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Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has 

historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below 

ground habitat of plants, particularly with respect to fundamental questions such as which 

microorganisms are present and what do they do there. In recent years however, this has begun 

to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate 

in the phyllosphere of different plants and that plant factors are involved in shaping these 

phyllosphere communities, which feature specific adaptations and exhibit multipartite 

relationships both with host plants and among community members. Insights into the 

underlying structural principals of indigenous microbial phyllosphere populations will help to 

develop a deeper understanding of the phyllosphere microbiota and will have applications in 

plant growth promotion and protection.  

 

Plants are populated by microorganisms both below and above ground. The phyllosphere (Fig. 1)1 

comprises the aerial parts of plants and is dominated by the leaves. The leaf surface habitat is vast: 

vegetation modelling2 resulted in an estimated global leaf area of 508,630,100 km2, which corresponds 

to 1,017,260,200 km2 of upper and lower leaf surface and is an area approximately twice as great as 

the land surface. Assuming that there are on average 106 to 107 bacteria per cm2 leaf surface3, the 

global bacterial population present in the phyllosphere could comprise up to 1026 cells. The total size 

of the fungal population has not yet been estimated, but is expected to be lower[au: ok?]3,4.  

Annual plants complete their life cycle within a single growth season, perennial deciduous plants 

synchronously form and shed leaves every year, and evergreen plants do so sequentially. 

Consequently, the phyllosphere can be considered an ephemeral or short-lived environment as 

opposed to the rhizosphere, which comprises the area in the soil around plant roots [au: ok?]. 
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Successful phyllosphere inhabitants can be expected to multiply and occupy newly formed niches 

while the leaves are expanding. Microbial epiphytes are exposed to the atmosphere and are subjected 

to the diurnal cycle; they are influenced directly by sunlight and indirectly by plant metabolism. 

Furthermore, the hydrophobic waxy cuticle that covers plant epidermal cells reduces evaporation of 

water as well as leaching of plant metabolites, thus resulting in an oligotrophic environment.  

Despite these unifying aspects, there is substantial environmental heterogeneity at the macro- and 

microscale. At the macroscale, factors such as climatic conditions, the location of leaves within the 

vegetation and the chemical composition of the cuticle affect the environment. On the microscale, the 

presence of veins, stomata and surface appendages, including trichomes and hydathodes, alter nutrient 

availability5,6. As well as nutrient limitation, microorganisms must also deal with UV radiation and 

low or fluctuating water availability and, as a consequence, are often unevenly distributed on the leaf 

surface and multiply unevenly7. In addition to both predictable and unpredictable environmental 

variability the microbial inhabitants of the phyllosphere also encounter antimicrobial compounds 

produced by plants or other microorganisms. Moreover, they can enter the apoplast (such 

microorganisms are then sometimes referred to as endophytes) where they trigger a range of plant 

defence responses. Phytopathogens can counteract such responses through the transfer of effectors8. 

An epiphytic lifestyle predominates in commensal phyllosphere bacteria [au: just bacteria?]; 

however, it also represents the initial phase of foliar colonization by many phytopathogens. In the case 

of bacterial pathogens, this phase precedes entry into the leaves via natural openings such as stomata 

or hydathodes and the onset of disease9,10, or follows egress from the inner part of the leaf to the 

surface11.  

Although the phyllosphere has been less intensively studied than the rhizosphere, it has received 

considerable attention in recent years, and interest in the microbiology of leaf surfaces is now 

acknowledged to extend beyond pathogens. This review highlights recent cultivation-independent and 

-dependent studies that survey the microbial inhabitants of the phyllosphere and indicate conserved 

mechanisms by which predominating groups cope with the challenges of life on the leaf surfaces of 

terrestrial plants.  
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Microbial phyllosphere communities  

Several recent cultivation-independent studies have revealed insights into the composition of 

microbial phyllosphere communities. It is apparent that these communities do not represent random 

assemblies of microorganisms, but instead undergo selection that results at least partially in 

predictable microbial communities with relatively few dominant (sub-)phyla12-18. This conclusion is 

derived from evaluations of the community composition with respect to plant host species as well as 

temporal and spatial factors. Most studies on the identity of organisms in the phyllosphere have 

focused on bacteria and, to a lesser extent, on fungi; archaea are apparently not abundant in the 

phyllosphere12,17,19. 

 

Bacterial aggregates. Most bacteria on leaf surfaces do not occur as solitary cells or small groups of 

cells as fungi tend to do20, but in larger aggregates21; particularly at the depressions formed at the 

junctions of epidermal cells, along the veins and at the bases of trichomes3,4,22 (Fig. 1) where they are 

generally embedded within extracellular polymeric substances (EPS)3,4. The EPS helps maintain a 

hydrated surface around the bacteria and eventually also to concentrate detoxifying enzymes (see 

below). Using experimental inoculations with a bacterial model strain and observations by 

epifluorescence microscopy suggests that most bacteria are located in aggregates of 1,000 cells or 

more and that the size of the aggregate positively correlates with water availability22. Aggregates 

usually contain a variety of bacterial and eventually also fungal species4. How these aggregates form, 

and the contributions of local replication and relocation, are key questions that remain to be addressed 

in further detail at the microscale23,24. Notably, initial investigations using a bacterial dual-species 

model system have shown that different bacteria segregate in space to different extents25.  

