably identified

and quantified at genome-wide scales by the GERP approach,

here via leveraging the deep and densely sampled phylogeny

of Solanaceae. Our analyses and dissection of the total delete-

rious burden for diploid landraces lead to a more robust identifi-

cation of promising inbred founders based on the magnitude of

their genetic burden, a metric balancing the current inbreeding

rate and potential performance of the future inbred line by
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weighting heterozygous and homozygous burden into a single

index accounting for segregation during selfing. We further un-

covered the likely reasons why landraces previously selected

based on their phenotype failed to be developed into inbred

lines, which appears counterintuitive.

The first and critical step of hybrid potato breeding is the

development of highly homozygous inbred lines, which elimi-

nated the large-effect deleterious mutations.1,4 Potato, as a

clonally propagated crop, has accumulated a large number of

deleterious mutations, a major cause of inbreeding depression,

thus frustrating the successful development of inbred lines.4,6,30

The selection of potential inbred founders that can strike a bal-

ance between the speed of inbreeding and vigorous perfor-

mance of the homozygous inbred lines is thus important for

hybrid potato breeding. Our seemingly counterintuitive proposal

can identify lines that will yield progeny with relatively less

burden on inbreeding, with the promise of shortening breeding

time and increasing the overall success of developing

inbred lines.

Maps of the genome-wide deleterious variants can also guide

the next steps in hybrid breeding that aim to increase the fre-

quency of favorable alleles and decrease the frequency of dele-

terious alleles in inbred lines and F1 hybrids. Moreover, when

large-scale genomic editing (with hundreds of edited sites per

generation) becomes available in potatoes, genomics-assisted

purging can be applied more efficiently,9 and accessions with

plenty of beneficial alleles such as RH and Solyntus can be

used as founders. Once sufficient inbred lines have been devel-

oped, breeders can recombine favorable alleles and mask dele-

terious mutations in the heterozygous state to obtain vigorous F1
hybrids. During all these processes, our inferred deleterious

burden and genomic-prediction model can be directly applied

in genomics-assisted purging and GS, assisting decision-mak-

ing in terms of gains per unit of time, thereby accelerating hybrid

potato breeding by reducing the breeding cycle, phenotyping

cost, and the time spent on early-generation selections.

Although our study focused on diploid potatoes, we found that

tetraploid potatoes harbor more heterozygous deleterious muta-

tions and fewer homozygous deleterious mutations than diploid

potatoes (p < 0.001, Figure S4A; Table S4). This makes intuitive

sense as tetraploids have better field performance than diploid

landraces and are more difficult to be developed into inbred

lines. In addition to being useful for diploid potato breeding,

our data on deleterious mutations would be useful for re-

searchers and breeders to predict the performance of tetraploid

cultivars.

The genome sequences, annotation, synteny, and alignments

presented in this study offer valuable resources for genetic,

genomic studies, and future breeding in this important plant fam-

ily.59 The genome-wide identification of evolutionarily con-

strained sites, especially for non-coding genomic regions among

Solanaceae species, will facilitate further discovery and charac-

terization of functional and regulatory elements, as well as guide

the isolation of candidate genes underlying agronomic traits.

Importantly, it is straightforward to apply our analytic pipeline

comprising evolutionary and population genomics to closely

related Solanaceae crop species such as tomato and

eggplant, with a promise to enhance the efficacy of their GS
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and genomics-assisted purging of deleterious mutations by

various strategies such as the application of genome editing

and recurrent selection.

Limitations of the study
Due to the difficulty of obtaining seeds or live plants of rare line-

ages, the current genome-level phylogeny does not cover all

genera of Solanaceae; the inclusion of species from additional

genera will further improve the prediction of evolutionary con-

straints and localization of deleterious mutations. Importantly,

our analyses were limited to SNPs; other variants such as inver-

sions, large insertions/deletions, and copy-number variation

may also affect the fitness as they are likely to behave as delete-

rious variants.60 Further advances will also be made with better

handling of paralogous sequences in whole-genome alignments

that are ubiquitous in plant genomes due to prevalent, ancient

whole-genome duplications.61–63

Unlike other crops like maize and sorghum, hybrid potato

breeding is still in its infancy, and the available diploid potato

samples and data are limited. Hence, we had to restrict our

analyses to the two available populations (the diploid diver-

sity panel and the F2 panel) and four inbred-line founders.

