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Abstract: We argue that the natural functions for describing the multi-Regge limit of

six-gluon scattering in planar N = 4 super Yang-Mills theory are the single-valued har-

monic polylogarithmic functions introduced by Brown. These functions depend on a single

complex variable and its conjugate, (w,w∗). Using these functions, and formulas due to

Fadin, Lipatov and Prygarin, we determine the six-gluon MHV remainder function in the

leading-logarithmic approximation (LLA) in this limit through ten loops, and the next-to-

LLA (NLLA) terms through nine loops. In separate work, we have determined the symbol

of the four-loop remainder function for general kinematics, up to 113 constants. Taking

its multi-Regge limit and matching to our four-loop LLA and NLLA results, we fix all but

one of the constants that survive in this limit. The multi-Regge limit factorizes in the vari-

ables (ν, n) which are related to (w,w∗) by a Fourier-Mellin transform. We can transform

the single-valued harmonic polylogarithms to functions of (ν, n) that incorporate harmonic

sums, systematically through transcendental weight six. Combining this information with

the four-loop results, we determine the eigenvalues of the BFKL kernel in the adjoint repre-

sentation to NNLLA accuracy, and the MHV product of impact factors to N3LLA accuracy,

up to constants representing beyond-the-symbol terms and the one symbol-level constant.

Remarkably, only derivatives of the polygamma function enter these results. Finally, the

LLA approximation to the six-gluon NMHV amplitude is evaluated through ten loops.
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1 Introduction

Enormous progress has taken place recently in unraveling the properties of relativistic

scattering amplitudes in four-dimensional gauge theories and gravity. Perhaps the most

intriguing developments have been in maximally supersymmetric N = 4 Yang-Mills theory,

in the planar limit of a large number of colors. Many lines of evidence suggest that it should

be possible to solve for the scattering amplitudes in this theory to all orders in perturbation

theory. There are also semi-classical results based on the AdS/CFT duality to match to

at strong coupling [1]. The scattering amplitudes in the planar theory can be expressed

in terms of a set of dual (or region) variables xµi , which are related to the usual external

momentum four-vectors kµi by ki = xi − xi+1. Remarkably, the planar N = 4 super-

Yang-Mills amplitudes are governed by a dual conformal symmetry acting on the xi [1–7].

This symmetry can be extended to a dual superconformal symmetry [8], which acts on

supermultiplets of amplitudes that are packaged together by using an N = 4 on-shell

superfield and associated Grassmann coordinates [9–12].

Due to infrared divergences, amplitudes are not invariant under dual conformal trans-

formations. Rather, there is an anomaly, which was first understood in terms of polygonal

Wilson loops rather than amplitudes [7]. (For such Wilson loops the anomaly is ultraviolet

in nature.) A solution to the anomalous Ward identity for maximally-helicity violating

(MHV) amplitudes is to write them in terms of the BDS ansatz [13],

AMHV
n = ABDS

n × exp(Rn), (1.1)

where Rn is the so-called remainder function [14, 15], which is fully dual-conformally

invariant.

For the four- and five-gluon scattering amplitudes, the only dual-conformally invariant

functions are constants, and because of this fact the BDS ansatz is exact and the remainder

function vanishes to all loop orders, R4 = R5 = 0. For six-gluon amplitudes, dual conformal

invariance restricts the functional dependence to have the form R6(u1, u2, u3), where the

ui are the unique invariant cross ratios constructed from distances x2ij in the dual space:

u1 =
x213x

2
46

x214x
2
36

=
s12s45
s123s345

, u2 =
x224x

2
15

x225x
2
14

=
s23s56
s234s456

, u3 =
x235x

2
26

x236x
2
25

=
s34s61
s345s561

. (1.2)

The need for a nonzero remainder function Rn for Wilson loops was first indicated by

the strong-coupling behavior of polygonal loops corresponding to amplitudes with a large

number of gluons n [6]. At the six-point level, investigation of the multi-Regge limits of

2 → 4 gluon scattering amplitudes led to the conclusion that R6 must be nonvanishing at

two loops [16]. Numerical evidence was found soon thereafter for a nonvanishing two-loop

coefficient R
(2)
6 for generic nonsingular kinematics [14], in agreement with the numerical

values found simultaneously for the corresponding hexagonal Wilson loop [15].

Based on the Wilson line representation [15], and using dual conformal invariance

to take a quasi-multi-Regge limit and simplify the integrals, an analytic result for R
(2)
6

was derived [17, 18] in terms of Goncharov’s multiple polylogarithms [19]. Making use of
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properties of the symbol [20–24] associated with iterated integrals, the analytic result for

R
(2)
6 was then simplified to just a few lines of classical polylogarithms [23].

A powerful constraint on the structure of the remainder function at higher loop order

is provided by the operator product expansion (OPE) for polygonal Wilson loops [25–

27]. At three loops, this constraint, together with symmetries, collinear vanishing, and an

assumption about the final entry of the symbol, can be used to determine the symbol of R
(3)
6

up to just two constant parameters [28]. Another powerful technique for determining the

remainder function is to exploit an infinite-dimensional Yangian invariance [29, 30] which

includes the dual superconformal generators. These symmetries are anomalous at the loop

level (or alternatively one can say that the algebra has to be deformed) [31]. However, the

symmetries imply a first order linear differential equation for the ℓ-loop n-point amplitude,

and the anomaly dictates the inhomogenous term in the differential equation, in terms of

an integral over an (ℓ − 1)-loop (n + 1)-point amplitude [32, 33]. Using this differential

equation, a number of interesting results were obtained in ref. [33]. In particular, the result

for the symbol of R
(3)
6 found in ref. [28] was recovered and the two previously-undetermined

constants were fixed.

In principle, the method of refs. [32, 33] works to arbitrary loop order. However, it re-

quires knowing lower-loop amplitudes with an increasing number of external legs, for which

the number of kinematical variables (the dual conformal cross ratios) steadily increases.

Although the symbol of the two-loop remainder function R
(2)
n is known for arbitrary n [34],

the same is not true of the three-loop seven-point remainder function, which would feed

into the four-loop six-point remainder function — one of the subjects of this paper.

In this article, we focus on features of the six-point kinematics that allow us to push

directly to higher loop orders for this amplitude, without having to solve for amplitudes

with more legs. In fact, most of our paper is concerned with a special limit of the kinematics

in which we can make even more progress: multi-Regge kinematics (MRK), a limit which

has already received considerable attention in the context of N = 4 super-Yang-Mills

theory [16, 28, 35–43]. In the MRK limit of 2 → 4 gluon scattering, the four outgoing

gluons are widely-spaced in rapidity. In other words, two of the four gluons are emitted

far forward, with almost the same energies and directions of the two incoming gluons.

The other two outgoing gluons are also well-separated from each other, and have smaller

energies than the two far-forward gluons.

The MHV amplitude possesses a unique limit of this type. For definiteness, we will take

legs 3 and 6 to be incoming, legs 1 and 2 to be the far-forward outgoing gluons, and legs

4 and 5 to be the other two outgoing gluons. Neglecting power-suppressed terms, helicity

must be conserved along the high-energy lines. In the usual all-outgoing convention for

labeling helicities, the helicity configuration can be taken to be (++−++−). For generic

2 → 4 scattering in four dimensions there are eight kinematic variables. Dual conformal

invariance reduces the eight variables down to just the three dual conformal cross ratios

ui. Taking the multi-Regge limit essentially reduces the amplitude to a function of just

two variables, w and w∗, which turn out to be the complex conjugates of each other.

We will argue that the function space relevant for this limit has been completely

characterized by Brown [44]. We call the functions single-valued harmonic polylogarithms

– 3 –
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(SVHPLs). They are built from the analytic functions of a single complex variable that are

known as harmonic polylogarithms (HPLs) in the physics literature [46]. These functions

have branch cuts at w = 0 and w = −1. However, bilinear combinations of HPLs in w and

in w∗ can be constructed [44] to cancel the branch cuts, so that the resulting functions are

single-valued in the (w,w∗) plane. The single-valued property matches perfectly a physical

constraint on the remainder function in the multi-Regge limit. SVHPLs, like HPLs, are

equipped with an integer transcendental weight. The required weight increases with the

loop order. However, at any given weight there is only a finite-dimensional vector space of

available functions. Thus, once we have identified the proper function space, the problem of

solving for the remainder function in MRK reduces simply to determining a set of rational

numbers, namely the coefficients multiplying the allowed SVHPLs at a given weight.

In order to further appreciate the simplicity of the multi-Regge limit, we recall that

for generic six-point kinematics there are nine possible choices for the entries in the symbol

for the remainder function R6(u1, u2, u3) [23, 28]:

{u1, u2, u3, 1− u1, 1− u2, 1− u3, y1, y2, y3} , (1.3)

where

yi =
ui − z+
ui − z−

, (1.4)

z± =
−1 + u1 + u2 + u3 ±∆

2
, (1.5)

∆ = (1− u1 − u2 − u3)
2 − 4u1u2u3 . (1.6)

The first entry of the symbol is actually restricted to the set {u1, u2, u3} due to the location

of the amplitude’s branch cuts [27]; the integrability of the symbol restricts the second

entry to the set {ui, 1 − ui} [27, 28]; and a “final-entry condition” [28, 34] implies that

there are only six, not nine, possibilities for the last entry. However, the remaining entries

are unrestricted. The large number of possible entries, and the fact that the yi variables

are defined in terms of square-root functions of the cross ratios (although the ui can be

written as rational functions of the yi [28]), complicates the task of identifying the proper

function space for this problem.

So in this paper we will solve a simpler problem. The MRK limit consists of taking one

of the ui, say u1, to unity, and letting the other two cross ratios vanish at the same rate that

u1 → 1: u2 ≈ x(1 − u1) and u3 ≈ y(1 − u1) for two fixed variables x and y. To reach the

Minkowski version of the MRK limit, which is relevant for 2 → 4 scattering, it is necessary

to analytically continue u1 from the Euclidean region according to u1 → e−2πi|u1|, before
taking this limit [16]. Although the square-root variables y2 and y3 remain nontrivial in the

MRK limit, all of the square roots can be rationalized by a clever choice of variables [38].

We define w and w∗ by

x ≡ 1

(1 + w)(1 + w∗)
, y ≡ ww∗

(1 + w)(1 + w∗)
. (1.7)

Then the MRK limit of the other variables is

u1 → 1, y1 → 1, y2 → ỹ2 =
1 + w∗

1 + w
, y3 → ỹ3 =

(1 + w)w∗

w(1 + w∗)
. (1.8)
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Neglecting terms that vanish like powers of (1 − u1), we expand the remainder function

in the multi-Regge limit in terms of coefficients multiplying powers of the large logarithm

log(1− u1) at each loop order, following the conventions of ref. [28],

R6(u1, u2, u3)|MRK = 2πi
∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)n (w,w∗)
]

, (1.9)

where the coupling constant for planar N = 4 super-Yang-Mills theory is a = g2Nc/(8π
2).

The remainder function R6 is a transcendental function with weight 2ℓ at loop order

ℓ. Therefore the coefficient functions g
(ℓ)
n and h

(ℓ)
n have weight 2ℓ − n − 1 and 2ℓ − n − 2

respectively. As a consequence of eqs. (1.7) and (1.8), their symbols have only four possible

entries,

{w, 1 + w,w∗, 1 + w∗} . (1.10)

Furthermore, w and w∗ are independent complex variables. Hence the problem of deter-

mining the coefficient functions factorizes into that of determining functions of w whose

symbol entries are drawn from {w, 1 + w} — a special class of HPLs — and the complex

conjugate functions of w∗.

On the other hand, not every combination of HPLs in w and HPLs in w∗ will appear.

When the symbol is expressed in terms of the original variables {x, y, ỹ2, ỹ3}, the first

entry must be either x or y, reflecting the branch-cut behavior and first-entry condition

for general kinematics. Also, the full function must be a single-valued function of x and

y, or equivalently a single-valued function of w and w∗. These conditions imply that the

coefficient functions belong to the class of SVHPLs defined by Brown [44].

The MRK limit (1.9) is organized hierarchically into the leading-logarithmic approxi-

mation (LLA) with n = ℓ−1, the next-to-leading-logarithmic approximation (NLLA) with

n = ℓ−2, and in general the NkLL terms with n = ℓ−k−1. Just as the problem of DGLAP

evolution in x space is diagonalized by transforming to the space of Mellin moments N ,

the MRK limit can be diagonalized by performing a Fourier-Mellin transform from (w,w∗)

to a new space labeled by (ν, n). In fact, Fadin, Lipatov and Prygarin [38, 40] have given

an all-loop-order formula for R6 in the multi-Regge limit, in terms of two functions of

(ν, n): The eigenvalue ω(ν, n) of the BFKL kernel in the adjoint representation, and the

(regularized) MHV impact factor ΦReg(ν, n). Each function can be expanded in a, and

each successive order in a corresponds to increasing k by one in the NkLLA. It is possible

that the assumption that was made in refs. [38, 40], of single Reggeon exchange through

NLL, breaks down beyond that order, due to Reggeon-number changing interactions or

other possible effects [45]. In this paper we will assume that it holds through N3LL (for

the impact factor); the three quantities we extract beyond NLL could be affected if this

assumption is wrong.

The leading term in the impact factor is just one, while the leading BFKL eigenvalue

Eν,n was found in ref. [35]. The NLL term in the impact factor was found in ref. [38], and

the NLL contribution to the BFKL eigenvalue in ref. [40].

With this information it is possible to compute the LLA functions g
(ℓ)
ℓ−1, NLLA func-

tions g
(ℓ)
ℓ−2 and h

(ℓ)
ℓ−2, and even the real part at NNLLA, h

(ℓ)
ℓ−3. All one needs to do is perform
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the inverse Fourier-Mellin transform back to the (w,w∗) variables. At the three-loop level,

this was carried out at LLA for g
(3)
2 and h

(3)
1 in ref. [38], and at NLLA for g

(3)
1 and h

(3)
0

in ref. [40]. Here we will use the SVHPL basis to make this step very simple. The inverse

transform contains an explicit sum over n, and an integral over ν which can be evaluated

via residues in terms of a sum over a second integer m. For low loop orders we can per-

form the double sum analytically using harmonic sums [47–52]. For high loop orders, it

is more efficient to simply truncate the double sum. In the (w,w∗) plane this truncation

corresponds to truncating the power series expansion in |w| around the origin. We know

the answer is a linear combination of a finite number of SVHPLs with rational-number

coefficients. In order to determine the coefficients, we simply compute the power series

expansion of the generic linear combination of SVHPLs and match it against the truncated

double sum over m and n. We can now perform the inverse Fourier-Mellin transform, in

principle to all orders, and in practice through weight 10, corresponding to 10 loops for

LLA and 9 loops for NLLA.

Furthermore, we can bring in additional information at fixed loop order, in order to

obtain more terms in the expansion of the BFKL eigenvalue and the MHV impact factor.

In ref. [40], the NLLA results for g
(3)
1 and h

(3)
0 confirmed a previous prediction [28] based

on an analysis of the multi-Regge limit of the symbol for R
(3)
6 . In this limit, the two free

symbol parameters mentioned above dropped out. The symbol could be integrated back up

into a function, but a few more “beyond-the-symbol” constants entered at this stage. One

of the constants was fixed in ref. [40] using the NLLA information. As noted in ref. [40],

the result from ref. [28] for g
(3)
0 can be used to determine the NNLLA term in the impact

factor. In this paper, we will use our knowledge of the space of functions of (w,w∗) (the

SVHPLs) to build up a dictionary of the functions of (ν, n) (special types of harmonic

sums) that are the Fourier-Mellin transforms of the SVHPLs. From this dictionary and

g
(3)
0 we will determine the NNLLA term in the impact factor.

We can go further if we know the four-loop remainder function R
(4)
6 . In separate

work [53], we have heavily constrained the symbol of R
(4)
6 (u1, u2, u3) for generic kinematics,

using exactly the same constraints used in ref. [28]: integrability of the symbol, branch-cut

behavior, symmetries, the final-entry condition, vanishing of collinear limits, and the OPE

constraints (which at four loops are a constraint on the triple discontinuity). Although there

are millions of possible terms before applying these constraints, afterwards the symbol

contains just 113 free constants (112 if we apply the overall normalization for the OPE

constraints). Next we construct the multi-Regge limit of this symbol, and apply all the

information we have about this limit:

• Vanishing of the super-LLA terms g
(4)
n and h

(4)
n for n = 4, 5, 6, 7;

• LLA and NLLA predictions for g
(4)
n and h

(4)
n for n = 2, 3;

• the NNLLA real part h
(4)
1 , which is also predicted by the NLLA formula;

• a consistency condition between g
(4)
1 and h

(4)
0 .

Remarkably, these conditions determine all but one of the symbol-level parameters in the

MRK limit. (The one remaining free parameter seems highly likely to vanish, given the

– 6 –
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complicated way it enters various formulae, but we have not yet proven that to be the

case.)

We then extract the remaining four-loop coefficient functions, g
(4)
1 , h

(4)
0 and g

(4)
0 , intro-

ducing some additional beyond-the-symbol parameters at this stage. We use this informa-

tion to determine the NNLLA BFKL eigenvalue and the N3LLA MHV impact factor, up to

these parameters. Although our general dictionary of functions of (ν, n) contains various

multiple harmonic sums, we find that the key functions entering the multi-Regge limit can

all be expressed just in terms of certain rational combinations of ν and n, together with

the polygamma functions ψ, ψ′, ψ′′, etc. (derivatives of the logarithm of the Γ function)

with arguments 1± iν + |n|/2.
As a byproduct, we find that the SVHPLs also describe the multi-Regge limit of the

one remaining helicity configuration for six-gluon scattering in N = 4 super-Yang-Mills

theory, namely the next-to-MHV (NMHV) configuration with three negative and three

positive gluon helicities. It was shown recently [43] that in LLA the NMHV and MHV

remainder functions are related by a simple integro-differential operator. This operator

has a natural action in terms of the SVHPLs, allowing us to easily extend the NMHV LLA

results of ref. [43] from three loops to 10 loops.

This article is organized as follows. In section 2 we review the structure of the six-point

MHV remainder function in the multi-Regge limit. Section 3 reviews Brown’s construction

of single-valued harmonic polylogarithms. In section 4 we exploit the SVHPL basis to

determine the functions g
(ℓ)
n and h

(ℓ)
n at LLA through 10 loops and at NLLA through 9

loops. Section 5 determines the NMHV remainder function at LLA through 10 loops.

In section 6 we describe our construction of the functions of (ν, n) that are the Fourier-

Mellin transforms of the SVHPLs. Section 7 applies this knowledge, plus information from

the four-loop remainder function [53], in order to determine the NNLLA MHV impact

factor and BFKL eigenvalue, and the N3LLA MHV impact factor, in terms of a handful of

(mostly) beyond-the-symbol constants. In section 8 we report our conclusions and discuss

directions for future research.

We include two appendices. Appendix A collects expressions for the SVHPLs (after

diagonalizing the action of a Z2×Z2 symmetry), in terms of HPLs through weight 5. It also

gives expressions before diagonalizing one of the two Z2 factors. Appendix B gives a basis

for the function space in (ν, n) through weight 5, together with the Fourier-Mellin map

to the SVHPLs. In addition, for the lengthier formulae, we provide separate computer-

readable text files as ancillary material. In particular, we include files (in Mathematica

format) that contain the expressions for the SVHPLs in terms of ordinary HPLs up to

weight six, decomposed into an eigenbasis of the Z2×Z2 symmetry, as well as the analytic

results up to weight ten for the imaginary parts of the MHV remainder function at LLA

and NLLA and for the NMHV remainder function at LLA. Furthermore, we include the

expressions for the NNLL BFKL eigenvalue and impact factor and the N3LL impact factor

in terms of the building blocks in the variables (ν, n) constructed in section 6, as well as a

dictionary between these building blocks and the SVHPLs up to weight five.
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2 The six-point remainder function in the multi-Regge limit

The principal aim of this paper is to study the six-point MHV amplitude in N = 4 super

Yang-Mills theory in multi-Regge kinematics. This limit is defined by the hierarchy of

scales,

s12 ≫ s345, s456 ≫ s34, s45 , s56 ≫ s23, s61, s234 . (2.1)

In this limit the cross ratios (1.2) behave as

1− u1, u2, u3 ∼ 0 , (2.2)

together with the constraint that the following ratios are held fixed,

x ≡ u2
1− u1

= O(1) and y ≡ u3
1− u1

= O(1) . (2.3)

In the following it will be convenient [38] to parametrize the dependence on x and y by a

single complex variable w,

x ≡ 1

(1 + w)(1 + w∗)
and y ≡ ww∗

(1 + w)(1 + w∗)
. (2.4)

Any function of the three cross ratios can then develop large logarithms log(1− u1) in the

multi-Regge limit, and we can write generically,

F (u1, u2, u3) =
∑

i

logi(1− u1) fi(w,w
∗) +O(1− u1) . (2.5)

Let us make at this point an important observation which will be a recurrent theme in the

rest of the paper: If F (u1, u2, u3) represents a physical quantity like a scattering amplitude,

then F should only have cuts in physical channels, corresponding to branch cuts starting

at points where one of the cross ratios vanishes. Rotation around the origin in the complex

w plane, i.e. (w,w∗) → (e2πiw, e−2πiw∗), does not correspond to crossing any branch cut.

As a consequence, the functions fi(w,w
∗) should not change under this operation. More

generally, the functions fi(w,w
∗) must be single-valued in the complex w plane.

Let us start by reviewing the multi-Regge limit of the MHV remainder function

R(u1, u2, u3) ≡ R6(u1, u2, u3) introduced in eq. (1.1). It can be shown that, while in

the Euclidean region the remainder function vanishes in the multi-Regge limit, there is a

Mandelstam cut such that we obtain a non-zero contribution in MRK after performing the

analytic continuation [16]

u1 → e−2πi |u1| . (2.6)

After this analytic continuation, the six-point remainder function can be expanded into

the form given in eq. (1.9), which we repeat here for convenience,

R|MRK = 2πi
∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)n (w,w∗)
]

. (2.7)

The functions g
(ℓ)
n (w,w∗) and h

(ℓ)
n (w,w∗) will in the following be referred to as the coeffi-

cient functions for the logarithmic expansion in the MRK limit. The imaginary part g
(ℓ)
n

– 8 –



J
H
E
P
1
0
(
2
0
1
2
)
0
7
4

is associated with a single discontinuity, and the real part h
(ℓ)
n with a double discontinuity,

although both functions also include information from higher discontinuities, albeit with

accompanying explicit factors of π2.

The coefficient functions are single-valued pure transcendental functions in the complex

variable w, of weight 2ℓ−n−1 for g
(ℓ)
n and weight 2ℓ−n−2 for h

(ℓ)
n . They are left invariant

by a Z2 × Z2 symmetry acting via complex conjugation and inversion,

w ↔ w∗ and (w,w∗) ↔ (1/w, 1/w∗) . (2.8)

The complex conjugation symmetry arises because the MHV remainder function has a

parity symmetry, or invariance under ∆ → −∆, which inverts ỹ2 and ỹ3 in eq. (1.8).

