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Abstract—Circuit breakers (CBs) play an important role in
modern society because they make the power transmission
and distribution systems reliable and resilient. Therefore, it is
important to maintain their reliability and to monitor their
operation. A key to ensure a reliable operation of CBs is
to monitor their condition. In this work, we performed an
accelerated life testing for mechanical failures of a vacuum
circuit breaker (VCB) by performing close-open operations
continuously until failure. We recorded data for each operation
and made the collected run-to-failure dataset publicly available.
In our experiments, the VCB operated more than 26000 close-
open operations without current load with the time span of
five months. The run-to-failure long-term monitoring enables
us to monitor the evolution of the VCB condition and the
degradation over time. To monitor CB condition, closing time
is one of the indicators, which is usually measured when the
CB is taken out of operation and is completely disconnected
from the network. We propose an algorithm that enables to
infer the same information on the closing time from a non-
intrusive sensor. By utilizing the short-time energy (STE) of
the vibration signal, it is possible to identify the key moments
when specific events happen including the time when the latch
starts to move, and the closing time. The effectiveness of the
proposed algorithm is evaluated on the VCB dataset and is
also compared to the binary segmentation (BS) change point
detection algorithm. This research highlights the potential for
continuous online condition monitoring, which is the basis for
applying future predictive maintenance strategies.

Index Terms—condition monitoring, vacuum circuit break-
ers, short-time energy, vibration signals, run-to-failure dataset

I. INTRODUCTION

Electricity is indispensable in modern society and cir-
cuit breakers (CBs) play a vital role in making the power
transmission and distribution systems highly reliable and
resilient. According to IEEE standard C37.100-1992, ”CB is
a mechanical switching device, capable of making, carrying
and breaking currents under normal circuit conditions and
also, making and carrying for a specified time and breaking
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currents under specified abnormal circuit conditions such as
those of short circuit” [1]. They are well known for their
long lifespan of up to several decades and low failure rates
of about 0.30 to 1.58 failures per 100 CB years [2], [3].
While they have long useful lifetimes, they only operate
when abnormal conditions appear, which results in rare op-
erations. For CBs, any unexpected failure leads to potentially
catastrophic consequences. As a result, making sure that CBs
operate smoothly without failure is a key to maintaining
highly reliable power systems.

Common CB failures include mechanical and electrical
parts. According to the CIGRE survey conducted in the year
2004 to 2007 from 26 countries and 83 utilities [3], [4],
mechanical parts such as operating mechanisms, compres-
sors, pumps and actuators are reported to be one of the main
causes of all occurring faults with 43.5%, followed by elec-
trical parts such as high voltage parts with a share of 26%,
and other parts such as control and auxiliary components
including coil current, auxiliary switch faults with 24.5%.

One conventional method of monitoring the CB condition
is measuring the mechanical opening and closing times. With
the degradation, both opening and closing times increase [4],
[5]. These measurements reflect the CB condition and are
based on the movement of the CB contacts. Contacts are the
conducting part in CB that moves to make or break a circuit.
Opening time is defined as the time interval between the time
when the actuating signal is sent, and the instant when the
contacts have parted. Closing time is similarly defined as the
time interval between the time when the actuating signal is
sent, and the instant when the contacts have touched [1].

There are two common approaches to measure opening
and closing times: travel curve and contact separation mea-
surement. However, both approaches face the same problem
that CB needs to be taken out of service from the grid in order
to perform the measurements [5]. These two approaches can,
therefore, not be used for continuous online monitoring. The
first approach, travel curve (also referred as motion curve),



uses motion sensors such as a transducer or travel encoder
to record contact position. With it, it is possible to infer not
only opening and closing times but also opening and closing
speeds and accelerations. However, a travel curve sensor is
not easy to install routinely and reliably on every CB in the
field. The second approach, contact separation measurement,
is measured by applying a low voltage between the contacts
and measuring the voltage difference. When the contacts
open, the voltage between the contacts goes from zero to
a finite low voltage signal. Similarly to the inference of
closing time, we can determine the contact touch during close
operation when the voltage signal goes from the finite low
voltage to zero. The start time when measuring opening and
closing time is defined as the time when an operating signal is
sent to the corresponding coil. The opening and closing time
measurements are precise by this approach, because it infers
directly when contacts are touched and separated. However,
the CB still needs to be disconnected from the grid.