Our quantification of expressed burden based on h estimates

obtained from an F2 population may introduce biases relative

to a broader population, but our h estimate is broadly

congruent with previous experiments studies.64,65 With the

future release of increasing numbers of diploid potato ge-

nomes and potato panels, we may dissect the expressed

burden more precisely, and more analyses can be performed

to further validate the power of leveraging information on

genome-wide deleterious mutations in accelerating hybrid

potato breeding.
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K.L., Piñerez, L.M., Freitas, A.V., Lamas, G., Joron, M., Mallet, J., et al.

(2017). North Andean origin and diversification of the largest ithomiine

butterfly genus. Sci. Rep. 7, 45966. https://doi.org/10.1038/srep45966.

23. Gagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aub-
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This study BioProject: PRJNA839598

Genome assemblies This study NGDC:https://ngdc.cncb.ac.cn/search/?

dbId=gwh&

q=PRJCA010759

Public Convolvulaceae genome

assemblies

Hao et al.66; Hoshino et al.67; Li et al.68; Wu et al.69;

Yang et al.70
N/A

Public Solanaceae genome

assemblies

Barchi et al.71; Bolger et al.72; Bombarely et al.73;

Cao et al.74; Edwards et al.75; Kim et al.76;

Kim et al.77; Lu et al.78; Molitor et al.79; Paajanen

et al.80; Pham et al.81; Powell et al.82; Sierro et al.83;

Sierro et al.84; Song et al.85; Tang et al.27; Wu

et al.86; Wu et al.24; Xu et al.87

N/A

Software and algorithms

GenomeScope2.0 v1.0.0 Ranallo-Benavidez et al.88 https://github.com/tbenavi1/genomescope2.0

Hifiasm v0.16.1-r375 Cheng et al.89 https://github.com/chhylp123/hifiasm

juicer v1.6 Durand et al.90 https://github.com/aidenlab/juicer

3d-dna v180922 Dudchenko et al.91 https://github.com/aidenlab/3d-dna

BUSCO v5.2.2 Simão et al.20 https://busco.ezlab.org

EDTA v1.9.4 Ou et al.92 https://github.com/oushujun/EDTA

HISAT2 v2.2.1 Kim et al.93 https://github.com/DaehwanKimLab/hisat2

StringTie v1.13 Pertea et al.94 https://ccb.jhu.edu/software/stringtie

AUGUSTUS v3.3.3 Stanke and Morgenstern95 https://github.com/Gaius-Augustus/Augustus

GeneMark-ET v4.68_lic Lomsadze et al.96 http://exon.gatech.edu/GeneMark

BRAKER2 v2.1.5 Hoff et al.97 https://github.com/Gaius-Augustus/BRAKER

cd-hit-est v 4.8.1 Li and Godzik98 https://github.com/weizhongli/cdhit/

MAKER2 v2.31.11 Holt and Yandell99 https://www.yandell-lab.org/software/maker.html

InterProScan v5.53-87.0 Blum et al.100 http://www.ebi.ac.uk/interpro

Cactus v2.0.3 Armstrong et al.101 https://github.com/ComparativeGenomicsToolkit/

cactus

IQ-TREE v2.0.6 Nguyen et al.102 http://www.iqtree.org

PAML v4.9 Yang103 http://abacus.gene.ucl.ac.uk/software/paml.html

GeneTribe v1.2.0 Chen et al.104 https://chenym1.github.io/genetribe

GENESPACE v0.9.3 Lovell et al.105 https://github.com/jtlovell/GENESPACE

GERP++ Davydov et al.14 http://mendel.stanford.edu/sidowlab/downloads/

gerp/index.html

R package topGO Alexa et al.106 https://bioconductor.org/packages/topGO

BWA v0.7.17-r1188 Li and Durbin107 https://bio-bwa.sourceforge.net/

GATK v4.2.3.0 McKenna et al.108 https://gatk.broadinstitute.org

minimap2 v2.21-r1071 Li109 https://github.com/lh3/minimap2

BCFtools v1.13 Li110 https://github.com/samtools/bcftools

R package qgg v1.0 Rohde et al.111 https://github.com/psoerensen/qgg

R package regress Clifford and McCullagh112 https://github.com/kbroman/regress
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sanwen

Huang (huangsanwen@caas.cn).

Materials availability
This study did not generate new unique plant materials.