The inversion symmetry is a consequence of the fact that the six-point remainder function

is a totally symmetric function of the three cross ratios u1, u2 and u3. In particular,

exchanging ỹ2 ↔ ỹ3 is the product of conjugation and inversion. The inversion symmetry

is sometimes referred to as target-projectile symmetry [37]. Finally, the vanishing of the

six-point remainder function in the collinear limit implies the vanishing of g
(ℓ)
n (w,w∗) and

h
(ℓ)
n (w,w∗) in the limit where (w,w∗) → 0. Clearly the functions g

(ℓ)
n and h

(ℓ)
n are already

highly constrained on general grounds.

In ref. [38, 40] an all-loop integral formula for the six-point amplitude in MRK was

presented,1

eR+iπδ|MRK =

cosπωab + i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

(

− 1√
u2 u3

)ω(ν,n)

.

(2.9)

The first term is the Regge pole contribution, with

ωab =
1

8
γK(a) log

u3
u2

=
1

8
γK(a) log |w|2 , (2.10)

and γK(a) is the cusp anomalous dimension, known to all orders in perturbation theory [54],

γK(a) =

∞
∑

ℓ=1

γ
(ℓ)
K aℓ = 4 a− 4 ζ2 a

2 + 22 ζ4 a
3 − (2192 ζ6 + 4 ζ23 ) a

4 + · · · . (2.11)

The second term in eq. (2.9) arises from a Regge cut and is fully determined to all orders by

the BFKL eigenvalue ω(ν, n) and the (regularized) impact factor ΦReg(ν, n). The function

δ appearing in the exponent on the left-hand side is the contribution from a Mandelstam

cut present in the BDS ansatz, and is given to all loop orders by

δ =
1

8
γK(a) log (xy) =

1

8
γK(a) log

|w|2
|1 + w|4 . (2.12)

1There is a difference in conventions regarding the definition of the remainder function. What we call

R is called log(R) in refs. [38, 40]. Apart from the zeroth order term, the first place this makes a difference

is at four loops, in the real part.
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In addition, we have
1√
u2 u3

=
1

1− u1

|1 + w|2
|w| . (2.13)

The BFKL eigenvalue and the impact factor can be expanded perturbatively,

ω(ν, n) = −a
(

Eν,n + aE(1)
ν,n + a2E(2)

ν,n +O(a3)
)

,

ΦReg(ν, n) = 1 + aΦ
(1)
Reg(ν, n) + a2Φ

(2)
Reg(ν, n) + a3Φ

(3)
Reg(ν, n) +O(a4) .

(2.14)

The BFKL eigenvalue is known to the first two orders in perturbation theory [35, 40],

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1) , (2.15)

E(1)
ν,n = −1

4

[

ψ′′

(

1 + iν +
|n|
2

)

+ ψ′′

(

1− iν +
|n|
2

)

(2.16)

− 2iν

ν2 + n2

4

(

ψ′

(

1 + iν +
|n|
2

)

− ψ′

(

1− iν +
|n|
2

))]

−ζ2Eν,n − 3ζ3 −
1

4

|n|
(

ν2 − n2

4

)

(

ν2 + n2

4

)3 ,

where ψ(z) = d
dz log Γ(z) is the digamma function, and ψ(1) = −γE is the Euler-Mascheroni

constant. The NLL contribution to the impact factor is given by [37]

Φ
(1)
Reg(ν, n) = −1

2
E2

ν,n − 3

8

n2

(ν2 + n2

4 )2
− ζ2 . (2.17)

The BFKL eigenvalues and impact factor in eqs. (2.15), (2.16) and (2.17) are enough to

compute the six-point remainder function in the Regge limit in the leading and next-to-

leading logarithmic approximations (LLA and NLLA). Indeed, we can interpret the integral

in eq. (2.9) as a contour integral in the complex ν plane and close the contour at infinity. By

summing up the residues we then obtain the analytic expression of the remainder function

in the LLA and NLLA in MRK. This procedure will be discussed in greater detail in

section 4. Some comments are in order about the integral in eq. (2.9):

1. The contribution coming from n = 0 seems ill-defined, as the integral in eq. (2.9)

diverges. After closing the contour at infinity, our prescription is to take only half of

the residue at ν = n = 0 into account.

2. We need to specify the Riemann sheet of the exponential factor in the right-hand

side of eq. (2.9). We find that the replacement

(

− 1√
u2 u3

)ω(ν,n)

→ e−iπω(ν,n)

(

1√
u2 u3

)ω(ν,n)

(2.18)

gives the correct result.
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The iπ factor in the right-hand side of eq. (2.18) generates the real parts h
(ℓ)
n in eq. (2.7).

It is easy to see that the g
(ℓ)
n and h

(ℓ)
n functions are not independent, but they are related.

For example, at LLA and NLLA we have,

h
(ℓ)
ℓ−1(w,w

∗) = 0 ,

h
(ℓ)
ℓ−2(w,w

∗) =
ℓ− 1

2
g
(ℓ)
ℓ−1(w,w

∗) +
1

16
γ
(1)
K g

(ℓ−1)
ℓ−2 (w,w∗) log

|1 + w|4
|w|2

− 1

2

ℓ−2
∑

k=2

g
(k)
k−1g

(ℓ−k)
ℓ−k−1 , ℓ > 2,

(2.19)

where γ
(1)
K = 4 from eq. (2.11). (Note that the sum over k in the formula for h

(ℓ)
ℓ−2 would not

have been present if we had used the convention for R in refs. [38, 40].) Similar relations

can be derived beyond NLLA, i.e. for n < ℓ− 2.

So far we have only considered 2 → 4 scattering. In ref. [39] it was shown that if

the remainder function is analytically continued to the region corresponding to 3 → 3

scattering, then it takes a particularly simple form. The analytic continuation from 2 → 4

to 3 → 3 scattering can be obtained easily by performing the replacement

log(1− u1) → log(u1 − 1)− iπ (2.20)

in eq. (2.9). After analytic continuation the real part of the remainder function only gets

contributions from the Regge pole and is given by [39]

Re
(

eR3→3−iπδ
)

= cosπωab . (2.21)

It is manifest from eq. (2.9) that eq. (2.21) is automatically satisfied if the relations among

the coefficient functions derivable by tracking the iπ from eq. (2.18) (e.g. eq. (2.19)) are

satisfied in 2 → 4 kinematics.

So far we have only reviewed some general properties of the six-point remainder func-

tion in MRK, but we have not yet given explicit analytic expressions for the coefficient

functions. The two-loop contributions to eq. (2.9) in LLA and NLLA were computed

in refs. [37, 38], while the three-loop contributions up to the NNLLA were found in

refs. [28, 37]. In all cases the results have been expressed as combinations of classical

polylogarithms in the complex variable w and its complex conjugate w∗, with potential

branching points at w = 0 and w = −1. As discussed at the beginning of this section, all

the branch cuts in the complex w plane must cancel, i.e., the function must be single-valued

in w. The class of functions satisfying these constraints has been studied in full generality

in the mathematical literature, as will be reviewed in the next section.

3 Harmonic polylogarithms and their single-valued analogues

3.1 Review of harmonic polylogarithms

In this section we give a short review of the classical and harmonic polylogarithms, one of

the main themes in the rest of this paper. The simplest possible polylogarithmic functions
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are the so-called classical polylogarithms, defined inside the unit circle by a convergent

power series,

Lim(z) =

∞
∑

k=1

zk

km
, |z| < 1 . (3.1)

They can be continued to the cut plane C\[1,∞) by an iterated integral representation,

Lim(z) =

∫ z

0
dz′

Lim−1(z
′)

z′
. (3.2)

For m = 1, the polylogarithm reduces to the ordinary logarithm, Li1(z) = − log(1 − z), a

fact that dictates the location of the branch cut for all m (along the real axis for z > 1).

It also determines the discontinuity across the cut,

∆Lim(z) = 2πi
logm−1 z

(m− 1)!
. (3.3)

It is possible to define more general classes of polylogarithmic functions by allowing

for different kernels inside the iterated integral in eq. (3.2). The harmonic polylogarithms

(HPLs) [46] are a special class of generalized polylogarithms whose properties and con-

struction we review in the remainder of this section. To begin, let w be a word formed

from the letters x0 and x1, and let e be the empty word. Then, for each w, define a function

Hw(z) which obeys the differential equations,

∂

∂z
Hx0w(z) =

Hw(z)

z
and

∂

∂z
Hx1w(z) =

Hw(z)

1− z
, (3.4)

subject to the following conditions,

He(z) = 1, Hxn
0
(z) =

1

n!
logn z, and lim

z→0
Hw 6=xn

0
(z) = 0 . (3.5)

There is a unique family of solutions to these equations, and it defines the HPLs. Note that

we use the term “HPL” in a restricted sense2 — we only consider poles in the differential

equations (3.4) at z = 0 and z = 1. (In our MRK application, we will let z = −w, so that

the poles are at w = 0 and w = −1.)

The weight of an HPL is the length of the word w, and its depth is the number of

x1’s.
3 HPLs of depth one are simply the classical polylogarithms, Hn(z) = Lin(z). Like

the classical polylogarithms, the HPLs can be written as iterated integrals,

Hx0w(z) =

∫ z

0
dz′

Hw(z
′)

z′
and Hx1w =

∫ z

0
dz′

Hw(z
′)

1− z′
. (3.7)

2In the mathematical literature, these functions are sometimes referred to as multiple polylogarithms in

one variable.
3For ease of notation, we will often impose the replacement {x0 → 0, x1 → 1} in subscripts. In some

cases, we will use the collapsed notation where a subscript m denotes m− 1 zeroes followed by a single 1.

For example, if w = x0x0x1x0x1,

Hw(z) = Hx0x0x1x0x1
(z) = H0,0,1,0,1(z) = H3,2(z) . (3.6)

In the collapsed notation, the weight is the sum of the indices, and the depth is the number of nonzero

indices.
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Weight Lyndon words Dimension

1 0, 1 2

2 01 1

3 001, 011 2

4 0001, 0011, 0111 3

5 00001, 00011, 00101, 00111, 01011, 01111 6

Table 1. All Lyndon words Lyndon(x0, x1) through weight five

The structure of the underlying iterated integrals endows the HPLs with an important

property: they form a shuffle algebra. The shuffle relations can be written,

Hw1(z)Hw2(z) =
∑

w∈w1Xw2

Hw(z) , (3.8)

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their relative

ordering. Equation (3.8) may be used to express all HPLs of a given weight in terms of a

relatively small set of basis functions and products of lower-weight HPLs. One convenient

such basis [55] of irreducible functions is the Lyndon basis, defined by {Hw(z) : w ∈
Lyndon(x0, x1)}. The Lyndon words Lyndon(x0, x1) are those words w such that for every

decomposition into two words w = uv, the left word is lexicographically smaller than the

right, u < v. Table 1 gives the first few examples of Lyndon words.

All HPLs are real whenever the argument z is less than 1, and so, in particular, the

HPLs are analytic in a neighborhood of z = 0. The Taylor expansion around z = 0 is

particularly simple and involves only a special class of harmonic numbers [46, 49] (hence

the name harmonic polylogarithm),

Hm1,...,mk
(z) =

∞
∑

l=1

zl

lm1
Zm2,...,mk

(l − 1) , mi > 0 , (3.9)

where Zm1,...,mk
(n) denote the so-called Euler-Zagier sums [47, 48], defined recursively by

Zm1(n) =

n
∑

l=1

1

lm1
and Zm1,...,mk

(n) =

n
∑

l=1

1

lm1
Zm2,...,mk

(l − 1) . (3.10)

Note that the indexing of the weight vectors m1, . . . ,mk in eqs. (3.9) and (3.10) is in the

collapsed notation.

Another important property of HPLs is that they are closed under certain transfor-

mations of the arguments [46]. In particular, using the integral representation (3.7), it is

easy to show that the set of all HPLs is closed under the following transformations,

z 7→ 1− z, z 7→ 1/z, z 7→ 1/(1− z), z 7→ 1− 1/z, z 7→ z/(z − 1) . (3.11)

If we add to these mappings the identity map z 7→ z, we can identify the transformations in

eq. (3.11) as forming a representation of the symmetric group S3. In other words, the vector

space spanned by all HPLs is endowed with a natural action of the symmetric group S3.
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Finally, it is evident from the iterated integral representation (3.7) that HPLs can

have branch cuts starting at z = 0 and/or z = 1, i.e., HPLs define in general multi-valued

functions on the complex plane. In the next section we will define analogues of HPLs

without any branch cuts, thus obtaining a single-valued version of the HPLs.

3.2 Single-valued harmonic polylogarithms

Before reviewing the definition of single-valued harmonic polylogarithms in general, let us

first review the special case of single-valued classical polylogarithms. The knowledge of the

discontinuities of the classical polylogarithms, eq. (3.3), can be leveraged to construct a

sequence of real analytic functions on the punctured plane C\{0, 1}. The idea is to consider

linear combinations of (products of) classical polylogarithms and ordinary logarithms such

that all the branch cuts cancel. Although the space of single-valued functions is unique,

the choice of basis is not unique, and there have been several versions proposed in the

literature. As an illustration, consider the functions of Zagier [56],

Dm(z) = Rm

{

m
∑

k=1

(− log |z|)m−k

(m− k)!
Lik(z) +

logm |z|
2 m!

}

, (3.12)

where Rm denotes the imaginary part for m even and the real part for m odd. The

discontinuity of the function inside the curly brackets is given by

2πi

m
∑

k=1

(− log |z|)m−k

(m− k)!

logk−1 z

(k − 1)!
= 2π

im

(m− 1)!
(arg z)m−1 . (3.13)

Since eq. (3.13) is real for even m and pure imaginary for odd m, Dm(z) is indeed single-

valued. For the special case m = 2, we reproduce the famous Bloch-Wigner diloga-

rithm [57],

D2(z) = Im{Li2(z)}+ arg(1− z) log |z| . (3.14)

Just as there have been numerous proposals in the literature for single-valued versions

of the classical polylogarithms, there are many potential choices of bases for single-valued

HPLs. On the other hand, if we choose to demand some reasonable properties, it turns

out that a unique set of functions emerges. Following ref. [44], we require the single-valued

HPLs to be built entirely from holomorphic and anti-holomorphic HPLs. Specifically, they

should be a linear combination of terms of the form Hw1(z)Hw2(z̄), where w1 and w2 are

words in x0 and x1 or the empty word e. The single-valued classical polylogarithms obey

an analogous property, and it can be understood as the condition that the single-valued

functions are the proper extensions of the original functions. The remaining requirements

are simply the analogues of the conditions used to construct the ordinary HPLs.

Define a function Lw(z), which is a linear combination of functions Hw1(z)Hw2(z̄) and

which obeys the differential equations

∂

∂z
Lx0w(z) =

Lw(z)

z
and

∂

∂z
Lx1w(z) =

Lw(z)

1− z
, (3.15)
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subject to the conditions,

Le(z) = 1 , Lxn
0
(z) =

1

n!
logn |z|2 and lim

z→0
Lw 6=xn

0
(z) = 0 . (3.16)

In ref. [44] Brown showed that there is a unique family of solutions to these equations that

is single-valued in the complex z plane, and it defines the single-valued HPLs (SVHPLs).

The functions Lw(z) are linearly independent and span the space. That is to say, every

single-valued linear combination of functions of the form Hw1(z)Hw2(z̄) can be written in

terms of the Lw(z). In ref. [44] an algorithm was presented that allows for the explicit

construction of all SVHPLs as linear combinations of (products of) ordinary HPLs. We

present a short review of this algorithm in section 3.3.

The SVHPLs of ref. [44] share all the nice features of their multi-valued analogues.

First, like the ordinary HPLs, they obey shuffle relations,

Lw1(z)Lw2(z) =
∑

w∈w1Xw2

Lw(z), (3.17)

where again w1Xw2 represents the shuffles of w1 and w2. As a consequence, we may again

choose to solve eq. (3.17) in terms of a Lyndon basis. It follows that if we want the full list

of all SVHPLs of a given weight, it is enough to know the corresponding Lyndon basis up

to that weight.

Furthermore, the space of SVHPLs is also closed under the S3 action defined by

eq. (3.11). Indeed, if we extend the action to the complex conjugate variable z̄, then

the closure of the space of all ordinary HPLs implies the closure of the space spanned by

all products of the form Hw1(z)Hw2(z̄), and, in particular, the closure of the subspace of

SVHPLs. For the SVHPLs, it is possible to enlarge the symmetry group to Z2×S3, where

the Z2 subgroup acts by complex conjugation, z ↔ z̄.

It turns out that the functions Lw(z) can generically be decomposed as

Lw(z) =
(

Hw(z)− (−1)|w|Hw(z̄)
)

+ [products of lower weight] , (3.18)

where |w| denotes the weight. As such, it is convenient to consider the even and odd

projections, i.e., the decomposition into eigenfunctions of the Z2 action,

Lw(z) =
1

2

(

Lw(z)− (−1)|w| Lw(z̄)
)

and Lw(z) =
1

2

(

Lw(z) + (−1)|w|Lw(z̄)
)

.

(3.19)

The basis defined by Lw(z) was already complete, and yet here we have doubled the number

of potential basis functions. Therefore Lw(z) and Lw(z) must be related to one another.

Writing Lw(z) = R|w|(Lw(z)), we see that it has the same parity as Zagier’s single-valued

versions of the classical polylogarithms given in eq. (3.12). Therefore we might expect the

Lw(z) to form a complete basis on their own. Indeed this turns out to be the case, and the

Lw(z) can be expressed as products of the functions Lw(z),

Lw(z) = [products of lower weight Lw′(z)] . (3.20)
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Hence we will not consider the functions Lw(z) any further and will concentrate solely on

the functions Lw(z).

The functions Lw(z) do not automatically form simple representations of the S3 sym-

metry. For the current application, we will mostly be concerned with the Z2 ⊂ S3 subgroup

generated by inversions z ↔ 1/z. The functions Lw(z) can easily be decomposed into eigen-

functions of this Z2, and, furthermore, these eigenfunctions form a basis for the space of

all SVHPLs. The latter follows from the observation that,

Lw(z)− (−1)|w|+dwLw

(1

z

)

= [products of lower weight], (3.21)

where |w| is the weight and dw is the depth of the word w. We will denote these eigen-

functions of Z2 × Z2 by,

L±
w(z) ≡

1

2

[

Lw(z)± Lw

(1

z

)

]

, (3.22)

and present most of our results in terms of this convenient basis. For low weights, ap-

pendix A gives explicit representations of these basis functions in terms of HPLs. The

expressions through weight six can be found in the ancillary files.

We have seen in the previous section that in the multi-Regge limit the six-point ampli-

tude is described to all loop orders by single-valued functions of a single complex variable

w satisfying certain reality and inversion properties. It turns out that the SVHPLs we just

defined are particularly well-suited to describe these multi-Regge limits. This description

will be the topic of the rest of this paper.

3.3 Explicit construction

The explicit construction of the functions Lw(z) is somewhat involved so we take a brief

detour to describe the details. Let X∗ be the set of words in the alphabet {x0, x1}, along
with the empty word e. Define the Drinfel’d associator Z(x0, x1) as the generating series,

Z(x0, x1) =
∑

w∈X∗

ζ(w)w, (3.23)

where ζ(w) = Hw(1) for w 6= x1 and ζ(x1) = 0. The ζ(w) are regularized by the shuffle

algebra. Using the collapsed notation for w, these ζ(w) are the familiar multiple zeta

values.

Next, define an alphabet {y0, y1} (and a set of words Y ∗) and a map ∼ : Y ∗ → Y ∗ as

the operation that reverses words. The alphabet {y0, y1} is related to the alphabet {x0, x1}
by the following relations:

y0 = x0

Z̃(y0, y1)y1Z̃(y0, y1)
−1 = Z(x0, x1)

−1x1Z(x0, x1).
(3.24)

The inversion operator is to be understood as a formal series expansion in the weight |w|.
Solving eq. (3.24) iteratively in the weight yields a series expansion for y1. The first few

terms are,

y1 = x1 − ζ3 (2x0x0x1x1 − 4x0x1x0x1 + 2x0x1x1x1 + 4x1x0x1x0

−6x1x0x1x1 − 2x1x1x0x0 + 6x1x1x0x1 − 2x1x1x1x0) + . . .
(3.25)
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Letting φ : Y ∗ → X∗ be the map that renames y to x, i.e. φ(y0) = x0 and φ(y1) = x1,

define the generating functions

LX(z) =
∑

w∈X∗

Hw(z)w , L̃Y (z̄) =
∑

w∈Y ∗

Hφ(w)(z̄)w̃ . (3.26)

In the following, we use a condensed notation for the HPL arguments, in order to improve

the readability of explicit formulas:

Hw ≡ Hw(z) and Hw ≡ Hw(z̄) . (3.27)

Then we can write

LX(z) = 1 +H0x0 +H1x1

+ H0,0x0x0 +H0,1x0x1 +H1,0x1x0 +H1,1x1x1

+ H0,0,0x0x0x0 +H0,0,1x0x0x1 +H0,1,0x0x1x0 +H0,1,1x0x1x1

+ H1,0,0x1x0x0 +H1,0,1x1x0x1 +H1,1,0x1x1x0 +H1,1,1x1x1x1 + . . . ,

(3.28)

and

L̃Y (z̄) = 1 +H0y0 +H1y1

+ H0,0y0y0 +H0,1y1y0 +H1,0y0y1 +H1,1y1y1

+ H0,0,0y0y0y0 +H0,0,1y1y0y0 +H0,1,0y0y1y0 +H0,1,1y1y1y0

+ H1,0,0y0y0y1 +H1,0,1y1y0y1 +H1,1,0y0y1y1 +H1,1,1y1y1y1 + . . .

= 1 +H0x0 +H1x1

+ H0,0x0x0 +H0,1x1x0 +H1,0x0x1 +H1,1x1x1

+ H0,0,0x0x0x0 +H0,0,1x1x0x0 +H0,1,0x0x1x0 +H0,1,1x1x1x0

+ H1,0,0x0x0x1 +H1,0,1x1x0x1 +H1,1,0x0x1x1 +H1,1,1x1x1x1 + . . . .

