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Integrated multi-omics reveals anaplerotic 
rewiring in methylmalonyl-CoA mutase 
deficiency

Patrick Forny    1,16, Ximena Bonilla    2,16, David Lamparter3,4,16, 
Wenguang Shao4,5,16, Tanja Plessl1, Caroline Frei    1, Anna Bingisser1, 
Sandra Goetze    4,5,6, Audrey van Drogen4,5, Keith Harshman3,4, 
Patrick G. A. Pedrioli4,5,6,7, Cedric Howald3, Martin Poms8, Florian Traversi1, 
Céline Bürer1, Sarah Cherkaoui9,10, Raphael J. Morscher    9, Luke Simmons11, 
Merima Forny1, Ioannis Xenarios4,12, Ruedi Aebersold7, Nicola Zamboni4,7, 
Gunnar Rätsch    2,6,13,14,17 , Emmanouil T. Dermitzakis3,4,15,17 , 
Bernd Wollscheid4,5,6,17 , Matthias R. Baumgartner    1,17   
& D. Sean Froese    1,17 

Methylmalonic aciduria (MMA) is an inborn error of metabolism with 
multiple monogenic causes and a poorly understood pathogenesis, 
leading to the absence of effective causal treatments. Here we employ 
multi-layered omics profiling combined with biochemical and clinical 
features of individuals with MMA to reveal a molecular diagnosis for  
177 out of 210 (84%) cases, the majority (148) of whom display pathogenic 
variants in methylmalonyl-CoA mutase (MMUT). Stratification of these 
data layers by disease severity shows dysregulation of the tricarboxylic 
acid cycle and its replenishment (anaplerosis) by glutamine. The relevance 
of these disturbances is evidenced by multi-organ metabolomics of 
a hemizygous Mmut mouse model as well as through identification 
of physical interactions between MMUT and glutamine anaplerotic 
enzymes. Using stable-isotope tracing, we find that treatment with 
dimethyl-oxoglutarate restores deficient tricarboxylic acid cycling. 
Our work highlights glutamine anaplerosis as a potential therapeutic 
intervention point in MMA.

Inborn errors of metabolism (IEMs), first described by Archibald Gar-
rod1, are inherited diseases resulting from the inadequate function of 
metabolic proteins. IEMs represent a group of nearly 1,500 diseases 
with a combined incidence of approximately 1:800 births. They pre-
sent a clinically and genetically heterogeneous picture making them 
inherently difficult to diagnose2,3. Beyond their diagnostic challenges, 
the pathomechanisms of many IEMs are not well understood; hence 
most IEMs lack rationalized treatment approaches4.

Methylmalonic aciduria (MMA) is a prototypic IEM that may be 
caused by defects in approximately 20 genes5. Classical isolated MMA 
is an autosomal recessive disorder caused by pathogenic variants in the 
genes MMUT, MMAA and MMAB, with a prevalence of approximately 
1:90,000 births6. The gene products of MMAA and MMAB convert 
intracellular vitamin B12 (cobalamin, Cbl) into its cofactor form (adeno-
sylcobalamin, AdoCbl), which is used by methylmalonyl-CoA mutase 
(MMUT) for the breakdown of methylmalonyl-CoA to succinyl-CoA as 
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whereas those of 60 individuals had MMUT activity similar to controls 
(other MMA) (Fig. 1b).

In the MMUT-deficient samples, we searched the WGS dataset for 
disease-causing variations in the MMUT gene and identified the molecu-
lar cause of disease in 148 out of 150 individuals (Supplementary Table 1).  
Pathogenic variants constituted 165 missense alleles, 105 truncating 
alleles, 21 splicing alleles, 2 alleles with in-frame deletions and 3 alleles 
containing copy-number variants (Fig. 1c,d and Extended Data Fig. 2d),  
of which 41 variants were new (Supplementary Table 1). RNA-seq iden-
tified reduced MMUT RNA expression in cells from MMUT-deficient 
individuals compared to the other groups (Fig. 1e). Individuals with 
strongly reduced RNA expression were enriched for splicing and/
or truncating variants, consistent with nonsense-mediated decay 
(Extended Data Fig. 2e). DIA–MS-based proteome measurements 
revealed reduced MMUT protein levels in MMUT-deficient primary 
fibroblasts (Fig. 1f), which were distributed across all variant types 
(Extended Data Fig. 2e). Consistent with its disease-causing role, MMUT 
RNA and protein levels were positively and significantly associated with 
PI and MMUT activity (Extended Data Fig. 2f), without truncating or 
splicing alleles driving this correlation (Extended Data Fig. 2g). MMUT 
represented the most significantly dysregulated RNA and protein of 
MMUT-deficient samples when compared to all other samples (Fig. 1g 
and Extended Data Fig. 2h).

In the remaining 60 samples, we identified bi-allelic disease- 
causing variants for 22 individuals in genes other than MMUT: ACSF3 
(17 individuals) (Fig. 1h), TCN2 (3 individuals), SUCLA2 (1 individual) 
and MMAB (1 individual) according to the ACMG classification (Supple-
mentary Table 1). By searching RNA-seq for aberrantly expressed genes 
using OUTRIDER21 (Extended Data Fig. 3), we identified two individuals 
with very low ACSF3 expression; two with aberrant SUCLA2 expression, 
in whom we confirmed predicted splicing and copy-number variants 
at the genomic level (Supplementary Table 1); two with very low MMAA 
expression, confirmed by complementation analysis; and one with 
low MMAB transcript, also confirmed by complementation analysis. 
Therefore, we identified a molecular cause for 29 out of 60 remaining 
individuals (48%), including 18 pathogenic mutations, of which 10 were 
new (Supplementary Table 1). In summary, we found a diagnosis for 177 
out of 210 (84%) affected individuals (Fig. 1i), including 150 with defi-
ciency of MMUT and 19 with damaging variants in ACSF3, accounting 
for the largest cohort of ACSF3 deficiency.

Phenotypic description and association with disease severity
We expected that the genetic underpinnings identified above would 
only partly predict the clinical and biochemical phenotypes of affected 
individuals as other genetic (for example, the combination of patho-
genic alleles and gene regulation) or non-genetic factors (for example, 
protein–protein interactions) might influence the manifestation of 
MMA disease. We therefore aimed at establishing a quantitative assess-
ment of disease severity by converting the catalog of mostly semantic 
phenotypic traits into key numeric variables. In total we collected 105 
phenotypic variables. Following exclusion of nine unspecific and/or 
interdependent features (Methods; Cohort Selection), we generated 
a correlation matrix of phenotypic variables (n = 96), spanning clinical 
symptoms at presentation and during disease course (n = 37), clini-
cal treatments and therapeutic response (n = 22), clinical chemistry 
of blood or tissues including metabolite measurements (n = 21) and 
in vitro biochemical parameters (n = 13), revealed a cluster of features 
(MMUT activity, PI) that showed strong correlation across many vari-
ables (Fig. 2a,b).

As the identified few variables are strongly associated with many 
clinical features, we postulated that most disease characteristics might 
be well predicted by one or a select few variables. As a proof of principle, 
we established a clinical severity score (CSS), which incorporated the 
outcome of five typical clinical features7 (composition in Methods), 
whereby a score of 0 represented the absence of these typical MMA 

part of propionate catabolism. Dysfunction of any of these proteins 
leads to the accumulation of the eponymous metabolite methylmalonic 
acid and others. Clinically, individuals with classical isolated MMA 
frequently present with failure to thrive and acute life-threatening 
episodes in the neonatal period, involving vomiting and impaired 
neurological function (comatose state and metabolic stroke) accom-
panied by biochemical disturbances (metabolic acidosis and hyperam-
monemia)7. Surviving patients with MMA are affected by long-term 
complications that mainly include neurological abnormalities (move-
ment disorder and intellectual impairment), kidney failure and anemia/
neutropenia7. Even though the (dys)function of MMUT has been studied 
extensively8–11, the main metabolic disturbances and pathomechanisms 
in MMA remain an open question and curative treatment options are 
not available.

Technological advances in genomics and mass spectrometry, 
leveraging datasets of whole molecule classes (omics), have recently 
led to a paradigm shift in their use as diagnostic tools. For example, 
single-layer WGS has achieved diagnostic rates of 30–50% in rare dis-
ease cohorts12–14, while dual-layer combination with RNA sequencing 
(RNA-seq) can improve this by 10–35%15–18. Despite these advances, 
a substantial number of patients with IEM remain undiagnosed  
and disease course prediction remains poor, mainly due to a lack  
of pathomechanistic understanding and often unclear genotype–
phenotype relationships.

Multi-layered omics data have the potential to not only increase 
diagnosis rates of IEMs but also to uncover mechanistic insights into 
disease pathophysiology19, thus potentially indicating new therapeutic 
targets. Such a combinatorial approach is key to moving beyond the 
traditional ‘one gene, one disease’ view of these disorders, which fails 
to explain phenotypic heterogeneity based on genetic variation only; 
however, the simultaneous application of multi-omics technologies 
for this purpose has not been rigorously tested and their true utility, 
bottlenecks and knowledge gaps remain unknown.

