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Abstract
Repurposing drugs capable of extending lifespan and health span has a huge untapped 
potential in translational geroscience. Here, we searched for known compounds that 
elicit a similar gene expression signature to caloric restriction and identified rilmeni-
dine, an I1-imidazoline receptor agonist and prescription medication for the treatment 
of hypertension. We then show that treating Caenorhabditis elegans with rilmenidine 
at young and older ages increases lifespan. We also demonstrate that the stress-
resilience, health span, and lifespan benefits of rilmenidine treatment in C. elegans are 
mediated by the I1-imidazoline receptor nish-1, implicating this receptor as a potential 
longevity target. Consistent with the shared caloric-restriction-mimicking gene signa-
ture, supplementing rilmenidine to calorically restricted C. elegans, genetic reduction 
of TORC1 function, or rapamycin treatment did not further increase lifespan. The 
rilmenidine-induced longevity required the transcription factors FOXO/DAF-16 and 
NRF1,2,3/SKN-1. Furthermore, we find that autophagy, but not AMPK signaling, was 
needed for rilmenidine-induced longevity. Moreover, transcriptional changes similar 
to caloric restriction were observed in liver and kidney tissues in mice treated with 
rilmenidine. Together, these results reveal a geroprotective and potential caloric re-
striction mimetic effect by rilmenidine that warrant fresh lines of inquiry into this 
compound.
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1  |  INTRODUC TION

Individuals over 65 are now the fastest-growing demographic group 
worldwide, a fact that emblematizes the global aging population 
(Jarzebski et al., 2021). Unfortunately, at present, with age comes 
age-related chronic disease and death (Fontana et al., 2014), and as 
such, the estimated benefits of delaying aging, even if the effect is 
rather small, are immense (de Magalhães et al., 2012; Farrelly, 2010; 
Goldman et al., 2013). A large body of evidence has demonstrated 
that the aging rate can be markedly slowed in model organisms. 
So far, caloric restriction (CR) is the most robust antiaging inter-
vention (Liang et al., 2018), and CR promotes longevity across spe-
cies (Fontana et al., 2014). However, studies of CR in humans have 
had mixed results, low compliance, and many side effects (Most 
et al., 2017), meaning finding medications that can mimic the effect 
of caloric restriction is the most reasonable antiaging target (Ingram 
& Roth, 2015). However, only a few compounds have been identified 
to mimic the beneficial effects of CR.

Previously, we detailed a drug repositioning method in which 
we identified potential caloric restriction mimetics (CRMs), yield-
ing biologically relevant results (Calvert et al.,  2016). We did this 
by comparing drug-gene signatures to the in vitro transcriptome 
of caloric restriction, looking for drugs with an overlapping profile. 
One drug identified during this work was allantoin, which was fur-
ther confirmed to extend lifespan in Caenorhabditis elegans (Admasu 
et al., 2018). Allantoin, however, does not display oral bioavailabil-
ity, obviating its use in humans (Kahn & Nolan, 2000). Moreover, we 
propose that the prolongevity effect of allantoin could be mediated 
by an affinity to the imidazoline type 1 receptor (I1R) expressed on 
a yet to be discovered nischarin ortholog in C. elegans. Imidazoline 
receptors do not show affinity toward catecholamines, but instead 
bind imidazoline and guanidinium compounds of which allantoin is 
a derivative of the latter (Dardonville & Rozas, 2004). Therefore, a 
more potent and specific agonist of the imidazoline receptor, such as 
the widely prescribed, oral antihypertensive rilmenidine could have 
a similar, if not better, longevity effect in C. elegans but with more 
potential for future translatability to humans. This is supported by 
our previous work showing rilmenidine to elicit a similar transcrip-
tional profile to CR (Calvert et al., 2016), to reprogram human cell 
transcription profiles to a more youthful state (Statzer et al., 2021) 
and to induce a gene expression signature in the liver of mice similar 
to CR (Tyshkovskiy et al., 2019).

Herein, we show rilmenidine administration extended lifespan 
in C. elegans when commenced from early adulthood or only once 
the animal had aged. Furthermore, it decelerated the development 
of decrepitude, without altering developmental periods. Lifespan 
extension was not possible in genetic models of CR (eat-2), suggest-
ing a longevity effect was potentially induced through CR mimicry. 
Moreover, this was supported by rilmenidine-induced lifespan effects 
being dependent on key CR nexuses: DAF-16, TOR, and NRF1,2,3/
SKN-1 (Blackwell et al.,  2015, 2019). In Caenorhabditis elegans, ril-
menidine elicited increases in ERK activity, typical of in vitro imidaz-
oline agonist exposure, which was abrogated following blockade of 

an imidazoline-binding site. This effect was mimicked following the 
knockout of f13e9.1, which was characterized herein as the nema-
tode ortholog of the human imidazoline type 1 receptor (IRAS), and 
renamed nish-1. Indeed, rilmenidine also increased nematode thermo-
tolerance as well as autophagy, both dependent on imidazoline bind-
ing, and demonstrated a capacity to attenuate the accumulation of 
polyQ aggregates. Lastly, we find that treating mice with rilmenidine 
showed transcriptional changes in liver and kidney similar to caloric 
restriction. Overall, our findings reveal rilmenidine as a potential ca-
loric restriction mimetic and as a novel geroprotective compound.