Data and code availability
d Genome assemblies and annotations of the newly assembled Solanaceae genomes are available at https://ngdc.cncb.ac.cn/

gwh with BioProject accession number PRJCA010759. All sequence data generated in this study have been deposited at the

National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with BioProject accession number

PRJNA839598.

d All codes were deposited at https://github.com/yywyaoyaowu/SolEvo_PotatoDele.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant growth conditions
The Solanaceae seeds were grown in the greenhouses of the Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agri-

cultural Sciences, Shenzhen (22�36’N and 114�30’E), Guangdong province, China in the spring and summer of 2021.

METHOD DETAILS

Sample selection and sequencing
We selected a total of 100 accessions from 92 species, comprising five from Convolvulaceae66–70 and 95 from Solanaceae including

61 Solanum species,24,27,71–87,113–115 representing the major clades of the Solanaceae phylogeny (Table S1). We performed Pacific

Biosciences (PacBio) high-fidelity (HiFi) sequencing of 38 Solanaceae accessions (32 species, of which 22 are Solanum species),

comprising 30 diploids and eight polyploids, on the Sequel II platform, using the circular consensus sequencing (CCS) mode

(Table S1). The CCS program (https://github.com/PacificBiosciences/ccs) was applied to generate HiFi reads for 38 genomes. Addi-

tionally, we constructed Hi-C sequencing libraries for 20 of these species (Table S1), for which the restriction enzymeMbo I/Hind III

was used to digest their genomic DNA, using a previously described library preparation protocol.116 These libraries were subse-

quently sequenced on an Illumina HiSeq X Ten platform to generate paired-end reads of 150-bp length. We extracted total RNA

from roots, young leaves, mature leaves, leaf buds, stems, flower buds, flowers, sepals, young fruits and mature fruits of 32 species

to prepare RNA sequencing libraries (Table S1). The resulting 204 libraries were sequenced on the DNBSEQ-T7 system, representing

most tissues in most samples (Table S1).

Genome assembly of the 38 Solanaceae accessions
GenomeScope2.088 was used to estimate genome heterozygosity. Hifiasm (v0.16.1-r375)89 was deployed to assemble the genomes

of the 38 sequenced accessions. To achieve amonoploid assembled content, the hifiasm parameter ‘‘-l’’ was tuned for different spe-

cies (0 or 3), based on their estimated genome heterozygosity. We constructed pseudo-chromosomes of the 20 accessions with

available Hi-C data. We then mapped Hi-C reads to the assembled contigs using juicer (v1.6)90 with default parameters, and applied

the 3d-dna pipeline91 (v180922) to order and orient these contigs into chromosome-level scaffolds with parameters ‘‘-I 15000 -r 0’’,

followed by thorough manual curation. We employed Benchmarking Universal Single-Copy Orthologs (BUSCO, v5.2.2)20 to assess

the completeness in genic regions using the Solanales_odb10 database (for Solanaceae species).

Repetitive element annotation
For each species, we used the Extensive de novo TE Annotator (EDTA v1.9.4)92 to identify transposable elements (TEs), generating

non-redundant TE libraries that were used to mask repeats.

Prediction of protein-coding genes
To predict coding-gene models, we applied a uniform pipeline combining evidence from ab initio prediction, homology search and

transcript expression. RNA-seq reads were mapped to the assembled genome using HISAT2 (v2.2.1)93 with the ‘‘–dta’’ parameter,

followed by genome-guided transcript assembly by StringTie (v1.13).94 HiddenMarkov models (HMM) of the two software packages

used for ab initio gene prediction, AUGUSTUS (v3.3.3)95 andGeneMark-ET (v4.68_lic),96 were trained by BRAKER2 (v2.1.5)97 utilizing

the assembled transcripts as hints. The parameters set in BRAKER2 were ‘‘–nocleanup –softmasking’’.
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We combined human-curated, high-confidence plant protein sequences downloaded from the UniProt Swiss-Prot database

(https://www.uniprot.org/downloads) with published amino-acid sequences of tomato, potato, eggplant, chili pepper and Arabidop-

sis thaliana76,81,113–115,117; we excluded potential redundance using cd-hit-est (v 4.8.1)98 with default parameters, serving as the ho-

mologous proteins. We considered the assembled transcripts from StringTie as evidence for transcript expression. Putative gene

structures inferred by AUGUSTUS (v3.3.3)95 and GeneMark-ET (v4.68_lic)96 were polished and synthesized by MAKER2

(v2.31.11)99 to generate the final gene annotations. The longest transcript of each predicted genemodel was considered as its repre-

sentative. InterProScan (v5.53-87.0)100 was used to predict protein functional domains using the parameters ‘‘-cli -iprlookup -tsv

-appl Pfam’’.