(3.29)

In the last step of eq. (3.29) we used y0 = x0 and y1 = x1. Note that the latter only holds

through weight three, as is clear from eq. (3.25). Finally, we are able to construct the

SVHPLs as a generating series,

L(z) = LX(z)L̃Y (z̄) ≡
∑

w∈X∗

Lw(z)w. (3.30)

Indeed, taking the product of eq. (3.28) with eq. (3.29) and keeping terms through weight

three, we obtain,

∑

w∈X∗

Lw(z)w = 1 + L0(z)x0 + L1(z)x1

+ L0,0(z)x0x0 + L0,1(z)x0x1 + L1,0(z)x1x0 + L1,1(z)x1x1

+ L0,0,0(z)x0x0x0 + L0,0,1(z)x0x0x1 + L0,1,0(z)x0x1x0 + L0,1,1(z)x0x1x1

+ L1,0,0(z)x1x0x0 + L1,0,1(z)x1x0x1 + L1,1,0(z)x1x1x0 + L1,1,1(z)x1x1x1 + . . . ,

(3.31)
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where the SVHPL’s of weight one are,

L0(z) = H0 +H0 , L1(z) = H1 +H1, (3.32)

the SVHPL’s of weight two are,

L0,0(z) = H0,0 +H0,0 +H0H0 ,

L0,1(z) = H0,1 +H1,0 +H0H1 ,

L1,0(z) = H1,0 +H0,1 +H1H0 ,

L1,1(z) = H1,1 +H1,1 +H1H1 ,

(3.33)

and the SVHPL’s of weight three are,

L0,0,0(z) = H0,0,0 +H0,0,0 +H0,0H0 +H0H0,0 ,

L0,0,1(z) = H0,0,1 +H1,0,0 +H0,0H1 +H0H1,0 ,

L0,1,0(z) = H0,1,0 +H0,1,0 +H0,1H0 +H0H0,1 ,

L0,1,1(z) = H0,1,1 +H1,1,0 +H0,1H1 +H0H1,1 ,

L1,0,0(z) = H1,0,0 +H0,0,1 +H1,0H0 +H1H0,0 ,

L1,0,1(z) = H1,0,1 +H1,0,1 +H1,0H1 +H1H1,0 ,

L1,1,0(z) = H1,1,0 +H0,1,1 +H1,1H0 +H1H0,1 ,

L1,1,1(z) = H1,1,1 +H1,1,1 +H1,1H1 +H1H1,1 .

(3.34)

The y alphabet differs from the x alphabet starting at weight four. Referring to eq. (3.25),

we expect the difference to generate factors of ζ3. To illustrate this effect, we list here the

subset of weight-four SVHPLs with explicit ζ terms:

L0,0,1,1(z) = H0,0,1,1 +H1,1,0,0 +H0,0,1H1 +H0H1,1,0 +H0,0H1,1 − 2ζ3H1 ,

L0,1,0,1(z) = H0,1,0,1 +H1,0,1,0 +H0,1,0H1 +H0H1,0,1 +H0,1H1,0 + 4ζ3H1 ,

L0,1,1,1(z) = H0,1,1,1 +H1,1,1,0 +H0,1,1H1 +H0H1,1,1 +H0,1H1,1 − 2ζ3H1 ,

L1,0,1,0(z) = H1,0,1,0 +H0,1,0,1 +H1,0,1H0 +H1H0,1,0 +H1,0H0,1 − 4ζ3H1 ,

L1,0,1,1(z) = H1,0,1,1 +H1,1,0,1 +H1,0,1H1 +H1H1,1,0 +H1,0H1,1 + 6ζ3H1 ,

L1,1,0,0(z) = H1,1,0,0 +H0,0,1,1 +H1,1,0H0 +H1H0,0,1 +H1,1H0,0 + 2ζ3H1 ,

L1,1,0,1(z) = H1,1,0,1 +H1,0,1,1 +H1,1,0H1 +H1H1,0,1 +H1,1H1,0 − 6ζ3H1 ,

L1,1,1,0(z) = H1,1,1,0 +H0,1,1,1 +H1,1,1H0 +H1H0,1,1 +H1,1H0,1 + 2ζ3H1 .

(3.35)

Finally, we remark that the generating series L(z) provides a convenient way to represent

the differential equations (3.15). Together with the y alphabet, it also allows us to write

down the differential equations in z̄,

∂

∂z
L(z) =

(

x0
z

+
x1

1− z

)

L(z) and
∂

∂z̄
L(z) = L(z)

(

y0
z̄

+
y1

1− z̄

)

. (3.36)

These equations will be particularly useful in section 5 when we study the multi-Regge

limit of the ratio function of the six-point NMHV amplitude.
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4 The six-point remainder function in LLA and NLLA

In section 2, we showed that in MRK the remainder function is fully determined by the

coefficient functions g
(ℓ)
n (w,w∗) and h

(ℓ)
n (w,w∗) in the logarithmic expansion of its real and

imaginary part in eq. (2.7). We further argued that these functions are single-valued in

the complex w plane, and suggested that they can be computed explicitly by interpreting

the ν-integral in eq. (2.9) as a contour integral and summing the residues. In this section,

we describe how knowledge about the space of SVHPLs can be used to facilitate this

calculation. In particular, we present results for LLA through ten loops and for NLLA

through nine loops.

The main integral we consider is eq. (2.9), which we reproduce here for clarity, rewriting

the last factor to take into account eqs. (2.13) and (2.18),

eR+iπδ|MRK = cosπωab + i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

× exp

[

−ω(ν, n)
(

log(1− u1) + iπ +
1

2
log

|w|2
|1 + w|4

)]

. (4.1)

The integrand depends on the BFKL eigenvalue and impact factor, which are known

through order a2 and are given in eqs. (2.15), (2.16) and (2.17). These functions can

be written as rational functions of ν and n, and polygamma functions (ψ and its deriva-

tives) with arguments 1 ± iν + |n|/2. Recalling that the polygamma functions have poles

at the non-positive integers, it is easy to see that all poles are found in the complex ν plane

at values ν = −i(m + |n|
2 ), m ∈ N, n ∈ Z. When the integral is performed by summing

residues, the result will be of the form,

∑

m,n

am,nw
m+nw∗m . (4.2)

Because residues of the polygamma functions are rational numbers, and because polygamma

functions evaluate to Euler-Zagier sums for positive integers, the coefficients am,n are com-

binations of

1. rational functions in m and n,

2. Euler-Zagier sums of the form Z~ı(m), Z~ı(n) and Z~ı(m+ n),

3. log |w|, arising from taking residues at multiple poles.

Identifying (z, z̄) ≡ (−w,−w∗), and comparing the double sum (4.2) to the formal series

expansion of the HPLs around z = 0, eq. (3.9), we conclude that the double sums will

evaluate to linear combinations of terms of the form Hw1(−w)Hw2(−w∗). Moreover, as

discussed above, this combination should be single-valued. Therefore, based on the discus-

sion in section 3, we expect g
(ℓ)
n (w,w∗) and h

(ℓ)
n (w,w∗) to belong to the space spanned by

the SVHPLs.

Furthermore, we know that g
(ℓ)
n (w,w∗) and h

(ℓ)
n (w,w∗) are invariant under the action

of the Z2 ×Z2 transformations of eq. (2.8). In terms of SVHPLs, this symmetry is just an
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(abelian) subgroup of the larger Z2 × S3 symmetry, where the Z2 is complex conjugation

and the S3 action is given in eq. (3.11). As such, we do not expect an arbitrary linear

combination of SVHPLs, but only those that are eigenfunctions with eigenvalue (+,+) of

the Z2 × Z2 symmetry.

Putting everything together, and taking into account that scattering amplitudes in

N = 4 SYM are expected to have uniform transcendentality, we are led to conjecture that,

to all loop orders, g
(ℓ)
n (w,w∗) and h

(ℓ)
n (w,w∗) should be expressible as a linear combination

of SVHPLs in (z, z̄) = (−w,−w∗) of uniform transcendental weight, with eigenvalue (+,+)

under the Z2 ×Z2 symmetry. Inspecting eq. (2.7), the weight should be 2ℓ− n− 1 for g
(ℓ)
n

and 2ℓ − n − 2 for h
(ℓ)
n . Our conjecture allows us to predict a priori the set of functions

that can appear at a given loop order, and in practice this set turns out to be rather small.

Knowledge of this set of functions can be used to facilitate the evaluation of eq. (4.1). We

outline two strategies to achieve this:

1. Evaluate the double sum (4.2) with the summation algorithms of ref. [58]. The result

is a complicated expression involving multiple polylogarithms which can be matched

to a combination of SVHPLs and zeta values by means of the symbol [20–24] and

coproduct [59–61].

2. The double sum (4.2) should be equal to the formal series expansion of some linear

combination of SVHPLs and zeta values. The unknown coefficients of this combina-

tion can be fixed by matching the two expressions term by term.

To see how this works, we calculate the two-loop remainder function in MRK. Expanding

eq. (4.1) to two loops, we find,

a2R(2) ≃ 2πi

{

a

[

−1

2
L+
1 +

1

4
I[1]

]

+ a2
[

log(1− u1)
1

4
I[Eν,n] +

(

1

2
ζ2L

+
1 +

1

4
I[Φ(1)

Reg(ν, n)] +
1

4
L+
1 I[Eν,n]

)

+2πi

(

1

32
[L−

0 ]
2 +

1

8
[L+

1 ]
2 − 1

8
L+
1 I[1] + 1

8
I[Eν,n]

)]}

,

(4.3)

where we have introduced the notation,

I[F(ν, n)] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν F(ν, n) . (4.4)

Explicit expressions for the functions L±
w for low weights are provided in appendix A.
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Equation (4.3) is consistent only if the term of order a vanishes. Indeed this is the case,

I[1] = 1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν

= log |w|2 + 2
∞
∑

n=1

(−w)n
n

+ 2
∞
∑

n=1

(−w∗)n

n

= log |w|2 − 2 log |1 + w|2

= 2L+
1 .

(4.5)

As previously mentioned, we only take half of the residue at ν = n = 0.

Moving on to the terms of order a2, we refer to eq. (2.7) and extract from eq. (4.3) the

expressions for the coefficient functions,

g
(2)
1 (w,w∗) =

1

4
I[Eν,n]

g
(2)
0 (w,w∗) =

1

2
ζ2L

+
1 +

1

4
I[Φ(1)

Reg(ν, n)] +
1

4
L+
1 I[Eν,n]

h
(2)
0 (w,w∗) =

1

32
[L−

0 ]
2 +

1

8
[L+

1 ]
2 − 1

8
L+
1 I[1] + 1

8
I[Eν,n] .

(4.6)

Note that h
(2)
1 = 0, in accordance with the general expectation that h

(l)
l−1 = 0. Proceeding

onwards, we have to calculate I[Eν,n],

I[Eν,n] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν
{

2γE +
|n|

2(ν2 + n2

4 )

+ ψ

(

iν +
|n|
2

)

+ ψ

(

−iν + |n|
2

)}

=
∞
∑

m=1

{

2
|w|2m
m2

− 2
(−w)m + (−w∗)m

m2
+ [log |w|2 + 2Z1(m)]

(−w)m + (−w∗)m

m

}

+ 2
∞
∑

n=1

∞
∑

m=1

(−1)n

m(m+ n)

{

wm+nw∗m + wmw∗m+n} .

(4.7)

The single sum in the first line immediately evaluates to polylogarithms,

∞
∑

m=1

{

2
|w|2m
m2

− 2
(−w)m + (−w∗)m

m2
+ [log |w|2 + 2Z1(m)]

(−w)m + (−w∗)m

m

}

=
∞
∑

m=1

{

2
|w|2m
m2

+ [log |w|2 + 2Z1(m− 1)]
(−w)m + (−w∗)m

m

}

= log |w|2 [H1(−w) +H1(−w∗)] + 2H0,1(|w|2) + 2H1,1(−w) + 2H1,1(−w∗) .

(4.8)
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Next we transform the double sum into a nested sum by shifting the summation variables

by n = N −m,

∞
∑

n=1

∞
∑

m=1

(−1)n

m(m+ n)

{

wm+nw∗m + wmw∗m+n}

=
∞
∑

N=1

N−1
∑

m=1

{

(−w)N (−w∗)m

N m
+

(−w)m(−w∗)N

N m

}

= Li1,1(−w,−w∗) + Li1,1(−w∗,−w)
= H1(−w)H1(−w∗)−H0,1(|w|2) ,

(4.9)

where the last step follows from a stuffle identity among multiple polylogarithms [62].

Putting everything together, we obtain

I[Eν,n] = log |w|2 [H1(−w) +H1(−w∗)] + 2H1,1(−w) + 2H1,1(−w∗) + 2H1(−w)H1(−w∗)

= [L+
1 ]

2 − 1

4
[L−

0 ]
2 .

(4.10)

Referring to eqs. (4.5) and (4.6), we can now write down the results,

g
(2)
1 (w,w∗) =

1

4
[L+

1 ]
2 − 1

16
[L−

0 ]
2 ,

h
(2)
0 (w,w∗) = 0 .

(4.11)

For higher weights the nested double sums can be more complicated, but they are

always of a form that can be performed using the algorithms of ref. [58]. These algorithms

will in general produce complicated multiple polylogarithms that, unlike in eq. (4.9), cannot

in general be reduced to HPLs by the simple application of stuffle identities. In this case we

can use symbols [22–24] and the coproduct on multiple polylogarithms [59–61] to perform

this reduction.

The above strategy becomes computationally taxing for high weights. For this reason,

we also employ an alternative strategy, based on matching series expansions, which is

computationally simpler. We demonstrate this method in the computation of g
(2)
0 , for

which the only missing ingredient in eq. (4.6) is I[Φ(1)
Reg(ν, n)], where Φ

(1)
Reg(ν, n) is defined

in eq. (2.17). To proceed, we write the ν-integral as a sum of residues, and truncate the

resulting double sum to some finite order,

I[Φ(1)
Reg(ν, n)] =

1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν
{

− ζ2 −
3

8

n2

(ν2 + n2

4 )2

− 1

2

(

2γE +
|n|

2(ν2 + n2

4 )
+ ψ

(

iν +
|n|
2

)

+ ψ

(

−iν + |n|
2

)

)2} (4.12)
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= −ζ2 log |w|2 −
(

log |w|2
)

|w|2 −
(

1 +
1

4
log |w|2

)

|w|4 + . . .

+(w+w∗)

[

2ζ2+

(

4− 2 log |w|2+1

2
log2 |w|2

)

+

(

1+
1

2
log |w|2

)

|w|2+. . .
]

+ (w2 + w∗2)

[

−ζ2 −
(

1

2
+

1

4
log2 |w|2

)

+

(

−1− 1

3
log |w|2

)

|w|2 + . . .

]

+ . . . .

Here we show on separate lines the contributions to the sum from n = 0, n = ±1, and

n = ±2. Next, we construct an ansatz of SVHPLs whose series expansion we attempt

to match to the above expression. We expect the result to be a weight-three SVHPL

with parity (+,+) under conjugation and inversion. Including zeta values, there are five

functions satisfying these criteria, and we can write the ansatz as,

I[Φ(1)
Reg(ν, n)] = c1 L

+
3 + c2 [L

−
0 ]

2L+
1 + c3 [L

+
1 ]

3 + c4 ζ2 L
+
1 + c5 ζ3 . (4.13)

Using the series expansions of the constituent HPLs (3.9), it is straightforward to produce

the series expansion of this ansatz,

I[Φ(1)
Reg(ν, n)] =

( c1
12

+
c2
2

+
c3
8

)

log3 |w|2 + 1

2
c4ζ2 log |w|2 + c5 ζ3 + 3 c3

(

log |w|2
)

|w|2 + . . .

+ (w+w∗)

[

−ζ2c4+
(

−c1+
1

2
c1 log |w|2

)

+

(

−c1
4

− c2 −
3c3
4

)

log2 |w|2+. . .
]

+ . . . .

(4.14)

We have only listed the terms necessary to fix the undetermined constants. In practice

we generate many more terms than necessary to cross-check the result. Consistency of

eqs. (4.12) and (4.14) requires,

c1 = −4, c2 =
3

4
, c3 = −1

3
, c4 = −2, c5 = 0 , (4.15)

which gives,

I[Φ(1)
Reg(ν, n)] = −4L+

3 +
3

4
[L−

0 ]
2L+

1 − 1

3
[L+

1 ]
3 − 2 ζ2 L

+
1 . (4.16)

Finally, putting everything together in eq. (4.6),

g
(2)
0 (w,w∗) = −L+

3 +
1

6

[

L+
1

]3
+

1

8
[L−

0 ]
2 L+

1 . (4.17)

This completes the two-loop calculation, and we find agreement with [37, 38]. Moving on

to three loops, we can proceed in exactly the same way, and we reproduce the LLA [38]

and NLLA results [28, 40] for the imaginary parts of the coefficient functions,

g
(3)
2 (w,w∗) = −1

8
L+
3 +

1

12

[

L+
1

]3
,

g
(3)
1 (w,w∗) =

1

8
L−
0 L

−
2,1 −

5

8
L+
1 L

+
3 +

5

48
[L+

1 ]
4 +

1

16
[L−

0 ]
2 [L+

1 ]
2 − 5

768
[L−

0 ]
4

− π2

12
[L+

1 ]
2 +

π2

48
[L−

0 ]
2 +

1

4
ζ3 L

+
1 .

(4.18)
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(The result for g
(3)
1 agrees with that in ref. [28] once the constants are fixed to c = 0 and

γ′ = −9/2 [40].) The real parts are given by,

h
(3)
2 (w,w∗) = 0 ,

h
(3)
1 (w,w∗) = −1

8
L+
3 − 1

24
[L+

1 ]
3 +

1

32
[L−

0 ]
2 L+

1 ,
(4.19)

in agreement with ref. [38]. Using the fact that

L+
1 =

1

2
log

|w|2
|1 + w|4 , (4.20)

it is easy to check that h
(3)
1 (w,w∗) satisfies eq. (2.19) for ℓ = 3.

It is straightforward to extend these methods to higher loops. We have produced re-

sults for all functions with weight less than or equal to 10, which is equivalent to 10 loops

in the LLA, and 9 loops in the NLLA. Using the C++ symbolic computation framework

GiNaC [63], which allows for the efficient numerical evaluation of HPLs to high preci-

sion [64], we can evaluate these functions numerically. Figures 1 and 2 show the functions

plotted on the line segment for which w = w∗ and 0 < w < 1. Here we also show the

analytical results through six loops. We provide a separate computer-readable text file,

compatible with the Mathematica package HPL [65, 66], which contains all the expressions

through weight 10.

Up to six loops, we find,

g
(4)
3 (w,w∗) =

1

48
[L−

2 ]
2 +

1

48
[L−

0 ]
2 [L+
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Figure 1. Imaginary parts g
(ℓ)
ℓ−1 of the MHV remainder function in MRK and LLA through 10

loops, on the line segment with w = w∗ running from 0 to 1. The functions have been rescaled by

powers of 4 so that they are all roughly the same size.
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Figure 2. Imaginary parts g
(ℓ)
ℓ−2 of the MHV remainder function in MRK and NLLA through 9

loops.
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We present only the imaginary parts, as the real parts are determined by eq. (2.19).

However, as a cross-check of our result, we computed the h
(ℓ)
n explicitly and checked that

eq. (2.19) is satisfied. Furthermore, we checked that in the collinear limit w → 0 our

results agree with the all-loop prediction for the six-point MHV amplitude in the double-

leading-logarithmic (DLL) and next-to-double-leading-logarithmic (NDLL) approximations

of ref. [67],

eRDLLA = iπ a (w + w∗)
[

1− I0

(

2
√

a log |w| log(1− u1)
)]

,

Re
(

eRNDLLA
)

= 1 + π2a3/2(w + w∗)
√

log |w|
I1

(

2
√

a log |w| log(1− u1)
)

√

log(1− u1)

− π2a2 (w + w∗) log |w| I0
(

2
√

a log |w| log(1− u1)
)

,

(4.27)

where I0(z) and I1(z) denote modified Bessel functions.

Let us conclude this section with an observation: All the results for the six-point

remainder function that we computed only involve ordinary ζ values of depth one (ζk for

some k), despite the fact that multiple ζ values are expected to appear starting from weight

eight. In addition, the LLA results only involve odd ζ values — even ζ values never appear.

5 The six-point NMHV amplitude in MRK

So far we have only discussed the multi-Regge limit of the six-point amplitude in an MHV

helicity configuration. In this section we extend the discussion to the second independent

helicity configuration for six points, the NMHV configuration. We will see that the SVHPLs

provide the natural function space for describing this case as well.

The NMHV case was recently analyzed in the LLA [43]. It was shown that the two-

loop expression agrees with the limit of the analytic formula for the NMHV amplitude for

general kinematics [68], and the three-loop result was also obtained. Here we will extend

these results to 10 loops.

Due to helicity conservation along the high-energy line, the only difference between

the MHV and NMHV configurations is a flip in helicity of one of the lower energy external

gluons (labeled by 4 and 5). Instead of the MHV helicity configuration (++−++−), we

consider (++−−+−). The tree amplitudes for MHV and NMHV become identical in

MRK [43]. In this limit, we can define the NMHV remainder function RNMHV in the same

way as in the MHV case (1.1),

ANMHV
6 |MRK = ABDS

6 × exp(RNMHV) . (5.1)

Recall the LLA version4 of eq. (2.9):

RLLA
MHV = i

a

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )(−iν + n

2 )

[

(1− u1)
aEν,n − 1

]

. (5.2)

4The distinction between R and exp(R) is irrelevant at LLA, because the LLA has one fewer logarithm

than the loop order, so the square of an LL term has two fewer logarithms and is NLL.
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At LLA, the effect of changing the impact factor for emitting gluon 4 with positive helicity

to the one for a negative-helicity emission is simply to perform the replacement

1

−iν + n
2

→ − 1

iν + n
2

(5.3)

in eq. (5.2), obtaining [43]

RLLA
NMHV ≃ − ia

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )

2

[

(1− u1)
aEν,n − 1

]

. (5.4)

The NMHV ratio function is normally defined in terms of the ratio of NMHV to MHV

superamplitudes A,

PNMHV =
ANMHV

AMHV
. (5.5)

However, in MRK, because the tree amplitudes become identical, it suffices to consider the

ordinary ratio, which in LLA becomes

PLLA
NMHV =

ALLA
NMHV

ALLA
MHV

= exp(RLLA
NMHV −RLLA

MHV) . (5.6)

Thus eq. (5.4), together with eq. (5.2), is sufficient to generate both the remainder function

and the ratio function in LLA.