By combining whole-genome sequencing (WGS), whole tran-
scriptome sequencing (RNA-seq) and proteotyping information 
(data-independent acquisition mass spectrometry (DIA–MS)) with 
phenotypic features, we identified disease-causative and pathogenic 
features in a cohort of MMA-affected individuals. We revealed under-
lying damaging variants and differentially expressed transcripts and 
proteins directly related to anaplerosis of the tricarboxylic acid (TCA) 
cycle. Moreover, follow-up studies utilizing untargeted metabolomics 
and [U-13C]glutamine tracing revealed a depletion of TCA cycle anaple-
rosis in line with the identified dysregulation of glutamate dehydro-
genase and oxoglutarate dehydrogenase enzymes, which we found 
to physically interact with a complex of proteins, including MMUT. 
Beyond unveiling these metabolic disturbances in MMUT deficiency, 
our findings enable a better biological understanding of TCA cycle ana-
plerosis. Furthermore, the anaplerotic TCA cycle insufficiency in MMA 
may be a potential therapeutic intervention point, as demonstrated by 
boosting TCA cycle intermediate pools and reducing MMA-specific 
toxic metabolites by dimethyl-oxoglutarate treatment.

Results
Monogenic disease variant detection through multi-omics
To extend the understanding of MMA from the causative genomic 
lesions to the affected biochemical processes, we performed 
high-quality WGS, RNA-seq and DIA–MS-based proteotyping on 
fibroblasts taken from 230 individuals (210 affected by MMA and 
20 unaffected), representing a mainly European cohort collected over 
25 years (Fig. 1a and Extended Data Fig. 1). Biochemical assay of propi-
onate incorporation (PI)20 and MMUT enzyme activity8 was strongly 
correlated across all samples (rho = 0.73, P < 0.0001) (Extended Data 
Fig. 2a). Fibroblasts from 150 individuals with MMA had reduced 
MMUT activity (MMUT-deficient), including 123 that did not 
increase upon cofactor supplementation (Extended Data Fig. 2b,c),  
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features, a score of 1 indicated mild MMA and a score of 2 or higher 
(maximum 5) indicated moderate to severe MMA disease. Comparison 
of the CSS against all phenotypic parameters demonstrated a signifi-
cant correlation with 49 individual variables (Fig. 2c), including many 
classical phenotypic symptoms of MMAuria, such as acidosis, hyper-
ammonemia and muscular hypotonia, as well as the requirement for 
dietary and pharmacological interventions (Extended Data Fig. 4a). 
Notably, the CSS also inversely correlated with age of onset (Extended 
Data Fig. 4b), a parameter that on its own has been used as an indication 
of clinical severity22.

Multiple correlation analysis identified PI in the presence of 
hydroxocobalamin (PI+) to significantly correlate with 42 phenotypic 
features, the most of any individual continuous variable (Fig. 2c). This 
contrasts, for example, to age at onset, which was significantly corre-
lated with only 16 parameters (Fig. 2c). Closer inspection revealed PI+ 
to be inversely correlated with disease severity, including significant 
positive correlation with, for example, pH or age at disease onset and 
negative correlation with, for example, methylmalonic acid concen-
tration in plasma, presence of clinical interventions such as protein 

restriction and the CSS (Fig. 2d and Extended Data Fig. 4c,d). Of note, 
these relationships were preserved when all collected features were 
included (Supplementary Fig. 1). Therefore, in line with its validity as 
a diagnostic test for MMA20, the PI+ variable was used as an approxima-
tion of clinical disease severity in this study.

Disruption of the TCA cycle and associated pathways
To identify disease-associated expression alterations of genes, pro-
teins and pathways, we attempted a global assessment of transcript 
and protein expression integrated with the quantitative phenotype 
variables identified above. As patients with TCN2, SUCLA2 and ACSF3 
deficiency lack most of the typical signs and symptoms of classical 
MMA, we compared MMUT-deficient with all non-MMUT-deficient 
samples (control).

Investigation of transcripts and proteins using differential correla-
tion patterns (Pearson correlation method), dimensionality reduction 
via principal-component analysis and DESeq2 did not immediately 
yield a clear grouping of the data nor obvious expression pattern 
differences between the groups (Supplementary Fig. 2); however, 
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multi-omics factor analysis23, integrating both genetic data layers 
and proteotyping data, identified mitochondrial metabolic pathways 
and, in particular, the electron transport chain and the TCA cycle to 
be enriched in MMUT-deficient samples (Fig. 3a). In more detail, the 
proteins SLC16A3, CS, MDH2 and OGDH were found to be the main driv-
ers of this particular factor’s variance in the proteotyping data within 
the TCA-associated gene sets (Fig. 3b). Linear discriminant analysis of 
genes shared between transcriptomics and proteotyping indicated 
MMUT as the strongest and SUCLA2, OGDH and PDHB to be top drivers 
of separation between MMUT-deficient and control samples (Fig. 3c).  
Further, gene set enrichment analysis utilizing sample stratification by 
disease severity, both by CSS and PI+, also identified oxidative phos-
phorylation and the TCA cycle as over-represented pathways in the 
proteomics (CSS and PI+) and transcriptomics (CSS) datasets (Fig. 3d).

These changes were consistent with findings in a hemizygous 
mouse model of MMA24 (Fig. 3e). Untargeted metabolomics of brain, 
heart, kidney, liver, plasma and urine confirmed elevated levels of 
the eponymous metabolite methylmalonic acid in mutant animals, 
whereas pathway enrichment analysis pointed to dysregulated TCA 
cycle pathways in all tissues and urine (Fig. 3f). Transcriptomics 
of brain tissue further confirmed the expected 50% reduction in 
Mmut transcript of mutant mice, along with enrichment of electron 
transport chain and oxidative phosphorylation pathways (Fig. 3g, 
Supplementary Fig. 3).

MMUT deficiency leads to alterations in proximal TCA enzymes
As both data-driven and phenotypically stratified analyses indicated 
TCA and associated pathways to be disrupted in disease, we performed 

a concerted investigation of the TCA cycle enzymes, including those 
that metabolize anaplerotic (replenishing TCA cycle intermediates) and 
cataplerotic (removing TCA cycle intermediates) reactions, from which 
we had both RNA and protein information. As controls, we included 
isoforms of TCA enzymes that are not involved in these pathways 
(Fig. 4a). Direct comparison of RNA and protein expression between 
MMUT-deficient and control cells revealed MMUT to be significantly 
dysregulated (Fig. 4a outer band).

Differential expression analysis, performed using a linear mixed 
modeling approach25, identified the genes with the strongest effect 
size and significance to be enriched for mitochondrial localization, as 
listed in MitoCarta 3.0 (ref. 26) (Supplementary Fig. 4). Closer exami-
nation (Fig. 4a,b middle band), identified MMUT to be significantly 
downregulated in disease at both the RNA and protein level, whereas 
ALDH2, which catalyzes the interchange between methylmalonate and 
methylmalonate semialdehyde, was upregulated in both. A further 
upregulated transcript was PDK4 (Fig. 4b), which is responsible for 
the phosphorylation and, as a consequence, inactivation of the pyru-
vate dehydrogenase complex; however, the proteins with the overall 
largest effect size were OGDH (downregulated in disease) and GLUD1 
(upregulated in disease), both enzymes involved in the anaplerosis 
of glutamine (Fig. 4b). In line with our findings, proteomics studies 
in human MMA livers by others have equally identified upregulated 
GLUD1 and ALDH2 (ref. 27) and targeted analysis of liver-derived isolated 
mitochondria from a murine MMA model showed decreased OGDH 
protein levels and enzyme activity28.

Examination of RNA–protein expression correlation in all samples 
revealed a limited Spearman correlation of 0.14 at the gene level (4,318 
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Fig. 2 | Phenomics analysis reveals two main surrogate markers of disease 
severity (CSS and PI+ activity). a, Correlation matrix of all continuous 
numeric and discrete phenotype variables. b, Number of phenotypic traits 
according to five phenotype subcategories. c, Panel of selected phenotypic 
traits and their overall strength of representing the entirety of the phenomics 
dataset (here termed disease severity) as assessed by linear modeling after log 
transformation. Each point represents the result of linear regression against one 

other phenotypic variable with the effect size (ES) on the y axis and the resulting 
Benjamini–Hochberg adjusted P value (two-sided) on the x axis. The horizontal 
curved line indicates the density of data points as distributed along the x axis. 
The vertical dashed line indicates the threshold of significance (P < 0.05).  
d, Linear regression results of the PI+ activity variable compared to the rest  
of the phenotypic variables; P values calculated as in c.
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transcript–protein pairs) and 0.40 at the sample level (Fig. 4c and 
Extended Data Fig. 5a), similar to findings by others29. RNA–protein 
correlation in MMUT-deficient cells compared to controls revealed 
that, while 1,158 pairs (26.8%) correlated significantly (P < 0.05) in 
both genotypes (Fig. 4d all colored points and Extended Data Fig. 5b) 
in accordance with previous studies30, the correlation of some genes 
segregated depending on the genotype (MMUT-deficient versus con-
trol) (Fig. 4d). In particular, OGDH, GLUD1, CS and GLS showed higher 
RNA–protein correlation in MMUT-deficient samples than controls, 
whereas SUCLA2 had reduced RNA–protein correlation (Fig. 4a,d and 
Extended Data Fig. 5c). OGDH and SUCLA2 were among the genes with 
the strongest genotype-dependent RNA–protein correlation changes 
(Fig. 4d). Notably, we found poor RNA–protein correlation for MMUT 
in both control and MMUT-deficient cells (Fig. 4a,d and Extended 
Data Fig. 5c).