2  |  RESULTS

2.1  |  Rilmenidine improves survival in 
Caenorhabditis elegans

Previous computational studies predicted rilmenidine as a longevity 
drug and CR mimetic (Calvert et al., 2016; Tyshkovskiy et al., 2019). 
To test if rilmenidine is involved in lifespan regulation, we treated wild-
type (WT) Caenorhabditis elegans with a range of concentrations (0, 
100, 150, 200, 300, and 400 μM) of rilmenidine from larval stage L4 
and performed lifespan assays with UV-killed OP50 E. coli until dosage 
no longer elicited a significant response (Sutphin & Kaeberlein, 2009). 
We found that rilmenidine extended the lifespan of WT animals by ap-
proximately 19% compared to DMSO-treated WT control, at an opti-
mal concentration of 200 μM (Figure 1a,b, Table S1). Lifespan extension 
was no longer observed in C. elegans treated with 400 μM rilmenidine. 
In addition, moxonidine belonging to the class of imidazoline agonists 
was also predicted as a caloric restriction mimetic (Calvert et al., 2016); 
however, moxonidine could only slightly (7.1%) increase lifespan of WT 
C. elegans (Figure S1, Table S1). To ensure prolongevity effects were 
not mediated through an induction of calorie restriction and altered 
feeding behavior, we monitored feeding and pharyngeal pumping in 
Day 3 animals, treated with 200 μM rilmenidine at L4 larval stage. Drug 
treatment did not affect consumption of RFP beads nor reduce phar-
yngeal pumping compared to control-treated animals (Figure S1).

Rilmenidine should ideally work when administered later in life. 
Researchers have been keen to establish if potential compounds can 
extend lifespan when treatment is initiated later in life and the aging 
process has considerably progressed (Cabreiro et al., 2013; Guha 
et al., 2014). This is particularly important given the difficulties of 
eliciting CR-mediated longevity in aged animals. Both mice and rats 
initiated on CR in late life often results in negligible effects or indeed 
reductions in longevity (Forster et al.,  2003; Lipman et al.,  1998, 
1995; Ross, 2009). Furthermore, current CRMs such as metformin, 
when administered at day 10 of C. elegans' adulthood or 20 months 
in mice, instead shortened lifespan and accelerated age-related pa-
thologies (Espada et al., 2020; Zhu et al., 2021). Interestingly, we 
found that in C. elegans, rilmenidine prolonged the lifespan to the 
same extent (approximately 33%) whether exposure to the drug was 
initiated during youth, day 1 of adulthood, or when old, day 12 of 
adulthood (Figure 1c,d, Table S1). However, this prolongevity effect 
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    |  3 of 15BENNETT et al.

was not additive to lifespan extension exerted by early life treat-
ment, suggesting a possible cellular mechanism that upon activation 
lasts through adulthood and aging (Figure 1c,d, Table S1). These re-
sults indicate that rilmenidine might be employed as a pharmacolog-
ical intervention during old ages to extend lifespan.

2.2  |  Rilmenidine acts as a potential CR mimetic

Rilmenidine shares the transcriptome profile with CR, as indicated 
by our meta-analysis studies (Calvert et al.,  2016; Tyshkovskiy 
et al.,  2019). Therefore, to discern the signaling pathway through 
which rilmenidine extends lifespan, we chose a genetic (eat-2 mutant) 

model of CR in C. elegans (Lakowski & Hekimi, 1998). Rilmenidine did 
not further increase the longevity of the eat-2 mutants (Figure 2a, 
Table S1). CR is thought to work through the nutrient sensor, mTOR 
complex 1, mTORC1 to extend lifespan (Hansen et al., 2007; Statzer 
et al.,  2022). To investigate the requirement of mTOR in lifes-
pan increase by rilmenidine, we performed lifespan assays using 
a heterozygous mutant of daf-15, the raptor adaptor protein in 
mTORC1. We found that rilmenidine could not increase the longev-
ity additively of the daf-15(m81/+) mutants (Figures 2b, S2, Table S1). 
Complementary, we inhibited mTOR pharmacologically by rapamy-
cin. Rapamycin significantly increased the lifespan of WT animals. 
Co-treatment with rilmenidine and rapamycin failed to further in-
crease the mean lifespan extension of WT animals treated either 

F I G U R E  1 Improved survival of C. elegans treated with rilmenidine. (a) Pooled survival curve showing significant lifespan extension in 
WT animals treated with rilmenidine at all concentrations, except 400 μM, compared to 1% DMSO vehicle control. (b) Bar graph showing 
quantified lifespan data in terms of mean lifespan (days) for each rilmenidine concentration (100–400 μM) treated WT, compared to DMSO 
vehicle control; 200 μM concentration of rilmenidine provides maximum lifespan increase (19%) in WT. (c) Pooled survival curve showing 
late-life treatment with rilmenidine (200 μM) at day 12 of adulthood increased lifespan in WT compared to DMSO vehicle control. (d) 
Quantified data for lifespan assay showing percentage increase in mean lifespan of adult WT-fed 200 μM rilmenidine at different times (day 
1 or day 12 adulthood) compared to DMSO vehicle control. Error bars represent SEM; adjusted p-value was derived from log-rank test and 
Bonferroni correction. Kaplan–Meir survival analysis was performed on pooled data from at least three independent trials. Quantitative data 
and statistical analyses for the representative experiments are included in Table S1.