 

Community composition. For the past 15 years, 16S/18S-ribosomal RNA gene PCR amplification 

followed by sequencing of clone libraries or, more recently, amplicon pyrosequencing, has been the 

most common approach by which the composition of the microbial phyllosphere communities has 

been analysed (see e.g.16-18,26). Overall, species richness in phyllosphere communities is high. It 

appears fungal communities are extremely variable in the phyllosphere in temperate regions and 
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exhibit even greater diversity in the phyllosphere of tropical trees16,27. The bacterial species richness is 

substantial in both temperate and in particular in the subtropical and tropical regions12,15,18,19,28; 

however, the bacterial communities are lower [au: do you mean community size is smaller (total 

number is less) or community diversity is reduced (fewer species)?]compared to the rhizosphere or 

bulk soil, as evidenced by rarefaction analysis12,19. This is not surprising, given that leaves usually 

have a relatively short lifespan and are discrete entities, in contrast to the roots which are surrounded 

by soil where microorganisms can survive in a dormant state for many years or even decades. Some 

bacterial phyla such as the Proteobacteria (and among them in particular Alphaproteobacteria and 

Gammaproteobacteria) have been shown to be predominant in the phyllosphere of distinct plant 

species using various PCR methods13,26. Metagenomic shotgun sequencing of total genomic DNA 

extracted from environmental samples is an alternative approach that generates taxonomic information 

based on single copy protein-coding marker genes. Although extraction and sequencing protocols are 

also prone to biases, metagenome shotgun sequencing avoids the PCR amplification biases that result 

from the use of target-specific primers29. Figure. 2 shows the results of an MLTreeMap analysis30 from 

four different phyllosphere samples: the dicots Glycine max (soybean), Trifolium repens (clover) and 

Arabidopsis thaliana and the monocot Oryza sativa (rice)12,19. Proteobacteria was the most represented 

phylum, with the Alphaproteobacteria representing up to 70% of the community in each of the four 

phyllosphere samples. Of these, Methylobacteriaceae were found in all four samples and 

Sphingomonadaceae was the most abundant bacterial family detected on the three dicot plants. In 

addition to the Proteobacteria, the Bacteroidetes phylum was abundant in the soybean, clover and 

A. thaliana communities, but constituted only a minor fraction of the rice sample. By contrast, 

Actinobacteria accounted for ~40% of the rice community but constituted a lower fraction of the other 

samples. The most frequently detected genera are listed in Table 1; some bacterial genera are 

recurrently found on different plants although their relative contribution to the overall community 

might differ. Some of these genera such as Agrobacterium, Burkholderia, Clavibacter, Leifsonia, 

Pantoea, Pseudomonas and Xanthomonas include phytopathogenic bacteria. Comprehensive 

cultivation-independent studies paired with strain isolation has also allowed the identification of 

representative bacterial strains of various genera including Pseudomonas, Xanthomonas, Pantoea, 
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Dadantii, Methylobacterium and Sphingomonas31-36, as well as fungal model strains such as the yeast-

like fungus Aureobasidium pullulans37, for functional studies (see further below).  

Another interesting aspect is that at the genus or order rank, there is a relatively high consistency in 

the bacterial phyllosphere communities (Fig. 2); however, at a greater phylogenetic resolution, 

remarkable differences can be observed; for example, at the strain level, community profiling shows 

striking differences between plants of different species growing adjacent to each other (see for 

example12,38). 

 

Drivers of community structure. What drivers shape microbial communities is a fundamental question 

in microbial ecology. For the phyllosphere, it is well established that environmental factors, including 

radiation, pollution and nitrogen fertilization, as well as biotic factors, such as leaf age and the 

presence of other microorganisms, affect bacterial community structure39-42 and eukaryotic microbial 

diversity is probably influenced by the same factors43,44. Although the identification of assembly rules 

for bacterial and fungal communities is very difficult due to the complexity of the abiotic and biotic 

factors and stochastic events involved, several recent studies have reported that the plant genotype is 

an important factor influencing the bacterial composition of the phyllosphere. Redford et al. analyzed 

the bacterial community composition in the phyllosphere of  pine trees and found that intra-plant 

species variability was lower than inter-plant variability, even over large geographical distances45. 

Similarly, a significant but weak association between tree species and phyllosphere communities have 

been described for tropical trees18. Another study focused on members of the ubiquitous plant 

colonizing genus Methylobacterium in the phyllosphere of A. thaliana plants under natural conditions 

and also found that intra-plant variability was lower than inter-plant variability, although the site was 

also identified as an important factor that influenced this variability38. Pronounced site effects were 

also found for bacterial and fungal communities of the salt-excreting Tamarix tree17, as well as 

bacterial communities on field-grown lettuce26 as shown by comprehensive amplicon sequencing. 

Other studies have focused on the effect of plant genotypes and involved field trials with a collection 

of A. thaliana and maize plants (accession and selected plant mutants) and indicate that plant factors 

shape the bacterial phyllosphere community structure; possible mechanisms for such genotype effects 
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might originate from leaf surface properties46, hormone jasmonic acid signaling47 or signaling via the 

gamma-aminobutyric acid (GABA) pathway48. The identification of plant genes crucial to the 

microbial composition of the phyllosphere will be of greatest interest in future studies and help 

elucidate whether plants have evolved to actively recruit these communities. This has been suggested 

for the rhizosphere49,50, and was further substantiated by recent in-depth analyses of the root associated 

microbiota, demonstrating that a small fraction of root endophytes varies between plants of different 

genotype51,52. Plants may also recruit founder or keystone species that play a fundamental role in 

structuring the overall community through microbe-microbe interactions. The finding that numerous 

bacterial genera on one plant species were represented on neighbouring plants by different strains12,38 

indicates that plants offer distinct niches to different strains of the same bacterial genus and may thus 

contribute to intra-genus variation.      