Comparing eq. (5.4) to eq. (2.9), we see that in MRK the MHV and NMHV remainder

functions are related by

RLLA
NMHV =

∫

dw
w∗

w

∂

∂w∗
RLLA

MHV . (5.7)

It is convenient to write this equation slightly differently. First, define a sequence of single-

valued functions f (l)(w,w∗) in analogy with eq. (2.7)5

RLLA
NMHV = 2πi

∞
∑

l=2

al logl−1(1− u1)

[

1

1 + w∗
f (l)(w,w∗) +

w∗

1 + w∗
f (l)
( 1

w
,
1

w∗

)

]

. (5.8)

Then eq. (5.7) can be used to relate f (l)(w,w∗) to g
(l)
l−1(w,w

∗),

∫

dw
w∗

w

∂

∂w∗
g
(l)
l−1(w,w

∗) =
1

1 + w∗
f (l)(w,w∗) +

w∗

1 + w∗
f (l)
( 1

w
,
1

w∗

)

. (5.9)

In section 4 we computed the MHV remainder function in the LLA in the multi-Regge

limit up to ten loops. Using these results and eq. (5.9), we can immediately obtain NMHV

expressions through ten loops as well. Indeed, g
(l)
l−1(w,w

∗) is a sum of SVHPLs, so the

differentiation ∂
∂w∗ can be performed with the aid of eq. (3.36). The result is again a sum

of SVHPLs with rational coefficients 1/(1+w∗) and w∗/(1+w∗). As such, the differential

equations (3.36) also uniquely determine the result of the w-integral as a sum of SVHPLs,

up to an undetermined function F (w∗). This function can be at most a constant in order

5Ref. [43] defines a similar set of functions, fl, which are related to ours by f2 = − 1
4
f (2), f3 = 1

8
f (3), etc.
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to preserve the single-valuedness condition. It turns out that to respect the vanishing of

the remainder function in the collinear limit, F (w∗) must actually be zero.

To see how this works, consider the two loop case. From eq. (4.11),

g
(2)
1 (w,w∗) =

1

4
[L+

1 ]
2 − 1

16
[L−

0 ]
2 =

1

2
L1,1 +

1

4
L0,1 +

1

4
L1,0. (5.10)

Recalling that (w,w∗) = (−z,−z̄), first use the second eq. (3.36) to take the w∗ derivative,

which clips off the last index in the SVHPL, with a different prefactor depending on whether

it is a ‘0’ or a ‘1’ (and with corrections due to the y alphabet at higher weights):

w∗ ∂

∂w∗
g
(2)
1 (w,w∗) = −1

2

(

w∗

1 + w∗

)

L1 −
1

4

(

w∗
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)
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1

4
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w∗

1 + w∗

[

−1

4
L1 −

1

4
L0

]

+
1

1 + w∗

[

1

4
L1

]

.

(5.11)

Next, use the first eq. (3.36) to perform the w-integration. In practice, this amounts to

prepending a ‘0’ to the weight vector of each SVHPL,

∫

dw
w∗

w

∂

∂w∗
g
(2)
1 =

w∗

1 + w∗

[

−1

4
L0,1 −

1

4
L0,0

]

+
1

1 + w∗

[

1

4
L0,1

]

=
1

1 + w∗
f (2)(w,w∗) +

w∗

1 + w∗
f (2)

( 1

w
,
1

w∗

)

,

(5.12)

where

f (2)(w,w∗) =
1

4
L0,1

=
1

4
L2 +

1

8
L0 L1

= −1

4

(

log |w|2 log(1 + w∗)− Li2(−w) + Li2(−w∗)
)

.

(5.13)

This result agrees with the one presented in ref. [43]. Furthermore, we can check that the

inversion property implicit in eq. (5.12) is satisfied,

f (2)
( 1

w
,
1

w∗

)

= −1

4

[

− log |w|2 log
(

1 +
1

w∗

)

− Li2

(

− 1

w

)

+ Li2

(

− 1

w∗

)]

= −1

4

[

1

2
log2 |w|2 − log |w|2 log(1 + w∗) + Li2(−w)− Li2(−w∗)

]

= −1

4
L0,1 −

1

4
L0,0 .

(5.14)

Moving on to three loops, we start with the MHV LLA term,

g
(3)
2 (w,w∗) = −1

8
L+
3 +

1

12

[

L+
1

]3
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16
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(5.15)
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As before, we can take derivatives and integrate using eq. (3.36),

∫

dw
w∗

w

∂

∂w∗
g
(3)
2 =

w∗

1 + w∗

[

− 1

16
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4
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]

,

(5.16)

and we find,

f (3)(w,w∗) =
1

8
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32
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=
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8

[
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.

(5.17)

The last form agrees with the one given in ref. [43], up to the sign of the second term,

which we find must be +1 for the function to be single-valued.

Continuing on to higher loops, we find,
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L5,1+

1

288
L3
2+

1

384
L2
3 (5.20)

+
1

768
L6 −

1

768
L4,2 +

7

32
L4,1,1 +

1

8
L1 L2,1,1,1 −

1

16
L1 L3,1,1 +

1

16
L2 L2,1,1

+
1

24
L1 L3,2 +

1

32
L3 L2,1 −

1

32
L2 L3,1 +

1

96
L2
0 L2,1,1 −

1

96
L3
1 L2,1 +

1

96
L3
1 ζ3

− 1

128
L2
1 L

2
2 −

1

192
L0 L3,1,1 −

1

192
L1 ζ5 +

1

192
L3
1 L3 −

1

256
L2
0 L

4
1 +

1

384
L3 ζ3

− 1

512
L0 L3,2 −

1

768
L0 L4,1 +

1

960
L0 L

5
1 −

1

2560
L2
0 L4 +

1

7680
L0 L5

− 1

18432
L3
0 L3 +

1

73728
L5
0 L1 +

5

96
L2,1 ζ3 +

5

384
L1 L5 +

5

2048
L2
0 L

2
2

+
5

4096
L4
0 L

2
1 +

7

64
L1 L4,1 +

7

1536
L3
0 L

3
1 −

11

1536
L2
0 L3,1 −

11

1536
L2 L4

+
11

184320
L4
0 L2 −

19

9216
L3
0 L2,1 +

1

16
L0 L1 L2,1,1 −

1

24
L1 L2 ζ3

− 1

32
L0 L1 L3,1 +

1

32
L0 L

2
1 L2,1 −

1

48
L0 L2,1 L2 −

1

48
L1 L3 L2

+
1

96
L2
0 L

2
1 L2 −

1

192
L0 L

3
1 L2 +

1

384
L0 L1 L

2
2 −

3

256
L2
0 L1 L2,1

− 3

512
L2
0 L1 ζ3 −

5

96
L0 L

2
1 ζ3 −

5

768
L0 L2 ζ3 −

11

1536
L0 L1 L4

− 11

2048
L2
0 L1 L3 −

19

768
L0 L

2
1 L3 +

49

18432
L3
0 L1 L2 .

The remaining expressions through 10 loops can be found in computer-readable format in

a separate file attached to this article.

6 Single-valued HPLs and Fourier-Mellin transforms

6.1 The multi-Regge limit in (ν, n) space

So far we have only used the machinery of SVHPLs in order to obtain compact analytic

expressions for the six-point MHV amplitude in the LL and NLL approximation. However,

this was only possible because we knew a priori the BFKL eigenvalues and the impact

factor to the desired order in perturbation theory. Going beyond NLLA requires higher-

order corrections to the BFKL eigenvalues and the impact factor which, by the same logic,

can be computed if the corresponding amplitude is known. In other words, if we are

given the functions g
(ℓ)
n (w,w∗) up to some loop order, we can use them to extract the

corresponding impact factors and BFKL eigenvalues by transforming the expression from

(w,w∗) space back to (ν, n) space. The impact factors and BFKL eigenvalues obtained in

this way can then be used to compute the six-point amplitude to any loop order for a given

logarithmic accuracy.
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In ref. [28] the three-loop six point amplitude was computed up to next-to-next-to-

leading logarithmic accuracy (NNLLA),

g
(3)
0 (w,w∗) =

27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L

−
2,1 L

−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3+

19

384
L+
1 [L−

0 ]
4+

3

8
[L+

1 ]
2 ζ3 −

5

32
[L−

0 ]
2 ζ3+

π2

96
[L+

1 ]
3

− π2

384
L+
1 [L−

0 ]
2 − 3

4
ζ5 −

π2

6
γ′′
{

L+
3 − 1

6
[L+

1 ]
3 − 1

8
[L−

0 ]
2 L+

1

}

+
1

4
d1 ζ3

{

[L+
1 ]

2− 1

4
[L−

0 ]
2

}

−π2

3
d2 L

+
1

{

[L+
1 ]

2− 1

4
[L−

0 ]
2

}

+
1

30
[L+

1 ]
5 ,

h
(3)
0 (w,w∗) =

3

16
L+
1 L

+
3 +

1

16
L−
2,1 L

−
0 − 1

32
[L+

1 ]
4 − 1

32
[L−

0 ]
2 [L+

1 ]
2

− 5

1536
[L−

0 ]
4 +

1

8
L+
1 ζ3 ,

(6.1)

where d1, d2 and γ′′ are some undetermined rational numbers. (To obtain eq. (6.1) from

ref. [28] one also needs the value for another constant, γ′ = −9/2, or equivalently γ′′′ = 0,

which was obtained in ref. [40] using the MRK limit at NLLA.)

These functions can be used to extract the NNLLA correction to the impact factor.6

Indeed, the NNLL impact factor has already been expressed [40] as an integral over the

complex w plane,

Φ
(2)
Reg(ν, n) = (−1)n

(

ν2 +
n2

4

)
∫

d2w

π
ρ(w,w∗) |w|−2iν−2

(

w∗

w

)
n
2

, (6.2)

where the kernel ρ(w,w∗) is related to the three-loop amplitude in MRK,

ρ(w,w∗) = 2

[

g
(3)
0 (w,w∗) + log

|1 + w|2
|w| g

(3)
1 (w,w∗) +

(

log2
|1 + w|2

|w| + π2
)

g
(3)
2 (w,w∗)

]

+ log
|1 + w|2

|w|

(

ζ2 log2
|1 + w|2

|w| − 11

2
ζ4

)

.

(6.3)

However, no analytic expression for Φ
(2)
Reg(ν, n) is yet known. Indeed, an explicit evaluation

of the integral (6.2) would require a detailed study of the integrand’s branch structure, a

task which, if feasible in this case, does not seem particularly amenable to generalization.

Here we propose an alternative to evaluating the integral explicitly. The basic idea

is to write down an ansatz for the function in (ν, n) space, and then perform the inverse

transform to fix the unknown coefficients. The inverse transform is easly performed using

the methods outlined in section 4, so we are left only with the task of writing down a

suitable ansatz. To be precise, consider the inverse Fourier-Mellin transform defined in

eq. (4.4). Our goal is to find a set of linearly independent functions {Fi} defined in (ν, n)

space such that their transforms {I[Fi]}:
6In principle we should expect the amplitude to NNLLA to depend on both the NNLL impact factor

and BFKL eigenvalue. The NNLL BFKL eigenvalue however only enters at four loops, see section 7.2.
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1. are combinations of HPLs of uniform weight,

2. are single-valued in the complex w plane,

3. have a definite parity under Z2 × Z2 transformations in (w,w∗) space,

4. span the whole space of SVHPLs.

Through weight six, we find empirically that this problem has a unique solution, the con-

struction of which we present in the remainder of this section. In particular, we will be led

to extend the action of the Z2 ×Z2 symmetry and the notion of uniform transcendentality

to (ν, n) space.

6.2 Symmetries in (ν, n) space

Let us start by analyzing the Z2 × Z2 symmetry in (ν, n) space. It is easy to see from

eq. (4.4) that

I[F(ν, n)](w∗, w) = I[F(ν,−n)](w,w∗) ,

I[F(ν, n)]

(

1

w
,
1

w∗

)

= I[F(−ν,−n)](w,w∗) .
(6.4)

In other words, the Z2 × Z2 of conjugation and inversion acts on the (ν, n) space via [n↔
−n] and [ν ↔ −ν, n ↔ −n], respectively. Hence, in order that the functions in (w,w∗)

space have definite parity under conjugation and inversion, F(ν, n) should have definite

parity under n ↔ −n and ν ↔ −ν. Our experience shows that the n- and ν-symmetries

manifest themselves differently: the ν-symmetry appears as an explicit symmetrization

or anti-symmetrization, whereas the n-symmetry requires the introduction of an overall

factor of sgn(n). For example, suppose the target function in (w,w∗) space is odd under

conjugation, and even under inversion. This implies that the function in (ν, n) space must

be odd under n↔ −n and odd under ν ↔ −ν. Such a function will decompose as follows,

F(ν, n) =
1

2
sgn(n) [f(ν, |n|)− f(−ν, |n|)] , (6.5)

for some suitable function f . See table 2 for the typical decomposition in all four cases.

Furthermore, in the cases we have studied so far, the constituents f(ν, |n|) can always be

expressed as sums of products of single-variable functions with arguments ±iν + |n|/2,

f(ν, |n|) =
∑

j

cj
∏

k

fj,k(δkiν + |n|/2), (6.6)

where cj are constants, δk ∈ {+1,−1}, and the fj,k(z) are single-variable functions that we

now describe.

6.3 General construction

The functional form of Fi(ν, n) can be further restricted by demanding that the inte-

gral (4.4) evaluate to a combination of HPLs. To see how, consider closing the ν-contour
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(w ↔ w∗, w ↔ 1/w) (ν ↔ −ν, n↔ −n) F(ν, n)

(+,+) [+,+] 1/2 [f(ν, |n|) + f(−ν, |n|)]
(+,−) [−,+] 1/2 [f(ν, |n|)− f(−ν, |n|)]
(−,+) [−,−] 1/2 sgn(n) [f(ν, |n|)− f(−ν, |n|)]
(−,−) [+,−] 1/2 sgn(n) [f(ν, |n|) + f(−ν, |n|)]

Table 2. Decomposition of functions in (ν, n) space into eigenfunctions of the Z2×Z2 action. Note

the use of brackets rather than parentheses to denote the parity under (ν, n) transformations.

in the lower half plane and summing residues at poles with Im(ν) < 0. A necessary

condition for the result to yield HPLs is that the residues evaluate exclusively to ratio-

nal functions and generalized harmonic numbers, e.g., the Euler-Zagier sums defined in

eq. (3.10). This condition will clearly be satisfied if the fj,k(z) are purely rational functions

of z. Less obviously, it is also satisfied by polygamma functions. Indeed, the polygamma

functions evaluate to ordinary (depth one) harmonic numbers at integer values,

ψ(1 + n) = −γE + Z1(n) and ψ(k)(1 + n) = (−1)k+1k! (ζk+1 − Zk+1(n)) , (6.7)

where ψ(1) = ψ′, ψ(2) = ψ′′, etc. Referring to eq. (3.9), we see that all HPLs through

weight three can be constructed using ordinary harmonic numbers.7

We therefore expect the fj,k(z) to be rational functions or polygamma functions

through weight three. Starting at weight four, however, ordinary harmonic numbers are

insufficient to cover all possible HPLs. Indeed, at weight four, the HPL

H1,2,1(z) =
∞
∑

k=1

zk

k
Z2,1(k − 1) (6.8)

requires a depth-two sum,8 Z2,1(k−1). A meromorphic function that generates Z2,1(k−1)

was presented in ref. [51]. It can be written as a Mellin transform,

F4(N) = M

[(

Li2(x)

1− x

)

+

]

(N) , N ∈ C , (6.9)

where the Mellin transform M is defined by

M[(f(x))+](N) ≡
∫ 1

0
dx (xN − 1) f(x) . (6.10)

If N is a positive integer, then F4(N) evaluates to harmonic numbers of depth two,

F4(N) = Z2,1(N) + Z3(N)− ζ2 Z1(N) , N ∈ N . (6.11)

7Harmonic numbers of depth greater than one do appear at weight three; however, after applying the

stuffle algebra relations for Euler-Zagier sums, they all can be rewritten in terms of ordinary harmonic

numbers of depth one, namely Z1,1(k − 1) = 1
2
Z1(k − 1)2 − 1

2
Z2(k − 1).

8Another depth-two sum appears in H1,1,2(x) =
∑

∞

k=1
xk

k
Z1,2(k−1) but the two are related by a stuffle

identity, Z2,1(k − 1) + Z1,2(k − 1) = Z2(k − 1)Z1(k − 1)− Z3(k − 1).
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Going to higher weight, new harmonic sums will be necessary to construct the full space of

HPLs, and, correspondingly, new meromorphic functions will be necessary to give rise to

those sums. The analysis of refs. [50–52] uncovers precisely the functions we need.9 They

are summarized in appendix B. Through weight five, three new functions are necessary:

F4, F6a and F7.

There is one final special case that deserves attention. Unlike the other SVHPLs, the

pure logarithmic functions [L−
0 ]

k diverge as |w| → 0. These functions have special behavior

in (ν, n) space as well, requiring a Kronecker delta function:

I[δn,0/(iν)k] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)
n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν δn,0
(iν)k

=
[L−

0 ]
k+1

(k + 1)!
. (6.12)

Altogether, we find that the following functions of z = ±iν+|n|/2 are sufficient to construct

all the remaining SVHPLs through weight five:

fj,k(z) ∈
{

1,
1

z
, ψ(1 + z), ψ′(1 + z), ψ′′(1 + z), ψ′′′(1 + z), F4(z), F6a(z), F7(z)

}

. (6.13)

However, as we will see, not all combinations of elements in the list (6.13) lead to functions

of (w,w∗) that are both single-valued and of definite transcendental weight. Instead we

will construct a smaller set of building blocks that do have this property.

6.4 Examples

Let us see how to use the elements in the list (6.13) to construct SVHPLs. The simplest

case is f(ν, |n|) = 1. Referring to table 2, only two of the four sectors yield non-zero choices

for F . One of these, F = sgn(n), produces something proportional to H1 −H1, which is

not single-valued. This leaves F = 1, which should produce a function in the (+,+) sector.

Closing the ν-contour in the lower half plane, and summing up the residues at ν = −i|n|/2,
we obtain the integral of eq. (4.5),

I[1] = 2L+
1 , (6.14)

indeed a function in the (+,+) sector. Including the special case L−
0 from eq. (6.12), this

completes the analysis at weight one.

The next simplest element is 1/z, yielding f(ν, |n|) = 1/(iν + |n|/2). It generates two
single-valued functions, one in the (+,−) sector and one in the (−,−) sector (using the

(w,w∗) labeling in the first column of table 2). Symmetrizing as indicated in table 2, the

two functions in (ν, n) space are F = −V and F = N/2, with the useful shorthands

V ≡ −1

2

[

1

iν + |n|
2

− 1

−iν + |n|
2

]

=
iν

ν2 + |n|2

4

,

N ≡ sgn(n)

[

1

iν + |n|
2

+
1

−iν + |n|
2

]

=
n

ν2 + |n|2

4

.

(6.15)

9Actually, in refs. [50–52] a more general class of functions is defined. It involves generic HPLs that are

singular at x = −1 as well as at x = 0 and 1. As we never encounter these HPLs in our present context,

we do not discuss these functions any further.
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The transforms of these functions yield two of the four SVHPLs of weight two.

I[V ] = −L−
0 L

+
1 ,

I[N ] = 4L−
2 .

(6.16)

A third weight-two function is the pure logarithmic function [L−
0 ]

2, a special case already

considered. To find the fourth weight-two function, we turn to the next element in the

list (6.13), ψ(1 + z). On its own, it does not generate any single-valued functions; how-

ever, a particular linear combination of {1, 1/z, ψ(1+ z)} indeed produces such a function.

Specifically, f(ν, |n|) = 2ψ(1+ iν + |n|/2)+ 2γE − 1/(iν + |n|/2) generates the last weight-

two SVHPL, which transforms in the (+,+) sector. The function in (ν, n) space is actually

the leading-order BFKL eigenvalue, Eν,n,

F = ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

+ 2γE − sgn(n)N

2
= Eν,n , (6.17)

and its transform is the last SVHPL of weight two,

I[Eν,n] = [L+
1 ]

2 − 1

4
[L−

0 ]
2 . (6.18)

The next element in the list (6.13) is ψ′(1 + z). Like ψ(1 + z), ψ′(1 + z) does not by

itself generate any single-valued functions; however, there is a particular linear combination

that does, and it is given by f(ν, |n|) = 2ψ′(1 + iν + |n|/2) + 1/(iν + |n|/2)2. Notice that,

for the first time, the product in eq. (6.6) extends over more than one term (in this case,

f1,1 = f1,2 = 1/(iν+ |n|/2), but in general the fj,k will be different). The function in (ν, n)

space is,

F = ψ′

(

1 + iν +
|n|
2

)

− ψ′

(

1− iν +
|n|
2

)

− sgn(n)NV = DνEν,n , (6.19)

where Dν ≡ −i∂ν ≡ −i ∂/∂ν. The main observation is that the basis in eq. (6.13) can be

modified to consistently generate single-valued functions: 1/z is replaced by V and N , ψ

is replaced by Eν,n, and ψ
(k) is replaced by Dk

νEν,n.

Furthermore, as mentioned previously, the basis at weight four requires a new func-

tion F4(z) that is outside the class of polygamma functions. Like the polygamma func-

tions, F4(z) does not by itself generate a single-valued function; it too requires additional

terms. We denote the resulting basis element by F̃4. It is related to the function F4(z) in

eq. (6.9) by,

F̃4 = sgn(n)

{

F4

(

iν +
|n|
2

)

+ F4

(

− iν +
|n|
2

)

− 1

4
D2

νEν,n − 1

8
N2Eν,n − 1

2
V 2Eν,n

+
1

2

(

ψ− + V
)

DνEν,n + ζ2Eν,n − 4 ζ3

}

+N

{

1

2
V ψ− +

1

2
ζ2

}

,

(6.20)

where

ψ− ≡ ψ
(

1 + iν +
|n|
2

)

− ψ
(

1− iν +
|n|
2

)

. (6.21)
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weight (ν ↔ −ν, n↔ −n)
1 0 [+,+]

Dν 1 [−,+]

V 1 [−,+]

N 1 [+,−]

weight (ν ↔ −ν, n↔ −n)
Eν,n 1 [+,+]

F̃4 3 [+,−]

F̃6a 4 [−,−]

F̃7 4 [−,+]

Table 3. Properties of the building blocks for the basis in (ν, n) space.

Appendix B contains further details about the functions in (ν, n) space, including the basis

through weight five and expressions for the building blocks F̃6a and F̃7 generated by the

functions F6a(z) and F7(z).

Finally, we describe a heuristic method for assembling the basis in (ν, n) space. The

idea is to start with the building blocks,

{1, N, V,Eν,n, F̃4, F̃6a, F̃7}, (6.22)

and piece them together with multiplication and ν-differentiation. These two operations

do not always produce independent functions. For example,

DνN = 2NV and DνV =
1

4
N2 + V 2 . (6.23)

The building blocks have definite parity under ν ↔ −ν and n↔ −n which helps determine

which combinations appear in which sector. Additionally, we observe that they can be

assigned a transcendental weight, which further assists in the classification. The weight in

(w,w∗) space is found by calculating the total weight of the constituent building blocks in

(ν, n) space, and then adding one (to account for the increase in weight due to the integral

transform itself). The relevant properties of the basic building blocks are summarized in

table 3.

As an example, let us consider the function NDνEν,n. Referring to table 3, the tran-

scendental weight is 1 + 1 + 1 = 3 in (ν, n) space, or 3 + 1 = 4 in (w,w∗) space. Under

[ν ↔ −ν, n ↔ −n], N has parity [+,−], Dν has parity [−,+], and Eν,n has parity [+,+],

so NDνEν,n has parity [−,−]. We therefore expect this function to transform into a weight

four function of (w,w∗), with parity (−,+) under (w ↔ w∗, w ↔ 1/w) (see table 2). Indeed

this turns out to be the case. A complete basis through weight four is presented in table 4.

