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M I C R O B I O LO G Y  

Global biogeography and projection of soil antibiotic 
resistance genes 
Dongsheng Zheng1,2,3†, Guoyu Yin1,2†*, Min Liu1,2*, Lijun Hou4*, Yi Yang1,2,  
Thomas P. Van Boeckel5,6, Yanling Zheng1,2, Ye Li1,2 

Although edaphic antibiotic resistance genes (ARGs) pose serious threats to human well-being, their spatially 
explicit patterns and responses to environmental constraints at the global scale are not well understood. This 
knowledge gap is hindering the global action plan on antibiotic resistance launched by the World Health Or-
ganization. Here, a global analysis of 1088 soil metagenomic samples detected 558 ARGs in soils, where ARG 
abundance in agricultural habitats was higher than that in nonagricultural habitats. Soil ARGs were mostly 
carried by clinical pathogens and gut microbes that mediated the control of climatic and anthropogenic 
factors to ARGs. We generated a global map of soil ARG abundance, where the identified microbial hosts, ag-
ricultural activities, and anthropogenic factors explained ARG hot spots in India, East Asia, Western Europe, and 
the United States. Our results highlight health threats from soil clinical pathogens carrying ARGs and determine 
regions prioritized to control soil antibiotic resistance worldwide. 
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INTRODUCTION 
Antibiotic resistance is a growing threat of huge concern to many 
countries and sectors, which enables microorganisms to grow when 
exposed to antibiotics (1, 2). Antibiotic resistance in wide range of 
pathogens is recognized as “One Health” problems (3, 4), threating 
the Sustainable Development Goal 3, good health, and well-being 
(5, 6). A review report (7) has predicted that nearly 700,000 
people per year lose their lives worldwide because of infections by 
antibiotic resistance bacteria, and accumulative economic loss was 
expected to reach 100 trillion U.S. dollars by 2050 if we do not take 
strong actions. A more recent study (8) has estimated that 4.95 
million people lost their lives worldwide in 2019 because of infec-
tions by antibiotic resistance bacteria, and those directly attributable 
to antibiotic resistance infections reached 1.27 million. To address 
such a threat, the World Health Organization (WHO) launched the 
global action plan that aims at combating antibiotic resistance 
across varied environments associated with human and animal 
health at the global scale (9). 

Edaphic environments, essential reservoirs for antibiotic resis-
tance genes (ARGs) (10), serve as important habitats for many path-
ogens associated with clinical infection (11, 12) and plant disease 
outbreak (13, 14). One of the most serious concerns is that ARGs 
would transfer from soils to anthropogenic, animal, and plant set-
tings, thus posing severe threats to human and livestock health and 
food security (10, 15, 16). Despite wide studies on soil ARGs, par-
ticularly their occurrence patterns and interactions with ecological 
factors (13, 17, 18), a quantitative high-resolution map of soil ARGs 

and their responses to environmental constraints at the global scale 
remains largely lacking. This knowledge gap is not only restricting 
the WHO global action plan to identify the priority regions combat-
ing soil antibiotic resistance but also limiting the understanding of 
health risk posed by soil antimicrobial resistance. Generating a spa-
tially explicit understanding of soil ARGs at the global scale is hin-
dered by amplification-based approaches, common ARG detection 
techniques that cannot provide detailed ARG profiles because of 
their capacity limitation and nonspecific amplification problem 
(19, 20). Sequencing-based approaches, such as metagenomics, 
are strong alternatives that align all the sequenced DNA segments 
against reference databases to detect ARGs (11, 21). Another chal-
lenge is that we lack a mechanistic model to quantitively simulate 
the transfer of ARGs in environments. This gap is likely bridged 
by machine learning algorithms that can provide predictive values 
and mechanistic understandings (22, 23). 

Here, 1088 metagenomics samples are applied to profile soil an-
tibiotic resistome (fig. S1A and table S1) and mobile gene elements 
(MGEs). We identify microbes carrying ARGs and MGEs to explain 
the microbial driver of ARGs. Afterward, we disentangle the re-
sponse of ARGs to environmental constraints using structural equa-
tion model. Last, we generate the first global map of soil ARG 
abundance at a 0.083° of resolution using advanced machine learn-
ing algorithms and 169 spatial covariates (table S2). This map dis-
closes the hot spots of antibiotic resistance and determines regions 
prioritized to control soil antibiotic resistance worldwide. 

RESULTS 
Spatial patterns of soil ARGs 
Our 1088 soil observations resulted in a total of 23 ARG types 
(Fig. 1A and table S3) and 558 ARG subtypes (Fig. 1A and table 
S4). These ARGs represented on average 12.42 types and 49.24 sub-
types of ARGs at a given sample, most of which were genes encod-
ing resistance to multidrug (100% of detected ARG type), 
macrolide-lincosamide-streptogramin (MLS; 99.08% of detected 
ARG type), vancomycin (98.53% of detected ARG type), and 
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fosmidomycin (annotated by 98.25% of samples) (Fig. 1A and table 
S3). The most frequently detected ARG subtype was mexF (annotat-
ed by 1085 samples), followed by mdtB, multidrug_ABC_transport-
er, multidrug_transporter, mdtC, and macB (Fig. 1A and table S4). 
The normalized abundance of ARGs in surveyed soil samples 
reached, on average, 121.20 parts per million (ppm; ARGs-like se-
quences per million sequencing reads), ranging from 29.34 to 
250.02 ppm. Consistent with the detected number of ARGs, the 
normalized abundance of ARGs was dominated by genes confer-
ring resistance to multidrug (Fig. 1A). The normalized abundance 
of multidrug resistance genes was, on average, 86.02 ppm, contrib-
uting to 70.97% of the total normalized abundance of ARGs, fol-
lowed by genes encoding resistance to vancomycin (with the 
average at 12.93 ppm), MLS (with the average at 6.66 ppm), and fos-
midomycin (with the average at 4.20 ppm) (Fig. 1A and fig. S1B). 