Finally, MMUT protein levels positively correlated with protein 
levels of many TCA and anaplerotic enzymes in control but not in 
MMUT-deficient cells, whereas there was little or no protein expression 
correlation between MMUT and non-TCA protein isoforms in either 
genotype (Fig. 4a center and Extended Data Fig. 5d). Such a relationship 
is exemplified by MMUT:ACO2 and MMUT:ACO1 (Fig. 4a center and 
Extended Data Fig. 5e) and indicates that MMUT may be part of a so far 
unknown interaction network with these mitochondrial TCA cycle and 
anaplerotic enzymes31. Examination of pairwise correlation between 
all proteins and transcripts (Extended Data Fig. 5f,g) in these pathways 
suggests that the TCA cycle and anaplerotic enzymes have a positive 
correlation with each other, which is not altered in MMUT deficiency 
unless MMUT is included in the comparison. Overall, the above findings 
suggest that disruption of MMUT RNA and protein expression drives 
regulatory changes in certain TCA and anaplerotic enzymes.
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Metabolomics highlights rewiring of TCA cycle anaplerosis
To examine the functional consequences of the above RNA and protein 
expression alterations, we performed untargeted metabolomic analysis 
on a set of six MMUT-deficient fibroblasts, derived from patients, and 
six control primary fibroblasts, derived from unaffected individuals 
(selection criteria in Extended Data Fig. 6a and Methods). While the 
total ion current was comparable in the MMUT-deficient and control 
samples (Extended Data Fig. 6b), we found decreased glutamine and 
alanine as well as increased hexoses, methylcitrate, oxoadipate, ami-
noadipate and pyruvate among the most significantly changed metabo-
lites (Fig. 5a). No strong pool-size changes of TCA cycle intermediates 
were observed in these cells (Extended Data Fig. 6c); however, many 
of the altered metabolites represent anaplerotic precursors. Changes 
in anaplerotic metabolites are consistent with observed changes in 
RNA and protein expression in the matching model systems, indicat-
ing disruption of TCA cycle anaplerosis in MMUT deficiency (Fig. 5b). 
They also suggest a potential knock-on effect to adjacent pathways, 

as illustrated by the increased oxoadipate and aminoadipate (Fig. 5a). 
These are upstream metabolites of the 2-oxoadipate dehydrogenase 
complex, which shares its E2 (DLST) and E3 (DLD) components with the 
2-oxoglutarate dehydrogenase complex (Extended Data Fig. 6d), poten-
tially indicative of a preference for 2-oxoglutarate over 2-oxoadipate 
metabolism in MMUT-deficient cells.

To study anaplerotic alterations in-depth, we performed targeted 
metabolomics in 293T cells with a wild-type (WT), MMUT knockout (KO) 
or DLST-KO genetic background, as validated by Western blotting analy-
sis and enzyme activity measurements (Supplementary Fig. 5). DLST-KO 
cells were used as an additional control to mimic the reduction of OGDH 
protein in MMUT deficiency. In MMUT-KO cells, we found markedly 
reduced TCA cycle intermediates, indicating an overall reduced TCA 
metabolite pool, whereas KO of DLST led to virtual absence of most TCA 
cycle metabolites (Fig. 5c). In addition, we found reduced pool sizes of 
glutamine and glutamate (Supplementary Fig. 6a) comparable to the 
patient fibroblasts (Extended Data Fig. 6c). These results point to an 
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Fig. 4 | Transcript–protein and protein–protein correlation analyses reveal 
coordinated relationships between MMUT and TCA genes and proteins but 
not their isoforms. a, Circos plot depicting raw fold changes (FC) of transcripts 
and proteins, effects sizes (ES) derived from differential expression analysis, 
transcript–protein correlations (rho) and correlative relationships of the MMUT 
protein to TCA proteins and their corresponding isoforms. b, Q-Q and volcano 
plots illustrate the results of the differential expression analysis based on a linear 

mixed modeling approach applied to the proteomics and transcriptomics data, 
restricted to enzymes (or their encoding genes) localized in the mitochondria; 
calculated P values were two-sided. c, Histograms of Spearman correlations 
across 4,318 transcript–protein pairs (left) and 221 samples (right). d, Scatter 
plot of Spearman correlations in MMUT-deficient against control. Euclidean 
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adjusted reliance on the glutamine anaplerotic pathway in disease; a 
hypothesis we tested further by assessing relative carbon incorpora-
tion derived from [U-13C]glutamine into TCA cycle and associated 
intermediates (Fig. 5d). To identify differential labeling patterns, we 
studied the isotope distribution based on the relative incorporation 
of glutamine-derived carbons (Supplementary Fig. 6b) into the TCA 
cycle. In this experiment, immediate anaplerotic glutamine catabolism 
results in M + 5 (glutamate and oxoglutarate) and M + 4 (succinate, 
fumarate, malate and citrate) compounds, whereas oxidative cycles of 
the TCA cycle will incorporate mostly unlabeled carbon (for example, 
from glucose and methylmalonyl-CoA) and dilute glutamine-derived 
13C. In MMUT-KO conditions, we found a tendency for increased pro-
portional fractions of M + 5 oxoglutarate and M + 4 isotopologs of all 
studied TCA cycle metabolites, with reduced proportional fractions 
of M + 0 for each (Fig. 5e), as exemplified by succinate (Extended Data 
Fig. 7a). This implies that cells with impaired MMUT have an increased 
use of glutamine as an anaplerotic source. Moreover, consistent with 
reduced OGDH activity, there was a relative preference for the reduc-
tive TCA cycle pathway, as indicated by an increased M + 5/M + 4 ratio 
for citrate (Fig. 5d)32,33 in MMUT deficiency (Fig. 5f). Applying the same 

labeling technique in primary patient and control fibroblasts replicated 
the observed TCA cycle rewiring (Extended Data Fig. 7b).

To test whether direct supplementation of core TCA-related 
metabolites can correct the reduced pools of TCA cycle interme-
diates, we re-performed metabolomics studies either without 
intervention or following supplementation with citrate, malate or 
dimethyl-oxoglutarate in 293T cells and fibroblasts (Fig. 5 and Extended 
Data Fig. 7c). Dimethyl-oxoglutarate is a membrane-permeable alterna-
tive to 2-oxoglutarate, previously used in a model of OXPHOS dysfunc-
tion32. Supplementation with citrate and malate increased pools of the 
respective intracellular metabolites but did not have a broad impact on 
other TCA intermediates (Fig. 5g and Extended Data Fig. 7c). As we did 
not separate mitochondrial and cytosolic pools, the majority of supple-
mented citrate may have remained cytosolic, consistent with the largely 
enhanced total peak area of M + 0 citrate but no change to the amount 
of labeled citrate (Extended Data Fig. 7d). Likewise, the slightly broader 
effect of malate may reflect its partial entrance into the mitochondria, 
although labeled malate pools were also relatively unchanged follow-
ing supplementation (Extended Data Fig. 7e). Dimethyl-oxoglutarate, 
in contrast, in addition to increasing oxoglutarate pools, increased 
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Fig. 5 | Polar metabolomics and glutamine tracing studies in CRISPR/Cas9 KO 
293T cells and primary patient fibroblasts highlight differential glutamine 
anaplerosis. a, Volcano plot depicting differentially expressed metabolites. 
Highlighted are those particularly relevant to this study. b, Schematic depiction 
of the TCA cycle and relevant anaplerotic reactions. The color code indicates 
dysregulations at the metabolite and protein levels; gray metabolites were 
not detected. c, Pool sizes of metabolites in control and CRISPR/Cas9 KO 
293T cells (error bars represent s.d., centered around the mean). d, Schematic 
representation of labeling of TCA cycle and associated metabolites derived  
from labeled glutamine via anaplerosis. Circles represent carbon atoms.  
e, Relative abundance of isotopologs of TCA cycle metabolites after glutamine 

labeling. f, Ratios of M + 5 and M + 4 citrate isotopologs. g, Total pool sizes of TCA 
cycle metabolites under different treatment conditions. Oxoglut., dimethyl-
oxoglutarate. h, Levels of propionylcarnitine in primary patient fibroblasts under 
treatment. i, Ratios of M + 5 and M + 4 citrate isotopologs under treatment in 
primary fibroblasts; P values were calculated by two-sided Wilcoxon rank test. 
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were measured.
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succinate, malate and fumarate in 293T cells (Fig. 5g) as well as citrate 
in primary patient fibroblasts (Extended Data Fig. 7c). It can be specu-
lated that this is due to its high penetrance into the mitochondria by 
masking the negative charges with methyl groups. These patterns 
were reinforced by investigation of [U-13C]glutamine-derived labeling 
patterns, whereby the addition of citrate and malate ablated the con-
tribution of glutamine to their respective pools, but did not strongly 
affect the anaplerotic synthesis of other intermediates, whereas 
dimethyl-oxoglutarate reduced the anaplerotic contribution of glu-
tamine to all intermediates detected (Extended Data Fig. 8a,b). Two 
other observations make dimethyl-oxoglutarate an interesting treat-
ment compound: in patient fibroblasts, dimethyl-oxoglutarate strongly 
reduced pools of propionylcarnitine, an MMA disease biomarker and 
derivative of the toxic metabolite propionyl-CoA (Fig. 5h), and it led 
to a tendency to decrease the M + 5/M + 4 ratio for citrate in MMUT 
deficiency (Fig. 5i), indicating a potential throttling and re-balancing 
of reductive TCA cycling under this treatment.