Whole-genome alignment
To deploy whole-genome alignments of the 100 genomes (92 species), we first inferred a phylogeny based on mash distances from

their genome assemblies, with repeats being soft-masked by mashtree (v1.2.0) (https://github.com/lskatz/mashtree) which is incor-

porated in the msa_pipeline (v1.0).118 We then processed the phylogeny and the soft-masked genomes in Progressive Cactus

(v2.0.3)101 to obtain genome-wide alignments, choosing the reference genome of potato, Solanum tuberosum group Phureja

DM1-3 516 R44 v6.1 (DM v6.1)81,113 for downstream analysis.

Phylogenetic analyses
To reconstruct the phylogeny of the 100 accessions (five from Convolvulaceae and 95 from Solanaceae, see Table S2), the

consensus tree topology was inferred by IQ-TREE (v2.0.6),102 using the alignment of four-fold degenerate sites from the whole-

genome multiple alignments. To obtain ‘local’ phylogenies, we split whole-genome alignment blocks into 1-Mb sliding windows

with 200-Kb step size, followed by tree-topology inference for each window using IQ-TREE with the parameter ‘‘-m 012345’’. We

randomly selected 500 local (i.e. window-based) trees for visualization, using an R script modified from https://zenodo.org/

record/3401692#.YNrvJ6e76XQ.

The total branch length is the sum of the branch lengths of all the 100 accessions. The increase of the total branch length obtained

in this study (4.05) is compared with that of the previously reported whole-genome phylogeny (0.71) of Solanum section Petota from

Tang et al.27

Estimation of divergence times
We removed gap positions and sequences containing unknown nucleotides among the 100 accessions from the multiple alignment

of four-fold degenerate sites. We then performed maximum-likelihood estimation of substitution rate per site using the baseml pro-

gram in the PAML package (version 4.9),103 based on the general time-reversible (GTR) nucleotide substitution model. Bayesian esti-

mation of divergence times was deployed using the mcmctree program, manually setting the gamma prior for the overall substitution

rate. We set the fossil calibration point to the stem node of the Berry clade of Solanaceae (51.2–53.2 MYA), followingWilf et al.119 and

De-Silva et al.22

Detection of genomic synteny
To assess gene synteny between each pair of the 100 accessions, we applied the MCScanX120 algorithm incorporated in GeneTribe

(v1.2.0).104 The resulting syntenic gene pairs were converted into genome-wide syntenic blocks with their coordinates retained. A

whole-genome synteny plot was generated using GENESPACE (v0.9.3).105 We observed large differences in syntenic gene propor-

tions between the previously released genome of Nicotiana benthamiana121 and the genome of the same species assembled in this

study (17% versus 78%; Table S2). Given that our genome of N. benthamiana was assembled using PacBio HiFi and Hi-C data,

achieving significantly higher continuity than the previously reported one based on short-read technology (54 Mb versus 89 Kb in

terms of contig N50 length), this difference in syntenic proportions should be due to our assembly’s markedly improved continuity.

This reasoning would also explain the low degrees of genomic synteny observed for other Nicotiana species (Table S2), with all of

their genomes being built using short-read sequencing data.75,83,84,87

Identification of constrained sites
Utilizing the whole-genome alignment and the inferred phylogeny, we computed the degree of genomic (evolutionary) constraint in

terms of GERP score of each of the nucleotides present in the 100-genome alignment with GERP++.14,15We defined sites with GERP

scores 2–2.75, 2.75-3.5 andR 3.5 asmildly, moderately and strongly evolutionarily constrained sites, respectively. GERPR 2, GERP

R 2.75 and GERPR 3.5 were our ‘mild’, ‘moderate’ and ‘high’ thresholds for constrained sites and deleterious variants respectively.

The results based on our ‘moderate’ threshold were mainly reported in the main text.