A substantial ARG composition discrepancy was found in varied 
habitats using permutational multivariate analysis of variance 
[(PERMANOVA), coefficient of determination (R2) = 0.11, 
P < 0.001; fig. S1C]. We observed higher ARG abundance in agri-
cultural habitats (with the average at 126.46 ppm) compared with 
nonagricultural habitats (with the mean at 119.14 ppm) (P < 0.01, 
ANOVA; Fig. 1B). Similar to the difference among varied habitats, 
the observed ARG composition differed evidently from one conti-
nent to another (PERMANOVA, R2 = 0.10, P < 0.001; fig. S1D). 
Specifically, Australia exhibited the most abundant ARGs with an 
average of 138.66 ppm, ranging from 52.08 to 226.75 ppm, followed 
by North America, Europe, South America, Asia, and Africa, har-
boring, on average, 122.25, 116.73, 101.03, 100.98, and 90.55 ppm of 
ARGs, respectively (P < 0.0001, ANOVA; Fig. 1C). We examined 

whether ARGs followed a latitudinal gradient pattern, and a trend 
of increasing normalized abundance of ARGs from low latitudes to 
the poles was revealed (R2 = 0.19, P < 0.0001; fig. S1E). 

Soil MGEs and ARG microbial hosts 
We identified 9 MGE types and 157 MGE subtypes that would fa-
cilitate the prevalence and persistence of soil ARGs mediated via 
horizonal gene transfer (Fig. 2A and fig. S2A). The total normalized 
abundance of MGEs varied two orders of magnitude (7.31 to 391.05 
ppm), with an average of 55.26 ppm (fig. S2B). The dominated 
MGE type was transposase (including 45 subtypes) with an 
average of 25.43 ppm, constituting 46.03% of the total MGE abun-
dance (Fig. 2A and fig. S2C). The second abundant MGEs was in-
sertion sequences with an average of 23.77 ppm, accounting for 
43.03% of the total detected MGE abundance, followed by ist 
(with an average of 3.70 ppm) and insertion sequence common 
region (with an average of 1.38 ppm) (Fig. 2A and fig. S2C). The 
normalized abundance of ARGs was notably correlated with those 
of all MGEs (R = 0.17, P < 0.001; fig. S2D), transposase (R = 0.17, 
P < 0.001; fig. S2E), and integrase (R = 0.12, P = 0.015; fig. S2F). We 
also illustrated positive associations between the normalized abun-
dance of ARGs and those of MGE subtypes, namely istB (R = 0.12, 
P = 0.010; fig. S2G) and IS91 (R = 0.13, P = 0.006; fig. S2H). 

Normalized abundance of soil microbes ranged from 52,627.96 
to 488,083.97 ppm with an average of 232,179.53 ppm across all the 
soil samples (fig. S3A). The annotated microbiome represented 4 
kingdoms, 69 phyla, 134 classes, 265 orders, 618 families, 2397 
genera, and 15,071 species (Fig. 2B). Despite the similar composi-
tion of microbial communities among all the samples, a limited 

Fig. 1. Composition and distribution of soil ARGs. (A) ARG composition colored by ARG types. Outer and inner circles represent ARG types and subtypes, respectively. 
Circle size is proportional to the normalized abundance of ARGs. MLS refers to genes conferring resistance to macrolide-lincosamide-streptogramin. Normalized abun-
dance of ARGs across habitats (B) (degree of freedom = 1, F value = 8.04) and continents (C) (degree of freedom = 5, F value = 23.45) were shown with error bars (SDs). 
Agricultural habitats include farmland and pasture, while nonagricultural habitats consist of desert, forest, peatland, and permafrost. The significance among different 
continents and habitats is examined using analysis of variance (ANOVA) (**P < 0.01 and ****P < 0.0001). The unit of ARGs is ppm (ARGs-like sequences per million 
sequencing reads). 
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number of microbes dominated nearly across all the taxonomic 
levels (Fig. 2B). In kingdom level, bacteria were the dominant 
taxa with 230,408.27 ppm on average, constituting 98.22% of total 
microbial gene sequences (table S5). In phylum level, Proteobacteria 
dominated across all the samples, accounting for 53.81% of total mi-
crobial gene sequences (table S6). The most abundant classes in the 
phylum of Proteobacteria were Alphaproteobacteria, Gammapro-
teobacteria, Betaproteobacteria, and Deltaproteobacteria (Fig. 2B), 
which constituted 26.68, 12.44, 11.82, and 2.75% of total aligned mi-
crobial sequences, respectively (table S7). Actinobacteria was the 
second abundant phylum that occupied 31.58% of total sequences 
aligned with microbes (Fig. 2B and table S6), and this phylum was 
dominated by the class of Actinobacteria (30.09% of total microbial 
sequences, table S7). In order level, the most abundant one was Rhi-
zobiales (belonged to Alphaproteobacteria) that occupied 18.66% of 
the total sequences with microbes, followed by Burkholderiales (be-
longed to Betaproteobacteria) with 10.33% of the total sequences 
with microbes, and Streptomycetales (one order of Actinobacteria) 
contributing 7.70% of the total microbial gene sequences (table S8). 