In this research, we performed an accelerated life testing
for mechanical failures of a VCB by performing close-open
operations continuously until failure. The condition of the
VCB was monitored by the vibration measurements and
also the contact separation measurements. The measurements
of the vibration are performed non-intrusively since the
vibration sensors can be installed outside the breaker cham-
ber on the drive enclosure. As mentioned before, closing
time can be directly used as a health indicator and can be
intuitively understood by domain experts. While vibration
signals contain a lot of information on the VCB condition
and are non-intrusive, the interpretation of the extracted
features by domain experts is more difficult and less intuitive.
Therefore, extracting the same information from the vibration
signals as has been used in the past by domain experts,
will provide an easy way to interpret and monitor the VCB
condition.

We propose a method to detect key moments in the
closing process using vibration signal. These key moments
are time points when specific events happen. With this non-
intrusive condition monitoring approach, it becomes possible
to infer key moments that distinguish different segments
of the closing process without the need to disconnect the
VCB from the grid. Identifying key moments allows us to
better understand the VCB close operation. We compare the
performance of detecting closing time from the vibration
signals from our proposed method to several change point
detection algorithms including binary segmentation (BS),
window sliding, and bottom-up segmentation.

In addition, to understand the ageing behavior over the
entire lifetime and the potential failure mechanisms of a CB,
we performed an accelerated mechanical life testing experi-
ment on a VCB without load. One of the goals is to be able
to determine the remaining useful life (RUL). We collected
a continuously monitored run-to-failure dataset without any
artificially induced faults. We monitored the VCB with
both intrusive and non-intrusive sensors and recorded the
corresponding data. To the best of our knowledge, this is
the first publicly available run-to-failure VCB dataset with
more than 26000 open and close operations. Recorded signals
include coil current, opening and closing times using contact
separation measurements, vibration signals, and motor charg-

ing current for every open and close operation.
The paper is organized as follows: first, the related works

are reviewed in Section II. The experimental setup is ex-
plained in Section III. The proposed key moments detection
method is described in Section IV and results on the VCB
dataset are presented in Section V. Finally, the results are
discussed in Section VI and final conclusions are provided
in Section VII.

II. RELATED WORKS

Different condition monitoring approaches have been pro-
posed to monitor the condition of CBs. The most com-
monly used condition monitoring signals include vibration
signals [6]–[12], coil current [13], [14], dynamic resistance
measurements [15], opening and closing times [5], [16].
Vibration monitoring has been the most frequently used
condition monitoring approach for CBs in the literature in
the last 20 years and coil current has been the second [4].
In this section, we focus only on the condition monitoring
signals applied in this study, namely, vibration signals and
opening and closing time measurement.

Vibration signals during open and close operations are
vital for CB condition monitoring. A comprehensive vibra-
tion analysis on three spring-operated SF6 CBs from different
manufacturers under three years of continuous condition
monitoring are presented in the work [7]. In total, more than
1000 vibration patterns are collected with accelerometers for
assessing the CB condition. This work compares vibration
patterns with a reference pattern to find a deviation in signals.
The CB condition is assessed based on these deviations.
Therefore, domain knowledge about the reference patterns is
needed for this method. It shows that detecting mechanical
malfunctions in operating mechanisms is possible through
continuous monitoring of vibration signals.