 

Origin of community members. Another basic question relates to the source of phyllosphere 

microorganisms. The finding that bacterial populations re-establish on annual plants in patterns similar 

to those seen in previous years38 argues for local reservoirs of bacteria. Although a fraction of 

microorganisms in the phyllosphere can be expected to be ad-hoc colonizers from the air, for bacteria 

at least, 16S-rRNA gene based profiling suggest that early recruitment of a ‘core’ community from 

seeds, the soil or other plants could explain the inter-annual consistency in the dominant bacterial 

community members on individual plants38. While seed-born transmission has been documented for 

Xanthomonas spp.53, a lack of knowledge of the relative contribution of microorganisms from different 

sources to the developing phyllosphere community makes it difficult to draw general conclusions. 

Dedicated analyses will be required to elucidate the relative contribution of vertical and horizontal 

transmission [au: examples of each?]. 

 

Microbial adaptation to the phyllosphere 

Successful reproduction in the phyllosphere requires adaptation to this habitat, including the ability to 

withstand abiotic and biotic stresses such as scarce nutrient supply and the presence of anti-microbial 

secondary metabolites of plant or microbial origin. Phyllosphere-inhabiting bacteria can be expected to 



 

 7 

share common strategies in addition to genotype[au: species?]-specific strategies to survive these 

stresses. The identification of traits that are important for survival and the elucidation of their 

molecular basis is not an easy task, and it has been suggested that many different traits contribute 

incrementally to epiphytic fitness54. Gene-expression studies including transcriptomic and proteomic 

analyses have helped to identify genes and protein families that are upregulated upon plant 

colonization using various biological model systems (Table 2). These data serve as a proxy by which 

to identify the bacterial protein functions that are required for survival in the environment. 

Additionally, meta (or community) proteogenomic approaches allow the identification of abundant 

proteins in microbial community members which can help infer their in planta physiology12,19 and 

stimulate targeted analysis of individual proteins or protein families to elucidate their importance.  

The following section focuses on general traits of non-pathogenic bacteria and pathogenic bacteria 

in their epiphytic phase (Fig. 3). However, it should be kept in mind that the type-III secretion system 

(T3SS) of phytopathogenic bacteria is also crucial to attain a maximal epiphytic population size9,55. In 

this context it is interesting to note that the importance of specific effectors for the development of 

aggregates on leaf surfaces was recently demonstrated for Pseudomonas syringae B728a and was 

shown to be mediated by a subpopulation of the epiphytic population and be host-dependent56[au: 

ok?]. Moreover, bioactive molecules produced by Pseudomonas strains such as coronatine57 or 

syringolinA58 counteract pathogen-triggered stomata closure and thus affect entry into the apoplast.  

 

Resistance to abiotic stresses. The phyllosphere is exposed to oxygen from plant photosynthesis and 

also to light during the day. Consequently, microbial colonizers are particularly prone to reactive 

oxygen species (ROS)-mediated direct damage of DNA and indirect damage to proteins. Protection 

mechanisms that have been shown experimentally to be important in bacterial epiphytic fitness 

involve the production of pigments59 and the activation of DNA-repair mechanisms, which include but 

are not limited to, photolyases60. Additionally, the DNA-protection protein Dps is important in stress 

protection and is present in high amounts during phyllosphere colonization12,61. Catalases and 

superoxide dismutases can also detoxify ROS.  
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Desiccation is another environmental factor that is of relevance in the phyllosphere62. Two 

principal traits are known to help bacteria cope with this challenge, aggregate formation and the 

excretion of bioactive compounds. The importance of aggregate formation was demonstrated by 

analyzing the survival of solitary versus aggregated P. syringae cells on bean-leaf surfaces that were 

periodically exposed to desiccation stress and humid conditions63. Aggregation involves the formation 

of EPS, which helps in maintaining a highly hydrated layer surrounding the bacteria and contributes to 

epiphytic fitness64-66. In addition, biosurfactants that increase wettability are commonly found to be 

secreted by phyllosphere bacteria67,68. Not only is sufficient water availability a crucial parameter, but 

fluctuations in water availability result in osmotic stress, as has been illustrated on the microscale 

through the use of bacterial bioreporters69. Pseudomonas spp. and other epiphytes can protect 

themselves against osmotic stress by accumulating compatible solutes such as choline or trehalose, 

either by de novo synthesis or by importing plant-derived osmoprotectants70,71. 

 

Resistance to (and production of) antimicrobial compounds. Plants produce a wide range of 

structurally diverse secondary metabolites with antimicrobial activity72. Additionally, antimicrobial 

compounds might be produced by microorganisms and thus be involved in structuring the community 

in planta at the local scale. Numerous bacteria produce antibiotics under laboratory conditions; 

however, the significance of their production in planta is not well established, with very few 

exceptions (e.g.,73). The relevance of mechanisms to counteract toxic compounds in situ is shown by 

the finding that resistance-nodulation-cell division (RND) efflux pumps of plant-pathogenic 

P. syringae pathovars are crucial for in planta reproduction and evading the native immune 

response74,75.  

 

Motility versus adhesion. Motility allows active movement to favourable sites on leaf surfaces and is 

likely to be assisted by chemotaxis towards nutrients or plant signalling molecules. Pseudomonas 

model strains have been shown to dynamically regulate motility in response to various endogenous 

and exogenous signals, including quorum-sensing molecules (Box 1). Motility might thus help 

Pseudomonas strains to search for more favourable sites, to facilitate spreading and also to locate their 
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ultimately preferred site, the leaf apoplast, where high growth rates of phytopathogens have been 

observed10,76. The degree to which the motility of commensal bacteria is of importance for epiphytic 

fitness is currently not clear. Notably, no evidence for flagellin production has been found so far in 

commensal phyllosphere members in planta12, provoking the question whether commensals suppress 

the expression of the genes involved in flagellum formation. Downregulating flagellin synthesis 

favours local aggregate formation and might prevent plant recognition of Flg22, a conserved peptide 

in flagella and a well-described microbial associated molecular pattern (MAMP) that is recognized by 

the plant immune receptors8. Adhesion and local replication, on the other hand, might represent the 

dominant lifestyle of commensal bacteria that are generally found as epiphytes on leaf surfaces and to 

a lesser extent in the apoplast10,34. Adhesion is likely to favour resistance to removal by rain fall and 

splash from rain drops and is a prerequisite for the formation of EPS-containing mucus that provides 

protection from desiccation. Consequently, adhesion may favour successful epiphytic colonization and 

allow colonization following leaf expansion.  