We identified microbes that carried ARGs or MGEs (Fig. 2C), 
which represented 20.97% of the total observed species (fig. S3B), 
despite contributing merely, on average, 1.36% of the normalized 
abundance of microbiomes (fig. S3C). These identified microbial 
hosts composed of 19 phyla, 35 classes, 95 orders, 228 families, 
682 genera, and 3160 species (Fig. 3), most of which (1490 
species) harbored both MGEs and ARGs, with 886 species solely 
carrying ARGs and 784 species only with MGEs (Fig. 3). The com-
position of antibiotic resistance microbiomes (Fig. 2C) was largely 
different from that of soil microbial communities (Fig. 2B). In 
phylum level, the second abundant phylum of soil microbial com-
munities was Firmicutes (Fig. 2B and table S6), while that of the an-
tibiotic resistance bacteria belonged to Actinobacteria (Fig. 2C and 
table S9). In class level, Gammaproteobacteria was the most abun-
dant and diverse class with ARGs and MGEs in the phylum of Pro-
teobacteria (Fig. 2C and table S10), whereas the counterpart of soil 
microbial communities was Alphaproteobacteria (Fig. 2B and table 
S7). The identified antibiotic resistance bacteria in order and species 
levels were dominated by potential clinical pathogens and gut mi-
crobes that inhabited commonly in anthropogenic and animal 

Fig. 2. Soil MGEs and microbial composition. (A) Composition and normalized abundance of MGEs. Red circles represent MGE types, and blue circles denote MGE 
subtypes. Circle size is proportional to the normalized abundance of MGEs. ISCR, insertion sequence common region. (B) Phylogenetic characterization of the 700 most 
abundant species in soils, which was dominated by the phylum of Proteobacteria and Actinobacteria. (C) Phylogenetic characterization of the most 700 abundant species 
carrying MGEs or ARGs in soils. Circle size is proportional to the normalized abundance of species. Circles are colored by their phyla. Lines connecting circles indicate 
phylogenetic relationship. 
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environments (tables S11 and 12). These species spanned across the 
order of Enterobacterales (for example, Escherichia coli that was 
identified as the most abundant host species with 39.11 ppm on 
average; Klebsiella pneumoniae with the mean at 31.10 ppm) and 
Pseudomonadales (e.g., Pseudomonas aeruginosa with 32.22 ppm 
on average) (Figs. 2C and 3 and table S12). Notably, these orders 
were also the core hosts of multidrug resistance genes (the domi-
nant ARG type; Fig. 1A and fig. S4A) and transposases (the most 
abundant MGE type; Fig. 2A and fig. S4A). The normalized abun-
dance of ARGs and their microbial hosts were positively correlated 
(R = 0.21, P < 0.001; fig. S4B), and such a positive association was 
also revealed between MGEs and their microbial hosts (R = 0.37, 
P < 0.001; fig. S4C). 

Geographical drivers of soil ARGs 
To examine the geographical mechanisms that drive the spatial pat-
terns of soil ARG abundance, we integrated the potential environ-
mental constraints into 16 principal components (Fig. 4A and table 
S13). The variability of ARG abundance was largely controlled by 
principal components associated with anthropogenic activities 
(57.52%) that mostly represents the contribution of human 
inputs, animal husbandry, and agricultural contaminations to soil 
ARGs (Fig. 4A). In contrast, a relatively small part of ARG abun-
dance variability was contributed by climate and vegetation 
(17.18%) and soil nutrients (7.07%) (Fig. 4A). The effects of 
climate and plant factors were not completely separated and were 
partly interconnected (table S13). Our analyses further illustrated 
positive associations between ARG abundance and the most 

anthropogenic factors (Fig. 4, B and C). For example, livestock pro-
duction ranked the most important driver increased with soil ARG 
abundance across its wide range of values (P < 0.01; Fig. 4, A and B). 
We also found that increasing soil nutrients resulted in elevated 
ARG abundance, particularly in its intermediated range (P < 0.01; 
Fig. 4, A and C). Climate parameters showed much more compli-
cated patterns, where ARG abundance decreased with temperature 
(P < 0.01; Fig. 4, A and B) but increased with precipitation (P < 0.05; 
Fig. 4, A and C). We examined direct and indirect cause effects of 
geographical attributes on the normalized abundance of ARGs 
through structural equation model (Fig. 4D and fig. S5). Our 
model illustrated that the impacts of geographical drivers on soil 
ARGs were ultimately mediated via microbial factors. Anthropo-
genic drivers, such as livestock production, irrigation, and 
manure, would introduce microorganisms carrying ARGs and 
MGEs, indirectly raising the normalized abundance of ARGs 
(R > 0.10, P < 0.05; Fig. 4D). Similarly, the impacts of climatic var-
iables on ARGs were also indirect and mediated via soil nutrients, 
ARG hosts, MGE hosts, and MGEs (Fig. 4D). For example, a lower 
temperature would allow a higher content of soil nutrients 
(R = −0.54, P < 0.001; Fig. 4D), which facilitated the proliferation 
of ARG microbial hosts (R = 0.24, P < 0.05; Fig. 4D), ultimately 
raising the normalized abundance of ARGs (R = 0.17, 
P < 0.01; Fig. 4D). 

Mapping soil ARG normalized abundance 
We used 169 spatial covariates to predict the normalized abundance 
of soil ARGs on the basis of four candidate machine learning 