Most of the studies on vibration monitoring have focused
on fault detection and identification of different fault types,
whereby the faults are usually introduced artificially [7]–
[12]. One study [6] has a similar focus as ours. By using
short-time energy (STE) and signal-to-noise ratio of the VCB
vibration signals, the detection of closing time under load
and no-load conditions was investigated. It is possible to
detect the closing time from the vibration signals based on
a predefined threshold. Instead of only performing closing
time detection, we detect two key moments and monitor the
VCB condition over the entire VCB lifetime.

Change point detection algorithms detect the change
point and split signals into different segments based on their
characteristics. The change points are the points where the
data distributions before and after the point are different.
An extensive survey on change point detection can be found
in [17]. There are three key elements of change point
detection methodology: cost functions, search methods and
constraints. Cost functions characterise the homogeneity of
the signals. It should be low if the signal is homogeneous and
high otherwise. In terms of search methods, there are optimal
and approximate methods. Due to the high computational
complexity of optimal methods to find the exact solution,
we focus on approximate methods here, which find only
approximate solution. The last element constraints tackle
with the problem if the number of change point is known.



One of the commonly used approximate methods is the
window sliding method. It detects the change point by
finding the discrepancy of the cost function between the
neighboring windows along the signals. One of the other
commonly applied approaches, the bottom-up segmentation
first splits signals into small segments where all split points
are potential change points. Based on the discrepancy of
the cost function between adjacent segments, the point is
removed if the discrepancy is small or kept if it is large. In
the end, the points left are the change points. In addition,
BS is similar to bottom-up segmentation. It finds the change
point by finding the minimum of the sum of the cost function
before and after the change point. More details on BS are
provided in Section IV-D.

Change point detection algorithms are used in various
fields such as speech processing and gait analysis. In the
application of CB, it was implemented as online signature
analysis for coil current signatures [13]. In our case, we use
a change point detection algorithm to detect the closing time
from the vibration signals because the distributions of the
vibration signals before and after the contacts touched are
different.

Run-to-failure degradation trajectories with either con-
tinuous or regular condition monitoring are key for data-
driven approaches to understand complicated systems. How-
ever, run-to-failure datasets are usually missing. Few public
run-to-failure datasets are available in different domains such
as bearings [18] and aircraft engines [19]. To the best of
our knowledge, there is no run-to-failure VCB dataset pub-
licly available. One study analyzes vibration signals without
load in a run-to-failure VCB experiment [20] and shows
the evolution of the time domain features extracted from
vibration signals. However, in that study closing time was
not analysed. Other than this, most of the previous works in
literature have not focused on monitoring the evolution of
the CB condition in time but rather focused on detecting and
diagnosing artificially induced faults [7]–[12].

III. EXPERIMENTAL SETUP

The test object is ABB VD4 Type 3612-16 spring-operated
VCB with rated voltage of 36kV built in 2013 intended for
indoor installation in air-insulated switchgear. The spring is
charged via a 230V alternating current (AC) motor with
a charging time of approximately 10s. The VCB can be
operated manually by pressing the open and close buttons
in the front panel and also by sending electric signals to the
open and close coil. Figure 1 shows the test VCB in the
laboratory with three poles arbitrarily named as pole A, B,
and C.

In this work, we perform a run-to-failure experiment on
the VCB without current load and without any preventive
maintenance in between. The experiment starts when the
spring is fully discharged and the VCB is in its open position.
A single close and open operation is performed in sequence
of close-30s-open-3min. The experiment is controlled by the
device LabJack T7 and data are recorded using TiePie digital
oscilloscope. The data are recorded with sampling frequency
of 300kHz and length of 200ms.

Fig. 1. Experiment setup in the laboratory with the VCB on the left. Three
poles are arbitrarily named as pole A, B, and C. The accelerometer is
installed on the drive enclosure.

A. Vacuum Circuit Breaker Dataset

The test VCB has already performed 2442 open-close
operations when the experiment started. The operation num-
ber is defined as the number of performed open operations
and is shown on the counter on the front panel. The VCB
experiences a fatal failure, which is caused by friction in the
operating mechanism after around five months of continuous
operations. In total, 26243 open and close operations are
performed. For each operation, we recorded open and close
coil current, opening and closing time, vibration signals, and
motor charging current. The dataset is available to public on
the ETH Zurich Research Collection [21].