MMUT physically interacts with other anaplerotic enzymes
The above-observed adjustments in glutamine anaplerosis have 
an unclear regulatory etiology. On the basis of the strong protein 
expression correlation between MMUT and proximal TCA cycle and 
anaplerotic enzymes (Fig. 4a and Extended Data Fig. 5d), we hypoth-
esized that these proteins might be part of a shared metabolon 
complex, potentially facilitating regulation of TCA cycle anaplero-
sis of glutamine by protein–protein interactions31. To gain insights 
into this potential physical relationship, we took advantage of the 
over-expression of C-terminally FLAG-tagged versions of functional 
MMUT (Extended Data Fig. 9a), three pathway members involved in 
MMUT cofactor (MMAA and MMAB) and substrate (MCEE) synthesis 
expected to participate in any multi-protein complex containing 
MMUT and three negative controls (empty vector (EV), VLCAD and 
ACO2) in 293T cells (Fig. 6a). Using cross-linking immunoprecipitation 
(IP) followed by immunoblotting, we found that IP of over-expressed 
MMUT, MMAB, MMAA and MCEE enabled detection of endogenous 
MMUT and MMAB (Extended Data Fig. 9b), a result confirmed by 
reciprocal detection of endogenous MMAB and MMUT (Extended 
Data Fig. 9c), indicating that these pathway members were indeed 
part of a complex. In contrast, IP following expression of EV, VLCAD  
and ACO2 did not result in the detection of endogenous MMUT 
and MMAB (Extended Data Fig. 9b), demonstrating that the 
above-detected interactions are specific.

To examine a potential complex with TCA cycle and anaplerotic 
enzymes, we performed IP coupled to mass spectrometry of the four 
MMUT pathway proteins (MMUT, MMAA, MMAB and MCEE) and two 
negative controls (EV and VLCAD). At 1.0% false discovery rate (FDR) 
using two peptides minimum at 95% threshold, each of these ‘bait’ 
proteins pulled down a total of 100–350 different ‘prey’ proteins over 
three biological replicates (Extended Data Fig. 10a). Within this inter-
section, we identified 37 prey proteins pulled down by MCEE, MMAA, 
MMAB and MMUT but not by EV or VLCAD in any replicate, including 
MMUT, OGDH, DLST and GOT2, as well as 20 proteins pulled down by 
MCEE, MMAB and MMUT but not EV or VLCAD including MMAB and 
GLUD1 (Fig. 6b). Analysis of variance (ANOVA) of the biological trip-
licates comparing MMUT with EV and VLCAD identified 22 proteins 
to be significantly enriched (nominal P value <0.05) in the MMUT 
sample (Fig. 6c and Supplementary Table 2). All proteins were des-
ignated by UniProt to have mitochondrial localization and included 
GLUD1, GOT2 and DLST (Fig. 6c). ANOVA comparing the intersection 
of proteins confidently pulled down by at least three of MMUT, MMAA, 
MMAB and MCEE but neither of EV or VLCAD identified 11 interacting 
proteins, including GLUD1 and GOT2; whereas the intersection of 
two of MMUT, MMAA, MMAB and MCEE but neither negative control 
identified 13 interacting proteins, including DLST (Fig. 6d and Sup-
plementary Table 2). Finally, complex formation between MMUT 

and DLST was additionally confirmed by immunoblotting (Fig. 6e 
and Extended Data Fig. 10b). These data indicate that MMUT is part 
of a complex of proximal metabolic enzymes, including GLUD1 and 
the oxoglutarate dehydrogenase complex component DLST and sug-
gests that disruption of these interactions may underlie their altered 
regulation in disease.

Discussion
In this study, we used an integrated multi-modal approach to diagnose 
and uncover pathomechanisms of the IEM like MMA. Unique to this 
investigation was the relatively large set of patient samples and corre-
sponding phenotypes available for such a rare genetic disease and the 
ability to coordinate aliquots from the same samples to generate data 
at three molecular layers. The results of our study will encourage future 
endeavors to use our approach in any setting of an inborn monogenic 
disease. Moving forward, the datasets derived from our study can be 
further exploited, for example, by applying network contextualization 
tools34, integrating multi-omics and flux modeling35 and reconstructing 
genome-scale metabolic networks36, continuing to refine the pipeline 
of a multi-modal study of IEMs.

Our findings reinforce the value of comprehensive and com-
plementary datasets to increase diagnostic yield and the under-
standing of the pathophysiological underpinnings of disease. Our 
multi-modal profiling allowed the identification of causative genetic 
variation in 84% of the cohort, including causative factors in the 
samples without MMUT deficiency. We were able to widen the set 
of genes beyond the classical MMA genes MMUT, MMAA and MMAB. 
For example, the identification of ACSF3 damaging variants in our 
cohort is particularly notable as they have recently been linked to 
combined malonic and MMA37. The phenotype of patients with com-
bined malonic and MMA was indistinguishable from the remainder 
of patients with MMA with normal MMUT activity, highlighting the 
fact that IEMs present with widely overlapping phenotypes and 
that they should be studied with large gene panels or with WGS 
approaches to avoid biases toward known genes and to augment 
the chances of diagnosis.

While the ability of clinical phenotypic information to predict a 
molecular diagnosis was limited, phenotypic variables, both clinical 
and biochemical, enabled sample stratification by disease severity 
and consequently identification of multi-level alterations of meta-
bolic genes/proteins that were not apparent following examination 
of single omics layers. Such a move away from ‘data silos’ into true 
integrative and mechanism-based, multi-layered analysis remains 
challenging, as it requires new analytical and statistical methods 
to combine these disparate datasets38. In this capacity, multi-omics 
factor analysis23 highlighted the disruption to transcripts and pro-
teins of the TCA cycle and related pathways, a finding verified by the 
correlation with phenotypic data utilizing both PI activity and a CSS. 
Following multi-modal integration, we performed metabolomics 
in select patient cells and further complemented the data with glu-
tamine tracing and protein–protein interaction studies in a second 
cell model. In summary, these experiments showed decreased TCA 
metabolite pools and an increased glutamine-derived anaplerosis. 
Similar investigations in the MMA-related disorder propionic aci-
duria showed limited flux derived from 13C-labeled α-oxoglutarate39. 
In addition, we found previously unidentified MMUT-interaction 
candidates, among which DLST (OGDH complex component) and 
GLUD1 are directly involved in the anaplerotic glutamine path-
way. It is of note that such a tailored set of follow-up experimen-
tal approaches (orthogonal to multi-omics data) is invaluable for 
molecular assessment of potential targets and the validation of their 
biological significance.

Our results highlight the importance of the loss of 
methylmalonyl-CoA as an anaplerotic source and indicate a rele-
vant reduction of TCA cycle intermediates in MMA. We show that 
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anaplerotic insufficiency is a relevant pathomechanism of MMA 
and addressed this phenomenon as a therapeutic target by treat-
ing both our cellular models with TCA cycle intermediates. Such 
anaplerotic stimulating approaches have precedent in IEMs, includ-
ing the application of triheptanoin in long-chain fatty acid oxida-
tion disorders40 or citrate treatment of patients suffering from the 
MMA-related disorder propionic aciduria41. Our findings now show 
that dimethyl-oxoglutarate, a membrane-permeable alternative to 
2-oxoglutarate, previously used in a model of OXPHOS dysfunction32, 
may represent a more promising therapeutic strategy. Studies to 
further delineate the efficacy of such approaches in preclinical and 

clinical models will be important for the ongoing development of new 
treatments for MMA and IEMs in general.

Here, we studied a unique cohort of a rare IEM. The cohort is 
remarkable with regard to the number of included patients with rare 
diseases, amount of phenotypic information collected and availability 
of primary fibroblast cell lines for every individual in the cohort; how-
ever, future efforts are required to include every individual (including 
an equal number of controls) in an unbiased way to avoid collider 
bias and to collect phenotypic data in a complete, standardized and 
longitudinal manner (for example, via rare disease registries); aims 
that were not possible in our multinational, multi-decade cohort.  
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Further, corroboration of our findings of TCA cycle rewiring in MMA 
will be required in orthogonal models, including in vivo studies, to 
assess their applicability in a therapeutic setting.

Methods
Cohort and patient-derived fibroblast samples
Primary fibroblast samples and corresponding disease-related infor-
mation, including clinical and diagnostic data, were collected from 
1989 to 2015. The information obtained and the use of fibroblasts 
remains under the ethics approval granted by the Ethics Committee of 
the Canton of Zurich (KEK-2014-0211, amendment: PB_2020-00053). 
Upon collection, primary fibroblasts were cultured using Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco, Life Technologies) with 10% 
fetal bovine serum (Gibco) and antibiotics (GE Healthcare) and either 
used immediately or exchanged with 90% fetal bovine serum and 10% 
dimethyl sulfoxide and stored in cryovials under liquid nitrogen. A 
frozen aliquot of each primary fibroblast cell culture was sent for WGS, 
RNA-seq and DIA-MS analysis (Fig. 1a). RNA-seq and DIA–MS were 
always performed from matched aliquots.