So far, few studies have addressed the presence of surface structures and specific proteins that allow 

adhesion to the hydrophobic cuticle. Notable exceptions include studies on adhesion by the 

hemagglutinin family proteins in Dickeya dadantii (formerly Erwinia chrysanthemi) and Xanthomonas 

strains, which have been shown to be important for epiphytic attachment and aggregation in these 

species77,78.  

 

Metabolic adaptation. In contrast to the rhizosphere, where large quantities of plant assimilates are 

accessible to microorganisms, nutrients on leaf surfaces are scarce3. Carbon sources that have been 

identified on leaf surfaces include carbohydrates, amino acids, organic acids, and sugar alcohols79-81. 

The heterogeneous nature of the nutrient availability on leaf surfaces has been well documented by 

studies using bioreporters5,6,82. It is currently not clear whether leaf-surface waxes support microbial 

growth. Bacteria themselves may influence substrate availability by the production of biosurfactants 

that result in increased wettability and thus increased substrate leaching68. Additionally, bacteria (and 

fungi) may also produce plant hormones, including indole-3-acetic acid (IAA; also known as auxin), 

(see e.g.36,83,84). There is evidence, that auxin increases nutrient availability by stimulating cell wall 
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loosening and release of saccharides from the plant cell wall3,85. The higher substrate availability as a 

result of bacterial auxin production is substantiated by epiphytic fitness tests83. 

In addition to the above-mentioned carbon sources, there are other, volatile plant-derived 

substrates including isoprenes and one carbon compounds86. A prominent one carbon source is 

methanol, which is primarily formed as a by-product of cell wall metabolism by pectin methyl 

esterases and is released in diurnal cycles86. The global emission of plant-produced methanol has been 

estimated to be 1014 g per year87. Methanol has been documented as a substrate for epiphytic bacteria 

and methylotrophic yeasts, conferring a growth advantage in situ88-90. Notably, essentially all 

methylotrophic bacteria in the phyllosphere belong to the genus Methylobacterium and are facultative 

methylotrophs with a restricted substrate range32,91. Besides methanol, it has been documented that 

plants produce halogenated methane derivatives92. Methyl chloride-degrading Alphaproteobacteria of 

the genus Hyphomicrobium have been isolated from the phyllosphere93 although the significance of 

this one-carbon substrate for epiphytic fitness requires further investigation. Yet another one carbon 

compound that has been postulated to be produced at trace amounts is photochemically formed 

methane94. However, there is so far no evidence that methane formation by plants can sustain a 

population of methanotrophs and they do not appear as abundant players in the microbial community 

in the phyllosphere of rice plants19.  

Carbon-source phenotyping of bacteria under laboratory conditions is a standard method applied 

to phyllosphere bacteria and is frequently used to determine the overlap in substrate utilization among 

strains as a measure of their potential to co-exist95,96. An extension of such carbon profiling was 

recently performed 97; apoplastic fluid extracted from healthy tomato leaves was used to preincubate 

P. syringae before recording the repertoire of nutrients that could be consumed without further 

preadaptation of the cells. Such substrate profiles revealed that P. syringae uses a restricted number of 

sugars, organic acids and amino acids.  

Gene-expression profiling in situ is an alternative approach to investigate the metabolic 

adaptations of particular microorganisms12,61. The high abundance of enzymes involved in 

methylotrophy of Methylobacterium spp. is in-line with the importance of these proteins in the 

physiological adaptation to, and methanol consumption in, the phyllosphere88,90. The presence of 
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numerous ABC transporters from Pseudomonas spp., including those involved in the uptake of mono- 

and disaccharides and amino acids suggests the uptake of these substrates by these species. The 

production of a large number of TonB-dependent transport systems by Sphingomonas strains may 

indicate scavenging of various nutrients present at low concentrations. This finding corroborates an 

earlier report on the importance of the TonB-dependent transporter for sucrose uptake and metabolism 

in Xanthomonas spp.98. To gain further insight into metabolic activities of epiphytic communities it 

will be necessary to develop in situ metabolomic approaches for epiphytic bacteria; although this will 

be challenging it is likely to offer new insights into the physiology of these bacteria.  

There is evidence that bacterial communities on well-fertilized plants are limited primarily by 

carbon availability and only secondarily by nitrogen availability96. Bacteria can use several nitrogen 

sources including organic nitrogenous compounds such as amino acids which may represent a 

valuable source of nitrogen for phyllosphere bacteria. In addition, ammonia is probably used as a 

nitrogen source in the phyllosphere12,99, and nitrogen fixation has been reported by phyllosphere 

bacteria100.  

Aside from carbon and nitrogen, phyllosphere bacteria require further macro- and also 

microelements for growth. The expression of several transport systems for phosphate, sulfate and iron  

has been observed in situ12,61,101. Although several studies found that siderophore production was 

involved in epiphytic growth and competition with other microorganisms during colonization of leaf 

surfaces, others found only moderate or no iron limitation102,103. Such controversial results were 

recently suggested to be a consequence of plant secondary metabolism, as different plants produce 

various polyphenolic compounds (including tannins) with different iron-sequestering abilities104. Thus, 

the importance of siderophore production for iron sequestration may depend on the host plant. 