We calculated the constrained proportion of coding genes (the number of constrained sites per CDS divided by the total length of

that CDS in bp) for each of the 32,917 genes. Those genes with the top 1% of constrained proportions were used for GO enrichment

analysis using the ‘‘topGO’’ R package106 (https://bioconductor.org/packages/topGO).
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Identification of deleterious variants in the diploid diversity panel
Variants (i.e. those with SNPs) within the diploid potato diversity panel at the constrained sites were considered as deleterious var-

iants. The workflow for SNP calling and filtering was as follows: clean reads were mapped onto the S. tuberosum group Phureja

DMv6.1 genome using BWA-mem software (v6.0.2)107 with default parameters. The sam file was converted to bam and sorted by

SAMtools (v0.7.17)122 software. SAMtools was used to remove any duplicate reads. The variants were called by GATK (v.4.2.3.0)

HaplotypeCaller,108 and SNPs were further filtered using the following criteria: ‘‘QD<2.0| | FS>60.0| | MQ<40.0| | SOR>3.0| |

MQRankSum<�12.5| | ReadPosRankSum<�8.0’’; then the bi-allelic SNPs were filtered by VCFtools (v0.1.16)123 software using

the following criteria: ‘‘–minDP 4 –maxDP 100 –minGQ 10 –minQ 30 –max-missing 0.5 –min-alleles 2 –max-alleles 2’’.

The main manuscript presents the results of moderately (GERP score R 2.75 and <3.5) and highly deleterious variants (GERP

scoreR 3.5) using the moderate threshold (GERP scoreR 2.75, representing the top 0.6% of the genome-wide distribution across

all 58,597,787 SNPs). A total of 97% of these deleterious variants for which minor alleles in the diversity panel are also non-major

alleles across the 100 Solanaceae genomes, suggesting that evolutionarily derived mutations generally coincide with the minor allele

variants within the potato diversity panel. The results using the mild (GERPR 2) and high (GERPR 3.5) thresholds are presented in

the supplemental information (Figures S3D and S3F; Table S3).

Of the deleterious variants, the minor alleles within the diploid potato diversity panel and within the 100 Solanaceae genomes were

assumed to represent deleterious alleles.

Estimation of deleterious mutation burdens
By summing the GERP scores over all deleterious alleles present in a given individual, we computed the so-called ‘deleterious mu-

tation burden’ for each individual of the diploid potato diversity panel. The deleterious burden in homozygous state (homozygous

burden, B_Homo, recessive burden) for each accession was obtained by summing the GERP scores of the genome-wide inferred

deleterious mutations encountered in homozygous state. Likewise, the deleterious burden in heterozygous state (heterozygous

burden, B_Heter) for each accession was calculated by summing the GERP scores for the genome-wide inferred deleterious muta-

tions found in heterozygous state. The genetic deleterious burden (genetic burden, B_Genetic; numerically equals additive burden)

for each individual, representing the deleterious burden potentially transmitted to its offspring and related to the offsprings’ fitness,

was calculated by summing the homozygous burden and the heterozygous burden multiplied by 0.5.41–43 The factor 0.5 represents

the 50%probability that a heterozygous deleteriousmutation is transmitted to any given offspring. The expressed deleterious burden

(expressed burden, B_Expressed), representing all exposed deleterious effects and related to the bearer’s fitness, is the sum of the

homozygous burden and the heterozygous burden multiplied by the estimated average dominance coefficient, h.41–43 Here, the

genome-wide average h is 0.1, which is estimated from a linear-mixed model by the method of moments and corroborated by a

maximum-likelihood method (see details below on the linear mixed model; Figure S5D). This value is congruent with previous exper-

imental studies.64,65

If all heterozygous deleterious mutations were recessive (h = 0), the expressed burden equals the homozygous deleterious burden

(recessive burden); if all heterozygous deleteriousmutations were additive (h = 0.5), the expressed burden equals the additive burden

(numerically equals genetic burden, see the equations below). The masked deleterious burden rests on the heterozygous deleterious

burden, contingent on the average h values and thus the degree of mutations’ recessivity. The masked deleterious burden and ex-

pressed burden jointly constitute the genetic burden. Correlation coefficients between deleterious burdens were estimated by fitting

a linear model using the ‘‘lm()’’ function, and outliers were detected and removed by boxplot.stats in R.

B Homo =
XLðhomoÞ

i = 1

GERPi
B Heter =
XLðheterÞ
j = 1

GERPj
B GeneticðindividualÞ = B Homo+B Heter � 0:5
B Expressed ðindividualÞ =
XLðhomoÞ

i = 1

GERPi +
XLðheterÞ
j = 1

GERPj � hj
= B Homo+B Heter � h
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B MaskðindividualÞ = B Heter � ð0:5 � hÞ
Note: hj is the dominance coefficient for heterozygous deleterious site j; h is the genome-wide average dominance coefficient,

which was estimated as 0.1 in the linear fixed model by the method of moments and corroborated by maximum likelihood method

computed at the moderate threshold (GERP score R 2.75; see details below on the linear mixed model).