Cohort selection
Patient samples were referred to our center initially for enzymatic or 
genetic diagnostic purposes. For this study, we selected affected indi-
viduals (n = 210) based on the presence of methylmalonic acid in urine 
or plasma. Patient samples were accompanied by a questionnaire filled 
by the referring physician (Supplementary Document 1) containing 
data on the patients’ clinical and biochemical presentation. Phenotype 
data are provided in the Source Data for Fig. 2. For the analyses shown 
in Fig. 2, nine phenotypic variables (hypothermia, hyperventilation, 
irritability, somnolence, vomiting, dehydration, feeding difficulties, 
responsive to acute treatment and estimated glomerular filtration rate) 
were excluded due to their nonspecific nature, whereas the analyses 
in Supplementary Fig. 1 included complete phenotype information. 
Control samples were obtained from healthy individuals or donors 
without a biochemical defect whose diagnosis excluded MMA.

Clinical disease severity score
The clinical disease severity score was based on five typical clinical 
signs/symptoms of MMA7, including age at disease onset, as well 
as the presence of neurological abnormalities, kidney impairment, 
hematological abnormalities and failure to thrive. Each patient was 
assigned a score from 0–5, indicating increasing disease severity 
(Source Data for Fig. 2).

Biochemical activity assays
PI into acid-precipitable material of primary fibroblasts was assessed 
according to a protocol described previously42 with modifications as 
described20. MMUT enzyme activity assay was performed in fibroblast 
crude cell lysates as originally described43,44 using recent modifica-
tions8. MMUT enzyme activity in HEK cells was measured using the 
same protocol but without radiolabeled substrate (instead only 1 mM 
of methylmalonyl-CoA was used, Sigma M1762) and final succinate 
determination was performed by HPLC separation and electrospray 
ionization (ESI) tandem mass spectrometry (MS/MS) detection (SCIEX 
TripleQuad 5500 LC–MS/MS System).

WGS
Genomic DNA was isolated using QIAmp DNA Mini kit reagents (QIA-
GEN) following the protocol provided by the supplier. WGS libraries 
were prepared with TruSeq DNA PCR-free library reagents (Illumina) 
using 1 μg of genomic DNA following the protocol provided by the 
supplier. The genomic DNA libraries were quantified using the KAPA 
Library Quantification Complete kit (Roche) according to the protocol 
supplied with the reagents. The quantified libraries were sequenced 
on the NovaSeq 6000 sequencer (Illumina) using a 150-nucleotide 

paired-end-run configuration following the protocol provided by 
the supplier.

RNA-seq
Total RNA was isolated using the Rneasy Plus Mini kit (QIAGEN). 
RNA-seq libraries were prepared using the TruSeq Stranded mRNA-seq 
reagents (Illumina) using 200 ng of total RNA following the protocol 
provided by the supplier. The quality of the total RNA and the RNA-seq 
libraries was assessed on Fragment Analyzer (Agilent). The librar-
ies were sequenced on Illumina HiSeq 4000 using the 75-nucleotide 
paired-end-run configuration following the protocol provided by  
the supplier.

Sample preparation for mass spectrometry proteotyping 
measurements
Samples were processed in blocks of eight, taking into consideration a 
balance between disease types and control samples. All other factors 
within a block were randomized. A total of 230 samples were processed 
in three batches. For sample processing, aliquots of primary fibro-
blast (~1 × 106 cells per vial) were washed twice in ice-cold PBS (Gibco), 
resuspended in lysis buffer (Preomics) at a ratio of 1:1 (vol pellet/vol 
lysis buffer) and incubated at 95 °C for 10 min. Samples were sonicated 
in a vial tweeter (Hielscher Ultrasound Technology) at 4 °C for three 
cycles with an amplitude 100%, power 80% during 30 s. Then, 100 μg 
of protein lysate were further processed with the iST kit (Preomics). 
The purified peptides were resuspended in LCLoad buffer containing 
iRT peptides (Biognosys) at a concentration of 1 μg μl−1.

Spectral library generation
For spectral library generation, three times 24 samples (3 × 8 sample 
blocks) were pooled. Pooled sample batches were digested as described 
above. Then, 100 μg of purified peptides were fractionated on a C18 col-
umn (YMC-Triart, C18, 3 μm, 250 × 0.5 mm internal diameter) according 
to pH on an Agilent HPLC 1260 system with a stepped 61-min gradient 
ranging from 95 % buffer A (20 mM ammonium formate acid/H2O) to 
85% buffer B (20 mM ammonium formate/90% ACN). Overall, 48 frac-
tions were collected per sample and subsequently pooled to 24 frac-
tions. Samples were resuspended in 5% ACN/0.1% FA and analyzed on a 
Q-Exactive HF-X mass spectrometer (Thermo Fisher Scientific) in DDA 
mode. The same nLC 1200 configuration and mobile phase gradient 
elution conditions as for DIA were applied.

Full MS survey scans were acquired at a resolution of 60,000 
with automatic gain control (AGC) target of 3 × 106 and a maxi-
mum injection time of 45 ms over a scan range of m/z 375–1,500. 
A data-dependent top-12 method was used for HCD MS/MS with a 
normalized collision energy of 28 at a resolution of 15,000 and a fixed 
first mass of m/z 100. Precursor ions were isolated in a 1.4-Th window 
and accumulated to reach an AGC target value of 1 × 105 with a maxi-
mum injection time of 22 ms. Precursor ions with a charge state of 1 
and 6 as well as isotopes were excluded for fragmentation. Dynamic 
exclusion was set to 15 s.

DDA raw files were processed with Proteome Discoverer (v.2.2) 
using a human UniProt database (release 201804) together with iRT 
peptides (Biognosys) and common contaminants. The processing 
workflow consisted of SequestHT45 and Amanda46 nodes coupled with 
Percolator47. The following search parameters were used for protein 
identification: (1) a peptide mass tolerance of 10 ppm; (2) an MS/MS 
mass tolerance of 0.02 Da; (3) fully tryptic peptide search with up to 
two missed cleavages were allowed; and (4) carbamidomethylation 
of cysteine was set as fixed modification, methionine oxidation and 
protein N-terminal acetylation were set as variable modifications. 
Percolator was set at max deltaCN of 0.05, with target FDR strict of 0.01 
and target FDR relaxed of 0.05. The spectral library from Proteome 
Discoverer was imported into Spectronaut v.12 (Biognosys) using 
standard parameters with 0.01 peptide spectrum match FDR.
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DIA–MS setup and data analysis
For DIA analysis, samples were measured on a Q-Exactive HF mass 
spectrometer (Thermo Fisher Scientific). Mobile phase A consisted 
of HPLC-grade water with 0.1% (v/v) formic acid and mobile phase B 
consisted of HPLC-grade ACN with 20% (v/v) HPLC-grade water and 
0.1% (v/v) formic acid. Peptide separation was carried out on an ES806, 
2 μm, 100 Å, 150 μm internal diameter × 150 mm, C18 EASY-Spray col-
umn (Thermo Fisher Scientific) at a temperature of 50 °C. For LC–MS/
MS analyses, 2 μg each sample were loaded onto the column via an 
Easy-nLC 1200 system (Thermo Fisher Scientific). Samples were loaded 
at 4 μl min−1 with 100% mobile phase A for 5 min. Peptide elution was 
performed using the following gradient (1) 2% to 8% mobile phase 
B in 4 min; (2) 8% to 32% mobile phase B in 49 min; (3) 32% to 60 % 
mobile phase B in 1 min; and (4) ramp to 98% mobile phase B in 1 min 
at 2 μl min−1.

For DIA acquisition on a Q-Exactive HF mass spectrometer, we 
applied a DIA method published elsewhere48. In short, we performed an 
MS1 scan over a mass range of m/z 400–1210 at a resolution of 120,000 
with an AGC target value of 3 × 106 and with a maximum injection time 
of 50 ms. For MS/MS scans, the resolution was at 30,000 with an AGC 
target value of 1 × 106 and with ‘Auto’ maximum injection time. Precur-
sor ions were isolated within a 15-Th window and fragmented by HCD 
with normalized collision energy 28. A total of 54 MS/MS scan windows 
were defined, interspersed every 18 scans with an MS1 scan.

DIA data analysis was performed in Spectronaut v.12 (Biognosys) 
using standard parameters. For identification, a Q value cutoff of 0.01 
was applied on the precursor as well as on the protein level. The MS1 area 
was selected for quantification. Quantification parameters were set to 
mean peptide quantity for major group quantity, the top three peptides 
were selected for protein quantity calculation. Data filtering was set to 
Q value sparse, with no imputation. Cross-run normalization was set 
to local. The protein report for downstream analysis contained infor-
mation report about PG.ProteinAccessions, PG.ProteinDescriptions, 
PG.ProteinNames. PG.Qvalue and PG.Quantity.

Quality assessment of WGS, RNA-seq and DIA–MS data
Overall quality assurance tests revealed a mean of high-quality aligned 
genomic reads of 8.7 × 108 at a median genomic coverage of > 38-fold 
(Extended Data Fig. 1b). A median of 3.74 million single-nucleotide 
variations were called using the Genome Analysis Toolkit49 and Deep-
Variant50. RNA-seq data showed a median Phred score of > 36.3 at three 
and more cycles (Extended Data Fig. 1c), while proteomics data showed 
a high reproducibility with 2,218 proteins detected in at least 75% of 
samples (Extended Data Fig. 1d). For 9 of the 230 samples RNA extrac-
tion yielded insufficient nucleic acid to proceed with transcriptome 
sequencing; hence, these datasets were excluded from all further 
analysis (transcriptomics data of sample IDs 22, 54, 59, 78, 89, 109, 
123, 207 and 221).