(a)

(b) (d)

(c)
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F I G U R E  2 Effects of rilmenidine treatment on survival of CR-associated mutants. Survival curves showing the inability of rilmenidine 
to extend life span in (a) DR1116 eat-2(ad1116) mutants, (b) DR412 daf-15(m81/+) mutants, (c) rapamycin-treated WT and (d) GR1307 daf-
16(mgDf50), and LD1057 skn-1(tm3411), but not in TG38 aak-2(gt33) mutants. Raw data, quantitative data, additional trials, and statistical 
analyses for the representative experiments are included in Table S1.

(a)

(c) (d)

(b)

F I G U R E  3 Induced autophagy by rilmenidine perturbed polyQ aggregation. (a) Representative images of day 2 adult transgenic animals, 
expressing the intestinal specific autophagy reporter gene Pnhx-2::mCherry::lgg-1 showing increased autophagy, when exposed to varying 
concentrations of rilmenidine for 24 h compared to 1% DMSO vehicle. Arrows indicate autophagosome puncta formation. Scale bar = 20 μm. 
(b) The graph shows the interquartile distribution of the mean number of mCherry::LGG-1 puncta in the posterior intestine of the animals 
in each condition. Error bars, upper: Q3 + 1.5*IQR; minimum: Q1–1.5*IQR. **p < 0.01, *p < 0.05; one-way ANOVA followed by a Tukey's 
post hoc test. (c, d) Inhibition of autophagy abrogates the prolongevity effect of rilmenidine as shown by survival curves of WT animals fed 
either RNAi bacteria expressing an empty vector (L4440), or lgg-1 (c) or bec-1 (d) dsRNA from day 1 adulthood in the presence or absence of 
200 μM rilmenidine. Kaplan–Meir survival analysis was performed on pooled data from at least three independent trials. Groups tested by 
log-rank with Bonferroni correction; p < 0.05. Quantitative data and statistical analyses for the representative experiments are included in 
Table S1. (e) The graph depicts quantified data of Q40::YFP aggregates in body wall muscles per entire animal after treatment with differing 
rilmenidine concentrations for the indicated times from L1. Data represented as the pooled mean number of aggregates per animal. Error 
bars are ± SEM. Significance derived from two-way repeated-measures ANOVA p < 0.05.
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(a)

(b)

(d) (e)

(c)
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with rilmenidine or rapamycin individually (Figures 2c, S2, Table S1). 
This result strengthens the earlier observation that rilmenidine may 
act through mTOR1 signaling for increasing the lifespan.

In Caenorhabditis elegans, mTOR inhibition by genetic or phar-
macologic intervention, like in mammals, leads to activation of key 
longevity transcription factors such as SKN-1/NRF2 and DAF-16/
FOXO (Robida-Stubbs et al., 2012). Moreover, on solid media, daf-
16 is indispensable for CR-induced longevity (Greer et al., 2007). To 
explore whether rilmenidine-induced longevity effects are DAF-16 
and SKN-1 driven, we employed skn-1(tm3411) and daf-16(mgDf50) 
null mutants to perform lifespan assays. We found that rilmenidine 
did not significantly extend the lifespan of either daf-16 or skn-1 mu-
tants, revealing a requirement of daf-16 and skn-1 for longevity ben-
efits by rilmenidine (Figure 2d, Table S1).

AMPK is another critical metabolic switch, which works antag-
onistically with the mTOR pathway and is activated by CRM drugs 
like metformin (Onken & Driscoll, 2010a, 2010b; Zhang et al., 2019). 
Thus, we assessed the necessity of AMPK in the mediation of rilmen-
idine's prolongevity effects. We found that rilmenidine additively 
extended lifespan in aak-2 (gt33) mutants compared to WT, sug-
gesting AMPK is not required for lifespan regulation by rilmenidine 
(Figure 2d, Table S1). Taken together, it can be concluded that ril-
menidine's life-extension effects are not additive to genetic dietary 
restriction and the key CR genes, ceTOR, daf-16, and skn-1 function 
in the prolongevity of rilmenidine.

2.3  |  Autophagy is required for extension in 
lifespan by rilmenidine

CR is routinely cited as the most robust physiologic inducer of au-
tophagy and nutrient depletion is the gold standard for autophagic 
induction in culture (Kroemer et al., 2010). Thus, autophagy is a vital 
component of CR-induced longevity. Multiple models have demon-
strated that the longevity benefits of dietary restriction are abro-
gated following the knockdown of autophagic machinery (Hansen 
et al., 2007; Jia & Levine, 2007; Rubinsztein et al., 2011). As such, re-
searchers often seek to demonstrate that their CRM of interest up-
regulates autophagy and that this upregulation mediates its lifespan 
extension (Eisenberg et al.,  2009; Pietrocola et al., 2018; Shintani 
et al., 2018).