Recent studies have reported that phyllosphere bacteria that have the potential to benefit from 

light by expressing bacteriorhodopsins and the presence of aerobic anoxygenic phototrophs that may 

be able to capture light in photosynthetic reaction centers105,106. Light-harvesting in the phyllosphere 

would allow epiphytic bacteria to use light as an additional energy source and might supply 

maintenance energy in case of nutrient deficits.  
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Regulation of fitness traits. Uncovering global and specific regulatory systems as well as the 

perceived environmental cues, will be crucial for understanding microbial adaptation to the 

phyllosphere. Following the identification of genes that are up-regulated during phyllosphere 

colonization, the response regulator PhyR (phyllosphere-induced regulator) was discovered to be 

crucial for colonization by Methylobacterium spp.61 and later also shown to be important for the plant 

epiphyte Sphingomonas sp. Fr1107. PhyR regulates a number of genes typically associated with stress 

responses, such as heat-shock proteins, the osmo-protectant trehalose, and proteins involved in 

carotenoid biosynthesis. The response regulator is part of the PhyR-Nep-EcfG signaling cascade, 

which governs the general stress response in Alphaproteobacteria108. As stressful conditions in 

environmental settings are the rule rather than the exception, it will be interesting to determine the 

degree to which such global systems constitute “alternative” regulatory systems, as is commonly 

assumed. In contrast to the Alphaproteobacteria, analysis of two gammaproteobacterial Pseudomonas 

fluorescens strains showed that sigma factor S, which governs general stress response in these 

bacteria, seems to play only a minor role in epiphytic fitness109. This finding argues against an over-

simplification of common stress-response models, as highly environmentally resistant strains may use 

multiple, redundant regulatory mechanisms to ensure survival.  

In P. syringae, another sigma factor belonging to the ECF family, AlgT (AlgU, RpoE, or 22), is 

important for in planta fitness64,110. However, the regulatory phenotypes have not yet been causally 

connected to fitness in terms of surviving desiccation and osmotic stress. Obviously, the analysis of 

the regulons controlled by these factors will help to further dissect the significance of individual traits. 

Beyond sigma-factor regulation, other global regulatory systems, including the GasSR two-component 

system in pseudomonads, have been uncovered.  

Another layer of complexity in these regulatory networks lies in second-messenger molecules 

such as cyclic-di-GMP, which is often involved in controlling different traits including adhesion111. 

The production of these molecules is regulated by various inputs as has been demonstrated for 

X. campestris112. Although insights into the importance of the secondary metabolites of Pseudomonas 

isolates in the rhizosphere are emerging113, systematic analyses of the importance of cyclic-di-GMP 

signaling in most epiphytic bacteria are currently lacking. 
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 Last but not least, quorum sensing has been established as an important regulatory system in 

plant-pathogenic bacteria114, for example during the epiphytic phase, which proceeds the endophytic 

pathogenic lifestyle, in Pseudomonas spp. 115,116. Quorum sensing represents a means by which 

bacteria process information on cell density and/or diffusion114,117. This system depends on acyl 

homoserine lactones as signals in Pseudomonas114 and Methylobacterium spp.118 as well as on the 

diffusible signal factor DSF in Xanthomonas spp.119. Further details on quorum sensing in P. syringae 

B728, which is the best-studied strain with respect to the importance of this regulatory system for 

epiphytic growth are given in Box 1. 

 

Interactions with the host and among microbial community members  

Complex interactions are expected to exist in the phyllosphere between various microorganisms, 

including bacteria and fungi, as well as between microorganisms and host plants (Fig. 4), and even 

among microorganisms and higher eukaryotes120. The relationships between microorganisms and their 

hosts include parasitic, commensal, and mutualistic interactions. A clear classification can bedifficult, 

particularly discriminating between commensals and mutualistic symbionts, and it has been suggested 

that these interactions represent a continuum121,122. In the human gut, many community members that 

were once considered commensals are now regarded as beneficial symbionts because of their 

contributions to host metabolism and immunity123. The thought-provoking statement by Janzen, 

“Plants wear their guts on the outside”124 suggests that similar questions on host benefit and microbe-

microbe interactions should be applied to phyllosphere communities. For phyllosphere 

microorganisms, the benefits provided by the plant are obvious and include nutrient supply but the 

advantages provided by phyllosphere inhabitants to their host plants are not necessarily as apparent. It 

has been suggested that plants benefit from microbial production of plant hormones, such as 

cytokinins and IAA; however, studies carefully analysing the effects of defects in these traits are not 

yet available. While the reactions of the plant to leaf pathogens have been studied on the 

transcriptional level, the responses to “commensal” phyllosphere bacteria remain poorly characterized; 

however preliminary analysis indicates that plants respond to the presence of a non-pathogenic 

Pseudomonas strain125. Research on induced systemic resistance (ISR), a mechanism that provides 
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resistance to a wide range of pathogens and is induced by beneficial microorganisms in the 

rhizosphere, is not yet well established for phyllosphere bacteria. Likewise, functional studies that 

might uncover the potential of microorganisms to assist in plant defense, e.g. through the production 

of secondary toxic metabolites or scavenging of essential macroelements as observed in the 

rhizosphere49,126, are yet to be done in the phyllosphere.  