Selection of primary fibroblasts for polar metabolomics
To select cell lines for metabolomics, we opted for a balanced 
design with ten MMUT-deficient cell lines and ten control lines. 
MMUT-deficient lines were picked to show over-expression of GLUD1 
and under-expression of OGDH, whereas the control lines were chosen 
to show the reverse pattern. We fitted a mixed-effects model with PI+ 
as a response, two fixed effects for GLUD1 and OGDH expression and 
a random effect with the same covariance structure as the proteomics 
data after column and row normalization. From the MMUT-deficient 
and control cell lines, we chose ten with the lowest predicted value of 
PI+ and ten with the highest predicted value, respectively. The top-ten 
ranked MMUT-deficient (MMA014, MMA092, MMA042, MMA067, 
MMA093, MMA104, MMA013, MMA030, MMA138 and MMA036) and 
the last-ten ranked control primary fibroblasts (MMA219, MMA221, 
MMA227, MMA222, MMA213, MMA230, MMA226, MMA228, MMA225 
and MMA215) were selected and cultured as described above.  

Six primary fibroblast lines (in bold above) met growth criteria and 
were selected for the polar metabolomics experiment.

Fibroblast sample preparation for polar metabolomics
A total of 100,000 cells per well were seeded in a six-well plate and 
grown for 48 h. Medium was removed and cells were washed twice 
with 150 mM ammonium hydrogen carbonate (NH4HCO3) at pH 7.4. 
The whole plate was flash-frozen in liquid nitrogen for 20 s and then 
stored at −80 °C. Metabolites were extracted by putting the plate on 
dry ice and adding cold (−20 °C) 40:40:20 acetonitrile:methanol:water 
and incubated at −20 °C for 10 min. Supernatant was collected and a 
second volume of 40:40:20 acetonitrile:methanol:water was added and 
incubated at −20 °C for 10 min. Plates were put on dry ice and cells were 
scraped mechanically and collected. Collection tubes were centrifuged 
at 15,000g for 2 min at 4 °C, supernatants were collected and stored at 
−20 °C before metabolomics analysis.

Polar metabolomics in patient-derived fibroblasts
Untargeted metabolite profiling was performed using flow injection 
analysis on an Agilent 6550 QTOF instrument (Agilent) using nega-
tive ionization, 4 GHz high-resolution acquisition and scanning in 
MS1 mode between m/z 50–1,000 at 1.4 Hz51. The solvent was 60:40 
isopropanol:water supplemented with 1 mM NH4F at pH 9.0, as well as 
10 nM hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine and 80 nM 
taurochloric acid for online mass calibration. The seven batches were 
analyzed sequentially. Within each batch, the injection sequence was 
randomized. Data were acquired in profile mode, centroided and ana-
lyzed with MatLab (Mathworks). Missing values were filled by recursion 
in the raw data. Upon identification of consensus centroids across all 
samples, ions were putatively annotated by accurate mass and isotopic 
patterns. Starting from the HMDB v.4.0 database, we generated a list 
of expected ions, including deprotonated, fluorinated and all major 
adducts found under these conditions. All formulas matching the 
measured mass within a mass tolerance of 0.001 Da were enumer-
ated. As this method does not employ chromatographic separation or 
in-depth MS2 characterization, it is not possible to distinguish between 
compounds with the identical molecular formula. The confidence of 
annotation reflects level 4 but, in practice, in the case of intermediates 
of primary metabolism, it is higher because they are the most abundant 
metabolites in cells. The resulting data matrix included 1,809 ions that 
could be matched to deprotonated metabolites listed in HMDB. All m/z 
peaks that remained unmatched or were associated with adducts or 
heavy isotopomers were discarded.

Mouse care and handling
The study was approved under license no. 202/2014 from the Can-
tonal Veterinary Office Zurich. Generation of the Mmut-p.Met698Lys 
variant model and crossing with a Mmut-ko/wt model was conducted 
as previously described24. These mice, B6.129S1-Mmut<tm1Pai>×
B6-Mmut<tm1.1Mrb> were generated on a C57BL/6J background. Mice 
were housed in single-ventilated cages with a 12-h light–dark cycle and 
an artificial light of approximately 40 Lux in the cage. The animals 
were kept under controlled humidity (45–55%) and temperature 
(21 ± 1 °C) and housed in a barrier-protected specific-pathogen-free 
unit. Mice had ad libitum access to sterilized drinking water and to 
pelleted and extruded mouse diet containing 18.5% protein and 4.5% 
fat (Kliba-Nafag, 3436).

Collecting of mouse tissues
Urine was collected in the morning after one night in a metabolic cage. 
The sediment was removed and the supernatant was flash-frozen in 
liquid nitrogen. Tissue samples were collected from mice aged 58–63 d. 
Animals were anesthetized by sevoflurane. Portal blood was taken 
and kept on ice to coagulate, centrifuged at 4 °C and snap-frozen in 
liquid nitrogen directly after. The liver, kidneys, heart and brain were 
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collected and snap-frozen in liquid nitrogen. All samples were stored 
at −80 °C before analysis.

Metabolomics in mouse tissues
The mouse body fluid and tissue samples derived from five female 
Mmut-ki/wt and five female Mmut-ko/ki mice were collected as 
described above and prepared as previously published52. Sample analy-
sis using LC–MS was performed as previously published53. Ions were 
annotated to metabolites based on exact mass to the KEGG database54 
considering [M-H+] and 0.01 Da mass accuracy.

Transcriptomics in mouse brains
Brain tissue samples were collected as described above. Four female 
mice per genotype groups Mmut-ki/wt and Mmut-ko/ki were used. RNA 
was purified using a DNase kit (QIAGEN, 79254) together with QIAmp 
RNA Blood Mini kit (QIAGEN, 52304). RNA-seq reads were aligned with 
STAR-aligner55. As reference, we used the Ensembl mouse genome build 
GRCm38. Gene expression values were computed with the function 
featureCounts from the R package Rsubread56.

CRISPR gene-editing experiments
CRISPR-Cas9 editing was performed in 293T cells (ATCC CRL-3216) 
as described57. Cas9 protein was provided as a plasmid (PX459-V2.0, 
Addgene, 62988) and guide RNA (MMUT: ATTCCTTTAGTATATCATTT; 
OGDH: GACTAGTTCGAACTATGTGG; DLST: AACAGGGGAACTGCC-
CTCTA) as gBLOCKS58 (IDT Technologies). The 293T cells were trans-
fected using a Neon transfection system (Thermo Fisher Scientific) 
containing 100,000 cells, 0.6 μg Cas9 plasmid and 600 ng guide RNA 
following the manufacturer’s instructions. At 48 h after transfection, 
cells were collected, diluted to 1 cell per 100 μl and transferred to a 
96-well plate at 100 μl per well for clonal selection. Correct clones were 
confirmed by Sanger sequencing of genomic DNA.

Western blotting
Protein extraction and Western blotting was performed as described 
previously59. Primary antibodies used were probing for the follow-
ing proteins: MMUT (Abcam, ab67869, 1:1,000 dilution, mouse host), 
OGDH (Atlas Antibodies, HPA020347, 1:500 dilution, rabbit host), GLUD 
(Abcam, ab166618, 1:2,000 dilution, rabbit host) and β-actin (Sigma, 
A1978, 1:5,000 dilution, mouse host). Secondary antibodies used were 
anti-rabbit HRP (Santa Cruz, sc-2357, 1:5,000 dilution, mouse host) and 
anti-mouse HRP (Santa Cruz, sc-516102, 1:5,000 dilution, goat host).

KGDH enzyme activity assays
An assay of oxoglutarate dehydrogenase enzyme activity was per-
formed in 293T cell clones according to the manufacturer’s instruc-
tions (Sigma-Aldrich, MAK189) detected using a VICTOR Nivo system 
(PerkinElmer).

Glutamine tracing studies and treatments
The 293T cells or primary fibroblasts were cultured on poly-l-lysine 
coated coverslips in DMEM with 25 mM glucose and 4 mM 
l-glutamine (Gibco, 11965092), supplemented with 10% FBS, 1% 
antibiotic-antimycotic (Gibco). For treatment studies, 1 mM citric acid 
disodium salt (Sigma, 71635), 6 mM dimethyl 2-oxoglutarate (Sigma, 
349631) or 1 mM l-malic acid (Sigma, M7397) was added for 24 h before 
cell collection. Four hours before cell collection, medium was changed 
to DMEM with 25 mM glucose without l-glutamine (Gibco, 11960044) 
supplemented with 10% FBS, 1% antibiotic-antimycotic (Gibco) and 
4 mM [U-13C] glutamine (Sigma-Aldrich, 605166). At collection, medium 
was removed, coverslips quickly dipped into sterile double-distilled 
water at 37 °C and quenched in 80% methanol at −20 °C. Cells were 
scrapped in methanol and centrifuged at 15,000g for 15 min at 4 °C. 
Supernatants were collected, snap-frozen in liquid nitrogen and stored 
at −80 °C before LC–MS analysis.