Fig. 2. An example of a vibration and contact separation measurement
signal. The key moments are indicated in the figure as t1 and t2.

B. Vibration Signal and Key Moments

To measure vibration signals, an accelerometer 786A
(Wilcoxon Sensing Technologies) is installed on the drive
enclosure fixed with mounting stud next to pole B because
this position is close to the drive and also easy to mount
as shown in Figure 1. It is a piezoelectric accelerometer
with single direction, sensitivity of 100 mV/g, and frequency
response range of 0.5Hz - 14kHz. This sensor is chosen
because vibration signals from mechanical parts usually have
a frequency lower than 10kHz [12]. The recording vibration
direction is perpendicular to the ground. An example of
vibration signals during close operation is shown in Figure 2.

We define two key moments as specific time points
where important events happen during the close operation.
In Figure 2, two key moments t1 and t2 (marked in red)
can be distinguished. The first key moment t1 corresponds
to the release of the latch. This induces increased vibration
signals in the first segment of the signal. The second key



Fig. 3. Flow chart of the proposed method for detecting key moments in close operation

moment t2 is the point where the moving contact touches the
fixed contact, which corresponds also to the definition of the
closing time [8], [22]. The start of the recording, time zero,
in Figure 2 is defined when the trigger signal is sent from
LabJack T7 to the VCB close coil. After receiving the trigger
signal, the electromagnet of the VCB starts to energize and
then the operating mechanism starts to move, resulting in a
full close operation.

C. Contact Separation Measurement

To measure the VCB opening and closing times, contact
separation measurement is implemented as described in
Section I. We connect a low direct current (DC) voltage of
9V between contacts. When the VCB is in its open position, a
voltage difference can be measured between contacts. When
it is in its close position, there is no voltage difference. To
prevent a short circuit of the low-voltage source in close
position, a 10kΩ series resistor is installed.

This measurement is the ground-truth of closing time
because it enables to infer precisely when the contacts touch
each other. An example signal of pole A is shown in color
orange in Figure 2. The normalized voltage signal drops from
1 to 0 at around 60ms during close operation. The time when
the voltage signal first drops is the closing time.

IV. METHODS

In this section, we present the proposed method for
detecting key moments using vibration signals recorded
by the accelerometer during close operation. A flow chart
summarizing the proposed method is given in Figure 3.

A. Band-Pass Filter

First, we filter the vibration signal using a band-pass filter
because the accelerometer we used has a ±3dB measurement
range of 0.5Hz to 14kHz. The band-pass filter with the same
lower and upper cutoff frequency of 0.5Hz and 14kHz is
selected.

B. Short-Time Energy (STE)

In speech applications, STE has demonstrated to be able
to distinguish voiced and unvoiced parts of recording signals
and, thus, achieve silence removal [23], [24]. In the field of
CB, STE was also already used to characterise the vibration
profile during closing operation [6]. In this research, we
propose to use the STE for detecting the closing time key
moments in vibration signals.

The signal energy E for a discrete time signal x(t) ∀t ∈
{0, 1, ..., T − 1} with T the recording length can be found
as:

E =

T−1∑
t=0

x2(t) (1)

However, the vibration signal from the VCB is non-
stationary and its characteristics change over time. We, there-
fore, use STE, which is commonly used for non-stationary
signals. Similar to Equation (1), the STE is an energy
measure. However, instead of taking the entire signal, we
calculate the energy locally.