The term “barrier effect” was coined127 to describe the resistance to infection by pathogens that is 

conferred by the human gut microbiota. Indigenous microbial populations may also affect the outcome 

of plant-pathogen interactions in the phyllosphere11,128. As a consequence, it is not surprising that 

axenic plants are more susceptible to infection, by analogy to animal model systems34. In general, the 

interactions that prevail in planta are far from being understood, and it will be important to attain more 

system-level insights into the complex interactions that govern outcomes among community members 

in the context of the plant host. The use of gnotobiotic conditions will be crucial to address the 

importance of indigenous bacteria and to study microbial interactions in the phyllosphere. Recently, 

the potential of Sphingomonas isolates in plant protection against bacterial pathogens in a three species 

Arabidopsis model system has been demonstrated34. Although the molecular basis for reduced 

pathogen growth in the presence of Sphingomonas is not yet understood, evidence is available to 

suggest that several traits might contribute to the outcome of plant protection129.  

The traits important for successful epiphytic growth, which were discussed in the previous 

section, link directly to interactions with other community members; these traits will ultimately allow 

coexistence or exclusion of other phyllosphere bacteria (see also130). In microbial communities, 

competition for space and nutrient resources as well as the production of antibiotics and interference 

with cell signaling systems are considered to be the principal mechanisms by which indigenous 

bacteria and fungi antagonize each other3,96,131. These traits all appear important and have been shown 

to be significant in correlational studies; however, experimental proof on the molecular level is lacking 

or has failed to support previously hypothesized traits. Although antibiosis is the most commonly 

studied mechanism, it is well known that in vitro antibiosis is not necessarily predictive of in planta 

antibiosis95,128. At present, the factors that determine interactions between epiphytic microorganisms 

and that ultimately shape microbial communities are poorly elucidated. 
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Applications for phyllosphere microbiology  

A prominent area of applied phyllosphere microbiology is the improvement of plant health to increase 

plant biomass production and prevent biomass losses. As mentioned above, many foliar bacterial 

pathogens colonize plant surfaces prior to infection, and the size of these populations is correlated with 

disease severity34,132,133. This suggests that a reduction in pathogen numbers could lead to plant 

protection. Possible mechanisms to suppress pathogen proliferation include exploiting competition for 

nutrients and space, antibiosis, and stimulating systemic host responses128,134. Alternative biocontrol 

strategies that have been proposed use individual protective strains or strain combinations, see 

e.g.135,136. For a recent review on plant protection in the rhizosphere and phyllosphere see Ref. 137. A 

better understanding of the principal drivers of community structure and multitrophic interactions in 

the phyllosphere will be the key to developing new strategies for plant protection. Biocontrol 

applications will benefit from fundamental research; in other words, the better we understand the roles 

and importance of indigenous bacteria, the better we will be able to predict and protect against 

pathogen infection. Other aspects of applied phyllosphere microbiology relate to the occurrence of 

human pathogenic bacteria in food including fruits, vegetables and salads. This area of research has 

been stimulated in the past years by numerous outbreaks of infection associated with foodborne 

pathogens such as Salmonella and Escherichia coli and advances in the research area have been 

reviewed recently138. Another intriguing area of interest is phytoremediation, using the phyllosphere 

microorganisms to remove gaseous pollutants such as phenol or benzene from the air 

(“phylloremediation”)139,140. 

 

Conclusions 

The phyllosphere was once termed a neglected milieu1. This situation has changed, and there is now 

an increased interest in phyllosphere microbiology. The phyllosphere is an well-suited model system 

in which to study basic principles of ecology in particular due its amenability to experimentation and 

visual inspection,141 and this area of research field has the potential to have an impacts on diverse areas 

such as plant health and atmospheric chemistry. There is still a major focus on understanding 
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pathogen/plant interactions; however, there is growing awareness of the importance of the indigenous 

microbiota and their role in microbe-microbe and host-microbe interactions. There have been 

substantial advancements in identifying community members and epiphytic fitness traits. New 

approaches that would not have been possible a few years ago, such as community profiling based on 

next generation sequencing technologies as well as proteogenomics or metaproteogenomics, help to 

understand how microbial communities are shaped and to identify new targets for hypothesis-driven 

research with the aim of uncovering novel protein functions of importance for survival and growth in 

the phyllosphere. There is a great need to study phyllosphere microorganisms and their interactions in 

situ and at the microscale using complementary approaches.  

Many important questions are still unanswered. What are the drivers of microbial community 

structure in the phyllosphere? Are there epistatic effects? How stable or easily disturbed are microbial 

communities? How do closely related microbial genotypes coexist in the phyllosphere? What are the 

impacts of microorganisms on the host plant? Future research directed at answering these questions 

will improve our understanding of microbial inhabitants of the phyllosphere and the potential for 

biotechnological applications. These research efforts should ideally lead to an increase of the 

availability of genome sequences for representative model strains throughout all phylogenetic taxa 

detected in the phyllosphere. Such strains will allow the design of synthetic communities and enable a 

union of genetics studies to obtain direct experimental proof for interactions and to link observations 

that have been and will be made under environmental conditions with those that can be traced to the 

molecular level.  

 

 

 Glossary  

 

Perennial plants 

Plants that lives for more than two years 

 

Deciduous plants 
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Plants that lose their leaves seasonally 

 

Evergreen plants 

[au; please define] 

 

Epiphytes 

AU: please define 

Oligotrophic 

AU: please define 

 

Stomata  

Openings of leaves that control gas exchange (in particular oxygen and carbon dioxide) and water 

transpiration between the plant interior and the environment. 

 

Trichomes 

Epidermal outgrowth of plant surfaces including the leaves. A common type is a hair which might be 

branched or unbranched. Glandular trichomes excrete various exudates. 

 

Hydathodes 

AU: please define 

 

Apoplast 

Au: please define 

 

 

Coronatine 

Phytotoxin produced by several pathovars of Pseudomonas syringae. It consists of coronafacic acid 

(CFA), an analog of methyl jasmonic acid (MeJA), and coronamic acid (CMA), which resembles 1-
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aminocyclopropane-1-carboxylic acid (ACC), a precursor to ethylene. Has been shown to open 

stomata. 