Fig. 3. Phylogenetic characterization of soil microbes carrying MGEs and ARGs Each block represents a species with ARGs or MGEs, which are colored by their carried 
genes (carrying ARGs for yellow, MGEs for blue, and both for red). Block size is proportional to the normalized abundance of antibiotic resistance microbes. 
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algorithms (support vector machine, k-nearest neighbor, gradient 
boosting tree, and random forest). These candidate algorithms 
were optimized through feature selection (fig. S6 and table S14) 
and parameter tuning (fig. S7 and table S15) with 10-fold cross-val-
idation. Ultimately, random forest with 71 independent predictors 
outperformed other models with a relatively high confidence (table 
S15 and fig. S8). The final model, together with its optimal predic-
tive covariates, enabled us to extend this relationship across the 
global scale to construct an atlas of the normalized abundance of 
ARGs at a 0.083° of resolution (Fig. 5A). This map disclosed the 
highest normalized abundance of ARGs in Western Europe 
(Fig. 5B), East Asia (Fig. 5C), South Asia (Fig. 5D), and eastern 
United States (Fig. 5E), characterized with highly dense population 
across the globe. Along with these population-driven ARG hot 
spots, our map also illustrated a high normalized abundance of 
ARGs in comparatively high latitudes, such as northern Europe 
and New Zealand, which were consistent with the latitudinal gradi-
ent showed by our observations (fig. S1E). We applied coefficient of 

variation to quantify the uncertainty of our estimates, which result-
ed in a relatively high uncertainty in Siberia, Sahara, northern 
Canada, and Central Asia (fig. S9), despite the robust performance 
of our models (fig. S8 and table S16). 

DISCUSSION 
Soil antibiotic resistance structured by multiple biotic and abiotic 
factors is highly complex. To shed light on some of these under-
standings, we have compiled 1088 soil metagenomic data to gener-
ate a high-resolution quantitative map of ARGs and to disentangle 
their driving mechanisms beyond it through integrating with 169 
spatial covariates. These spatial constraints include anthropogenic 
activities, physicochemical properties, climatic variables, and land 
use, among which anthropogenic activities ranked the most impor-
tant factors enriching soil ARGs (Fig. 4A). Our global map also re-
vealed that the hot spots of soil ARGs are located across eastern 
United States, Western Europe, South Asia, and East China 

Fig. 4. Geographical variables affect soil ARGs through microbes. (A) Relative importance of the principal components of geographical variables reveals the dom-
inance of anthropogenic activities on the soil ARG abundance. Partial dependence plots show the impacts of the first (B) and the second (C) eight principal components 
on ARG abundance. (D) Structural equation model differentiating the impact pathways of geographic principal components ARG abundance. Numbers adjacent to 
arrows indicate path coefficients, and asterisks are the significance of pathways. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001 significance level, respectively. 
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(Fig. 5), regions that are characterized with highly dense population 
(24, 25). Moreover, compared with nonagricultural habitats, a 
higher normalized abundance of ARGs was observed in agricultural 
habitats (Fig. 1B) that suffer from more extensive human activities. 
These results—together with noticeable positive connections of 
ARGs with livestock and crop production, irrigation and manure, 
agriculture and pesticide, as well as barley and sheep production 
(Fig. 4, B and C)—provide convening evidence that elevated soil an-
tibiotic resistance is primarily attributed to anthropogenic activities. 

One possible mechanism underlying the strong contribution of 
human activities to soil antibiotic resistance is the wide propagation 
of anthropogenic microbiomes, which is confirmed by the taxo-
nomic composition of identified ARG hosts (Figs. 2C and 3). The 
ARG microbial hosts are dominated by potential pathogens (such as 
E. coli, P. aeruginosa, and K. pneumoniae; Fig. 3 and table S12) that 

inhabit in clinical settings and animal gut environments (26, 27). A 
previous study (21), integrating 484 metagenomes across varied 
habitats, also demonstrated that ARG abundance in anthropogen-
ically affected environments is largely explained by gut microbes 
from fecal pollution. Similar results have also been underpinned 
by regional field observations across the Yangtze River Delta (28), 
Amazon rainforest (17), Chinese croplands (18), and south-central 
Idaho (29), where soil ARGs have been pronouncedly enriched by 
wastewater irrigation and animal manure application. Apart from 
the mechanism driven by anthropogenic microbiomes carrying 
ARGs, another feasible explanation is suggested by associations 
between pesticides and the normalized abundance of ARGs 
(Fig. 4C). This relationship implies that soil ARGs are likely en-
riched by anthropogenic selective agents. The mechanism is con-
firmed by mounting control experiments and field monitoring, 

Fig. 5. Global map of the normalized abundance of soil ARGs. (A) Normalized abundance of soil ARGs across the world The right subfigure depicts the latitudinal 
variation of ARG abundance across the world, and the left subfigure describes the distribution histogram of ARG abundance. (B to E) Normalized abundance of soil ARGs 
in Europe (B), East Asia (C), South Asia (D), and North America (E). The dash line in China is the well-known Chinese demographic “Hu Huanyong line” (25). 
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where soil ARGs were enriched by antibiotics (30), arsenic (31), 
fungicide (32), mercury (20), cuprum (20), and polychlorinated bi-
phenyls (33) due to wide coselection between antibiotic and metal 
resistance genes (20, 33). Such a coselection is partly because genes 
conferring resistance to antibiotics and other contaminants are 
carried by the same MGEs (20, 33). Besides, it would be driven by 
cross-resistance in which some efflux pump genes, such as acrF and 
adeA, can excrete both antibiotics and other pollutants (20, 33). 
Some contaminants are supplemented to livestock feed, thereby re-
sulting in elevated residual concentrations in animal manure and 
soils (30), while others, such as pesticides preventing crops from in-
vasive infections and disease outbreaks, are directly imported into 
farmland (34). A recent study (35) further demonstrated that Gam-
maproteobacteria, the dominant microbial class carrying ARGs we 
observed (Figs. 2C and 3), was potential responders to soil contam-
inants. Anthropogenic pollutants, such as oxytetracycline and azox-
ystrobin, would enrich Gammaproteobacteria, thus indirectly 
raising the normalized abundance of ARGs (35). 