7 Applications in (ν, n) space: the BFKL eigenvalues and impact factor

7.1 The impact factor at NNLLA

In this section we report results for g
(4)
1 and g

(4)
0 and discuss how to transform these

functions to (ν, n) space using the basis constructed in the previous section. We then give

our results for the new data for the MRK logarithmic expansion: Φ
(2)
Reg, Φ

(3)
Reg, and E

(2)
ν,n.

Before discussing the case of the higher-order corrections to the BFKL eigenvalue and

the impact factor, let us review how the known results for Eν,n, E
(1)
ν,n and Φ

(1)
Reg fit into
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weight Z2 × Z2 (w,w∗) basis (ν, n) basis dimension

1

(+,+) L+
1 1 1

(+,−) L−

0 δn,0 1

(−,+) − − 0

(−,−) − − 0

2

(+,+) [L+
1 ]

2, [L−

0 ]
2 δn,0/(iν), Eν,n 2

(+,−) L−

0 L
+
1 V 1

(−,+) − − 0

(−,−) L−

2 N 1

3

(+,+) [L+
1 ]

3, [L−

0 ]
2L+

1 , L
+
3 V 2, N2, E2

ν,n 3

(+,−) [L−

0 ]
3, L−

0 [L
+
1 ]

2, L−

2,1 δn,0/(iν)
2, V Eν,n, DνEν,n 3

(−,+) L−

0 L
−

2 V N 1

(−,−) L+
1 L

−

2 NEν,n 1

4

(+,+)
[L−

0 ]
4, [L+

1 ]
4, [L−

0 ]
2[L+

1 ]
2, δn,0/(iν)

3, E3
ν,n, N

2Eν,n,
6

[L−

2 ]
2, L−

0 L
−

2,1, L
+
1 L

+
3 V 2Eν,n, V DνEν,n, D

2
νEν,n

(+,−) L−

0 [L
+
1 ]

3, [L−

0 ]
3L+

1 , L
−

0 L
+
3 , L

+
1 L

−

2,1 V 3, N2V, V E2
ν,n, Eν,nDνEν,n 4

(−,+) L−

0 L
+
1 L

−

2 , L
+
3,1 NV Eν,n, NDνEν,n 2

(−,−) [L−

0 ]
2L−

2 , [L
+
1 ]

2L−

2 , L
−

4 , L
−

2,1,1 N3, NV 2, NE2
ν,n, F̃4 4

Table 4. Basis of SVHPLs in (w,w∗) and (ν, n) space through weight four. Note that at each

weight we can also add the product of zeta values with lower-weight entries.

the framework for (ν, n) space that we have developed in the previous section. First, we

have already seen in section 6 that the LL BFKL eigenvalue is one of our basis elements of

weight one in (ν, n) space (see table 3). Next, we know that the first time the NLL impact

factor Φ
(1)
Reg appears is in the NLLA of the two-loop amplitude, g

(2)
0 (w,w∗), which is a pure

single-valued function of weight three. Following our analysis from the previous section, it

should then be possible to express Φ
(1)
Reg as a pure function of weight two in (ν, n) space

with the correct symmetries. Indeed, we can easily recast eq. (2.17) in terms of the basis

elements shown in table 3,

Φ
(1)
Reg(ν, n) = −1

2
E2

ν,n − 3

8
N2 − ζ2 . (7.1)

Similarly, the NLL BFKL eigenvalue can be written as a linear combination of weight three

of the basis elements in table 3,

E(1)
ν,n = −1

4
D2

νEν,n +
1

2
V DνEν,n − ζ2Eν,n − 3 ζ3 . (7.2)

This completes the data for the MRK logarithmic expansion that can be extracted through

two loops.
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Now we proceed to three loops. By expanding eq. (4.1) to order a3, we obtain the

following relation for the NNLLA correction to the impact factor, Φ
(2)
Reg(ν, n),

I
[

Φ
(2)
Reg(ν, n)

]

= 4 g
(3)
2 (w,w∗)

{

[L+
1 ]

2 + π2
}

− 4 g
(3)
1 (w,w∗)L+

1 + 4 g
(3)
0 (w,w∗)

− 4π2g
(2)
1 (w,w∗)L+

1 +
π2

180
L+
1

{

−45 [L−
0 ]

2 + 120 [L+
1 ]

2 + 22π2
}

.
(7.3)

This expression is exactly 2 ρ(w,w∗), where ρ was given in eq. (6.3) and in ref. [40]. (The

factor of two just has to do with our normalization of the Fourier-Mellin transform.)

To invert eq. (7.3) and obtain Φ
(2)
Reg(ν, n), we begin by observing that the right-hand

side is a pure function of weight five in (w,w∗) space. Moreover, it is an eigenfunction with

eigenvalue (+,+) under the Z2 × Z2 symmetry. Following the analysis of section 6, and

using the results at the end of appendix B, we are led to make the following ansatz,

Φ
(2)
Reg(ν, n) = α1E

4
ν,n + α2N

2E2
ν,n + α3N

4 + α4 V
2E2

ν,n + α5N
2V 2 + α6 V

4

+α7Eν,n V DνEν,n+α8 [DνEν,n]
2+α9Eν,nD

2
νEν,n+α10 F̃4N (7.4)

+α11 ζ2E
2
ν,n+α12 ζ2N

2+α13 ζ2V
2+α14 ζ3Eν,n+α15 ζ3 [δn,0/(iν)]+α16 ζ4 .

The αi are rational numbers that can be determined by computing the integral transform to

(w,w∗) space of eq. (7.4) (see appendix B) and then matching the result to the right-hand

side of eq. (7.3). We find

Φ
(2)
Reg(ν, n) =

1

2

[

Φ
(1)
Reg(ν, n)

]2
− E(1)

ν,nEν,n +
1

8
[DνEν,n]

2 +
5π2

16
E2

ν,n − 1

2
ζ3Eν,n +

5

64
N4

+
5

16
N2V 2− 5π2

64
N2−π2

4
V 2+

17π4

360
+d1ζ3Eν,n−d2

π2

6

[

12E2
ν,n+N

2
]

(7.5)

+γ′′
π2

6

[

E2
ν,n − 1

4
N2

]

.

Here d1, d2 and γ′′ are the (not yet determined) rational numbers that appear in eq. (6.1).

We emphasize that the expression for Φ
(2)
Reg(ν, n) does not involve the basis element N F̃4

(see eq. (B.52)). That is, Φ
(2)
Reg(ν, n) can be written purely in terms of ψ functions (and

their derivatives).

To determine the six-point remainder function in MRK to all loop orders in the NNLL

approximation, we must apply some additional information beyond Φ
(2)
Reg(ν, n). In particu-

lar, at four loops and higher, the second-order correction to the BFKL eigenvalue, E
(2)
ν,n, is

necessary. In the next section, we will show how to use information from the symbol of the

four-loop remainder function to determine E
(2)
ν,n. We will also derive the next correction to

the impact factor, Φ
(3)
Reg(ν, n), which enters the N3LL approximation.

7.2 The four-loop remainder function in the multi-Regge limit

In order to compute the next term in the perturbative expansion of the BFKL eigenvalue

and the impact factor, we need the analytic expressions for the four-loop six-point remain-

der function in the multi-Regge limit. In an independent work, the symbol of the four-loop
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six-point remainder function has been heavily constrained [53]. In ref. [53] the symbol of

R
(4)
6 is written in the form

S(R(4)
6 ) =

113
∑

i=1

αi Si , (7.6)

where αi are undetermined rational numbers. The Si denote integrable tensors of weight

eight satisfying the first- and final-entry conditions mentioned in the introduction, such that:

1. All entries in the symbol are drawn from the set {ui, 1− ui, yi}i=1,2,3, where the yi’s

are defined in eq. (1.4).

2. The symbol is integrable.

3. The tensor is totally symmetric in u1, u2, u3. Note that under a permutation ui →
uσ(i), σ ∈ S3, the yi variables transform as yi → 1/yσ(i).

4. The tensor is invariant under the transformation yi → 1/yi.

5. The tensor vanishes in all simple collinear limits.

6. The tensor is in agreement with the prediction coming from the collinear OPE of

ref. [25]. We implement this condition on the leading singularity exactly as was done

at three loops [28].

In section 4, we presented analytic expressions for the four-loop remainder function in the

LLA and NLLA of MRK. We can use these results to obtain further constraints on the free

coefficients αi appearing in eq. (7.6). In order to achieve this, we first have to understand

how to write the symbol (7.6) in MRK. In the following we give very brief account of this

procedure.

To begin, recall that the remainder function is non-zero in MRK only after performing

the analytic continuation (2.6), u1 → e−2πi |u1|. The function can then be expanded as in

eq. (2.7),

R
(4)
6 |MRK = 2πi

3
∑

n=0

logn(1− u1)
[

g(4)n (w,w∗) + 2πi h(4)n (w,w∗)
]

. (7.7)

The symbols of the imaginary and real parts can be extracted by taking single and double

discontinuities,

2πi
3
∑

n=0

S
[

logn(1− u1) g
(4)
n (w,w∗)

]

= S(∆u1R
(4)
6 )|MRK

= −2πi
113
∑

i=1

αi∆u1(Si)|MRK

(2πi)2
3
∑

n=0

S
[

logn(1− u1)h
(4)
n (w,w∗)

]

= S(∆2
u1
R

(4)
6 )|MRK

= (−2πi)2
113
∑

i=1

αi∆
2
u1
(Si)|MRK ,

(7.8)
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where the discontinuity operator ∆ acts on symbols via,

∆u1(a1 ⊗ a2 ⊗ . . .⊗ an) =

{

a2 ⊗ . . .⊗ an , if a1 = u1 ,

0 , otherwise.
(7.9)

∆2
u1
(a1 ⊗ a2 ⊗ . . .⊗ an) =

{

1
2 (a3 ⊗ . . .⊗ an) , if a1 = a2 = u1 ,

0 , otherwise.
(7.10)

As indicated in eq. (7.8), we need to evaluate the symbols Si in MRK, which we do by

taking the multi-Regge limit of each entry of the symbol. This can be achieved by replacing

u2 and u3 by the variables x and y, defined in eq. (2.3) (which we then write in terms of

w and w∗ using eq. (2.4)), while the yi’s are replaced by their limits in MRK [28],

y1 → 1 , y2 →
1 + w∗

1 + w
, y3 →

w∗(1 + w)

w(1 + w∗)
. (7.11)

Finally, we drop all terms in ∆k
u1
(Si), k = 1, 2, that have an entry corresponding to u1, y1,

1− u2 or 1− u3, since these quantities approach unity in MRK. In the end, the resulting

tensors have entries drawn from the set {1− u1, w, w
∗, 1 + w, 1 + w∗}. The 1− u1 entries

come from factors of log(1− u1) and can be shuffled out, so that we can write eq. (7.8) as,

3
∑

n=0

S [logn(1− u1)]XS
[

g(4)n (w,w∗))
]

=
113
∑

i=1

7
∑

n=0

αi S [logn(1− u1)]XGi,n

3
∑

n=0

S [logn(1− u1)]XS
[

h(4)n (w,w∗))
]

=
113
∑

i=1

6
∑

n=0

αi S [logn(1− u1)]XHi,n ,

(7.12)

for some suitable tensors Gi,n of weight (7 − n) and Hi,n of weight (6 − n). The sums on

the right-hand side of eq. (7.12) turn out to extend past n = 3. Because the sums on the

left-hand side do not, we immediately obtain homogeneous constraints on the αi for the

cases n = 4, 5, 6, 7. Furthermore, since the quantities on the left-hand side of eq. (7.12)

are known for n = 3 and n = 2, we can use this information to further constrain the αi.

Finally, there is a consistency condition which relates the real and imaginary parts,

h
(4)
1 (w,w∗) = g

(4)
2 (w,w∗) +

π2

12
g
(2)
1 (w,w∗)L+

1 − 1

2
g
(3)
1 (w,w∗)L+

1 − g
(2)
1 (w,w∗) g

(2)
0 (w,w∗) ,

h
(4)
0 (w,w∗) =

1

2
g
(4)
1 (w,w∗) + π2 g

(4)
3 (w,w∗)− π2 g

(3)
2 (w,w∗)L+

1 − 1

2
g
(3)
0 (w,w∗)L+

1

+
π2

2
g
(2)
1 (w,w∗) [L+

1 ]
2 +

π2

12
g
(2)
0 (w,w∗)L+

1 +
π2

64
[L−

0 ]
2 [L+

1 ]
2 − π2

1536
[L−

0 ]
4

+
3

640
π4 [L−

0 ]
2 − 5

96
π2 [L+

1 ]
4 − 3

160
π4 [L+

1 ]
2 − 1

2
[g

(2)
0 (w,w∗)]2 .

(7.13)

In total, these constraints allow us to fix all of the coefficients αi that survive in the

multi-Regge limit, except for a single parameter which we will refer to as a0.

The results of the above analysis are expressions for the symbols of the functions g
(4)
1

and g
(4)
0 . We would like to use this information to calculate new terms in the perturbative
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expansions of the BFKL eigenvalue ω(ν, n) and the MHV impact factor ΦReg(ν, n). For

this purpose, we actually need the functions g
(4)
1 and g

(4)
0 , and not just their symbols.

Thankfully, using our knowledge of the space of SVHPLs, it is easy to integrate these sym-

bols. We can constrain the beyond-the-symbol ambiguities by demanding that the function

vanish in the collinear limit (w,w∗) → 0, and that it be invariant under conjugation and

inversion of the w variables. Putting everything together, we find the following expressions

for g
(4)
1 and g

(4)
0 ,

g
(4)
1 (w,w∗) =

3

128
[L−

2 ]
2 [L−

0 ]
2 − 3

32
[L−

2 ]
2 [L+

1 ]
2 +

19

384
[L−

0 ]
2 [L+

1 ]
4 +

73

1536
[L−

0 ]
4 [L+

1 ]
2

+
1

96
L−

2,1 [L
−

0 ]
3 − 29

64
L+
1 L

+
3 [L−

0 ]
2 − 11

30720
[L−

0 ]
6 − 1

8
[L−

2,1]
2 − 17

48
L+
3 [L+

1 ]
3

+
23

12
[L+

1 ]
3 ζ3 +

11

480
[L+

1 ]
6 +

5

32
[L+

3 ]
2 − 1

4
L−

4 L
−

2 +
1

4
L−

2 L
−

2,1,1 +
1

4
L−

0 L
−

4,1

− 3

4
L−

0 L
−

2,1,1,1 +
19

8
L+
5 L

+
1 +

5

4
L+
1 L

+
3,1,1 +

1

2
L+
1 L

+
2,2,1 −

3

2
L+
1 ζ5 +

1

8
ζ23

+ a0

{

1027

2
[L−

2 ]
2 [L−

0 ]
2+

417

8
[L−

0 ]
2 [L+

1 ]
4+

431

24
[L−

0 ]
4 [L+

1 ]
2+

3155

48
L−

2,1 [L
−

0 ]
3

− 1581

16
L+
1 L

+
3 [L−

0 ]
2 +

9823

1152
[L−

0 ]
6 − 871

4
L−

0 L
−

2,1 [L
+
1 ]

2 − 709

4
L+
3 [L+

1 ]
3

+
2223

2
L+
5 L

+
1 − 157 [L−

2 ]
2 [L+

1 ]
2 − 256 [L−

2,1]
2 + 1593 [L+

1 ]
3 ζ3

+ 681 [L+
3 ]

2 − 1606L−

4 L
−

2 + 512L−

2 L
−

2,1,1 − 3371L−

0 L
−

4,1

− 1730L−

0 L
−

3,2 − 299L−

0 L
−

2,1,1,1 + 2127L+
1 L

+
3,1,1 + 744L+

1 L
+
2,2,1

+ 5489L+
1 ζ5 + 256 ζ23

}

+ a1 π
2 g

(3)
1 (w,w∗) + a2 π

2 g
(4)
3 (w,w∗)

+ a3 π
2 [g

(2)
1 (w,w∗)]2 + a4 π

2 h
(4)
2 (w,w∗) + a5 π

2 h
(3)
0 (w,w∗)

+ a6 π
4 g

(2)
1 (w,w∗) + a7 ζ3 g

(2)
0 (w,w∗) + a8 ζ3 g

(3)
2 (w,w∗) .

(7.14)

g
(4)
0 (w,w∗) =

5

64
L+
1 [L−

2 ]
2 [L−

0 ]
2 − 1

16
[L−

2 ]
2 [L+

1 ]
3 − 21

64
L+
3 [L−

0 ]
2 [L+

1 ]
2 +

7

144
[L−

0 ]
4 [L+

1 ]
3

+
9

320
[L−

0 ]
2 [L+

1 ]
5 − 7

192
L−

2,1 L
+
1 [L−

0 ]
3 +

129

64
L+
5 [L−

0 ]
2 +

1007

46080
L+
1 [L−

0 ]
6

− 5

24
L+
3 [L−

0 ]
4 +

3

32
L+
3,1,1 [L

−

0 ]
2 − 1

16
L+
2,2,1 [L

−

0 ]
2 +

7

16
[L−

0 ]
2 ζ5

− 1

16
L−

0 L
−

2,1 [L
+
1 ]

3 +
25

16
L+
5 [L+

1 ]
2 − 7

48
L+
3 [L+

1 ]
4 +

7

8
L+
3,1,1 [L

+
1 ]

2

+
25

12
[L+

1 ]
4 ζ3 +

1

210
[L+

1 ]
7 − 1

4
L−

4 L
−

2 L
+
1 − 5

16
L−

2 L
−

0 L
+
3,1 +

1

4
L−

2 L
−

2,1,1 L
+
1

+
1

4
L−

0 L
−

4,1 L
+
1 − 1

8
L−

0 L
−

2,1 L
+
3 − 1

4
L−

0 L
−

2,1,1,1 L
+
1 +

3

2
L+
1 ζ

2
3 − 125

8
L+
7

+
1

2
L+
4,1,2 +

11

4
L+
4,2,1 +

3

4
L+
3,3,1 −

1

2
L+
2,1,2,1,1 −

3

2
L+
2,2,1,1,1 +

25

4
ζ7 + 5L+

5,1,1

(7.15)
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− 4L+
3,1,1,1,1 +

1

4
L+
2,2,1 [L

+
1 ]

2 + a0

{

− 1309

4
L+
1 [L−

2 ]
2 [L−

0 ]
2

− 8535

4
L+
3 [L−

0 ]
2 [L+

1 ]
2 +

235

4
[L−

0 ]
2 [L+

1 ]
5 +

4617

16
[L−

0 ]
4 [L+

1 ]
3

− 32027

24
L−
2,1 L

+
1 [L−

0 ]
3 − 11415

8
L+
5 [L−

0 ]
2 − 310

9
L+
1 [L−

0 ]
6

+
15225

64
L+
3 [L−

0 ]
4 +

24279

4
L+
3,1,1 [L

−
0 ]

2 − 823

2
L−
0 L

−
2,1 [L

+
1 ]

3

+
2235

2
L+
5 [L+

1 ]
2 − 365

4
L+
3 [L+

1 ]
4 + 205 [L−

2 ]
2 [L+

1 ]
3 + 1911L+

3 [L−
2 ]

2

+ 2130L+
2,2,1 [L

−
0 ]

2 − 2623 [L−
0 ]

2 ζ5 + 992L+
1 [L−

2,1]
2 + 63L+

3,1,1 [L
+
1 ]

2

− 288L+
2,2,1 [L

+
1 ]

2 + 2396 [L+
1 ]

4 ζ3 + 1830L+
1 [L+

3 ]
2 − 1612L−

4 L
−
2 L

+
1

+ 1344L−
2 L

−
0 L

+
3,1 − 520L−

2 L
−
2,1,1 L

+
1 + 11839L−

0 L
−
4,1 L

+
1

+ 4330L−
0 L

−
3,2 L

+
1 + 3780L−

0 L
−
2,1 L

+
3 + 562L−

0 L
−
2,1,1,1 L

+
1

+ 3556L+
1 ζ

2
3 + 2256L+

7 − 164778L+
5,1,1 − 33216L+

4,1,2 − 89088L+
4,2,1

− 33912L+
3,3,1 − 12048L+

3,2,2 − 17820L+
3,1,1,1,1 − 2928L+

2,1,2,1,1

− 8784L+
2,2,1,1,1 − 23796 ζ7

}

+ b1 ζ2 [L
−
2 ]

2L+
1 + b2 ζ2 [L

−
0 ]

2L+
1 g

(2)
1 (w,w∗)

+ b3 ζ2 g
(2)
1 (w,w∗) g

(3)
2 (w,w∗) + b4 ζ2 g

(2)
0 (w,w∗) g

(2)
1 (w,w∗) + b5 ζ2 h

(4)
1 (w,w∗)

+ b6 ζ2 h
(5)
3 (w,w∗) + b7 ζ2 g

(3)
0 (w,w∗) + b8 ζ2 g

(4)
2 (w,w∗) + b9 ζ2 g

(5)
4 (w,w∗)

+ b10 ζ3 h
(4)
2 (w,w∗) + b11 ζ3 h

(3)
0 (w,w∗) + b12 ζ3 [g

(2)
1 (w,w∗)]2

+ b13 ζ3 g
(4)
3 (w,w∗) + b14 ζ3 g

(3)
1 (w,w∗) + b15 ζ4 g

(3)
2 (w,w∗) + b16 ζ4 g

(2)
0 (w,w∗)

+ b17 ζ3 ζ2 g
(2)
1 (w,w∗) + b18 ζ5 g

(2)
1 (w,w∗) .

In these expressions, ai for i = 0, . . . , 8, and bj for j = 1, . . . , 18, denote undetermined

rational numbers. The one symbol-level parameter, a0, enters both g
(4)
1 and g

(4)
0 . We

observe that a0 enters these formulae in a complicated way, and that there is no nonzero

value of a0 that simplifies the associated large rational numbers. We therefore suspect

that a0 = 0, although we currently have no proof. The remaining parameters account

for beyond-the-symbol ambiguities. We will see in the next section that one of these

parameters, b1, is not independent of the others.

7.3 Analytic results for the NNLL correction to the BFKL eigenvalue and the

N3LL correction to the impact factor

Having at our disposal analytic expressions for the four-loop remainder function at NNLLA

and N3LLA, we use these results to extract the BFKL eigenvalue and the impact factors

to the same accuracy in perturbation theory. We proceed as in section 7.1, i.e., we use our

knowledge of the space of SVHPLs and the corresponding functions in (ν, n) space to find

a function whose inverse Fourier-Mellin transform reproduces the four-loop results we have

derived.
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Let us start with the computation of the BFKL eigenvalue at NNLLA. Expanding

eq. (4.1) to order a4, we can extract the following relation,

I
[

E(2)
ν,n

]

= 12
{

[L+
1 ]

2 + π2
}

g
(4)
3 (w,w∗)− 8L+

1 g
(4)
2 (w,w∗) + 4 g

(4)
1 (w,w∗)

− 8L+
1 π

2 g
(3)
2 (w,w∗) + 2π2 g

(2)
1 (w,w∗) [L+

1 ]
2

− I
[

E(1)
ν,nΦ

(1)
Reg(ν, n)

]

− I
[

Eν,nΦ
(2)
Reg(ν, n)

]

.