Rilmenidine has been shown to induce autophagy in SOD1-  or 
TDP43-mutant mice models of amyotrophic lateral sclerosis (Perera 
et al., 2017, 2021). However, the autophagic potential for rilmenidine 
has never been explored in C. elegans and more importantly, no efforts 
have been made in any model to associate this upregulation to aging 
or calorie restriction. We used the mCherry::LGG-1 reporter strain to 
quantify autophagosome puncta in the posterior intestinal cells (Gosai 
et al., 2010; Li et al., 2014; Zhang et al., 2015). We found a significant in-
crease in puncta formation by rilmenidine in a dose-dependent manner 
(Figure 3a,b). Notably, prolongevity doses of rilmenidine did not increase 
autophagy as much as larger doses. To determine whether the increase 
in autophagy is merely an association or was critical for the longevity 
effect of rilmenidine, we performed lifespan assays and knocked down 
essential autophagy genes, lgg-1 and bec-1, in WT exposed to rilmeni-
dine or DMSO control. The lifespan extension conferred by rilmenidine 
was completely abrogated by impairment of autophagy (Figures 3c,d, 
S3, Table S1). This confirms that autophagy induction is required for 
rilmenidine to promote longevity (Madeo et al., 2015).

2.4  |  Rilmenidine attenuates poly-glutamine  
aggregates

One important hallmark of neurodegenerative diseases is the accu-
mulation of protein aggregates, which should typically be degraded 
via autophagy. Age-related protein aggregation and misfolding is evi-
dent in routine C. elegans aging and precipitate a pronounced, wide-
spread decline in proteostasis. Consistent with this finding, we found 
that rilmenidine treatments significantly delayed the accumulation of 
polyQ40::YFP fusion protein aggregates compared to untreated WT 
(Figure  3e). Besides, this observation attests to our speculation of 
rilmenidine's function as CRM, since CR too, mediates the reduction 
in the aggregation of polyQ in C. elegans (Matai et al., 2019).

2.5  |  Identification of the conserved imidazoline 
receptor NISH-1 in C. elegans

Rilmenidine has been identified as a classical imidazoline type 1 re-
ceptor (I1R/IRAS/Nischarin) agonist in mammals (Zhang & Abdel-
Rahman,  2006). The amino-terminal sequence of IRAS displays 

F I G U R E  4 Characterization of NISH-1. (a) Schematic diagram illustrating exons of nish-1 gene, alongside translated protein motifs and 
the deleted regions in the homozygous nish-1 mutant. (b–e) nish-1 mutants exhibit reductions in body size compared to WT at day 1 of 
adulthood as shown by body area (defined as width x length). A two-tailed t-test was used for analysis; *p < 0.05. Representative pictures 
of WT and nish-1 mutant captured in brightfield at 10X objective on a Zeiss Axio Observer following paralysis in 20 mM tetramisole. Animal 
heads are left. Scale bar: 200 μm. (f) Western blots showing MPK-1 phosphorylation in WT, nish-1 mutants, or nish-1 rescue transgenic 
animals, in response to 24 h pharmacologic intervention. α-tubulin was used as the loading control. Rilmenidine significantly increased MPK-1 
phosphorylation *(%CV vs FC = >1.5), however, neither efaroxan alone nor rilmenidine and efaroxan in combination significantly increased 
MPK-1 phosphorylation, n/s (%CV vs FC = <1.5). Rilmenidine failed to reproducibly increase phosphorylation of MPK-1 in nish-1 mutants. 
n/s (%CV vs FC = <1.5). Transgenic rescue strains significantly increased MPK-1 phosphorylation upon rilmenidine treatment. **(%CV vs FC 
= >2 in PHX945) and (%CV vs FC = >1.5 in PHX946). Data are quantified as log fold densitometric ratio change relative to α-tubulin. Data 
are then expressed as log fold change compared to DMSO vehicle control. Coefficient of variation (%CV) defined as the percent standard 
deviation: mean ratio; the significant difference in groups if percent fold change is ×1.5* greater or ×2** than % CV.
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strong homology to a C. elegans protein encoded by the gene f13e9.1 
(Figure S4A) (Alahari et al., 2000). Our comparison of the C. elegans 
f13e9.1 full-length protein sequence to the human ortholog IRAS 
protein sequence revealed high similarity in the following func-
tional domains; PHOX (PX) domain, leucine-rich repeats (LRRS), 

and coiled-coil (CC) domain (Figure S4A). The PHOX domain entails 
phosphoinositide-3-phosphate-binding capacity, likely enabling 
Nischarin, the mammalian form of IRAS, to be anchored to the intra-
cellular surface of the plasma membrane (Piletz, 2003). The coiled-
coil domain is the predicted imidazoline-binding site (Sun et al., 2007) 