Our global map revealed a comparatively high normalized abun-
dance of ARGs in New Zealand and northern Europe (Fig. 5). Soils 
in these regions are characterized by relatively abundant organic 
carbon, phosphorus, and nitrogen contents (36). It is demonstrated 
by our structural equation model that presented the controls of soil 
nutrients to ARG microbial hosts (Fig. 4D). These results, com-
bined with the uptrend of ARGs with higher soil nutrients observed 
in our analyses (Fig. 4C), suggest that increased nutrients would 
provide carbon and energy sources for the growth and proliferation 
of microbes carrying ARGs. Although soil organic carbon, nitrogen, 
and phosphorus also provide carbon and energy sources for mi-
crobes without ARGs, these microbes are largely inhibited when 
exposed to antibiotics and other anthropogenic pollutants (13, 
18). Therefore, nutrients would exclusively provide carbon and 
energy sources for microbes carrying ARGs, leading to elevated 
normalized abundance of soil ARGs. This suggestion is also sup-
ported by regional observations across the Yangtze River Delta 
(28), Chinese forest (37), and North China grassland (38), where 
the contents of organic carbon, nitrogen, phosphorus, and potassi-
um markedly controlled either soil ARG abundance, richness, or 
diversity. These results suggest that soil ARGs and their carriers at 
the global scale are subjected to environmental filtering, an essential 
deterministic process that shapes the composition, abundance, di-
versity, and function of microbial communities (13, 23). 

Observed soil ARGs were also strongly limited by climatic vari-
ables (Fig. 4). Temperature and precipitation appear to serve as con-
trasting effects on ARG abundance, that is, higher normalized 
abundance of ARGs resulting from lower temperature but increased 
precipitation (Fig. 4, B and C). One feasible mechanism underlying 
such a result is that low temperature and high soil moisture restrict 
decomposition rate, causing the accumulation of soil organic matter 
that are hospitable for the growth and proliferation of microbes car-
rying ARGs. Considering the wide occurrence of antibiotics and 
other anthropogenic pollutants that inhibits microbes susceptive 
to antibiotics (18), the effect of temperature and precipitation via 
soil carbon would exclusively affect antibiotic resistance microbes. 
Notably, our structural equation model also exhibited the indirect 
impacts of mean annual temperature and annual precipitation on 
ARGs via soil nutrients (Fig. 4D), which would validate our pro-
posed hypothesis. Another possible explanation behind this rela-
tionship is that elevated temperature would enhance the 

degradation and volatilization of selective agents, thereby resulting 
in lower selective pressure toward microbial communities and 
reduced ARG abundance. Previous studies (39, 40) also suggested 
that increasing temperature contributed to decreased chlorpyrifos, 
polycyclic aromatic hydrocarbons, perfluoroalkyl acids, and per-
sonal care products through facilitating their partition process 
and degradation. Besides, another important hypothesis is that 
soil ARGs in cold regions would be more sensitive to anthropogenic 
activities, compared with that in hot regions, owing to a lower mi-
crobial biomass at a low temperature. It means a small amount 
input of pathogens and gut microbes likely allow a high normalized 
abundance of ARGs. These possible mechanisms would be partly 
responsible for soil ARG hot spots in high latitudes, particularly 
those located in New Zealand and northern Europe (Fig. 5). Region-
al studies (41, 42) appeared to reveal more complex circumstances, 
where some indicated a negative correlation between temperature 
and ARG abundance, while others supported the opposite trend. 
It suggests that the relationship between climatic parameters and 
ARGs is very likely masked by local deviations, stressing the neces-
sity of this study that investigated the biogeography of soil ARGs at 
the global scale. Together, however soil ARGs respond to climatic 
variables highlights that ARGs burden can be altered by soil carbon 
stocks and human-induced climate change. Further efforts should 
be devoted to performing long-term monitoring to disentangle the 
relationship between ARGs and climates and to further project soil 
ARGs into the future under different climate mitigation and socio-
economic scenarios. 

Despite a relatively high confidence and robust prediction of the 
normalized abundance of soil ARGs in our study (fig. S8, A and B, 
and table S16), further efforts are needed to improve our estimates 
and to better characterize the response of ARGs to ecological vari-
ables at the global scale. Our models exhibited comparatively high 
predictive uncertainties of ARGs in some data-poor regions, includ-
ing Sahara Desert, Siberia, central Australia, and Central Asia (fig. 
S9), mainly because regions with low sampling density (fig. S1A) 
cannot be as well trained as those with plentiful observations. 
Future regional observations in these data-poor regions are 
needed to optimize our surveillance, although the most existing 
global studies on microbiology at the global scale (13, 23, 43) pre-
sented limited samples in these regions, owing probably to poor 
transportations, harsh climates, and rugged terrains. Moreover, 
while this study investigates the global patterns of ARGs based on 
normalized abundance, further studies that combine absolute and 
normalized abundances might be more informative to disentangle 
the underlying mechanisms controlling soil ARGs. Last, although 
the current metagenomic sequencing data have provided some 
valuable insights as to the occurrence of soil ARGs, we will have a 
better understanding of how soil ARGs play a role in a situ environ-
ment based on metatranscriptome and culturomics analyses 
(44, 45). 

In conclusion, our study generates spatially explicit understand-
ings of soil antibiotic resistance and elucidates their potential mi-
crobial mechanisms by combing metagenomic sequence from 
public databases with environmental constraints. Our results not 
only provide baseline information of the soil ARGs at the global 
scale but also serve as a stepping stone to facilitate future modeling 
efforts under changing climate and anthropogenic scenarios. Fur-
thermore, our machine learning approaches to predict the normal-
ized abundance of ARGs shed light on mapping the large-scale 
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distribution of other essential functional genes, such as mcrA, cbbM, 
and hcd, that regulate biogeochemical cycles, greenhouse gases 
emission, and climate change. Moreover, we disentangle the re-
sponse of ARGs to ecological constraints, particularly providing ev-
idence that soil ARGs is driven by soil nutrients and bioclimatic 
variables via ARG microbial hosts, laying the foundation of devel-
oping mechanistic models that integrate physical, chemical, and bi-
ological processes. Last, our study suggests some constructive policy 
strategies to combat soil ARGs burden in a One Health approach, 
including controlling antibiotic misuse and overuse in animal hus-
bandry, decoupling agricultural production and livestock, reducing 
untreated wastewater irrigation and pesticide overuse, as well as im-
proving sanitation infrastructure, which would aid the achievement 
of Sustainable Development Goals. 