 

Syringolin A 

Major variant of a family of structurally related small cyclic peptides that are secreted by many 

phytopathogenic bacterial strains. Syringolin A counteracts stomatal closure by proteasome inhibition. 

 

Photolyase 

Enzyme involved in DNA repair caused by UV light. This flavoprotein reversibly binds to pyrimidine 

dimers and converts them back to the original base, a reaction for which visible light is required. 

 

Trehalose 

Disaccharide of two glucose units, formed by an α,α-1,1-glucoside bond. Important for dessciation 

resistance. 

 

Microbial associated molecular pattern (MAMP) 

Molecular component characteristic for microorganisms; their recognition plays a key role in innate 

immunity. 

 

Bacteriorhodopsins 

Retinal-containing transmembrane proteins that act as light-driven proton pumps. 

 

hrp genes 

Encode for proteins that constitute the type III secretion system of phytopathogenic bacteria, which is 

used to transport effectors into plant cells and elicit a hypersensitive response when recognized by 

resistance proteins. 

 

Axenic  
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Culture of an organism, here a plant, that is free of contaminating organisms. 

 

Antibiosis 

Biological interaction between two species whereby one acts antagonistic to the other one by 

producing a substance that inhibits growth of the latter or kills it. 
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Table 1. Major bacterial genera detected in phyllosphere samples.  

Asking au to rethink presentation 

 

 

 

 

Class Order Genus A. thaliana Soybean Clover Rice

Alphaproteobacteria Rhizobiales Agrobacterium 1.35 2.07 1.36 6.24

Rhizobiales Bradyrhizobium 0.91 2.18 1.32 0.49

Rhizobiales Brucella 0.58 1.11 0.65 0.76

Caulobacterales Caulobacter 1.38 1.61 2.24 0.22

Sphingomonadales Erythrobacter 1.84 2.37 3.48 0.26

Rhodospirillales Magnetospirillum 0.39 1.11 0.87 0.88

Rhizobiales Mesorhizobium 0.67 1.08 0.97 0.60

Rhizobiales Methylobacterium 2.34 6.99 5.14 13.83

Sphingomonadales Novosphingobium 1.28 1.88 1.99 0.32

Rhizobiales Ochrobactrum 0.36 0.52 0.41 1.84

Rhizobiales Rhizobium 2.31 2.87 2.18 1.78

Rhizobiales Rhodopseudomonas 1.19 1.86 1.58 0.47

Rhizobiales Sinorhizobium 1.35 1.82 1.24 1.03

Sphingomonadales Sphingobium 1.76 2.56 3.32 0.57

Sphingomonadales Sphingomonas 2.90 4.17 4.73 0.96

Sphingomonadales Sphingopyxis 1.11 2.43 3.13 0.26

Sphingomonadales Zymomonas 0.75 1.07 1.40 0.06

Betaproteobacteria Burkholderiales Acidovorax 1.09 1.46 1.37 0.86

Burkholderiales Burkholderia 1.84 2.59 2.31 0.65

Burkholderiales Variovorax 0.69 0.92 0.81 0.26

Gammaproteobacteria Pseudomonadales Acinetobacter 0.17 0.19 0.24 1.57

Enterobacteriales Enterobacter 0.07 0.15 0.23 1.37

Enterobacteriales Pantoea 0.12 0.33 0.95 1.36

Pseudomonadales Pseudomonas 3.35 4.75 2.43 0.31

Xanthomonadales Stenotrophomonas 0.23 0.32 0.28 1.53

Xanthomonadales Xanthomonas 1.09 1.67 1.66 0.69

Actinobacteria Actinomycetales Aeromicrobium 0.00 0.00 0.02 1.23

Actinomycetales Arthrobacter 1.41 0.51 0.35 2.02

Actinomycetales Clavibacter 2.04 0.52 0.37 3.17

Actinomycetales Leifsonia 0.95 0.33 0.17 2.56

Actinomycetales Mycobacterium 1.74 0.77 0.90 6.84

Actinomycetales Nakamurella 0.16 0.11 0.08 3.90

Actinomycetales Nocardioides 0.52 0.12 0.09 1.70

Actinomycetales Streptomyces 2.59 1.34 1.12 2.38

Actinomycetales Rhodococcus 0.93 0.52 0.63 1.13

Bacteriodetes Bacteroidales Bacteroides 1.67 0.79 1.05 0.04

Sphingobacteriales Chitinophaga 1.11 0.38 0.51 0.03

Cytophagales Cytophaga 1.19 0.59 0.64 0.00

Cytophagales Dyadobacter 2.36 0.57 0.79 0.07

Flavobacteriales Flavobacterium 1.36 0.41 0.53 0.01

Sphingobacteriales Pedobacter 2.01 0.38 0.91 0.02

Cytophagales Spirosoma 3.69 1.83 1.80 0.38

 
The length of the bars represents the relative frequency of reads with predicted proteins and ribosomal 

RNA genes annotated to the genus level within the metagenomes of microbial communities12,19 using 

the MG-Rast (metagenomics.anl.gov/). A threshold of greater than 1% of the overall community was 

set. 
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Table 2. Global approaches applied to phyllosphere bacteria to uncover epiphytic fitness traits under in situ 

conditions. 

 

 
 

   

Approach Biological system Major findings Ref. 
 