F I G U R E  5 nish-1 is required for an extended lifespan and better health span. (a) Survival curve showing lifespan extension by rilmenidine 
in WT, but not in nish-1 mutant (Statistics and raw data are in Table S1). (b) Rescue of nish-1 enabled extension in lifespan by 200 μM 
rilmenidine in nish-1 mutant. DB06 (=PHX893) is a nish-1 knockout mutant and DB03 (=PHX945) and DB04 (=PHX946) are two rescue 
lines expressing wild-type nish-1 gene copies. The difference in control-treated lifespan between DB03 and DB04 might be the random 
site of integration of the rescue transgene. Quantitative data and statistical analyses for the representative experiments are included in 
Table S1. (c) Thermotolerance: Rilmenidine increases the percentage survival of WT exposed to 37°C for 3 h and approximately 20 h recovery 
period, dependent on nish-1. Bar graph represents mean % survival ± SEM from three independent trials of at least 150 animals per strain 
and/or condition. *p < 0.05 (one-way ANOVA with Tukey post hoc comparisons). (d–f) Quantified data of body bends representing motility 
deterioration with age in WT, nish-1 mutants, and two nish-1 rescue mutants DB03 and DB04 in the presence or absence of rilmenidine. 
Rilmenidine at 200 μM significantly reduced age-related motility deterioration in WT and nish-1 rescue strains, but not in nish-1 mutants. 
Data are represented as a pooled mean of 10 animals per time point and condition/genotype repeated over three independent trials overlaid 
on a box plot representing quartiles. Error bars, upper: Q3 + 1.5*IQR; minimum: Q1–1.5*IQR (adj. p < 0.05; two-way ANOVA and Tukey post 
hoc).

(a)

(b)

(c)

(f)

(e)

(d)
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(Figure S4A). Thus, we renamed the f13e9.1 gene to nish-1 and will 
refer to it as nish-1 throughout this study.

To examine the role of nish-1 as a functional ortholog of Nischarin 
that could mediate rilmenidine cell signaling, we generated a loss-of-
function mutant nish-1 (syb767) by CRISPR/Cas9 genome editing. A 
deletion of 873 bp was initiated at the third exon and a stop codon 
was introduced to generate a potential null allele (see Materials 
and Methods for details). This resulted in truncated NISH-1 pro-
tein, containing only the PHOX domain but abolishing LRRs and the 
coiled-coil domain (Figure 4a). We validated the deletion in the nish-1 
mutant by genotyping (Figure S4B).

Murine nischarin mutants are smaller than their wild-type 
counterparts (Crompton et al.,  2017; Dong et al.,  2017; Zhang 
et al., 2013). Therefore, for the functional characterization of the 
nish-1 mutant, we first measured their body size. Day 1 adult C. el-
egans nish-1 mutants were 5.44% smaller than WT (p-value <0.05; 
Figure 4b–e). To exclude slower development as the reason for size 
defects seen in nish-1 mutants, we assessed the development rate of 
animals via the categorical staging of vulval development (Ludewig 
et al., 2017). Both WT and nish-1 mutant developed at a similar rate 
and had reached full vulval development within 48 h (Figure S4C). 
Also, nish-1 mutants did not exhibit any reproductive developmental 
abnormalities.

2.6  |  Rilmenidine requires nish-1 to extend 
life span, improve markers of health span, and 
stress response

As rilmenidine has never been studied in C. elegans, thus it was es-
sential to establish that rilmenidine is indeed bioactive in C. elegans 
and that lifespan extension and cellular effects of rilmenidine in C. 
elegans is not merely a hormetic response, but indeed, conferred via 
interaction with an endogenous imidazoline-binding site (IBS) in C. 
elegans.

Studies have shown that the interaction of rilmenidine with an 
I1-imidazoline receptor leads to activation of phosphatidylcholine-
specific phospholipase C (PC-PLC) and subsequent accumulation of 
the second messenger diacylglyceride (DAG) from phosphatidylcho-
line, and the release of phosphocholine. This causes downstream ac-
tivation of MAPK/ERK1/2, with phosphorylation of ERK1/2 being a 
common read-out for the pathway (Zhang & Abdel-Rahman, 2006). 
C. elegans contains only one ERK gene (mpk-1), rendering it the more 
facile and reliable system in the pathway to measure compared to 
the six isoforms of PLC. The activation of MPK-1 was measured, by 
way of pMPK-1 to α-tubulin immunoreactivity, in response to 24 h 
treatment with rilmenidine at varying concentrations (200, 300, and 
400 μM) as per (Chen et al., 2008; Villanueva-Chimal et al., 2017) 
(Figure  S4D). Rilmenidine increased MPK-1 phosphorylation the 
strongest at the concentration of 200 μM; the same concentration 
that elicits the greatest prolongevity effect. It is not inconceivable 
that hormetic stress from rilmenidine administration may have up-
regulated ERK activity entirely independent from any imidazoline 

receptor activity, however, 24 h treatment with efaroxan, an estab-
lished selective I1-imidazoline receptor antagonist, abolished ERK 
activation by 200 μM rilmenidine. This suggests rilmenidine treat-
ment most likely interacts with an endogenous imidazoline-binding 
site in C. elegans to elicit increases in ERK activity (Figure 4c).

To determine if nish-1 is required for the lifespan extension by ril-
menidine, adult WT and nish-1-mutant C. elegans were incubated from 
day 1 adulthood with rilmenidine (200 μM) and lifespan assay was per-
formed. We found that the lifespan-extending effects of rilmenidine 
were abolished when nish-1 was deleted. Rilmenidine-treated nish-1 
mutants lived as long as WT and nish-1 mutants without rilmenidine 
(Figure 5a). Critically, rescuing the nish-1 receptor reinstated the in-
crease in lifespan upon treatment with rilmenidine (Figure 5b).