MATERIALS AND METHODS 
Metagenomic sample collection and quality control 
We collected 1088 soil metagenomes in this study, all retrieved from 
European Nucleotide Archive (ENA; https://ebi.ac.uk/ena/) and 
National Center for Biotechnology Information (NCBI) Sequence 
Read Archive (https://ncbi.nlm.nih.gov/sra/). We applied the fol-
lowing metagenome selection criterion procedures to minimize 
possible bias: (i) Plant-associated sample, such as rhizosphere and 
rhizoplane soils, were excluded; (ii) soil samples were not collected 
from potentially heavily contaminated environments (such as phar-
maceutical manufacturing parks, hospitals, livestock farms, and 
coal-fired power plants), where high levels of pharmaceuticals, 
heavy metals, and persistent organic pollutants would select poten-
tial antimicrobial strain to raise the uncertainty of our datasets; (iii) 
soil samples were not cultured and without additional experiment 
processes, such as nitrogen addition and warming after sampling; 
(iv) we only considered control group and excluded treatment 
group for those conducting controlled trials; (v) sequencing reads 
were generated by Illumina shotgun platforms, excluding those by 
Roche 454 and ABI SOLiD sequencing technologies; (vi) only 
paired-end sequencing reads with FASTQ format were included, 
and single-end sequences were excluded; (vii) the average read 
length of metagenomes exceeded 100 base pairs; and (viii) accurate 
coordinate information and habitats were available for spatial anal-
yses. These quality control procedures were aimed to minimize pos-
sible uncertainty from root microenvironments, sampling 
locations, experimental processes, unexpected contaminations, se-
quence platforms, sequencing methods, and read lengths. After 
these filtering procedures, a final set of 1088 metagenomic sequenc-
ing datasets (430 locations) were retained for further analysis. We 
summarized detailed metagenome information on accession 
number, read length, base count, habitats, continents, country, 
and spatial coordinates in table S1. All the downloaded raw meta-
genomic sequences was processed for quality check and filtration to 
acquire clean reads using Trimmomatic-0.36 (46) (ILLUMINA-
CLIP: adapters. fa: 2:30:10 SLIDINGWINDOW: 4:15 
MINLEN:100). 

ARG, MGE, and taxonomic annotation 
ARG profiles in the collected metagenomic datasets were quantified 
using ARG annotation pipeline ARGs-OAP 2.3 (http://smile.hku. 
hk/SARGs/) through two-stage pipelines according to the protocol 
provided by previous publications (47, 48). In stage one, we put a 

metadata file, and all the clean reads files into one directory on 
our local Linux system, where the stage one Perl script was executed 
to screen ARG-like and 16S ribosomal RNA (rRNA) gene sequenc-
es. In stage two, the candidate ARG sequences and a metadata 
online file were input to align against SARG reference databases 
by executing the stage two Perl script on our local Linux system. 
The parameters were set at 25 amino acids of alignment length, 
80% of similarity, and 1 × 10−5 of e-value (47, 48). The stage two 
pipeline were expected to output a file that contained the abundanc-
es of 24 types and 1244 subtypes of ARGs for each metagenomic 
samples. ARG abundances are normalized to the number of cells 
(unit: ARG copies per cell), total 16S reads (unit: copies of ARG 
per copy of 16S rRNA), and ppm (reads carrying ARGs per 
million reads), a unit that is normalized by which total reads carry-
ing ARGs divide per million of read counts. Following the same 
procedure and parameters with ARG annotation, MGEs were quan-
tified through aligning against a comprehensive MGE database (49) 
that consists of 2706 genes, including transposase, insertion se-
quences, integrase, istA, istB, qacEdelta, tniA, tniB, and plasmids. 
Kraken (v2.1.1), along with the custom k-mers Bracken databases 
(https://benlangmead.github.io/aws-indexes/k2), was used to 
conduct taxonomic annotation. Furthermore, clean reads that 
carried MGEs and ARGs were selected to align the custom k- 
mers Bracken databases to identify the microbial hosts of MGEs 
and ARGs. For the sake of comparability, we used ppm as the 
unit to normalize ARGs, MGEs, and microbes. 