(7.16)

The right-hand side of eq. (7.16) is completely known, up to some rational numbers mostly

parametrizing our ignorance of beyond-the-symbol terms in the three- and four-loop coef-

ficient functions at NNLLA. It can be written exclusively in terms of SVHPLs of weight

six with eigenvalue (+,+) under Z2 × Z2 transformations. The results of section 6 then

allow us to write down an ansatz for the NNLLA correction to the BFKL eigenvalue, sim-

ilar to the ansatz (7.4) we made for the NNLLA correction to the impact factor, but at

higher weight. More precisely, we assume that we can write E
(2)
ν,n =

∑

i αi Pi, where αi

denote rational numbers and Pi runs through all possible monomials of weight five with

the correct symmetry properties that we can construct out of the building blocks given in

eq. (6.22), i.e.,

Pi ∈
{

E5
ν,n, ζ2 V DνEν,n, Eν,nN F̃4, ζ5, . . .

}

. (7.17)

The rational coefficients αi can then be fixed by inserting our ansatz into eq. (7.16) and

performing the inverse Fourier-Mellin transform to (w,w∗) space. We find that there is a

unique solution for the αi, and the result for the NNLLA correction to the BFKL eigenvalue

then takes the form,

E(2)
ν,n = −E(1)

ν,nΦ
(1)
Reg(ν, n)− Eν,nΦ

(2)
Reg(ν, n) +

3

8
D2

νEν,nE
2
ν,n +

3

32
N2D2

νEν,n +
1

8
V 2D2

νEν,n

− 1

8
V D3

νEν,n +
1

48
D4

νEν,n +
π2

12
D2

νEν,n − 3

4
DνEν,n V E

2
ν,n − 5

16
DνEν,nN

2 V

− π2

4
DνEν,n V +

1

8
Eν,n [DνEν,n]

2 +
3

16
N2E3

ν,n +
61

4
E2

ν,n ζ3 +
1

8
E5

ν,n +
5π2

6
E3

ν,n

+
19

128
Eν,nN

4 +
5

16
Eν,nN

2 V 2 +
3π2

16
Eν,nN

2 +
π2

4
Eν,n V

2 +
35

16
N2 ζ3 +

1

2
V 2 ζ3

+
11π2

6
ζ3 + 10 ζ5 + a0 E5 +

5
∑

i=1

ai ζ2 E3,i + a6 ζ4 E2 +
8
∑

i=7

ai ζ3 E1,i ,

(7.18)

where the quantities E3,i, E2, and E1,i capture the beyond-the-symbol ambiguities in g
(4)
1 ,

and E5 corresponds to the one symbol-level ambiguity. They are given by,

E5 =
124

3
N2D2

νEν,n +
1210

3
V 2D2

νEν,n − 35

3
V D3

νEν,n − 31

6
D4

νEν,n − 151

2
DνEν,nN

2 V

+
124

3
N2E3

ν,n − 140

3
V 2E3

ν,n − 31

2
Eν,nN

4 +
10903

12
N2 ζ3 +

13960

3
V 2 ζ3 (7.19)

−62D2
νEν,nE

2
ν,n + 70DνEν,n V E

2
ν,n − 760DνEν,n V

3 + 248Eν,n [DνEν,n]
2

+7431E2
ν,n ζ3 − 97Eν,nN

2 V 2 + 16072 ζ5 ,
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E3,1 = −3

4
Eν,nN

2 −D2
νEν,n + 5E3

ν,n + 6Eν,n V
2 − 2Eν,n π

2 + 8 ζ3 , (7.20)

E3,2 = E3
ν,n , (7.21)

E3,3 =
3

4
Eν,nN

2 − 3DνEν,n V + 3E3
ν,n + 12 ζ3 , (7.22)

E3,4 = −1

8
D2

νEν,n +
9

4
DνEν,n V − 3

4
Eν,nN

2 − 3

2
Eν,n V

2 − 25

2
ζ3 − 2E3

ν,n , (7.23)

E3,5 =
3

8
Eν,nN

2 − 3

2
E3

ν,n , (7.24)

E2 = 90Eν,n , (7.25)

E1,7 = E2
ν,n − 1

4
N2 , (7.26)

E1,8 =
1

2
E2

ν,n . (7.27)

We observe that the most complicated piece is E5. It would be absent if our conjecture

that a0 = 0 is correct. Some further comments are in order about eq. (7.18):

1. In ref. [40] it was argued, based on earlier work [69–72], that the BFKL eigenvalue

should vanish as (ν, n) → 0 to all orders in perturbation theory, i.e., ω(0, 0) = 0.

While this statement depends on how one approaches the limit, the most natural

way seems to be to set the discrete variable n to 0 before taking the limit ν → 0.

Indeed in this limit Eν,n and E
(1)
ν,n vanish. However, we find that E

(2)
ν,n does not vanish

in this limit, but rather it approaches a constant,

lim
ν→0

E
(2)
ν,0 = −1

2
π2 ζ3 . (7.28)

We stress that the limit is independent of any of the undetermined constants that

parameterize the beyond-the-symbol terms in the three- and four-loop coefficients.

While we have confidence in our result for E
(2)
ν,n given our assumptions (such as the

vanishing of g
(ℓ)
n and h

(ℓ)
n as w → 0), we have so far no explanation for this observation.

2. While the (ν, n)-space basis constructed in section 6 involves the new functions F̃4,

F̃6a and F̃7, we find that E
(2)
ν,n is free of these functions and can be expressed entirely

in terms of ψ functions and rational functions of ν and n. Moreover, the ψ functions

arise only in the form of the LLA BFKL eigenvalue and its derivative with respect to

ν. We are therefore led to conjecture that, to all loop orders, the BFKL eigenvalue

and the impact factor can be expressed as linear combinations of uniform weight

of monomials that are even in both ν and n and are constructed exclusively out of

multiple ζ values10 and the quantities N , V , Eν,n and Dν defined in section 6.

We now move on and and extract the impact factor at N3LLA from the four-loop

amplitude at the same logarithmic accuracy. Equation (4.1) at order a4 yields the following

10Note that we can not exclude the appearance of multiple ζ values at higher weights, as multiple ζ values

are reducible to ordinary ζ values until weight eight.
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relation for the impact factor at N3LLA,

I
[

Φ
(3)
Reg(ν, n)

]

= −4
{

[L+
1 ]

3 + 3L+
1 π

2
}

g
(4)
3 (w,w∗) + 4

{

[L+
1 ]

2 + π2
}

g
(4)
2 (w,w∗)

− 4L+
1 g

(4)
1 (w,w∗) + 4 g

(4)
0 (w,w∗) + 8π2 g

(3)
2 (w,w∗) [L+

1 ]
2

− 4L+
1 π

2 g
(3)
1 (w,w∗)− 2π2

{

[L+
1 ]

3 − π2

3
L+
1

}

g
(2)
1 (w,w∗)

+ 2π2 g
(2)
0 (w,w∗) [L+

1 ]
2 +

π4

8
L+
1 [L−

0 ]
2 − π4

3
[L+

1 ]
3 − 73π6

1260
L+
1 − 2L+

1 ζ
2
3 .

(7.29)

In order to determine Φ
(3)
Reg(ν, n), we proceed in the same way as we did for E

(2)
ν,n, i.e., we

write down an ansatz for Φ
(3)
Reg(ν, n) that has the correct transcendentality and symmetry

properties and fix the free coefficients by requiring the inverse Fourier-Mellin transform of

the ansatz to match the right-hand side of eq. (7.29). Building upon our conjecture that the

impact factor can be expressed purely in terms of ψ functions and rational functions of ν

and n, we construct a restricted ansatz11 that is a linear combination just of monomials of

ζ values and N , V , Dν and Eν,n. Just like in the case of E
(2)
ν,n, we find that there is a unique

solution for the coefficients in the ansatz, thus giving further support to our conjecture.

Furthermore, we are forced along the way to fix one of the beyond-the-symbol parameters

appearing in g
(4)
0 ,

b1 = −15

8
a1−

3

16
a2−

3

32
a4+

9

16
a5+

1

64
b3+

1

8
b4−

3

16
b5−

1

32
b6+

1

4
b7+

3

32
b8+

3

16
. (7.30)

The final result for the impact factor at N3LLA then takes the form,

Φ
(3)
Reg(ν, n) =

1

3

[

Φ
(1)
Reg(ν, n)

]3
− E(2)

ν,nEν,n − Φ
(2)
Reg(ν, n)E

2
ν,n − 1

24
[D2

νEν,n]
2 (7.31)

+
1

4
DνEν,n V D

2
νEν,n−

1

24
DνEν,nD

3
νEν,n+

1

8
D2

νEν,nE
3
ν,n−

3

32
Eν,nN

2D2
νEν,n

− 37π2

96
Eν,nD

2
νEν,n − 1

24
D2

νEν,n ζ3 −
1

4
DνEν,n V E

3
ν,n +

3

16
DνEν,nEν,nN

2 V

+
11π2

24
DνEν,nEν,n V +

9

4
DνEν,n V ζ3 +

1

16
[DνEν,n]

2E2
ν,n − 3

64
N2 [DνEν,n]

2

− 1

8
V 2 [DνEν,n]

2 +
3π2

32
[DνEν,n]

2 +
37

256
N4E2

ν,n +
5

32
N2 V 2E2

ν,n

− 23π2

128
N2E2

ν,n − 21π2

32
V 2E2

ν,n +
161

12
E3

ν,n ζ3 +
7

48
E6

ν,n +
π2

3
E4

ν,n − π4

72
E2

ν,n

+
7

16
Eν,nN

2 ζ3 −
13π2

2
Eν,n ζ3 −

45

1024
N6 − 41

128
N4 V 2 +

5π2

512
N4 − 3

16
N2 V 4

11We have constructed the full basis of functions in (ν, n) space through weight six and the explicit map

to (w,w∗) functions of weight seven. It is therefore not necessary for us to restrict our ansatz in this way.

It is, however, sufficient, and computationally simpler to do so.
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− 5π2

128
N2 V 2 +

π4

24
N2 +

π4

8
V 2 +

5

2
ζ23 − 311π6

11340
+ 3Eν,n V

2 ζ3 + 10Eν,n ζ5

+
15

64
N2E4

ν,n + a0 P6 +
5
∑

i=1

ai ζ2 Pa,4,i + a6 ζ4 Pa,2 +
8
∑

i=7

ai ζ3 Pa,3,i

+
9
∑

i=2

bi ζ2 Pb,4,i +
14
∑

i=10

bi ζ3 Pb,3,i +
16
∑

i=15

bi ζ4 Pb,2,i + b17 ζ2ζ3 Pb,1,1 + b18 ζ5 Pb,1,2 ,

where Pi,j,... parametrize the beyond-the-symbol terms in the four-loop coefficient functions,

and P6 parameterizes the one symbol-level ambiguity,

P6 =
105

2
[D2

νEν,n]
2− 152

3
Eν,nN

2D2
νEν,n−

2690

3
Eν,nV

2D2
νEν,n+

595

3
Eν,nV D

3
νEν,n(7.32)

−7

6
Eν,nD

4
νEν,n − 10455

2
D2

νEν,nζ3 +
249

8
N2[DνEν,n]

2 +
2655

2
V 2[DνEν,n]

2

+
103

16
N4E2

ν,n +
317

4
N2V 2E2

ν,n +
197

24
N2E4

ν,n +
515

6
V 2E4

ν,n +
61793

6
Eν,nN

2ζ3

+
13777

3
Eν,nV

2ζ3+
111

128
N6+

345

32
N4V 2−385DνEν,nV D

2
νEν,n−30DνEν,nD

3
νEν,n

+16D2
νEν,nE

3
ν,n − 420DνEν,nV E

3
ν,n + 7DνEν,nEν,nN

2V − 760DνEν,nEν,nV
3

−22606DνEν,nV ζ3 − 34[DνEν,n]
2E2

ν,n + 1140V 4E2
ν,n + 15231E3

ν,nζ3 + 6548Eν,nζ5

+46992 ζ23 ,

Pa,4,1 =
5

8
Eν,nD

2
νEν,n − 3

2
DνEν,nEν,n V +

33

8
[DνEν,n]

2 − 183

32
N2E2

ν,n (7.33)

−129

8
V 2E2

ν,n − 5

4
E4

ν,n +
3

128
N4 +

171

32
N2 V 2 +

π2

4
N2 + π2E2

ν,n − 68Eν,n ζ3 ,

Pa,4,2 = − 3

16
Eν,nD

2
νEν,n +

3

4
DνEν,nEν,n V +

7

16
[DνEν,n]

2 − 51

64
N2E2

ν,n (7.34)

−33

16
V 2E2

ν,n − 1

4
E4

ν,n − 7

256
N4 +

19

64
N2 V 2 − 12Eν,n ζ3 ,

Pa,4,3 = −3

2
Eν,nD

2
νEν,n +

9

4
[DνEν,n]

2 − 3

2
N2E2

ν,n − 9

2
V 2E2

ν,n − 3

4
E4

ν,n − 9

64
N4 (7.35)

+
9

8
N2 V 2 + 6DνEν,nEν,n V − 48Eν,n ζ3 ,

Pa,4,4 =
49

32
Eν,nD

2
νEν,n − 27

8
DνEν,nEν,n V − 45

32
[DνEν,n]

2 +
117

128
N2E2

ν,n (7.36)

+
111

32
V 2E2

ν,n +
1

2
E4

ν,n +
73

2
Eν,n ζ3 +

69

512
N4 − 21

128
N2 V 2 ,

Pa,4,5 = − 3

16
Eν,nD

2
νEν,n − 3

4
DνEν,nEν,n V − 15

16
[DνEν,n]

2 +
105

64
N2E2

ν,n (7.37)

+
63

16
V 2E2

ν,n +
3

8
E4

ν,n +
3

256
N4 − 69

64
N2 V 2 + 18Eν,n ζ3 ,

Pa,2 = −45

4
N2 − 45E2

ν,n , (7.38)

Pa,3,7 =
1

6
D2

νEν,n − 1

3
E3

ν,n − 4

3
ζ3 − Eν,n V

2 , (7.39)

Pa,3,8 = − 1

24
D2

νEν,n +
1

4
DνEν,n V − 1

6
E3

ν,n − 1

8
Eν,nN

2 − 1

2
Eν,n V

2 − 13

6
ζ3 , (7.40)
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Pb,4,2 =
3

4
N2E2

ν,n +
3

16
N4 +

21

4
N2 V 2 + 3Eν,nD

2
νEν,n + 12DνEν,nEν,n V (7.41)

+3 [DνEν,n]
2 + 9V 2E2

ν,n ,

Pb,4,3 =
7

192
Eν,nD

2
νEν,n − 7

16
DνEν,nEν,n V − 9

64
[DνEν,n]

2 +
33

256
N2E2

ν,n (7.42)

+
19

64
V 2E2

ν,n +
5

24
E4

ν,n +
37

12
Eν,n ζ3 +

9

1024
N4 − 1

256
N2 V 2 ,

Pb,4,4 = − 5

24
Eν,nD

2
νEν,n − 1

2
DνEν,nEν,n V − 3

8
[DνEν,n]

2 +
9

32
N2E2

ν,n (7.43)

+
7

8
V 2E2

ν,n +
5

12
E4

ν,n +
14

3
Eν,n ζ3 +

3

128
N4 +

11

32
N2 V 2 ,

Pb,4,5 =
3

16
Eν,nD

2
νEν,n +

1

2
DνEν,nEν,n V +

1

2
[DνEν,n]

2 − 31

64
N2E2

ν,n (7.44)

−27

16
V 2E2

ν,n − 9

16
E4

ν,n +
π2

8
E2

ν,n − 1

128
N4 − 3

64
N2 V 2 +

π2

32
N2 − 8Eν,n ζ3 ,

Pb,4,6 = − 5

96
Eν,nD

2
νEν,n +

1

2
DνEν,nEν,n V +

17

96
[DνEν,n]

2 − 25

128
N2E2

ν,n (7.45)

−15

32
V 2E2

ν,n − 11

48
E4

ν,n − 49

12
Eν,n ζ3 −

17

1536
N4 +

11

384
N2 V 2 ,

Pb,4,7 = Φ
(2)
Reg(ν, n)−

2

3
Eν,nD

2
νEν,n − 3

8
[DνEν,n]

2 +
1

4
N2E2

ν,n +
7

4
V 2E2

ν,n (7.46)

−π
2

2
E2

ν,n +
1

3
Eν,n ζ3 −

5

128
N4 − 7

8
N2 V 2 +

π2

48
N2 +

π2

4
V 2 − 11π4

180

+
5

24
E4

ν,n +DνEν,nEν,n V ,

Pb,4,8 = − 5

32
Eν,nD

2
νEν,n +

1

8
DνEν,nEν,n V − 7

32
[DνEν,n]

2 +
27

128
N2E2

ν,n (7.47)

+
33

32
V 2E2

ν,n +
3

8
E4

ν,n − π2

4
E2

ν,n +
7

512
N4 − 19

128
N2 V 2 + 3Eν,n ζ3 ,

Pb,4,9 =
1

24
E4

ν,n , (7.48)

Pb,3,10 = − 1

48
D2

νEν,n +
3

8
DνEν,n V − 1

3
E3

ν,n − 1

8
Eν,nN

2 − 1

4
Eν,n V

2 − 25

12
ζ3 , (7.49)

Pb,3,11 =
1

16
Eν,nN

2 − 1

4
E3

ν,n , (7.50)

Pb,3,12 = −1

2
DνEν,n V +

1

2
E3

ν,n +
1

8
Eν,nN

2 + 2 ζ3 , (7.51)

Pb,3,13 =
1

6
E3

ν,n , (7.52)

Pb,3,14 = −1

6
D2

νEν,n +
5

6
E3

ν,n − 1

8
Eν,nN

2 − π2

3
Eν,n +

4

3
ζ3 + Eν,n V

2 , (7.53)

Pb,2,15 =
1

2
E2

ν,n , (7.54)

Pb,2,16 = E2
ν,n − 1

4
N2 , (7.55)

Pb,1,1 = Eν,n , (7.56)

Pb,1,2 = Eν,n . (7.57)
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Again, the undetermined function at symbol level, P6, is the most complicated term, but

it would be absent if a0 = 0.

Finally, we remark that the ν → 0 behavior of Φ
(ℓ)
Reg(ν, n) is nonvanishing, and even

singular for ℓ = 2 and 3. Taking the limit after setting n = 0, as in the case of E
(2)
ν,n, we

find that the constant term is given in terms of the cusp anomalous dimension,

lim
ν→0

Φ
(1)
Reg(ν, 0) ∼ γ

(2)
K

4
+ O(ν4) , (7.58)

lim
ν→0

Φ
(2)
Reg(ν, 0) ∼ π2

4 ν2
+
γ
(3)
K

4
+ O(ν2) , (7.59)

lim
ν→0

Φ
(3)
Reg(ν, 0) ∼ − π4

8 ν2
+
γ
(4)
K

4
+ O(ν2) . (7.60)

This fact is presumably related to the appearance of γK(a) in the factors ωab and δ, which

carry logarithmic dependence on |w| as w → 0. It may play a role in understanding the

failure of E
(2)
ν,0 to vanish as ν → 0 in eq. (7.28).

8 Conclusions and Outlook

In this article we exposed the structure of the multi-Regge limit of six-gluon scattering

in planar N = 4 super-Yang-Mills theory in terms of the single-valued harmonic polylog-

arithms introduced by Brown. Given the finite basis of such functions, it is extremely

simple to determine any quantity that is defined by a power series expansion around the

origin of the (w,w∗) plane. Two examples which we could evaluate with no ambiguity

are the LL and NLL terms in the multi-Regge limit of the MHV amplitude. We could

carry this exercise out through transcendental weight 10, and we presented the analytic

formulae explicitly through six loops in section 4. The NMHV amplitudes also fit into the

same mathematical framework, as we saw in section 5: An integro-differential operator

that generates the NMHV LLA terms from the MHV LLA ones [43] has a very natural

action on the SVHPLs, making it simple to generate NMHV LLA results to high order as

well. A clear avenue for future investigation utilizing the SVHPLs is the NMHV six-point

amplitude at next-to-leading-logarithm and beyond.

A second thrust of this article was to understand the Fourier-Mellin transform from

(w,w∗) to (ν, n) variables. In practice, we constructed this map in the reverse direction: We

built an ansatz out of various elements: harmonic sums and specific rational combinations

of ν and n. We then implemented the inverse Fourier-Mellin transform as a truncated

sum, or power series around the origin of the (w,w∗) plane, and matched to the basis of

SVHPLs. We thereby identified specific combinations of the elements as building blocks

from which to generate the full set of SVHPL Fourier-Mellin transforms. We have executed

this procedure completely through weight six in the (ν, n) space, corresponding to weight

seven in the (w,w∗) space. In generalizing the procedure to yet higher weight, we expect

the procedure to be much the same. Beginning with a linear combination of weight (p− 2)

HPLs in a single variable x, perform a Mellin transformation to produce weight (p − 1)

harmonic sums such as ψ, F4, F6a, etc. For suitable combinations of these elements, the
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inverse Fourier-Mellin transform will generate weight p SVHPLs in the complex conjugate

pair (w,w∗). The step of determining which combinations of elements correspond to the

SVHPLs was carried out empirically in this paper. It would be interesting to investigate

further the mathematical properties of these building blocks.

Using our understanding of the Fourier-Mellin transform, we could explicitly evaluate

the NNLL MHV impact factor Φ
(2)
Reg(ν, n) which derives from a knowledge of the three-loop

remainder function in the MRK limit [28, 40]. We then went on to four loops, using a

computation of the four-loop symbol [53] in conjunction with additional constraints from

the multi-Regge limit to determine the MRK symbol up to one free parameter a0 (which

we suspect is zero). We matched this symbol to the symbols of the SVHPLs in order to

determine the complete four-loop remainder function in MRK, up to a number of beyond-

the-symbol constants. This data, in particular g
(4)
1 and g

(4)
0 , then led to the NNLL BFKL

eigenvalue E
(2)
ν,n and N3LL impact factor Φ

(3)
Reg(ν, n). These quantities also contain the

various beyond-the-symbol constants. Clearly the higher-loop NNLL MRK terms can be

determined just as we did at LL and NLL, using the master formula (2.9) and the SVHPL

basis. However, it would also be worthwhile to understand what constraint can fix a0,

and the host of beyond-the-symbol constants, since they will afflict all of these terms. This

task may require backing away somewhat from the multi-Regge limit, or utilizing coproduct

information in some way.