Caenorhabditis elegans exhibit a comparable age-associated dete-
rioration in muscle function to humans (Glenn et al., 2004; Herndon 
et al., 2002). Moreover, studies have shown that the rate of age-
related decline in body movement is a good predictor of lifespan and 
that long-lived C. elegans mutants tend to exhibit prolonged loco-
motory capacity (Herndon et al., 2002; Huang et al., 2004; Newell 
Stamper et al., 2018). Importantly, calorie restriction in C. elegans 
preserves body movement capacity with age, and putative CRMs 
are able to replicate this phenomena (Calvert et al., 2016; Onken & 
Driscoll, 2010a, 2010b). Using the common assay of sigmoidal mo-
tility, we measured locomotory capacity in WT exposed to 200 μM 
rilmenidine. Rilmenidine significantly ameliorated deterioration 
in WT animal motility over the three time points, days 5, 10, and 
15. Moreover, the supplementation of nish-1-mutant animals with 
200 μM rilmenidine from day 1 failed to defer declines in motility. 
However, rescue of nish-1 mutants was able to reinstate the preser-
vation of motility into age by rilmenidine as observed in WT animals 
(Figure 5d–f).

Longevity is associated with better stress survival (Zhou 
et al., 2011). Evidence also suggests, calorie restriction may delay 
aging phenotypes through a preservation of homeostatic flexibility 
and improved resilience. Thus, for rilmenidine to be considered as a 
viable geroprotector, it should improve health span and ideally, to 
qualify as a CRM, and improve stress resistance. Here, we deter-
mined the thermotolerance of animals exposed to rilmenidine. Loss 
of nish-1 did not affect resilience to heat. Rilmenidine treatment 
improved the thermotolerance at 37°C of WT animals but not nish-
1 mutants (Figure 5c). Transgenic rescuing of the NISH-1 receptor 
in nish-1 mutants restored rilmenidine's resistance to heat stress 
(Figure 5c).

Taken together, this provides evidence that not only is nish-1 re-
quired for rilmenidine to extend lifespan, but it is also essential to 
defer aging phenotypes and improve stress resistance in C. elegans.

2.7  |  Rilmenidine produces longevity-associated 
gene expression effects in mouse tissues

To test if the observed beneficial effects of rilmenidine are mirrored 
in mammals, we performed RNA-seq analysis of liver and kidney 
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samples from young UM-HET3 male mice subjected to rilmenidine 
for 1 month, together with the corresponding controls. We iden-
tified transcriptomic effects of the drug independently for each 
tissue and compared them with biomarkers of lifespan-extending 
interventions and aging, using a gene set enrichment analysis 
(GSEA)-based approach (Figure 6a) (Tyshkovskiy et al., 2019). Gene 
expression signatures of lifespan extension reflect a liver response 
to individual interventions, such as CR, rapamycin and mutations 
leading to growth hormone (GH) deficiency; gene expression 
changes shared by different longevity interventions; and genes, 
which expression is quantitatively associated with the effect on 
maximum and median lifespan (Tyshkovskiy et al., 2019). Aging sig-
natures correspond to murine age-related gene expression changes 
in the liver and kidney, according to the Tabula Muris Consortium 
(Schaum et al., 2020).

Interestingly, changes induced by rilmenidine in both liver and 
kidney were positively associated with the majority of longevity 
signatures, including biomarkers of median and maximum lifespan 
extension (adjusted p-value <2 × 10−3 for both liver and kidney), 
CR (adjusted p-value  =  0.066 for liver), rapamycin (adjusted p-
value = 6.7 × 10−4 for kidney), and common signatures of longevity 
interventions (adjusted p-value <0.013 for both liver and kidney). In 
other words, genes up- and downregulated in long-lived mice were 
also changed in the same direction after rilmenidine administration 
(Figure 6b–e). Remarkably, we also observed a significant positive 
association of rilmenidine effect with biomarkers of aging (me-
dian adjusted p-value = 0.03), which may be partly due to the age-
related downregulation of insulin and IGF-1 signaling (López-Otín 
et al., 2013).

To understand if rilmenidine in mice regulates cellular functions 
similar to those identified in C. elegans, we also performed functional 
GSEA. This method allowed us to test if genes involved in certain 
pathways, based on REACTOME, KEGG and GO BP annotation, were 
enriched among those affected by the compound. We observed sig-
nificant enrichment of genes involved in mTOR signaling and prote-
olysis among genes upregulated by rilmenidine in murine liver and 
kidney, respectively (adjusted p-value <7 × 10−3) (Figure 6a). These 
results suggest that longevity-associated molecular mechanisms in-
duced by rilmenidine in C. elegans are reproduced in mammals, point-
ing to a conserved geroprotective effect and downstream signaling 
(Figure 6f).

3  |  DISCUSSION

Challenges with humans' long-term CR routines raise an unmet need 
to explore pharmacologic interventions like CRMs. These may pro-
vide an alternative to CR, conferring the same longevity benefits 
without the challenges or side effects of low-calorie diets. However, 
studies detailing the therapeutic efficacy of CRMs when adminis-
tered at geriatric stages are rarely performed (Ingram & Roth, 2015). 
Therefore, identifying drugs that can mirror the benefits of long-
term calorie restriction even when the administration is initiated at 
late stages of life are of great interest.