Identification of deleterious mutations in tetraploid potatoes
To identify deleterious mutations in tetraploid potatoes, we downloaded DNA-seq data of 43 cultivated tetraploid potato accessions

from previous studies.124–128 We used the same workflow to perform SNP calling and filtering as for our diploid dataset and then

merged the SNP set with the SNPs from the diploid diversity panel. The homozygous SNPs were defined when only one allele

was supported with reads, and heterozygous SNPs were defined when both reference allele and alternative allele were supported

with reads. The homozygous and heterozygous deleterious mutations for each individual were calculated by using the same pipeline

as for the diploid diversity panel.

Determination of heterozygous genomic regions of RH and RH10-15
RH10-15 is the only progeny of the F4 inbred population of RH89-039-16 (RH) with a proportion of genomic regions still being het-

erozygous. To determine the extent of these regions, we mapped HiFi reads of RH10-15 and RH27 to the potato S. tuberosum group

Phureja DM v6.1 reference genome using minimap2 (v2.21-r1071)109 with the parameter ‘‘-ax map-hifi’’. We then identified SNPs

using the subcommands ‘‘mpileup -Ou’’ and ‘‘call -m’’ embedded in BCFtools (v1.13),110 followed by applying a set of filtering

criteria: 5% read depth (DP)% 200,mapping quality (MQ)R 40, variant quality (QUAL)R 30 and Phred-scaled p-value using Fisher’s

exact test to detect strand bias (FS) < 60. Heterozygous SNPs were defined as variants with the SNP-index (i.e. number of reads

supporting the alternate allele/total number of reads mapped at this position) ranging from 0.3 to 0.7. We calculated the number

of heterozygous SNPs using 50-Kb windows with 5-Kb step size, and windows with heterozygous proportion > 2% were merged

and regarded as heterozygous genomic regions. We quantified heterozygous proportion as the number of heterozygous SNPs

divided by the total number of aligned sites. We applied the same approach to the RH genome to delineate its heterozygous genomic

regions.

Genomic prediction
To estimate the improvement of genomic prediction by phylogenomic information, we calculated the deleterious burden in an F2 pop-

ulation consisting of n = 1,064 individuals with bin-genotype data and several agronomic traits available. The grandparents of this

population are the two inbred lines A6-26 and E4-63. Because the genotypes of this population use E4-63 as the reference genome,

we mapped Illumina reads of A6-26 to the genome of E4-63 with BWA (0.7.17-r1188)107 and called SNPs via BCFtools (v1.13),110

followed by applying a set of filtering criteria: 3 % DP % 100, MQ R 40, QUAL R 30 and FS < 60. We regard SNPs at sites with

GERP scores R 2.75 as harboring potentially deleterious variants, considering each of the non-major alleles in the

100-Solanaceae genome alignment as potentially deleterious alleles. The deleterious mutation burden of each of the 2,603 bins

from the F2 population (the so-called ‘bin burden’) was calculated by summing the GERP scores of all inferred deleterious alleles

within each bin j: bj =
PL

k = 1fSNP k in bin jgdkmk , where dk is the GERP score for SNP k andmk indicates the presence of the deleterious

allele at SNP k across individuals (mk=1 for deleterious allele, otherwise mk=0). To characterize genome-wide deleterious mutation

burdens for each individual, we summed the deleterious mutation burdens over bins, distinguishing homozygous and heterozygous

states: the genome-wide homozygous burden (bhom) and heterozygous burden (bhet) is contributed solely by deleterious alleles in the

homozygous and heterozygous states, respectively.