The STE is defined as:

STE(n) =
∞∑

t=−∞
x2(t)w2(n− t) (2)

where w(•) is a window function. It determines the
characteristics of the STE results. One commonly used
window function is the Hamming window [25] defined in
Equation (3) as h(•). The window length W influences the
STE results and needs to be specified by the user and n is
the sample number. The larger the window length W is, the
smoother the STE results are.

h(n) =

{
0.54− 0.46 cos( 2πn

W−1 ), 0 ≤ n ≤W − 1

0, otherwise
(3)

C. Key Moments Detection

After computing the STE of the vibration signal, a decision
rule needs to be defined that automatically determines the key
moments t1 and t2. We propose a detection algorithm with a
simple procedure and few hyperparameters to make it gener-
alizable to other types of CBs. It detects key moments based
on the moving threshold and is explained in Algorithm 1.

This algorithm contains only four hyperparameters that
need to be set by the user. By using different combinations
of hyperparameters, different key moments can be detected.
First, we specify the first two hyperparameters, a pre-defined
detection time interval from tstart to tend. Generally, the
information about the expected range of closing time is
provided in the CB manual. Therefore, it is possible to infer
suitable tstart and tend from it. Then, we select t0, which is
the detection starting point, where 0 < t0 < tend−tstart. We
start the iteration over t by calculating the mean µ and the
standard deviation σ of the signal between tstart and tstart+t,
where t starts from t0. In other words, the detection starts
from tstart + t0 and iterates over t from tstart + t0 to tend
by checking if the absolute difference between the signal at
time t, Signal(t), to the mean µ is larger than a pre-defined
threshold which is set to three times standard deviation, 3σ.



There is always noise in the signal causing energy fluctu-
ations through time. If we would directly take the first point
above the threshold, the decision algorithm would not be
robust. To make the decision rule more robust, we introduce
another hyperparameter L, which is the tolerated number of
points above the threshold. It defines how many consecutive
points above the threshold are needed to be a valid detection.
This makes the decision rule more robust to noise. If no
point is above the threshold, the algorithm returns -1 as
shown in step 17, indicating that no key moment is detected.
An example of a vibration signal and the two detected key
moments are shown in Figure 4.

Fig. 4. The key moments t1 and t2 detected from Algorithm 1

Algorithm 1 Key Moments Detection Algorithm
1: Signal← Signaltstart:tend

2: t← t0
3: P ← 0
4: Calculate the mean µ and standard deviation σ of

Signal0:t
5: for t← t0 to tend − tstart do
6: if |Signal(t)− µ| ≥ 3σ then
7: P ← P + 1
8: go to step 5
9: else

10: go to step 4
11: end if
12: if P > L then
13: Key moment = t− P
14: go to step 18
15: end if
16: end for
17: Key moment ← −1
18: return Key moment

D. Change Point Detection

We compared our proposed detection algorithm with three
selected change point detection algorithms from the litera-
ture [17] as explained in Section II, including BS, window
sliding, and bottom-up segmentation. For simplicity reasons,
we only present the details of BS because it has the best
performance among the three selected methods.

The BS algorithm finds the change point at time tcp by
minimising the following cost function:

tcp = argmin1≤t<T−1c(x0:t) + c(xt:T ) (4)

where c(•) is the cost function and x0:t is the signal from
time 0 to t, T is the record length. One of the commonly
used cost functions is the empirical mean cL2

as defined in
Equation 5, where x̄a,b is the empirical mean of xa:b and
a, b are the starting and ending time.

cL2
(xa:b) =

b∑
t=a+1

∥xt − x̄a:b∥22 (5)

E. Hyperparameter Setting

Hyperparameter setting for Algorithm 1 is provided in
Table I. According to the VCB manual, we know that the
closing time should be around 60ms. We also know that the
first key moment t1 occurs before t2. Therefore, we select
t0 to be 10ms for both t1 and t2. Similarly, tstart is set to
be 20ms and 50ms respectively for t1 and t2. For tend, we
select 50ms for t1 and 75ms for t2. We set L to be 300
points, which means that the signal is allowed to be above
threshold for at most 300 consecutive points or 1ms when
the sampling rate is 300kHz as in our case.