Our study illustrates that rilmenidine treatment elicits lifespan 
extension in C. elegans even when initiated in later life (commenc-
ing day 12 of adulthood) after the development of age-associated 
phenotypes. This is furthered by our work showing rilmenidine can 
delay the onset of frailty and proteostatic collapse, both phenotypes 
of aging. Specifically, rilmenidine was able to defer locomotory de-
cline in aging animals while also delaying the rate of polyQ aggre-
gation. Clinical evidence of imidazoline agents including rilmenidine 
being tolerable and safe in elderly populations while also ineffective 
at changing body weight, supports its potential implementation later 
in life and in murine models (Kirkendall, 1986; Martin et al., 2005; 
Nowak et al., 2005; Rose et al., 2010).

The clinical target of rilmenidine, human IRAS, was hitherto, 
undiscovered in C. elegans. We identified a putative C. elegans or-
tholog using a bioinformatic approach showing significant pro-
tein sequence alignment between IRAS and the uncharacterized 
F13E9.1. Furthermore, an outcrossed mutant strain encoding a ho-
mozygous deletion of f13e9.1 exons 3–8, generated in this article, 
demonstrated similar body size phenotype to IRAS-knockout mice.

However, it remained unknown whether, in C. elegans, rilmenidine 
exhibited bioactivity characteristic of imidazoline receptor activation 
and whether this specific bioactivity derived its prolongevity effect. 
Increases in ERK phosphorylation are consistently observed follow-
ing rilmenidine treatment in cell lines, mediated through alterations 
in PKC. Indeed, in C. elegans, rilmenidine increased ERK phosphory-
lation in a characteristic biphasic response (Piletz et al., 2000). Since 
extracellular stimuli such as growth factors, cytokines, mitogens, 
hormones, and oxidative or heat stress are known to increase ERK 
phosphorylation (Mebratu & Tesfaigzi, 2009), it is possible rilmeni-
dine administration caused a similar stimulus and thus upregulated 

F I G U R E  6 Rilmenidine treatment in mice induces gene expression changes associated with a lifespan-extending effect. (a) Association of 
the liver (top) and kidney (bottom) responses to rilmenidine with signatures of aging (left), lifespan extension (middle), and longevity-related 
intracellular processes (right). The significance score was calculated as log10(adjusted p-value) corrected by a sign of regulation. Dotted lines 
represent the FDR threshold of 0.1. (b–e) GSEA enrichment plots with running normalized enrichment scores (top) and distributions (bottom) 
of selected up- (red) and downregulated (blue) gene signatures of lifespan-extending interventions among genes perturbed by rilmenidine in 
the liver (b–d) and kidney (e). Perturbed genes were sorted based on the log10(p-value) of their differential expression between control and 
rilmenidine-treated samples corrected by a sign of regulation. The resulting index was divided by the number of genes in the dataset. Dotted 
lines represent NES calculated for up- (red) and downregulated (blue) gene signatures. (f) Working model representing possible prolongevity 
signalling by rilmenidine to extend life span in C. elegans. NES, Normalized enrichment score; CR, Caloric restriction; GH, Growth hormone; 
mTOR, mammalian target of rapamycin.

 14749726, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.13774 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [28/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 15BENNETT et al.

 14749726, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.13774 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [28/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 15  |     BENNETT et al.

ERK activity independent of imidazoline receptor activity. However, 
animals co-incubated with rilmenidine and imidazoline receptor 
antagonist efaroxan abrogated increases in ERK phosphorylation. 
Furthermore, f13e9.1 (nish-1)-mutant strains similarly abrogated 
rilmenidine-induced ERK phosphorylation, suggesting not only that 
ERK phosphorylation was dependent on an available imidazoline-
binding site, but also that these were dependent on NISH-1 
expression.

Such activity was mirrored in our lifespan and healthspan stud-
ies. Both nish-1 mutants and efaroxan treatment abrogated the 
prolongevity effect of rilmenidine, providing evidence that the in-
teraction of rilmenidine on an IBS, likely found on NISH-1, drives 
the geroprotective properties of rilmenidine. Meanwhile, nish-1 was 
also essential for and deferred locomotory decline in C. elegans: a 
key indicator of health span. Our work also shows that rilmenidine 
was able to improve thermotolerance in C. elegans again dependent 
on nish-1¸ strengthening the importance of nish-1 in rilmenidine-
induced longevity.

The upregulation of autophagy genes appears to com-
prise some of the heat shock response (Kumsta et al., 2017). 
Furthermore, it is suggested that CR exerts its benefit through 
the activation of a heat-shock response that increases autophagy 
(Yang et al., 2016). The induction of autophagy by rilmenidine, as 
demonstrated in this article, may drive an improvement of nem-
atode thermotolerance and mediate improved protein homeo-
stasis. In vitro and murine work has confirmed rilmenidine can 
induce autophagy, however, this has never been conceived in C. 
elegans or in the aging arena (Perera et al. 2017; Rose et al., 2010). 
Accordingly, rilmenidine increased autophagy in a dose-dependent 
manner. Not only did rilmenidine increase autophagic induction in 
C. elegans, but also the prolongevity benefit of rilmenidine was 
dependent on key autophagy genes. This pattern is mirrored in 
eat-2 mutant nematodes who require intact autophagy to extend 
lifespan (Hansen et al., 2008). This is important because prolon-
gevity doses of rilmenidine did not increase autophagy as much 
as larger toxic doses. While plenty of evidence has demonstrated 
autophagy induction to increase a multitude of aging markers, it 
represents a sharp double-edged sword, whereby overactive au-
tophagy may actually precipitate cellular pathology (Benedetto 
et al., 2019; Benedetto & Gems, 2019; Kubli & Gustafsson, 2014; 
Qiu et al., 2018; Rubinsztein et al., 2011).