Transposon mutagenesis 

 

P. syringae pv. syringae 

B728a - bean phyllosphere 

 

Various traits contribute incrementally to epiphytic 

fitness; identified traits concern motility and stress 

tolerance 

 
54 

Promoter trapping P. syringae pv. tomato 

DC3000 - A. thaliana 

Identification of virulence genes, genes for proteins 

involved in stress tolerance, polysaccharide synthesis, 

transport and carbon metabolism, unknown loci 

142  

 P. syringae pv. syringae 

B728a - bean phyllosphere 

Identification of virulence genes, genes for proteins 

involved in regulation, stress tolerance, 

polysaccharide synthesis, transport and carbon 

metabolism, unknown loci 

101  

 X. campestris pv. vesicatoria - 

tomato 

Identification of a citrate transporter, which was 

shown to be required for virulence 

143 

 D. dadantii (E. chrysanthemi 

3937) 

Identification of genes for proteins involved in 

metabolism, regulation, transport, unknown loci 

144  

Transcriptomics D. dadantii (E. chrysanthemi 

3937) 

Identification of virulence genes, genes for proteins 

involved in iron uptake, transport, xenobiotic 

resistance, chemotaxis, stress responses 

145  

Proteomics M. extorquens AM1 Up-regulation of stress proteins and enzymes involved 

in methylotrophy; discovery of PhyR (general stress 

response regulator of Alphaproteobacteria) 

61  

Metaproteogenomics Microbial community - 

Soybean, clover, A. thaliana 

Common repertoire of proteins expressed by bacterial 

communities on different plants 

12  

Metaproteogenomics  Microbial community -  

rice 

Large set of proteins related to one carbon metabolism 19  

 

 



 

 22 

[fig legs may (will) change] 

Figure 1. The phyllosphere environment.  

Electron micrograph pictures showing the edge of a leaf (a), and epiphytic bacteria that become visual 

after higher magnification (b). Schematic view of a leaf surface and the apoplastic space (c). 

Epifluorescence pictures of tagged phyllosphere bacteria (P. agglomerans strain 299R in cyan and P. 

syringae DC3000 in red) (d). 

 

Figure 2. Microbial phyllosphere diversity. 

 An ML-TreeMap analysis30 was performed to assess the microbial community composition in the 

phyllosphere of A. thaliana (yellow), soybean (green), clover (blue), and rice (red) from samples 

obtained after shotgun metagenome sequencing of assembled and unassembled reads as described in 

Delmotte et al. 200912 and Knief et al. 201219 (publically available through the MG-RAST server). The 

backbone tree was calculated based on aligned sequences of 40 phylogenetic marker genes from fully 

sequenced organisms. Dots indicate the placement of metagenomic sequence reads containing these 

marker genes, with the size of the dot corresponding to the frequency of recovery. Archaea (green part 

of inner cycle) contributed less than 1% to the microbial community of the samples. Note, the low 

contribution of eukaryotes (red part of inner cycle) is in accordance with the design of the microbial 

harvesting procedure, which included a physical depletion step for eukaryotic cells.  

Figure 3. Proposed bacterial traits involved in adaptation to the phyllosphere acting either at the 

community level, with the plant or the level of the individual cell. 

Figure 4. Multipartite interactions occurring in the phyllosphere among commensal and pathogenic 

microorganisms as well as the plant.  
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Box 1. Quorum sensing in Pseudomonas syringae. 

Many Gram-negative plant associated bacteria including Pseudomonas syringae produce acyl 

homoserine lactones (acyl-HSL) as quorum sensing signal molecules. One of the best studied 

phyllosphere bacteria regarding the importance of HSLs is Pseudomonas syringae pv. syringae B728a. 

It has been shown that AhlI, which is the synthase responsible for 3-oxo-hexanoyl HSL production, is 

under the control of AhlR and other regulators. Quorum sensing in P. syringae B728a is important for 

epiphytic fitness by inducing EPS production and indirectly desiccation and resistance to hydrogen 

peroxide, as well as suppressing motility115,116. In addition, it has been shown that P. syringae acyl-

HSL-dependent signalling in the phyllosphere was strongly influenced both by the size of cell 

aggregates and by the availability of water on leaves146. EPS production by acyl-HSL was thus 

postulated to increase the survival of epiphytes under desiccating conditions where acyl-HSL 

accumulates faster. On the other hand, motility, which is negatively regulated acyl-HSL-signaling, 

might reflect an adaptation to dry conditions that would allow the bacterium to conserve the resources 

invested in flagella when movement is impossible or disadvantageous.  

Quorum sensing signaling mechanisms have in common that they principally allow cross talk and 

are prone to signal quenching. Both phenomena have recently begun to be studied in the phyllosphere, 

and may be relevant and contribute to the complex interaction of microorganisms in this niche [au: 

ok?]147-150. 
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At a Glance Summary 



 

 33 

 The surface area of the phyllosphere is approximately twice as great as the land surface area 

and provides a habitat for numerous microorganisms, which colonize the surfaces (where 

they mostly form aggregates) and the inside of leaves. 

 Most phyllosphere microorganisms are bacteria, are non-pathogenic and belong to a few 

predominant phylogenetic groups including Alpha-and Gammaproteobacteria, Bacteriodetes 

and Actinobacteria. The fungi that are also detected in the phyllosphere appear 

hyperdiverse. 

 Numerous abiotic and biotic factors drive the microbial community structure in the 

phyllosphere, including the plant itself. 

 Targeted and large scale metaproteogenomic studies have helped to identify important 

mechanisms by which bacteria adapt to the phyllosphere; among these are aggregate 

formation, surface alterations by production of biosurfactants, induction of stress responses 

and metabolic adaptations ranging from utilization of the one carbon compound methanol to 

amino acids and sugars. 

 The phyllosphere is a discrete habitat (a sum of discrete habitats) and is a tractable model 

system for understanding the relationships between microorganisms and hosts. An improved 

understanding of phyllosphere microbiology is also of practical importance for biocontrol of 

the phyllosphere as the primary carbon fixing unit in terrestrial systems.  

 
 
 
 
 

 

 