We also remind the reader that we found that the NNLL BFKL eigenvalue E
(2)
ν,n does

not vanish as ν → 0, taking the limit after setting n = 0. This behavior is in contrast to

what happens in the LL and NLL case. It also goes against the expectations in ref. [40],

and thus calls for further study.

Although the structure of QCD amplitudes in the multi-Regge limit is more compli-

cated than those of planar N = 4 super-Yang-Mills theory, one can still hope that the

understanding of the Fourier-Mellin (ν, n) space that we have developed here may prove

useful in the QCD context.

Finally, we remark that the SVHPLs are very likely to be applicable to another cur-

rent problem in N = 4 super-Yang-Mills theory, namely the determination of correlation

functions for four off-shell operators. Conformal invariance implies that these quantities

depend on two separate cross ratios. The natural arguments of the polylogarithms that

appear at low loop order, after a change of variables from the original cross ratios, are

again a complex pair (w,w∗) (or (z, z̄)). The same single-valued conditions apply here as

well. For example, the one-loop off-shell box integral that enters the correlation function

is proportional to L−
2 (z, z̄)/(z− z̄). We expect that the SVHPL framework will allow great

progress to be made in this arena, just as it has to the study of the multi-Regge limit.
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A Single-valued harmonic polylogarithms

A.1 Expression of the L± functions in terms of ordinary HPLs

In this appendix we present the expressions for the Z2×Z2 eigenfunctions L
±
w(z) defined in

eq. (3.19) as linear combinations of ordinary HPLs of the form Hw1(z)Hw2(z̄) up to weight

5. All expressions up to weight 6 are attached as ancillary files in computer-readable

format. We give results only for the Lyndon words, as all other cases can be reduced to

the latter. In the following, we use the condensed notation (3.27) for the HPL arguments

z and z̄ to improve the readability of the formulas.

A.2 Lyndon words of weight 1

L−
0 = H0 +H0 = log |z|2 , (A.1)

L+
1 = H1 +H1 +

1

2
H0 +

1

2
H0 = − log |1− z|2 + 1

2
log |z|2 (A.2)

A.3 Lyndon words of weight 2

L−
2 =

1

4

[

− 2H1,0 + 2H1,0 + 2H0H1 − 2H0H1 + 2H2 − 2H2

]

= Li2(z)− Li2(z̄) +
1

2
log |z|2(log(1− z)− log(1− z̄)) ,

(A.3)

A.4 Lyndon words of weight 3

L+
3 =

1

4

[

2H0H0,0 + 2H0H1,0 + 2H0H0,0 + 2H0H1,0 + 2H1H0,0 + 2H1H0,0 (A.4)

+2H0,0,0 + 2H1,0,0 + 2H0,0,0 + 2H1,0,0 + 2H3 + 2H3

]

= Li3(z) + Li3(z̄)−
1

2
log |z|2

[

Li2(z̄) + Li2(z)
]

−1

4
log2 |z|2 log |1− z|2 + 1

12
log3 |z|2 ,

L−
2,1 =

1

4

[

H0H1,0 +H0H1,0 +H1H0,0 +H1H0,0 + 2H0H0,0 + 2H0H1,1 (A.5)

+2H0H0,0 + 2H0H1,1 +H1,0,0 + 2H0,0,0 + 2H2,0 + 2H2,1 + 2H1,1,0

+H1,0,0 + 2H0,0,0 + 2H2,0 + 2H2,1 + 2H1,1,0 + 2H0H2 + 2H0H2

+2H1H2 + 2H1H2 +H3 +H3 − 4 ζ3

]

= −Li3(1− z)− Li3(1− z̄)− 1

2

[

Li3(z) + Li3(z̄)
]

+
1

4
log |z|2

[

Li2(z) + Li2(z̄)
]

−1

2
log |1− z|2

[

Li2(z) + Li2(z̄)
]

− 1

8
log2 |z|2 log |1− z|2 + 1

12
log3 |z|2

−1

4
log

z

z̄

[

log2(1− z)− log2(1− z̄)] + ζ2 log |1− z|2 + ζ3 ,
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A.5 Lyndon words of weight 4

L+
3,1 =

1

4

[

H0H2,0 +H0H1,0,0 −H0H2,0 −H0H1,0,0 −H1H0,0,0 +H1H0,0,0 (A.6)

+H0,0H2 +H0,0H1,0 −H0,0H2 −H0,0H1,0 + 2H0H1,1,0 − 2H0H1,1,0

+2H0,0H1,1 − 2H0,0H1,1 +H3,0 −H2,0,0 −H1,0,0,0 + 2H3,1 − 2H1,1,0,0

+H2,0,0 +H1,0,0,0 −H3,0 − 2H3,1 + 2H1,1,0,0 −H0H3 +H0H3 − 2H1H3

+2H1H3 + 4H1 ζ3 +H4 − 4H1 ζ3 −H4

]

,

L−
4 =

1

4

[

2H0H1,0,0 − 2H0H1,0,0 − 2H1H0,0,0 + 2H1H0,0,0 + 2H0,0H1,0 (A.7)

−2H0,0H1,0 − 2H1,0,0,0 + 2H1,0,0,0 + 2H4 − 2H4

]

,

L−
2,1,1 =

1

4

[

H0H1,0,0 +H0H1,2 +H0H1,1,0 −H0H1,0,0 −H0H1,2 −H0H1,1,0 (A.8)

−H1H0,0,0 −H1H2,0 +H1H0,0,0 +H1H2,0 +H0,0H1,0 +H0,0H1,1

−H0,0H1,0 −H0,0H1,1 +H2H1,0 −H2H1,0 + 2H0H1,1,1 − 2H0H1,1,1

−2H1H2,1 + 2H1H2,1 + 2H2H1,1 − 2H2H1,1 +H3,1 +H2,2

−H1,0,0,0 −H1,2,0 −H1,1,0,0 + 2H2,1,1 − 2H1,1,1,0 +H1,0,0,0 +H1,2,0 +H1,1,0,0

−H3,1 −H2,2 − 2H2,1,1 + 2H1,1,1,0 −H1H3 +H1H3 + 2H1 ζ3 +H4

−2H1 ζ3 −H4

]

,

A.6 Lyndon words of weight 5

L+
5 =

1

4

[

2H0H0,0,0,0 + 2H0H1,0,0,0 + 2H0H0,0,0,0 + 2H0H1,0,0,0 + 2H1H0,0,0,0 (A.9)

+2H1H0,0,0,0 + 2H0,0H0,0,0 + 2H0,0H1,0,0 + 2H0,0H0,0,0 + 2H0,0H1,0,0

+2H1,0H0,0,0 + 2H1,0H0,0,0 + 2H0,0,0,0,0 + 2H1,0,0,0,0 + 2H0,0,0,0,0 + 2H1,0,0,0,0

+2H5 + 2H5

]

,
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L+
3,1,1 =

1

4

[

H5 +H5 +H4,0 +H4,0 +H4,1 +H4,1 +H3,2 +H3,2 +H3,1,0 +H3,1,0 (A.10)

+H2,0,0,0 +H2,0,0,0 +H2,1,0,0 +H2,1,0,0 +H1,0,0,0,0 +H1,0,0,0,0 +H1,2,0,0

+H1,2,0,0 +H1,1,0,0,0 +H1,1,0,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0 + 2H3,0,0 + 2H3,0,0

+2H3,1,1 + 2H3,1,1 + 2H1,1,1,0,0 + 2H1,1,1,0,0 + 4 ζ5 +H0H4 +H0H3,1 +H0H2,0,0

+H0H2,1,0 +H0H1,0,0,0 +H0H1,2,0 +H0H1,1,0,0 +H0H4 +H0H3,1 +H0H2,0,0

+H0H2,1,0 +H0H1,0,0,0 +H0H1,2,0 +H0H1,1,0,0 +H1H0,0,0,0 +H1H4 +H1H3,0

+H1H0,0,0,0 +H1H4 +H1H3,0 +H0,0H2,0 +H0,0H2,1 +H0,0H1,0,0 +H0,0H1,2

+H0,0H1,1,0 +H0,0H2,0 +H0,0H2,1 +H0,0H1,0,0 +H0,0H1,2 +H0,0H1,1,0

+H2H0,0,0 +H2H3 +H2H0,0,0 +H2H3 +H1,0H0,0,0 +H1,0H3 +H1,0H0,0,0

+H1,0H3 +H1,1H0,0,0 +H1,1H0,0,0 + 2H0H0,0,0,0 + 2H0H3,0 + 2H0H1,1,1,0

+2H0H0,0,0,0 + 2H0H3,0 + 2H0H1,1,1,0 + 2H1H3,1 + 2H1H3,1 + 2H0,0H0,0,0

+2H0,0H3 + 2H0,0H1,1,1 + 2H0,0H0,0,0 + 2H0,0H3 + 2H0,0H1,1,1 − 2H2 ζ3

−2H2 ζ3 − 2H1,0 ζ3 − 2H1,0 ζ3 + 2H1,1H3 + 2H1,1H3 − 4H1,1 ζ3 − 4H1,1 ζ3

−2H0H1 ζ3 − 2H0H1 ζ3

]

,

L+
2,2,1 =

1

4

[

H5 +H5 +H4,1 +H4,1 +H2,3 +H2,3 +H1,0,0,0,0 +H1,0,0,0,0 +H1,3,0 (A.11)

+H1,3,0 +H1,1,0,0,0 +H1,1,0,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0 + 2H4,0 + 2H4,0

+2H2,0,0,0 + 2H2,0,0,0 + 2H2,2,0 + 2H2,2,0 + 2H2,2,1 + 2H2,2,1 + 2H1,1,2,0

+2H1,1,2,0 − 6 ζ5 +H0H1,0,0,0 +H0H1,3 +H0H1,1,0,0 +H0H1,0,0,0 +H0H1,3

+H0H1,1,0,0 +H1H0,0,0,0 +H1H4 +H1H2,0,0 +H1H0,0,0,0 +H1H4 +H1H2,0,0

+H0,0H1,0,0 +H0,0H1,1,0 +H0,0H1,0,0 +H0,0H1,1,0 +H2H1,0,0 +H2H1,0,0

+H1,0H0,0,0 +H1,0H2,0 +H1,0H0,0,0 +H1,0H2,0 +H1,1H0,0,0 +H1,1H0,0,0

+2H0H0,0,0,0 + 2H0H4 + 2H0H2,0,0 + 2H0H2,2 + 2H0H1,1,2 + 2H0H0,0,0,0

+2H0H4 + 2H0H2,0,0 + 2H0H2,2 + 2H0H1,1,2 + 2H1H2,2 + 2H1H2,2

+2H0,0H0,0,0 + 2H0,0H2,0 + 2H0,0H0,0,0 + 2H0,0H2,0 + 2H2H0,0,0 + 2H2H2,0

+2H2H1,1,0 + 2H2 ζ3 + 2H2H0,0,0 + 2H2H2,0 + 2H2H1,1,0 + 2H2 ζ3

+2H1,1H2,0 + 2H1,1H2,0 − 4H0,0 ζ3 − 4H0,0 ζ3 + 4H1,0 ζ3 + 4H1,0 ζ3

+8H1,1 ζ3 + 8H1,1 ζ3 − 4H0H0 ζ3 + 4H0H1 ζ3 + 4H0H1 ζ3

]

,
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L−

4,1 =
1

4

[

H0H2,0,0 +H0H1,0,0,0 +H0H2,0,0 +H0H1,0,0,0 +H1H0,0,0,0 +H1H0,0,0,0 (A.12)

+H0,0H2,0 +H0,0H1,0,0 +H0,0H2,0 +H0,0H1,0,0 +H2H0,0,0 +H2H0,0,0

+H1,0H0,0,0 +H1,0H0,0,0 + 2H0H0,0,0,0 + 2H0H1,1,0,0 + 2H0H0,0,0,0

+2H0H1,1,0,0 + 2H0,0H0,0,0 + 2H0,0H1,1,0 + 2H0,0H0,0,0 + 2H0,0H1,1,0

+2H1,1H0,0,0 + 2H1,1H0,0,0 − 4H0,0 ζ3 − 4H1,0 ζ3 +H4,0 +H2,0,0,0

+H1,0,0,0,0 + 2H0,0,0,0,0 + 2H4,1 + 2H1,1,0,0,0 − 4H0,0 ζ3 − 4H1,0 ζ3 +H4,0

+H2,0,0,0 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H4,1 + 2H1,1,0,0,0 − 4H0H0 ζ3

−4H0H1 ζ3 − 4H0H1 ζ3 +H0H4 +H0H4 + 2H1H4 + 2H1H4 +H5 +H5 − 4 ζ5

]

,

L−

3,2 =
1

4

[

H0H1,0,0,0 +H0H1,0,0,0 +H1H0,0,0,0 +H1H0,0,0,0 +H0,0H1,0,0 (A.13)

+H0,0H1,0,0 +H1,0H0,0,0 +H1,0H0,0,0 + 2H0H0,0,0,0 + 2H0H3,0 + 2H0H1,2,0

+2H0H0,0,0,0 + 2H0H3,0 + 2H0H1,2,0 + 2H1H3,0 + 2H1H3,0 + 2H0,0H0,0,0

+2H0,0H3 + 2H0,0H1,2 + 2H0,0H0,0,0 + 2H0,0H3 + 2H0,0H1,2 + 2H1,0H3

+2H1,0H3 + 8H0,0 ζ3 + 8H1,0 ζ3 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H3,0,0 + 2H3,2

+2H1,2,0,0 + 8H0,0 ζ3 + 8H1,0 ζ3 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H3,0,0 + 2H3,2

+2H1,2,0,0 + 8H0H0 ζ3 + 8H0H1 ζ3 + 8H0H1 ζ3 +H5 +H5 + 16 ζ5

]

,

L−

2,1,1,1 =
1

4

[

H5 +H5 +H4,1 +H4,1 +H3,2 +H3,2 +H3,1,1 +H3,1,1 +H2,3 +H2,3 (A.14)

+H2,2,1 +H2,2,1 +H2,1,2 +H2,1,2 +H1,0,0,0,0 +H1,0,0,0,0 +H1,3,0 +H1,3,0

+H1,2,0,0 +H1,2,0,0 +H1,2,1,0 +H1,2,1,0 +H1,1,0,0,0 +H1,1,0,0,0 +H1,1,2,0 +H1,1,2,0

+H1,1,1,0,0 +H1,1,1,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0 + 2H4,0 + 2H4,0 + 2H3,0,0

+2H3,0,0 + 2H3,1,0 + 2H3,1,0 + 2H2,0,0,0 + 2H2,0,0,0 + 2H2,2,0 + 2H2,2,0

+2H2,1,0,0 + 2H2,1,0,0 + 2H2,1,1,0 + 2H2,1,1,0 + 2H2,1,1,1 + 2H2,1,1,1 + 2H1,1,1,1,0

+2H1,1,1,1,0 − 4 ζ5 +H0H1,0,0,0 +H0H1,3 +H0H1,2,0 +H0H1,2,1 +H0H1,1,0,0

+H0H1,1,2 +H0H1,1,1,0 +H0H1,0,0,0 +H0H1,3 +H0H1,2,0 +H0H1,2,1

+H0H1,1,0,0 +H0H1,1,2 +H0H1,1,1,0 +H1H0,0,0,0 +H1H4 +H1H3,0 +H1H3,1

+H1H2,0,0 +H1H2,2 +H1H2,1,0 +H1H0,0,0,0 +H1H4 +H1H3,0 +H1H3,1

+H1H2,0,0 +H1H2,2 +H1H2,1,0 +H0,0H1,0,0 +H0,0H1,2 +H0,0H1,1,0

+H0,0H1,1,1 +H0,0H1,0,0 +H0,0H1,2 +H0,0H1,1,0 +H0,0H1,1,1 +H2H1,0,0

+H2H1,2 +H2H1,1,0 +H2H1,0,0 +H2H1,2 +H2H1,1,0 +H1,0H0,0,0 +H1,0H3

+H1,0H2,0 +H1,0H2,1 +H1,0H0,0,0 +H1,0H3 +H1,0H2,0 +H1,0H2,1 +H1,1H0,0,0

+H1,1H3 +H1,1H2,0 +H1,1H0,0,0 +H1,1H3 +H1,1H2,0 + 2H0H0,0,0,0 + 2H0H4

+2H0H3,0 + 2H0H3,1 + 2H0H2,0,0 + 2H0H2,2 + 2H0H2,1,0 + 2H0H2,1,1

+2H0H1,1,1,1 + 2H0H0,0,0,0 + 2H0H4 + 2H0H3,0 + 2H0H3,1 + 2H0H2,0,0

+2H0H2,2 + 2H0H2,1,0 + 2H0H2,1,1 + 2H0H1,1,1,1 + 2H1H2,1,1 + 2H1H2,1,1

+2H0,0H0,0,0 + 2H0,0H3 + 2H0,0H2,0 + 2H0,0H2,1 + 2H0,0H0,0,0 + 2H0,0H3
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+2H0,0H2,0 + 2H0,0H2,1 + 2H2H0,0,0 + 2H2H3 + 2H2H2,0 + 2H2H2,1

+2H2H1,1,1 + 2H2H0,0,0 + 2H2H3 + 2H2H2,0 + 2H2H2,1 + 2H2H1,1,1

+2H1,1H2,1 − 2H1,1 ζ3 + 2H1,1H2,1 − 2H1,1 ζ3

]

.

A.7 Expression of Brown’s SVHPLs in terms of the L± functions

In this appendix we present the expression of Brown’s SVHPLs corresponding to Lyndon

words in terms of the Z2 × Z2 eigenfunctions L±
w(z).

L0 = L−
0 ,

L1 = L+
1 − 1

2
L−
0 ,

L2 = L−
2 ,

L3 = L+
3 − 1

12
[L−

0 ]
3 ,

L2,1 = −1

4
L+
1 [L−

0 ]
2 +

1

2
L+
3 + L−

2,1 + ζ3 ,

L4 = L−
4 ,

L3,1 = −1

4
L−
2 [L−

0 ]
2 + L−

4 + L+
3,1 ,

L2,1,1 = −1

4
L−
2 L

−
0 L

+
1 +

1

2
L+
3,1 + L−

2,1,1 ,

L5 = L+
5 − 1

240
[L−

0 ]
5 ,

L4,1 =
1

48
L+
1 [L−

0 ]
4 − 1

4
L+
3 [L−

0 ]
2 +

1

2
[L−

0 ]
2 ζ3 +

3

2
L+
5 + L−

4,1 + ζ5 , (A.15)

L3,2 = − 1

16
L+
1 [L−

0 ]
4 +

1

2
L+
3 [L−

0 ]
2 − 7

2
L+
5 − [L−

0 ]
2 ζ3 + L−

3,2 − 4 ζ5 ,

L3,1,1 =
1

16
[L−

0 ]
3 [L+

1 ]
2 − 1

4
L−
2,1 [L

−
0 ]

2 +
7

960
[L−

0 ]
5 − 1

4
L−
0 L

+
1 L

+
3 +

1

2
L−
0 L

+
1 ζ3

+L−
4,1 + L+

3,1,1 ,

L2,2,1 = − 3

16
[L−

0 ]
3 [L+

1 ]
2 +

1

2
L−
2,1 [L

−
0 ]

2 − 13

960
[L−

0 ]
5 +

3

4
L−
0 L

+
1 L

+
3 − 1

2
L−
0 L

+
1 ζ3

−7

2
L−
4,1 −

1

2
L−
3,2 + L+

2,2,1 ,

L2,1,1,1 =
1

48
[L−

0 ]
2 [L+

1 ]
3 − 1

192
L+
1 [L−

0 ]
4 +

1

16
L+
3 [L−

0 ]
2 − 1

8
[L−

0 ]
2 ζ3 −

1

4
L−
0 L

−
2,1 L

+
1

−1

4
L+
5 +

1

2
L+
3,1,1 +

1

2
ζ5 + L−

2,1,1,1 ,

L6 = L−
6 ,

L5,1 = −1

4
L−
4 [L−

0 ]
2 +

1

48
L−
2 [L−

0 ]
4 + 2L−

6 + L+
5,1 ,

L4,2 =
3

4
L−
4 [L−

0 ]
2 − 1

12
L−
2 [L−

0 ]
4 − 11

2
L−
6 + L+

4,2 ,

L4,1,1 =
1

16
L−
2 L

+
1 [L−

0 ]
3 − 1

4
L+
3,1 [L

−
0 ]

2 − 1

4
L−
4 L

−
0 L

+
1 +

1

2
L−
2 L

−
0 ζ3 +

3

2
L+
5,1 + L−

4,1,1 ,
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L3,2,1 = − 3

16
L−
2 L

+
1 [L−

0 ]
3 +

1

2
L+
3,1 [L

−
0 ]

2 +
3

4
L−
4 L

−
0 L

+
1 − 1

2
L−
2 L

−
0 ζ3 −

7

2
L+
5,1 + L−

3,2,1 ,

L3,1,2 = −1

4
L−
2 L

−
0 L

+
3 − 3

2
L−
2 L

−
0 ζ3 + L−

3,1,2 + 3L+
5,1 + L+

4,2 ,

L3,1,1,1 =
1

16
L−
2 [L−

0 ]
2 [L+

1 ]
2 +

1

4
L−
4 [L−

0 ]
2 − 5

192
L−
2 [L−

0 ]
4 − 1

4
L−
2,1,1 [L

−
0 ]

2 − 1

4
L−
0 L

+
1 L

+
3,1

−L−
6 + L−

4,1,1 + L+
3,1,1,1 ,

L2,2,1,1 = −1

4
L−
2 [L−

0 ]
2 [L+

1 ]
2 − 3

4
L−
4 [L−

0 ]
2 +

1

12
L−
2 [L−

0 ]
4 +

3

4
L−
2,1,1 [L

−
0 ]

2 +
11

4
L−
6

+
1

4
L−
2 L

+
1 L

+
3 − 1

2
L−
2 L

+
1 ζ3 +

3

4
L−
0 L

+
1 L

+
3,1 −

1

2
L−
3,1,2 − 5L−

4,1,1 − L−
3,2,1 + L+

2,2,1,1,

L2,1,1,1,1 = − 5

192
L−
2 L

+
1 [L

−
0 ]

3 +
1

16
L+
3,1[L

−
0 ]

2 +
1

48
L−
2 L

−
0 [L

+
1 ]

3 +
1

8
L−
4 L

−
0 L

+
1 − 1

4
L−
2 L

−
0 ζ3

−1

4
L−
0 L

−
2,1,1 L

+
1 − 1

4
L+
5,1 +

1

2
L+
3,1,1,1 + L−

2,1,1,1,1 . (A.16)

B Analytic continuation of harmonic sums

In this section we review the analytic continuation of multiple harmonic sums and the

structural relations between them, as presented by Blümlein [51]. Multiple harmonic sums

are defined by,

Sa1,··· ,an(N) =

N
∑

k1=1

k1
∑

k2=1

· · ·
kn−1
∑

kn=1

sgn(a1)
k1

k
|a1|
1

· · · sgn(an)
kn

k
|an|
n

, (B.1)

where the ak are positive or negative integers, and N is a positive integer. For the cases in

which we are interested, they are similar to the Euler-Zagier sums (3.10), except that the

summation range differs slightly. They are related to Mellin transforms of real functions

or distributions f(x),

Sa1,...,an(N) =

∫ 1

0
dx xN fa1,...,an = M[fa1,...,an(x)](N) . (B.2)

Typically f(x) are HPLs weighted by factors of 1/(1± x). To avoid singularities at x = 1,

it is often useful to consider the +-distribution,

M[(f(x))+](N) =

∫ 1

0
dx
(

xN − 1
)

f(x) . (B.3)

The weight |w| of the harmonic sum is given by |w| =∑n
k=1 |ak|. The number of harmonic

sums of weight w is equal to 2 · 3|w|−1, but not all of them are independent. For example,

they obey shuffle relations [73]. It is natural to ask whether these are the only relations

they satisfy. In fact, it is known that in the special case N → ∞, in which the sums

reduce to multiple zeta values, many new relations emerge [62, 74–76]. In ref. [51], an

analytic continuation of the harmonic sums was considered. It is defined by the integral

representation, eq. (B.2), where N is allowed to take complex values. This allows for two
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new operations — differentiation and evaluation at fractional arguments — which generate

new structural relations among the harmonic sums.