Interactions between rilmenidine and CR in the form of reduced 
swallowing capacity (eat-2) demonstrated the inability of rilmenidine 
to extend lifespan in an additive manner; instead, rilmenidine doses 
that normally benefit wild-type were actually deleterious to eat-2, 
perhaps through a hyper-induction of CR signaling. Nonetheless, 
there are several CR regimes in C. elegans, and thus interaction stud-
ies of rilmenidine with other CR regimes and across different levels 
of CR are now warranted.

As previously highlighted, two key nutrient responsive gene 
products, AMPK and TOR, have been considered “master regula-
tors” of dietary restriction. The ability of potential CRMs to affect 

the activity of these pathways specifically may offer a more orthog-
onal approach to CR mimicry without superfluously auxiliary effects.

Downstream genetic signalling pathways of CR, DAF-16 and 
TOR, contributed to the ability of rilmenidine to extend lifes-
pan, although AMPK was not critical to the prolongevity effect. 
Rilmenidine lifespan extension was entirely dependent on normal-
ized TOR function (whether that be pharmaceutically or genetically 
downregulated), implying that rilmenidine signalling likely con-
verged on TOR to elicit most of its geroprotective properties. How 
rilmenidine might interact with TOR remains to be seen. It has been 
tentatively proposed that in vitro, rilmenidine upregulates autoph-
agy by reducing intracellular cAMP levels, prohibiting IP3-mediated 
Ca2+ release from the ER (Renna et al., 2010). Indeed, it is mecha-
nistically proven that in vitro, rilmenidine can reduce both basal 
and forskolin-stimulated cAMP levels (Greney et al., 2000). Thus, 
it is logical to hypothesize that rilmenidine may increase autoph-
agy via downregulation of cAMP signalling in C. elegans as well, ef-
fectively inducing autophagy independent of mTOR. Alternatively, 
given that rilmenidine also required daf-16 to elicit lifespan exten-
sion, it is possible that rilmenidine causes TOR inhibition leading to 
daf-16-induced transcription of heat-shock genes (Robida-Stubbs 
et al., 2012). The necessity of ceTOR for rilmenidine-induced lon-
gevity is then reconciled with the requirement of alternative path-
ways that depends on autophagy. For example, rilmenidine may not 
only clear cellular waste, but may also help in the generation of new 
raw material for protein synthesis that requires functioning ceTOR. 
This provides a potential mechanism of rilmenidine-induced gero-
protection and thermotolerance. This would differentiate rilmeni-
dine from rapamycin in its mechanism, which is daf-16 independent, 
owing to its interaction with TORC2 (Robida-Stubbs et al., 2012). 
Chronic administration of rapamycin is associated with activa-
tion of mTORC2 which supposedly causes detrimental effects on 
metabolism, including hyperglycemia, hyperlipidemia, and insulin 
resistance in mice, and thus, if rilmenidine can precisely downreg-
ulate mTORC1 signalling, without affecting mTORC2, it may pres-
ent a more tolerable and durable CRM than rapamycin (Lamming 
et al., 2012; Robida-Stubbs et al., 2012).

In summary, this research presents a novel case for rilmenidine 
to be considered a potential calorie restriction mimetic through its 
prolongevity and health preserving effects, increased stress resis-
tance, and increased autophagy. Alongside being a clinically ap-
proved antihypertensive drug, rilmenidine improves plasma lipid 
and blood glucose in patients with hypertension and metabolic syn-
drome (Luca et al., 2000; Reid, 2001). Given its contribution toward 
lowering blood glucose and increasing insulin sensitivity, rilmenidine 
may have an antidiabetic function. Since I1R and I3R do not share 
similar ligand-binding sites and I3R is a regulator of insulin secretion, 
the potential interaction of rilmenidine with the I3type imidazoline 
receptor might explain its effects on improved insulin resistance and, 
thus, glucose levels (Bousquet et al., 2020). As rilmenidine improves 
glucose tolerance, it might eventually be put in the insulin sensitizer 
class of CRMs (Bousquet et al., 2020).
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Rilmenidine has a good clinical profile and chronic administration 
is rarely a problem in hypertensives (Reid, 2000); it becomes feasible 
for rilmenidine to be repositioned against insulin resistance, meta-
bolic syndrome, and polyglutamine diseases. Moreover, conserva-
tion of findings between C. elegans, mice, and human cell culture, 
such as induction of autophagy, points toward the more consid-
erable potential for translating the longevity benefits to humans. 
In conclusion, rilmenidine is a new addition to the list of potential 
CRMs that could be viable therapeutic interventions administered 
later in life, and thus, warrants further examinations.
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