In the ‘baseline’ genomic prediction model, we calculated the additive genomic relationship matrix (GRM) by bin-genotype:

y = m+u+e
u � N
�
0;Gs2

u

�

G =
XXT

P2603
j = 1

2pj

�
1 � pj

�

where y is the vector of phenotypic scores, m is the intercept (gran
d mean), u is the vector of additive genomic effects, e is the vector

of residuals, X is the 1064 3 2603 matrix of reference allele counts (0, 1, or 2) at each bin, pj is the allele frequency at bin j (j = 1,...,

2603), and G is the GRM by bin genotypes.
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In the deleterious mutation model, we estimated the effects of genome-wide homozygous burden and heterozygous burden as

fixed effects and the additive genomic effects as random effects in a linear mixed model112:

y = m+ahombhom +ahetbhet +u+ e
u � N
�
0;Gs2

u

�

where b and b are the genome-wide homozygous and heter
hom het ozygous burdens (as described above), with fixed effects ahom and

ahet, respectively. Genomic prediction models were fitted by the greml function in the qgg package in R (v1.0)111 and were evaluated

by five-fold cross-validation replicated 20 times. Genomic prediction accuracy was then computed by the average of squared Pear-

son correlation coefficients (r2) between predicted and observed phenotypic scores.

To test the hypothesis that actual GERP scores are more useful than random SNP scores in genomic prediction, we generated

random SNP scores by permuting GERP scores among genomic windows of 500,000 SNPs to account for linkage disequilibrium

among contiguous polymorphisms. For each permutation, we used the random SNP scores to generate the genome-wide burden

indices bhom and bhet. Then, we estimated their effect in the weighted deleterious mutation model and computed its prediction ac-

curacy in cross-validation, as described above with the same training datasets. The prediction accuracy achieved by the actual dele-

terious burden was deemed statistically significant if it was higher than the top 5% of prediction accuracy achieved by the random

SNP scores from 100 permutations. These significance thresholds are all lower than the observed prediction accuracy (P < 0.05).

Notwithstanding the difficulties to obtain accurate estimates of the genome-wide average dominance coefficient (h), it is an impor-

tant component for estimating the effect of heterozygous burden and expressed burden (the fitness burden). Here, we used the

method of moments129 to estimate the genome-wide average dominance coefficient (h) of deleterious mutations by estimating

ahet and ahom: bh = bahetbahom

in the weighted deleterious mutation model for yield in the F2 population. h was estimated to be 0.1 at the

moderate threshold (GERP score R 2.75). We also inferred h using the maximum likelihood method with the regress package112

in R: we applied the expressed burden as the fixed effect in the weighted deleterious mutation model by using a series of h values

ranging from 0 to 0.5 with a step size of 0.005, thus obtaining the optimized h by maximum likelihood. This yielded results similar to

those estimated by the method of moments (h = 0.115 at the moderate threshold, Figure S5D), and this value is congruent with pre-

vious experimental studies,64,65 further corroborating this roughly estimated h. Moreover, h tends to decrease as the deleterious

threshold (GERP score) increases (Figure S5D), consistent with classical results.130,131

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of analysis applied in this paper are provided alongside in the results section and Figure Legends. Statistical

analyses were performed in R 4.1.2.
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Figure S1. Summary of the 100-way whole-genome multiple alignment and phylogenetic trees of 500 randomly chosen genomic windows

from 95 Solanaceae and five Convolvulaceae outgroup genomes, related to Figure 1

(A) Cumulative alignment proportion. The x axis counts the number of genomes, the y axis the alignment proportions with at least the given number of species

aligned.

(B) Alignment coverage of 100 genomes from five phylogenetic groups. Section Petota, species from Solanum section Petota; section Lycopersicon, species

from Solanum section Lycopersicon; Solanum, species from Solanum that do not belong to sections Petota or Lycopersicon.

(C) Trees for genomic windows are depicted by gray lines. The 1-Mbwindowswith 200-kb step size were randomly selected across the entire genome. The x axis

indicates branch length.
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Figure S2. Genome-wide distribution of evolutionary constraint in potato, related to Figure 2

(A) Karyotype of the 12 potato chromosomes.

(B) Histograms indicate the distribution of GERP scores by splitting the genome into 73,135 non-overlapping 10-kb windows.

(C) Heatmaps illustrate gene density, represented as the number of genes per 500 kb.

(D) Heatmaps illustrate transposable element (TE) density in terms of number of TEs (size >1 kb) per 500 kb.

(E) Relative composition of evolutionarily constrained sites among different genomic regions for three different GERP-score thresholds.

(F) Enrichment of evolutionarily constrained sites in functional regions compared with intergenic regions for different GERP-score thresholds. UpDown5K, 5-kb

upstream and downstream of genes. UTR, untranslated region. Promoter, 1-kb upstream of CDS.

(G) Gene ontology enrichments (biological processes) of the top 1% of constrained genes in the potato genome.