In the present work, harmonic sums with negative indices do not appear, so we will

assume that ak > 0. This assumption provides a considerable simplification. The derivative

relations allow for the extraction of logarithmic factors,

M[logl(x)f(x)](N) =
dl

dN l
M[f(x)](N) , (B.4)

which explains why the derivatives of the building blocks in section 6 generate SVHPLs. In

ref. [51], all available relations are imposed, and the following are the irreducible functions

through weight five:

weight 1

S1(N) = ψ(N + 1) + γE = M

[(

1

x− 1

)

+

]

(N) (B.5)

weight 3

F4(N) = M

[(

Li2(x)

1− x

)

+

]

(N) (B.6)

weight 4

F6a(N) = M

[(

Li3(x)

1− x

)

+

]

(N)

F7(N) = M

[(

S1,2(x)

x− 1

)

+

]

(N)

(B.7)

weight 5

F9(N) = M

[(

Li4(x)

x− 1

)

+

]

(N)

F11(N) = M

[(

S2,2(x)

x− 1

)

+

]

(N)

F13(N) = M

[(

Li22(x)

x− 1

)

+

]

(N)

F17(N) = M

[(

S1,3(x)

x− 1

)

+

]

(N)

(B.8)

There are no irreducible basis functions of weight two. These functions are meromorphic

with poles at the negative integers. To use these functions in the integral transform (4.4),

we need the expansions near the poles. Actually, we only need the expansions around zero,

since the expansions around any integer can be obtained from them using the recursion
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relations of ref. [51],

ψ(n)(1 + z) = ψ(n)(z) + (−1)n
n!

zn+1

F4(z) = F4(z − 1)− 1

z

[

ζ2 −
S1(z)

z

]

F6a(z) = F6a(z − 1)− ζ3
z

+
1

z2

[

ζ2 −
S1(z)

z

]

F7(z) = F7(z − 1) +
ζ3
z

− 1

2z2
[

S2
1(z) + S2(z)

]

F9(z) = F9(z − 1) +
ζ4
z

− ζ3
z2

+
ζ2
z3

− 1

z4
S1(z)

F11(z) = F11(z − 1) +
ζ4
4z

− ζ3
z2

+
1

2z3
[

S2
1(z) + S2(z)

]

F13(z) = F13(z − 1) +
ζ22
z

− 4ζ3
z2

− 2ζ2
z2
S1(z) +

2S2,1(z)

z2
+

2

z3
[

S2
1(z) + S2(z)

]

F17(z) = F17(z − 1) +
ζ4
z

− 1

6z2
[

S3
1(z) + 3S1(z)S2(z) + 2S3(z)

]

.

(B.9)

The expansions around zero can be obtained from the integral representations. We find

that, for δ → 0, the expansions can all be expressed simply in terms of multiple zeta values,

S1(δ) = −
∞
∑

n=1

(−δ)nζn+1 ,

F4(δ) =
∞
∑

n=1

(−δ)nζn+1,2 ,

F6a(δ) =
∞
∑

n=1

(−δ)nζn+1,3 ,

F7(δ) = −
∞
∑

n=1

(−δ)nζn+1,2,1 ,

F9(δ) = −
∞
∑

n=1

(−δ)nζn+1,4 ,

F11(δ) = −
∞
∑

n=1

(−δ)nζn+1,3,1 ,

F13(δ) = −
∞
∑

n=1

(−δ)n (2ζn+1,2,2 + 4ζn+1,3,1) ,

F17(δ) = −
∞
∑

n=1

(−δ)nζn+1,2,1,1 .

(B.10)

These single-variable functions can be assembled to form two-variable functions of ν and

n, such that their inverse Fourier-Mellin transforms produce sums of SVHPLs. This con-

struction is not unique, because other building blocks could be added. We choose to define
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the two-variable functions as,

F̃4 =sgn(n)

{

F4

(

iν +
|n|
2

)

+ F4

(

− iν +
|n|
2

)

− 1

4
D2

νEν,n − 1

8
N2Eν,n − 1

2
V 2Eν,n

+
1

2

(

ψ− + V
)

DνEν,n + ζ2Eν,n − 4ζ3

}

+N

{

1

2
V ψ− +

1

2
ζ2

}

,

F̃6a =sgn(n)

{

F6a

(

iν +
|n|
2

)

− F6a

(

− iν +
|n|
2

)

− 1

12
D3

νEν,n − 3

8
N2V Eν,n − 1

2
V 3Eν,n

+
1

4

(

ψ−+V
)

D2
νEν,n+ζ2DνEν,n+ζ3ψ−

}

+N

{

1

16

(

N2+12V 2
)

ψ−+ζ2V

}

,

F̃7 =F7

(

iν +
|n|
2

)

− F7

(

−iν + |n|
2

)

− 1

2
F̃6a +

1

2
V F̃4 −

[

1

8
(ψ−)

2 − 1

4
ψ′
+ +

1

2
ζ2

]

DνEν,n

+

[

1

2
F̃4 +

1

16
N2Eν,n +

1

4
V 2Eν,n − 1

4
V DνEν,n +

1

8
D2

νEν,n − ζ3

]

ψ− + 5V ζ3

+ sgn(n)N

{

−1

8
V E2

ν,n − 1

2
V 3 − 3

32
V N2 −

[

1

8
(ψ−)

2 − 1

4
ψ′
+ +

1

2
ζ2

]

V

}

,

(B.11)

where

ψ− ≡ ψ

(

1 + iν +
|n|
2

)

− ψ

(

1− iν +
|n|
2

)

,

ψ′
+ ≡ ψ′

(

1 + iν +
|n|
2

)

+ ψ′

(

1− iν +
|n|
2

)

.

(B.12)

B.1 The basis in (ν, n) space in terms of single-valued HPLs

In this appendix we present the analytic expressions for the basis of Z2×Z2 eigenfunctions

in (ν, n) space in terms of single-valued HPLs in (w,w∗) space up to weight five. The

Z2 × Z2 acts on (w,w∗) space via conjugation and inversion, while it acts on (ν, n) space

via [n ↔ −n] and [ν ↔ −ν, n ↔ −n]. The eigenvalue under Z2 × Z2 in (w,w∗) space will

be referred to as parity.

Basis of weight 1 with parity (+,+):

I [1] = 2L+
1 . (B.13)

Basis of weight 1 with parity (+,−):

I [δ0,n] = L−
0 . (B.14)

Basis of weight 2 with parity (+,+):

I [Eν,n] = [L+
1 ]

2 − 1

4
[L−

0 ]
2 , (B.15)

I [δ0,n/(iν)] =
1

2
[L−

0 ]
2 . (B.16)
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Basis of weight 2 with parity (+,−):

I [V ] = −L−
0 L

+
1 . (B.17)

Basis of weight 2 with parity (−,−):

I [N ] = 4L−
2 . (B.18)

Basis of weight 3 with parity (+,+):

I
[

E2
ν,n

]

=
2

3
[L+

1 ]
3 − L+

3 , (B.19)

I
[

N2
]

= 12L+
3 − 2L+

1 [L−
0 ]

2 , (B.20)

I
[

V 2
]

=
1

2
L+
1 [L−

0 ]
2 − L+

3 . (B.21)

Basis of weight 3 with parity (+,−):

I [V Eν,n] =
1

6
[L−

0 ]
3 − 2L−

2,1 , (B.22)

I [DνEν,n] = − 1

12
[L−

0 ]
3 − L−

0 [L+
1 ]

2 + 4L−
2,1 , (B.23)

I
[

δ0,n/(iν)
2
]

=
1

6
[L−

0 ]
3 . (B.24)

Basis of weight 3 with parity (−,+):

I [N V ] = −L−
2 L

−
0 . (B.25)

Basis of weight 3 with parity (−,−):

I [N Eν,n] = 2L−
2 L

+
1 . (B.26)

Basis of weight 4 with parity (+,+):

I
[

E3
ν,n

]

=
1

2
[L−

2 ]
2 +

1

2
[L−

0 ]
2 [L+

1 ]
2 +

7

96
[L−

0 ]
4 +

1

2
[L+

1 ]
4 − 3

2
L−
0 L

−
2,1 (B.27)

− 5

2
L+
1 L

+
3 − 3L+

1 ζ3 ,

I
[

N2Eν,n

]

=
1

12
[L−

0 ]
4 + 2 [L−

2 ]
2 − 2L−

0 L
−
2,1 + 2L+

1 L
+
3 − 4L+

1 ζ3 , (B.28)

I
[

V 2Eν,n

]

= −1

2
[L−

2 ]
2 − 1

4
[L−

0 ]
2 [L+

1 ]
2 − 1

12
[L−

0 ]
4 +

3

2
L−
0 L

−
2,1 +

1

2
L+
1 L

+
3 (B.29)

− L+
1 ζ3 ,

I [V DνEν,n] =
3

4
[L−

0 ]
2[L+

1 ]
2 +

1

16
[L−

0 ]
4 + [L−

2 ]
2 − 2L−

0 L
−
2,1 − 2L+

1 L
+
3 + 4L+

1 ζ3, (B.30)

I
[

D2
νEν,n

]

= −1

2
[L−

0 ]
2 [L+

1 ]
2 − 1

24
[L−

0 ]
4 − 2 [L−

2 ]
2 + 4L+

1 L
+
3 − 8L+

1 ζ3 , (B.31)

I
[

δ0,n/(iν)
3
]

=
1

24
[L−

0 ]
4 . (B.32)
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Basis of weight 4 with parity (+,−):

I
[

V E2
ν,n

]

=
1

8
L+
1 [L−

0 ]
3 +

1

6
L−
0 [L+

1 ]
3 − L−

0 ζ3 − 2L−
2,1 L

+
1 , (B.33)

I
[

N2 V
]

=
1

3
L+
1 [L−

0 ]
3 − 2L−

0 L
+
3 , (B.34)

I
[

V 3
]

=
1

2
L−
0 L

+
3 − 1

6
L+
1 [L−

0 ]
3 , (B.35)

I [Eν,nDνEν,n] = −1

8
L+
1 [L−

0 ]
3 − 1

2
L−
0 [L+

1 ]
3 +

1

2
L−
0 L

+
3 + L−

0 ζ3 + 2L−
2,1 L

+
1 , (B.36)

Basis of weight 4 with parity (−,+):

I [N V Eν,n] = −2L+
3,1 , (B.37)

I [N DνEν,n] = 8L+
3,1 − 2L−

2 L
−
0 L

+
1 . (B.38)

Basis of weight 4 with parity (−,−):

I
[

F̃4

]

= −1

4
L−
2 [L−

0 ]
2 + L−

2 [L+
1 ]

2 + 4L−
4 − 6L−

2,1,1 , (B.39)

I
[

N E2
ν,n

]

=
1

2
L−
2 [L−

0 ]
2 − 6L−

4 + 8L−
2,1,1 , (B.40)

I
[

N3
]

= 40L−
4 − 6L−

2 [L−
0 ]

2 , (B.41)

I
[

N V 2
]

=
1

2
L−
2 [L−

0 ]
2 − 2L−

4 . (B.42)

Basis of weight 5 with parity (+,+):

I
[

E4
ν,n

]

=
17

96
L+
1 [L

−

0 ]
4 − 5

4
L+
3 [L

−

0 ]
2 +

2

5
[L+

1 ]
5 +

43

4
L+
5 + [L−

0 ]
2[L+

1 ]
3 + 4[L−

0 ]
2ζ3 (B.43)

− 4L+
3 [L

+
1 ]

2 − 8[L+
1 ]

2ζ3 − 4L−

0 L
−

2,1L
+
1 + 12L+

3,1,1 + 8L+
2,2,1,

I
[

N2E2
ν,n

]

=
1

3
[L−

0 ]
2[L+

1 ]
3 − 1

24
L+
1 [L

−

0 ]
4 + 4L+

1 [L
−

2 ]
2 + 3L+

3 [L
−

0 ]
2 − 8[L−

0 ]
2ζ3 (B.44)

− 25L+
5 − 24L+

3,1,1 − 16L+
2,2,1,

I
[

N4
]

=
13

6
L+
1 [L

−

0 ]
4 − 20L+

3 [L
−

0 ]
2 + 140L+

5 , (B.45)

I
[

V 2E2
ν,n

]

= − 1

12
[L−

0 ]
2[L+

1 ]
3 − 13

96
L+
1 [L

−

0 ]
4 +

1

4
L+
3 [L

−

0 ]
2 − 1

4
L+
5 − L+

1 [L
−

2 ]
2 (B.46)

+ 2[L−

0 ]
2ζ3 + 10L+

3,1,1 + 4L+
2,2,1 − 4ζ5,

I
[

N2V 2
]

= −1

8
L+
1 [L

−

0 ]
4 + L+

3 [L
−

0 ]
2 − 5L+

5 , (B.47)

I
[

V 4
]

=
5

96
L+
1 [L

−

0 ]
4 − 1

4
L+
3 [L

−

0 ]
2 +

3

4
L+
5 , (B.48)

I [V Eν,nDνEν,n] =
7

48
L+
1 [L

−

0 ]
4 − 3

4
L+
3 [L

−

0 ]
2 − 3

2
[L−

0 ]
2ζ3 +

7

2
L+
5 + L+

1 [L
−

2 ]
2 + L−

0 L
−

2,1L
+
1 (B.49)

− 12L+
3,1,1 − 4L+

2,2,1 + 6ζ5,

I
[

[DνEν,n]
2
]

=
3

2
[L−

0 ]
2[L+

1 ]
3 − 1

3
L+
1 [L

−

0 ]
4 − 2L+

1 [L
−

2 ]
2 + 2L+

3 [L
−

0 ]
2 + 2[L−

0 ]
2ζ3 (B.50)

− 4L+
3 [L

+
1 ]

2 + 8[L+
1 ]

2ζ3 − 8L−

0 L
−

2,1L
+
1 − 9L+

5 + 48L+
3,1,1 + 16L+

2,2,1 − 24ζ5,
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I
[

Eν,nD
2
νEν,n

]

=
1

6
L+
1 [L

−

0 ]
4 − [L−

0 ]
2[L+

1 ]
3 − L+

3 [L
−

0 ]
2 + 4L+

3 [L
+
1 ]

2 − 8[L+
1 ]

2ζ3 (B.51)

+ 4L−

0 L
−

2,1L
+
1 + 2L+

5 − 24L+
3,1,1 − 8L+

2,2,1 + 12ζ5 ,

I
[

NF̃4

]

=
1

12
L+
1 [L

−

0 ]
4 − 7

4
L+
3 [L

−

0 ]
2 +

7

2
[L−

0 ]
2ζ3 − L+

1 [L
−

2 ]
2 − L−

0 L
−

2,1L
+
1 (B.52)

+ 15L+
5 + 12L+

3,1,1 + 8L+
2,2,1.

Basis of weight 5 with parity (+,−):

I
[

F̃7

]

=
5

8
L−
0 [L−

2 ]
2 − 11

48
[L−

0 ]
3 [L+

1 ]
2 +

1

4
L−
2,1 [L

−
0 ]

2 +
59

3840
[L−

0 ]
5 (B.53)

+
5

48
L−
0 [L+

1 ]
4 +

3

2
L−
0 L

+
1 L

+
3 − 7

2
L−
3,2 − L−

2,1 [L
+
1 ]

2 − 8L−
0 L

+
1 ζ3

− 10L−
4,1 + 7L−

2,1,1,1 ,

I
[

V E3
ν,n

]

=
1

2
L−
0 [L−

2 ]
2 +

3

16
[L−

0 ]
3 [L+

1 ]
2 +

3

4
L−
2,1 [L

−
0 ]

2 − 1

192
[L−

0 ]
5 (B.54)

− 1

4
L−
0 L

+
1 L

+
3 +

9

2
L−
0 L

+
1 ζ3 −

9

2
L−
3,2 − 6L−

4,1 − 12L−
2,1,1,1 ,

I
[

N2 V Eν,n

]

= −1

4
[L−

0 ]
3 [L+

1 ]
2 − 1

48
[L−

0 ]
5 + L−

2,1 [L
−
0 ]

2 + L−
0 L

+
1 L

+
3 (B.55)
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V 3Eν,n
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1 ]
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−
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2 +
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[L−

0 ]
5 − 3
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L−
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+
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+
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+
3

2
L−
0 L

+
1 ζ3 +

3

2
L−
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4,1 ,

I
[

E2
ν,nDνEν,n

]
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2
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0 [L−

2 ]
2 − 7
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[L−

0 ]
3 [L+

1 ]
2 − 1

48
[L−

0 ]
5 − 1

6
L−
0 [L+

1 ]
4 (B.57)

+L−
0 L

+
1 L

+
3 − 2L−

0 L
+
1 ζ3 + 4L−

4,1 + 3L−
3,2 + 8L−

2,1,1,1 ,

I
[

N2DνEν,n

]

=
3

2
[L−

0 ]
3 [L+

1 ]
2 +

1

24
[L−

0 ]
5 − 2L−

0 [L−
2 ]

2 − 4L−
2,1 [L

−
0 ]

2 (B.58)

−8L−
0 L

+
1 L

+
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0 L
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]

=
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0 [L−

2 ]
2 − 3

8
[L−

0 ]
3 [L+

1 ]
2 − 1
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[L−

0 ]
5 + L−

2,1 [L
−
0 ]

2 (B.59)

+2L−
0 L

+
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+
3 − 4L−
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]

= − 1
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+
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+
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0 L
+
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+ 12L−
3,2 ,

I
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νEν,n

]

=
1

2
[L−

0 ]
3 [L+

1 ]
2 +

7
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[L−

0 ]
5 + 6L−

0 [L−
2 ]
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I
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4
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1
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[L−
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Basis of weight 5 with parity (−,+):

I
[

F̃6a

]

=
1

12
L−
2 [L−

0 ]
3 − L−

4 L
−
0 + L−

2 L
−
2,1 − L+

1 L
+
3,1 , (B.63)
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]
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L−
2 [L

−
0 ]

3 − 1

2
L−
2 L

−
0 [L

+
1 ]

2 − 3

4
L−
4 L

−
0 − L−

2 L
−
2,1 (B.64)

+3L−
0 L

−
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1 L
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3,1 ,

I
[

N V E2
ν,n

]

= − 1

48
L−
2 [L−

0 ]
3 +

1

2
L−
2 L

−
0 [L+

1 ]
2 +

3

4
L−
4 L

−
0 − 2L−

0 L
−
2,1,1 (B.65)

− 2L+
1 L

+
3,1 ,

I
[

N3 V
]

=
3

4
L−
2 [L−

0 ]
3 − 5L−

4 L
−
0 , (B.66)

I
[

N V 3
]

=
3

4
L−
4 L

−
0 − 7

48
L−
2 [L−

0 ]
3 , (B.67)

I [N Eν,nDνEν,n] = − 5

24
L−
2 [L−

0 ]
3 +

3

2
L−
4 L

−
0 − L−

2 L
−
0 [L+

1 ]
2 + 4L+

1 L
+
3,1 . (B.68)

Basis of weight 5 with parity (−,−):

I
[

N E3
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]
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8
L−
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+
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0 ]
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L−
4 L

+
1 − 1

2
L−
2 L

+
3 − L−

2 [L+
1 ]

3 (B.69)

+12L−
2,1,1 L

+
1 ,

I
[

Eν,nN
3
]
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2
L−
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+
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2 + 2L−

4 L
+
1 + 6L−

2 L
+
3 − 16L−

2 ζ3 − 4L−
0 L

+
3,1 , (B.70)
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L−
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+
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0 L
+
3,1 , (B.71)

I [N V DνEν,n] =
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4
L−
2 L

+
1 [L−

0 ]
2 − 3L−
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2 L
+
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− 2L−
2 ζ3 − 4L−
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+
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[55] J. Blümlein, Algebraic relations between harmonic sums and associated quantities,

Comput. Phys. Commun. 159 (2004) 19 [hep-ph/0311046] [INSPIRE].

[56] D. Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function,

Math. Ann. 286 (1990) 613.

[57] S. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, Irvine

lecture notes, 1977.

[58] S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and

multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].

[59] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative

geometry, Duke Math. J. 128 (2005), 209 [math/0208144].

– 66 –

http://dx.doi.org/10.1103/PhysRevD.85.085019
http://arxiv.org/abs/1112.6365
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6365
http://dx.doi.org/10.1103/PhysRevD.86.065026
http://arxiv.org/abs/1112.6366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6366
http://arxiv.org/abs/1205.0186
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0186
http://dx.doi.org/10.1016/j.crma.2004.02.001
http://dx.doi.org/10.1142/S0217751X00000367
http://arxiv.org/abs/hep-ph/9905237
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237
http://dx.doi.org/10.1142/S0217751X99001032
http://arxiv.org/abs/hep-ph/9806280
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806280
http://dx.doi.org/10.1103/PhysRevD.60.014018
http://arxiv.org/abs/hep-ph/9810241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810241
http://dx.doi.org/10.1016/j.cpc.2009.07.004
http://arxiv.org/abs/0901.3106
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3106
http://arxiv.org/abs/0901.0837
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0837
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1016/j.cpc.2003.12.004
http://arxiv.org/abs/hep-ph/0311046
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311046
http://dx.doi.org/10.1007/BF01453591
http://dx.doi.org/10.1063/1.1471366
http://arxiv.org/abs/hep-ph/0110083
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0110083
http://arxiv.org/abs/math/0208144


J
H
E
P
1
0
(
2
0
1
2
)
0
7
4

[60] F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].

[61] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes,

JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

[62] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple

polylogarithms, Trans. Am. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].

[63] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic

computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1

[cs/0004015].

[64] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms,

Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
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