Acquisition of gridded spatial covariates 
To generate global predictive models of soil ARG abundance, we 
prepared the global maps of 169 spatial covariates that consisted 
of climatic variables, land use, physicochemical properties, and an-
thropogenic factors (table S2) from public databases or satellite ob-
servations. Climatic variables that control soil microbial 
communities were potential drivers for the abundance and diversity 
of ARGs (13, 50). Our climatic variable sets contained 19 core bio-
climatic variables and 16 extended climatic variables from World-
Clim (https://worldclim.org/data/worldclim21.html) and CliMond 
(https://climond.org/BioclimRegistry.aspx#BioclimFAQ) databas-
es. Soil properties that would control the nutrient availability of an-
tibiotic resistance microbes (13, 37) were derived from SoilGrids 
(https://soilgrids.org/) and EarthData (https://daac.ornl.gov/ 
cgibin/dsviewer.pl?ds_id=1223; https://daac.ornl.gov/cgi-bin/ 
dsviewer.pl?ds_id=1264) databases. Anthropogenic activity was a 
quite comprehensive factor that could not be reflected by any one 
single index. We collected multiple variables, including livestock, 
population density, human development index, travel time, crop 
yields, and pesticide use, to represent anthropogenic activities and 
to reduce potential uncertainty as possible. Livestock (buffalo, goat, 
cattle, horse, chicken, pig, ducks, and sheep) that likely represent 
manure and antibiotic pollution from domestic animals were at-
tained from http://fao.org/livestock-systems/global-distributions/ 
en/. Travel time to cities and ports were collected from CGIAR- 
CSI (https://cgiarcsi.community/category/data/). Population 
density was from Google Earth Engine (https://explorer. 
earthengine.google.com/#detail/CIESIN%2FGPWv4%2Funwpp- 
adjusted.population-density). Human development index was ac-
quired form Dryad (https://datadryad.org/stash/dataset/doi:10. 
5061/dryad.dk1j0). Human influence index, development threat 
index, human modification of terrestrial systems, and pesticide 
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use (chlorpyrifos, glufosinate, and glyphosate used in soybean or 
corn) were available from EarthData (https://beta.sedac.ciesin. 
columbia.edu/search/data?). Crop yields (wheat, rice, maize, 
barley, sorghum, pearl, small, soybean, and tea yields) that possibly 
denote the impact of agricultural antibiotics and manure were col-
lected from CGIAR-CSI (https://cgiarcsi.community/2019/01/04/ 
global-spatially-disaggregated-crop-production-statistics-data-for- 
2010/). Antibiotic use in food animals was available in (51). Other 
variables, such as land use, vegetation, and topography, would shape 
antibiotic resistome through receiving different levels of antibiotic 
residues or affecting soil properties. Land use datasets stemmed 
from a recently released database that provided land use datasets 
across the world from 2015 to 2100 (52). Vegetative indicators 
were retrieved from EarthENV (http://earthenv.org/texture). Topo-
graphic variables were obtained from the U.S. Geological Survey 
(https://pubs.usgs.gov/of/2011/1073/). We resampled all the data-
sets to match a 0.083° (around 10 × 10 km at the equator) of 
resolution. 

Machine learning algorithms 
We input the prepared gridded spatial covariates into four candidate 
machine learning algorithms (support vector machine, k-nearest 
neighbor, gradient boosting decision tree, and random forest) to 
predict the normalized abundance of ARGs. Support vector 
machine (53) projects the input features into a feature space in a 
much higher dimension that enables linearly inseparable features 
separable. The objective of this algorithm is to find a hyperplane 
using kernel functions and get an optimum solution through itera-
tively adjusting the hyperplane. K-nearest neighbor algorithm (54) 
assumes that observations with similar predictors have a similar re-
sponse. This model assigns an average response of the k-closest ob-
servations to another observation. Random forest (22) and gradient 
boosting tree (55) are ensemble learning models based on decision 
trees that compose of intermediate nodes and leaf nodes. The inter-
mediate nodes with outgoing edges are labeled by conditions that 
are determined on the basis of information gain, information gain 
rate, or Gini coefficient. The leaf nodes without outgoing edges are 
labeled by decisions or actions. This algorithm assigns a mean value 
of samples within a trained leaf node to another observation. 
Bagged tree (54) randomly divides subsets from all the training da-
tasets, and each subsets construct a decision tree. The average re-
sponse of all decision trees is assigned to the predictive value of 
another observation. Random forest (22), which randomly selects 
both datasets and attributes could be regarded as a unique 
bagging tree algorithm. Gradient boosting tree construct an initial 
decision tree based on all the attributes and samples, and the neg-
ative gradient of the loss function is used as the residual approxima-
tion in the initial decision tree to fit into the next decision tree. This 
process works iteratively until the residual errors or the tree number 
reach a given value. Bagged tree and random forest are designed to 
minimize the variance of models, while gradient boosting tree aims 
to minimize the bias of models. 

The applications of these models were preceded by recursive 
feature elimination algorithm to identify their optimal independent 
variables (fig. S6). Afterward, we conducted hyperparameter tuning 
for four algorithms with their optimal independent features using 
grid search, to determine the best hyperparameter combinations 
(fig. S7). The feature selection and parameter tuning procedures 
were performed on the basis of k-fold cross-validation (54), which 

is an important data training tool to enable the test sets independent 
of training sets and to minimize model overfitting problem. A 10- 
fold cross-validation randomly splits the training sets into 10 equal- 
sized subsets. Nine of these subsets were combined into a dataset for 
model training, and the rest subset was regarded as test sets to esti-
mate the model performances. The R2 of each model prediction was 
stored, and the process was repeated 10 times using the other train-
ing and test subset combinations. The R2 of model estimations was 
assigned to the final cross-validation score, and we selected the 
model with the highest R2 as the best hyperparameter combination. 
Ultimately, random forest outperformed other algorithms in pre-
dicting the normalized abundance of ARGs, with the 10-fold 
cross-validation R2 of 0.47 (fig. S7 and table S15). We trained 10 
separate random forests by setting 10 different random seeds and 
averaged 10 predictive outputs as our final estimates. We calculated 
the coefficient of variation of 10 random forest predictions to esti-
mate our model uncertainty. 

To avoid our model projects far outside their training dataset, we 
excluded those pixels with potential large uncertainty (43, 56, 57), in 
which (i) land use was water bodies and urban; (ii) soil properties 
data collected from SoilGrids database was missing; and (iii) grid 
cells fell outside the value range of clay content, sand content, soil 
carbon density, total nitrogen, annual mean temperature, annual 
precipitation, population density, pig density, chicken density, 
and cattle density. This procedure eliminated 1,570,866 pixels, 
most of which are located in data-poor regions, such as Sahara 
Desert, Siberia, and North Canada. We also validated our model 
using an independent metagenomic dataset that resulted in a vali-
dated R2 of 0.33 (table S17 and fig. S8B). We further summarized the 
prediction performances of previous microbial geography studies, 
showing that predictive model performance increased largely on 
sample size and/or the number of predictor variables (table S16). 
Our estimates outperformed most previous studies owing probably 
to a relatively large sample size and number of predictor variables 
(table S16). 