(H) A detailed alignment of the 11th exon of Soltu.DM.01G028520.3, an evolutionarily constrained gene.
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Figure S3. Deleterious variants within the diploid potato diversity panel, related to Figure 3

(A) Distributions of minor allele frequency of inferred deleterious variants in coding (CDS) and non-coding regions in the diploid potato diversity panel.

(B) Density plot of allele-frequency spectrum of SNPs at constrained and non-constrained sites in the diploid potato diversity panel.

(legend continued on next page)
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(C) Decrease in the proportion of deleterious variants per SNPwith increasingminor allele frequency for coding (CDS) and non-coding regions in the diploid potato

diversity panel.

(D) Partitioning of all inferred deleterious variants into those at nonsynonymous sites, synonymous sites, and variants in non-coding genomic regions. UpDown5K,

5-kb upstream and downstream of genes. UTR, untranslated regions for different thresholds.

(E) The proportion of deleterious variants per SNP, calculated as the number of deleterious mutations divided by the number of all SNPs, within nonsynonymous

and synonymous sites and variants in non-coding genomic regions, respectively.

(F) The enrichment fold change of proportion of deleterious variants per SNP in nonsynonymous sites, synonymous sites, and variants in non-coding genomic

regions compared with that in intergenic regions for different thresholds. UpDown5K, 5-kb upstream and downstream of genes. UTR, untranslated region.

(G) The numbers of different types of deleterious variants in the diploid potato diversity panel. Note the interrupted y axis scale.

(H) Proportion of deleterious variants per SNP in different types of variants.
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Figure S4. The deleterious mutation burden in potato, related to Figure 4

(A) Number of homozygous, heterozygous and total deleterious mutations among tetraploid and diploid potatoes (GERP score R2.75). Correlation coefficients

(R) among deleterious mutations are also shown. ***p < 0.001 in Pearson correlation tests. Tetraploid potato lines are highlighted with orange dots, and diploid

potato lines are denoted by blue dots.

(B) Correlations among genetic burden (B_Genetic), homozygous burden (B_Homo) and heterozygous burden (B_Heter) at the highly deleterious threshold (GERP

score R3.5). Correlation coefficients (R) among different burdens are also shown. ***p < 0.001 in Pearson correlation tests. Accessions RH and C10-20 are

highlighted with red dots, accessions PG6359 and E86-69 are denoted by blue dots, and the two inbred lines A6-26 and E4-63 are marked by orange dots.

(C and D) Correlations among expressed burden (B_Expressed; x axis) and genetic burden (B_Genetic), homozygous burden (B_Homo), and heterozygous

burden (B_Heter) at the moderate threshold (C, GERP score R 2.75) and the high threshold (D, GERP score R 3.5), respectively. Correlation coefficients (R)

among different burdens are also shown.

(E) Inferred numbers of repulsion-phase heterozygous deleterious mutations in the genomes of RH, PG6359 and E86-69.

(F) Genomic coordinates of heterozygous genomic regions in RH10-15. Regions in gray shade denote heterozygous genomic regions, using the coordinate

system of the potato reference genome S. tuberosum group Phureja DM v6.1.
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Figure S5. Distribution of deleterious mutation burden in the F2 population, related to Figure 5

(A) Distribution of deleterious burden of each bin. A6-26 indicates the deleterious alleles contributed by parent A6-26, and E4-63 shows the deleterious alleles

contributed by the other parent, E4-63 (moderate threshold).

(B) Correlation between the burdens of homozygous (x axis) and heterozygous (y axis) deleterious mutations among the F2 individuals (moderate threshold).

Pearson’s correlation coefficient (R) and the corresponding p value computed with Pearson correlation test are indicated.

(C) Partial correlations between the five phenotypes and the per-individual burdens of homozygous (upper panel) and heterozygous (lower panel) deleterious

mutations among F2 individuals (moderate threshold). ‘‘Homo burden residual’’: the residual of homozygous burden after fitting heterozygous burden. ‘‘Heter

burden residual’’: the residual of heterozygous burden after fitting homozygous burden. Phenotype residual: the residual of phenotype after fitting the hetero-

zygous and homozygous burdens, respectively. Pearson’s correlation coefficients (R) are indicated; p values were computed with Pearson correlation tests. Gray

shadows represent the 95% confidence intervals, estimated by fitting a linear model using the lm() function in R.

(D) The genome-wide average dominance coefficient (h) estimated by themethod of moments (green) andmaximum-likelihood method (red) based on a range of

deleterious thresholds.
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