Thawed supernatants were lyophilized overnight and resolubilized 
in 200 μl loading buffer (water and 0.5% formic acid) in narrow-bottom 
96-deep-well plates on a shaker (800 r.p.m., 15 °C, 10 min) for LC–MS 
injection. Metabolites were separated using an ACQUITY UPLC HSS T3 
1.8-μm, 100 × 2.1 mm internal diameter column (Waters) and eluted 
using the following gradient from solvent A (water, 5 mM ammonium 
formate and 0.1% formic acid) to solvent B (methanol, 5 mM ammonium 
formate and 0.1% formic acid) as follows: 2 min at 0% B; 2–3.5 min to 4% 
B; 3.5–10 min to 45% B; 10–12 min to 70% B; 12–13.5 min to 100% B; with 
an isocratic plateau at 100% B for 2–15.5 min and from 15.5–16.5 min to 
0% B. After each run the column was re-equilibrated for 8 min at 100% 
A with a constant flow rate of 0.4 ml min−1.

Mass spectra were acquired using a heated ESI source of a 
Q-Exactive high-resolution, accurate mass spectrometer (Thermo 
Fisher Scientific). Mass spectra were recorded in positive and negative 
mode with the MS detector in full-scan mode (full MS) in a scan range 
50–750 m/z with an AGC target of 1 × 106, an Orbitrap resolution of 
70,000 and a maximum injection time of 80 ms. Peaks were integrated 
with Xcalibur (v.4.0.27.19, Thermo Fisher Scientific) using windows of 
0.01 m/z and 20 s for retention time as previously determined using 
a library of standards. Heated ESI parameters were sheath gas flow 
rate 35 arbitrary units (AU), auxiliary gas flow rate 35 AU, sweep gas 
flow rate 2 AU, spray voltage 3.5 kV, capillary temperature 350 °C and 
aux gas heater temperature 350 °C. Detector settings for full MS were 
in-source CID 0.0 eV; μscans of 1; resolution of 70,000; AGC target of 
1 × 106; max IT of 35 ms and spectrum data type, profile. Integration 
parameters were ICIS Peak Integration, nearest RT; smoothing points 
3; baseline window 40; area noise factor 3; peak noise factor 70; and 
minimum peak height 3.0. Data preprocessing included missing value 
imputation and normalization to internal standards [2H]3-creatine 
and [2H]4-citric acid for positive and negative mode, respectively. 
Experiments were performed in 2–3 clonal replicates, two biological 
replicates and three technical replicates. Each technical replicate was 
run in positive and negative mode.

Affinity-capture mass spectrometry
The 293T cells were grown in DMEM (Gibco) supplemented with 10% 
fetal bovine serum (Gibco) and antibiotics (GE Healthcare). Transient 
transfection of each pCDNA3-C-FLAG-LIC construct was performed at 
least three separate times using Lipofectamine 3000 (Thermo Fisher 
Scientific) according to manufacturer’s instructions. At 48 h after 
transfection, cells were crosslinked using 0.5% paraformaldehyde 
(PFA, Sigma-Aldrich) in PBS (Gibco) for 10 min at RT, the reaction 
was quenched with 1.25 M glycine/PBS (Sigma-Aldrich) for 10 min 
at 4 °C, cells were centrifuged for 5 min at 2,000g at 4 °C and the 
pellet resuspended in lysis buffer (1% Nonidet P-40, 0.5% deoxycho-
line, 150 mM NaCl and 50 mM Tris-HCl, pH 7.5; all Sigma-Aldrich). 
Pre-cleared cell extracts were immunoprecipitated with anti-FLAG M2 
(F3165, Sigma-Aldrich), anti-MMUT (ab67869, Abcam) or anti-MMAB 
(HPA039017, Sigma-Aldrich) using Dynabeads Protein G (Thermo 
Fisher Scientific) according to the manufacturer’s instructions.

For affinity capture, all samples were washed with PBS and pep-
tides were released by trypsin (100 ng μl−1 in 10 mM HCl) and super-
natants were collected, dried and dissolved in 0.1% formic acid. All 
affinity-captured samples were measured on a Q-Exactive mass spec-
trometer (Thermo Fisher Scientific) with an MS1 resolution of 70,000, 
an AGC target of 3 × 106 and a maximum injection time of 100 ms over 
a scan range of m/z 350–1,500. A data-dependent top-12 method was 
used for HCD MS/MS with a normalized collision energy of 25 at a 
resolution of 35,000. Precursor ions were isolated in a 1.2-Th window 
with an AGC target value of 1 × 105 with a maximum injection time of 
120 ms. Dynamic exclusion was set to 40 s.

Samples were analyzed using Mascot (Matrix Science, v.2.6.2) 
with the SwissProt database (downloaded 4 February 2019) assuming 
trypsin with at maximum two miscleavages. Mascot was searched 

http://www.nature.com/natmetab


Nature Metabolism | Volume 5 | January 2023 | 80–95 92

Article https://doi.org/10.1038/s42255-022-00720-8

with a fragment ion mass tolerance of 0.030 Da and a parent ion toler-
ance of 10.0 ppm. Oxidation of methionine was specified as a variable 
modification. Scaffold (v.Scaffold_5.1.2, Proteome Software) was used 
to validate MS/MS-based peptide and protein identifications. Peptide 
identifications were accepted if they could be established at greater 
than 95.0% probability by the Scaffold Local FDR algorithm. Protein 
identifications were accepted if they could be established at greater 
than 99.0% probability and contained at least two identified peptides.

For immunoblotting, the procedure was the same as described 
above with the exception that samples were detected using anti-FLAG 
(1:2,000 dilution; Sigma-Aldrich), anti-MMUT (1:500 dilution, Abcam), 
anti-MMAB (1:1,000 dilution, Sigma-Aldrich) or anti-DLST (1:1000 
dilution, D22B1, Cell Signaling Technology) primary antibodies. Indi-
cated proteins were detected by HRP-labeled anti-mouse (ab131368, 
Abcam) or anti-rabbit (ab131366, Abcam) secondary antibodies at a 
dilution of 1:5,000.

Genetic variant investigation approach
Short-variant calling was carried out with GATK and DeepVariant algo-
rithms and annotated with annovar60. Copy-number variations (CNVs) 
were called with CNVnator61 with a bin size of 100 and standard param-
eters and annotated with AnnotSV62. Variation in the MMUT gene was 
investigated first. When no genetic cause for the phenotype was identi-
fied with this approach (two inactivating/damaging events in MMUT), 
other genes known to be involved in MMA (based on literature reports) 
were investigated as a virtual gene panel. When no genetic cause was 
found in the two previous steps, genes highlighted by mutational 
burden (genes harboring pathogenic variants across the cohort in an 
autosomal recessive pattern in two or more individuals) were investi-
gated. Finally, all samples and controls were used to run OUTRIDER21 
and genes highlighted as expression outliers associated with pheno-
types overlapping MMA were analyzed to either confirm the identified 
damaging variants, or to further explore damaging variation in them.

Variants were prioritized with the following approach: First, any 
coding variant (excluding synonymous variants) with a GnomAD fre-
quency across all represented populations <0.01, in homozygosity 
or compound heterozygosity with another relevant variant and sup-
ported by at least two forward and two reverse reads and at least eight 
reads coverage, were evaluated. Second, all variants categorized by the 
automatic application of the ACMG criteria63 by InterVar64 or classified 
in ClinVar65 as ‘pathogenic’ or ‘likely pathogenic’, in homozygosity or 
compound heterozygosity with another relevant variant, were consid-
ered and evaluated. Third, variants with a dbscSNV_ADA or dbscSNV_RF 
scores > 0.6 in the annovar annotation using the database prepared and 
described previously66 were evaluated.

For CNVs, individuals with a single heterozygous variant or no 
variation in MMUT and the other genes of interest were investigated 
for the presence of relevant CNVs that could explain their phenotype60.

Data analysis
For differential expression analysis, we quantile normalized the 
response variable (PI activity measures) to have it follow a standard 
normal distribution and ensure that the normality assumption holds. 
Proteomics and RNA-seq expression matrices were iteratively column- 
and row-wise standardized to ensure mean zero and unit variance both 
row- and column-wise67,68. We then ran a mixed model with the gene 
expression vector being used as a fixed effect and a random effect with 
the same covariance structure as the expression data after column 
and row normalization as described before25. For the global data layer 
inspection we used the MOFA v.1.3.1 (ref. 23), MASS v.7.3-54 (ref. 69) and 
fgsea v.1.18.0 (ref. 70) packages. MOFA was run on log-transformed data. 
Gene enrichment analysis was performed using gene sets downloaded 
from http://www.gsea-msigdb.org/gsea/msigdb/index.jsp ‘MSigDB 
Collections’ on 28 December 2020. Circos, including chord plots, were 
created using the circlize package v.0.4.13 (ref. 71). The UniProt portal 

was accessed on 24 February 2021 to scrape protein localization data. 
Data analysis was performed using R v.4.1.0.

Ethical compliance
Collection and use of primary fibroblast cells and informed consent for 
phenotypic data were performed as approved by the Ethics Committee 
of the Canton of Zurich (KEK-2014–0211, amendment PB_2020-00053). 
All animal experiments were approved by the Cantonal Veterinary 
Office Zurich (license no. 202/2014).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Access to the raw genomic and transcriptomic data is restricted 
due to ethical concerns. Data can be made available upon reason-
able request to D.S.F. within 3 months following an established data 
transfer, use agreement and ethical approval. The MS proteomics 
data (.raw files) have been deposited to the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via the 
MassIVE partner repository (https://massive.ucsd.edu) with dataset 
identifiers MSV000088791 and PXD038225. Metabolomics MS raw 
data for human fibroblast measurements have been uploaded to the 
MassIVE data repository (https://massive.ucsd.edu) with dataset iden-
tifier MSV000089082. IP-MS raw files have been deposited to the 
ProteomeXchange Consortium via the MassIVE partner repository 
(https://massive.ucsd.edu) with dataset identifier MSV000088791. 
Source data are provided with this paper.