To estimate the minimal sample size requirement, we examined 
whether our datasets follow normal distribution using a histogram 
and one-sample Kolmogorov-Smirnov test (K-S test) based on R 
stats package, where P > 0.05 indicates a significant result according 
to its null hypothesis. The resulting histogram and K-S test result 
showed that the ln-transformed ARG abundance of our training da-
tasets significantly follows normal distribution (P = 0.48; fig. S8C). 
We further calculated the minimal sample size required to charac-
terize soil resistome using the following equation (58) 

n ¼
Z1� a=2 � s

d

� �2

ð1Þ

where n refers to the minimal sample size requirement; Z1-α/2 
denotes the two-sided quantile of standard normal distribution, 
where 2.58 was set under 99% confidence level; δ represents dis-
tance from mean to limits that was set to 0.05; and σ indicates SD 
that was 0.29, calculated through 

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðXi � XÞ2

N � 1

s

ð2Þ

where N is the sample size of our datasets, −X indicates the average 
ln-transformed ARG abundance of all the samples, and Xi denotes 
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the ln-transformed ARG abundance of sample i. We estimated the 
minimal sample size requirement using PASS 15.0.5 software ac-
cording to these equations, and the resulting minimal sample size 
requirement was 224 (table S18). Although additional 20% dropout 
rate was considered, the dropout-inflated minimal sample size re-
quirement, 280 (table S18), was lower than our sample size (430 lo-
cations and 1088 samples), indicating that enough soil samples have 
been obtained. 

Statistical analysis 
Data analyses were mainly performed using R version 4.0.2 (R 
Foundation for Statistical Computing) with software packages. Re-
cursive feature elimination algorithm, hyperparameter tuning, and 
uncertainty analysis were conducted using randomForest, mlbench, 
caret, e1071, and gbm packages. We mapped the global distribution 
of collected metagenomic datasets using ArcGIS 10.2 (ESRI, Berke-
ley, CA, USA), and the software was also used to visualize the nor-
malized abundance of predicted soil ARGs. Bar chart with error bar 
was plotted using ggplot2 and ggpubr packages. Maptree (59) was 
used to characterize the taxonomic characteristics of soil microbes 
and ARG microbial hosts based on the ggraph, igraph, tidyverse, 
viridis, data.tree, phyloseq, ggtree packages, TreeMap (version 
2019.8.1), and https://github.com/18223185572/Note/tree/master/ 
WenTao/191124Maptree. ANOVA and PERMANOVA combined 
with principal components analysis (PCA) that differentiated the 
composition of ARGs among varied habitats and continents were 
conducted by vegan and ggplot2 packages. Histograms of the nor-
malized abundance of ARGs, MGEs, and soil microbes were plotted 
on the basis of ggplot2 package. Box plot and violin plot with scat-
ters were visualized by ggplot2 package. Scatter plots with fitting 
curves and red density shade were drawn by ggpubr and ggplot 
packages. LSD package was used to visualize the latitudinal 
pattern of the normalized abundance of ARGs based on kernal 
density estimation. Sankey diagram was used to show that the coex-
istence among ARGs, MGEs, and their microbial hosts through net-
workD3 package. 

We performed rotated PCA (rPCA) (43) to increase the inter-
pretability of environmental variables using IBM SPSS Statistics 
25. Before the application of rPCA, all the variance inflation 
factor (VIF) of individual predictor variables was estimated. The 
variable with the maximal VIF was eliminated until the VIFs of 
all the predictor variables were lower than 10, which retained 57 in-
dependent variables (table 13). Variance maximizing rotation 
method was further used to minimize the potential multicollinear-
ity. The optimal number of principal components was determined 
by Kaiser-Guttman rule, requiring that the eigenvalue of principal 
components should exceed 1. The resulting 16 principal compo-
nents and their interpretations were listed in table S13. We assessed 
the relative importance of identified principal components through 
the variable importance tool in caret package. Briefly, this tool cal-
culates the mean square error for every decision tree with out-of-bag 
estimates based on the random forest, which generates the relative 
importance for each predictor variables. The resulting relative im-
portance was normalized on a scale of 0 to 100%, and the total rel-
ative importance was 100% (43). Partial dependence plots based on 
random forest to quantify the responses of ARGs to environmental 
constraints were performed through rfPermute, PDP, and vegan 
packages. We constructed a structural equation model to determine 
direct and indirect impacts of environmental principal components, 

microbial communities, and MGEs on the normalized abundance 
of ARGs. A prior model (fig. S5) (13, 17, 19, 41) and maximum- 
likelihood estimation was used to estimate mode parameters 
based on lavaan package. We applied modification index (13, 60) 
to optimize the structure of our model iteratively, where an ecolog-
ically sound path with ≥2 modification index is constructed in a 
stepwise way. We estimated path coefficients, significance, and 
fitting performance after excluding nonsignificant paths 
(P > 0.05). The fitting performance was examined using compara-
tive fit index (cfi), root mean square error of estimation (RSME), 
standardized root square residual (SRMR), and chi-square test 
(χ2), where cfi ≥ 0.90, RSME ≤ 0.05, SRMR ≤ 0.08, χ2 ≤ 2, and 
P > 0.05 indicate a good fit. 

Supplementary Materials 
This PDF file includes: 
Figs. S1 to S9 

Other Supplementary Material for this  
manuscript includes the following: 
Tables S1 to S18  

View/request a protocol for this paper from Bio-protocol. 
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