Code availability
Computer code for data analyses is hosted on a repository on the 
GitHub platform and accessible at https://github.com/pforny/
MMAomics.
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Extended Data Fig. 1 | Historic context of sample collection and quality 
control measurements of multi-omics data. a, Histogram of fibroblast samples 
binned into their year at collection and waffle chart illustrating the different 
sample groups indicated by the color code. b, Violin plots illustrating average 
number of read per sample (n = 229). HQ, high quality. Line plot (one line per 
sample) indicating genome coverage as quantitatively summarized in the below 
table. c, Boxplots indicating Phred quality scores at different number of cycles. 
Each sample (n = 221) underwent 75 cycles that were binned (see x axis) to display 

the Phred scores per bin (bin 1−2, 1206 scores; 3−5, 1809; 6−10, 3015; 11−20, 
6030; 21−50, 18090; > 50, 15075). d, Proteomics quality control illustrated by 
the number of detected proteins in relation to the percentage of overlapping 
proteins (top panel). Using a threshold of > 50% overlapping proteins, the 
variation coefficients of n = 2850 proteins are displayed for each sample group. 
Boxplot elements represent center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range; points, outliers. Violin plots depict 
the distribution of the data using vertical density curves.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Biochemical assessment of MMUT activity and 
propionate incorporation activity supports diagnosis of affected 
individuals. a, Scatter plot of maximal, that is supplemented with 
adenosylcobalamin (AdoCbl) or hydroxocobalamin (OHCbl), activity of the 
MMUT enzyme and the propionate incorporation assay. b, Boxplots of MMUT 
enzyme activity with and without AdoCbl supplementation measured in 
biologically independent fibroblast samples (mut0, n = 119; mut-, n = 29; other 
MMA, n = 46; unaffected, n = 3). c, Boxplots of propionate incorporation activity 
with and without OHCbl supplementation measured in biologically independent 
fibroblast samples (mut0, n = 120; mut-, n = 30; other MMA, n = 60; unaffected, 
n = 9). d, Copy number variants illustrated by read counts of specific locations of 
the MMUT gene for three specific samples. e, Scatter plots of MMUT transcript 
and protein levels of the MMUT-deficient samples. Samples are indicated by 
dots and are grouped according to the underlying bi-allelic genetic variation 

type of the MMUT gene (Number of samples for the transcript and protein plot, 
respectively: deletion/deletion, n = 1/1; missense/missense, n = 63/65; missense/
splicing, n = 6/6; missense/truncating, n = 26/30; splicing/splicing, n = 6/6; 
truncating/splicing, n = 3/3; truncating/truncating, n = 36/37). f, Regression plots 
of MMUT transcript and protein levels versus MMUT enzyme and propionate 
incorporation activity. g, Same as f but excluding samples with truncating/
truncating, splicing/splicing and truncating/splicing MMUT allele combinations. 
h, Fold change of all transcripts and proteins, respectively, when comparing 
the MMUT-deficient group versus the rest of the samples. Gene names are 
ranked according to the negative base 10 logarithm of the fold change. All linear 
regressions are calculated according to the Pearson method, P values two-sided; 
bands indicate 95% confidence level interval. Boxplot elements represent center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers.

http://www.nature.com/natmetab


Nature Metabolism

Article https://doi.org/10.1038/s42255-022-00720-8

Extended Data Fig. 3 | Expression outlier analysis reveals causative genes in specific disease samples. Expression rank plots for a, ACSF3, b, SUCLA2, c, MMAA and 
d, MMAB and Z-score volcano plots for specific samples, applying the OUTRIDER R package.
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Extended Data Fig. 4 | The clinical severity score and propionate 
incorporation activity are associated with several phenotypic traits.  
a, Proportional bar plots of the presence of absence of clinical parameters in 
relation to the clinical severity score. b, Age at onset in relation to the clinical 
severity score. c, Linear regression of various relationships of propionate 
incorporation activity to continuous phenotypic variables (Pearson method, 

two-sided, pairwise comparisons). d, Comparison of propionate incorporation 
activity with discrete phenotype variables (P values by t-test, two-sided, 
pairwise comparisons; number of samples per boxplot are indicated above the 
boxplot). Boxplot elements represent center line, median; box limits, upper 
and lower quartiles; whiskers, 1.5x interquartile range. Each dot represents a 
sample/patient.
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Extended Data Fig. 5 | Transcript–protein and protein–protein correlation 
analysis illustrates coordinated regulation of MMUT with most TCA 
transcripts and proteins. a, Histograms of Pearson correlations across 4318 
transcript–protein pairs (top) and 221 samples (bottom). b, Scatter plot of the 
strongest positive and negative transcript–protein correlations (ranked by 
average of Pearson correlation coefficient in the MMUT-deficient and control 
group). c, Transcript–protein Pearson correlation plots of selected TCA cycle 
related genes. d, Spearman correlation of the MMUT protein versus a selection 

of TCA cycle and related proteins and their isoforms illustrated in a chord plot 
for control (left), MMUT-deficient samples (middle) and the difference of the 
two former plots (right); thickness of the links indicates nominal value of the 
correlation coefficient. e, Scatter plot of MMUT protein versus both isoforms 
of aconitase (ACO1 and ACO2) with linear regression by Pearson correlation. 
f, Chord plot illustrating all correlative relationships of TCA cycle and related 
transcripts or proteins (g); thickness of the links indicates nominal value of the 
Spearman correlation coefficient. All P values calculated two-sided.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Metabolomics investigation of a subset of patient cell 
lines. a, Density plot illustrating a model for OGDH and GLUD1 with all fibroblast 
samples ranked according to three sample groups. b, Boxplots of total ion 
current assessed in the two experimental groups ‘control’ and ‘MMUT-deficient’ 
primary fibroblasts (n = 6 in each group); technical replicates are collapsed to 
represent one dot per cell line. c, TCA metabolites as measured by untargeted 
polar metabolomics; n = 6 biological replicates. d, Levels of metabolites involved 

in the two enzymatic steps catalyzed by two oxoacid dehydrogenase complexes 
(OGDC and OADC) and their proximal reactions; OGDH protein in green indicates 
its downregulation as detected in the proteotyping dataset; n = 6 biological 
replicates. Boxplot elements represent center line, median; box limits, upper and 
lower quartiles; whiskers, 1.5x interquartile range. All P values are calculated by 
Wilcoxon rank test, two-sided.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Treatment of primary patient/control fibroblasts and 
293T cells. a, Relative incorporation into different isotopologues of succinate 
without treatment of 293T cells. b, Relative abundance of isotopologues of 
TCA cycle metabolites after glutamine labeling. c, Total pool sizes of TCA 
cycle metabolites under different treatment conditions (Oxoglut., dimethyl-
oxoglutarate) in primary fibroblasts; n = 4 biologically independent samples per 
group were measured. d, Total ion count for citrate and malate (e) is displayed 
for different isotopologues under citrate and malate treatment, respectively. 

For each boxplot representing results from 293 T cells (c, e, f, g), n = 3 
biologically independent samples (WT), n = 2 (MMUT-KO), n = 2 (DLST-KO) over 2 
independent experiments were measured. For experiments in patient fibroblasts 
(h, i), n = 4 biologically independent samples per group were measured; P values 
calculated by Wilcoxon rank test, two-sided. Boxplot elements represent center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; dots in a, d, and e are outliers, in c individual samples.

http://www.nature.com/natmetab


Nature Metabolism

Article https://doi.org/10.1038/s42255-022-00720-8

Extended Data Fig. 8 | Fractional labeling pattern derived from glutamine in 293T and primary fibroblast cells upon treatment. Cells (a, 293T. b, primary patient 
and control fibroblasts) treated with the compounds indicated above the plots (DM-Oxog., dimethyl-oxoglutarate).
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Extended Data Fig. 9 | MMUT-flag is enzymatically active and pulls down 
other propionate pathway proteins using immunoprecipitation. a, MMUT 
enzyme activity using a radio-labeled substrate in 293T cells (backgrounds (WT 
or MMUT-KO) and transfected constructs are indicated in the color key; data 
points indicate means of n = 3 independent experiments; error bars indicate SD, 

centered around the mean; P values calculated by t-test, two-sided. b, Western 
blots of over-expressed flag-tagged MMUT, MMAB, MMAA, and MCEE, but 
not VLCAD, ACO2, and empty vector (EV). c, Detection of endogenous MMUT 
and MMAB following cross-linking immunoprecipitation. Panels shown are 
representative of at least n = 3 independent experiments.
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Extended Data Fig. 10 | Quantitative pull-down results following affinity 
purification mass spectrometry and confirmation of DLST pull-down by 
MMUT-flag by immunoprecipitation. a, Numbers indicate count of proteins 
per intersection following affinity purification mass spectrometry; Venn regions 

are labeled with the names of flag-tag bait proteins; UpSet plot illustrates 
intersection and set sizes. b, Immunoprecipitation of flag-tagged MMUT and 
MCEE probing for DLST in 293T WT and MMUT-KO cell lines. Panels shown are 
representative of at least n = 3 independent experiments.
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