In addition, for STE, we use the Hamming window with a
window length W of 600. For our application, the detection
algorithm is not sensitive to the window length. We use zero
padding. Therefore, the output signal has the same length as
the input signal.

For change point detection, a BS algorithm is applied to
the energy of the signal as defined in Equation 1. The pre-
defined detection range for key moment tcp is set to be
between 60ms to 85ms and the cost function is the empirical
mean in Equation 5.

TABLE I
HYPERPARAMETER SETTING FOR ALGORITHM 1

key moment tstart (ms) tend (ms) t0 (ms) L (# point(s))
t1 20 50 10 300
t2 50 75 10 300

V. RESULTS

A. Closing Time Evolution

Figure 5 shows the closing time measured from the contact
separation measurement of pole A. It increases when the
operation number increases and starts from around 60ms as
described in the VCB manual to more than 70ms by the end
of life. Pole B and C show a similar trend. Therefore, only
the closing time of pole A is shown here for simplicity.

Fig. 5. Pole A closing time tc from the contact separation measurement



Fig. 6. Key moments (a) t1 and (b) t2 detected using Algorithm 1 over
the entire VCB lifetime

B. Key Moments Detection

Figure 6 shows the key moments t1 and t2 over the
entire VCB lifetime detected by Algorithm 1. The overall
increasing trends are similar in the course of the whole
lifetime for both t1 and t2, and also to the closing time tc
in Figure 5 from the contact separation measurements.

In Figure 7(a), we show the residual between the closing
time from the contact separation measurement and our pro-
posed detection algorithm tc − t2. A discrepancy appears at
i = 25000 where our detection algorithm underestimates the
closing time, because the vibration patterns change within
this region. In Figure 7(b), the residual between the closing
time and the BS results tc − tcp are displayed. The change
points tcp have a delay of ca. 8ms compared to the closing
time tc. However, no outliers are detected in this case. This
indicates that there was probably no technical underlying
reason for these outliers.

We further quantify the performance using the root mean
squared error (RMSE) as defined in Equation (6) of the
detected key moment tdetected and the closing time tc derived
from the contact separation measurement. The operation
number i goes from istart = 2442 to iend = 28684. For our
proposed algorithm, tdetected is t2 and for the BS, tdetected
is tcp.

RMSE =

√√√√ 1

iend − istart + 1

iend∑
i=istart

(tc,i − tdetected,i)2

(6)
For the proposed algorithm, the RMSE is 0.550ms for

the entire VCB life and for the BS algorithm the RMSE
is 8.438ms. If we remove the delay by taking the mean of
the first 5000 operations as the reference value of the delay,
the RMSE of the BS algorithm reduces to 0.466ms. We take
the first 5000 operations because the closing time in the early
stage is more stable. Even if the RMSE is lower for the BS
algorithm after removing the delay, we would need to know
that there is a delay in the first place. However, for this, we
would need the ground truth information from the intrusive
monitoring.

C. Key Moments Analysis

The closing time tc increases when the operation number
increases according to the contact separation measurements.
To further understand where this increase in time comes

Fig. 7. The residual (a) tc − t2 and (b) tc − tcp over the entire VCB
lifetime

from, we analyze the time difference between key moments
t2−t1. This corresponds to the contact moving time, starting
from the latch movement to the time when the contacts touch
each other. This time interval also increases as the operation
number increases and is plotted in Figure 8. This indicates
that the whole operating mechanism moving time increases.
In other words, the increase in closing time is caused not
only by the increase of the latch time t1 but also by the
increase of the operating mechanism moving time t2 − t1.
This information is not available from the contact separation
measurements.

Fig. 8. The time interval t2 − t1. It shows that not only t1 and t2 are
increasing but also t2 − t1 is increasing

VI. DISCUSSION

Closing Time: The increasing trend of closing time indi-
cates the wearing of the VCB operating mechanisms due to
the continuous operations. By the end of the VCB’s life there
is a region after i = 27000 where closing time increases even
above 70ms, which is about 10ms more than the upper limit
of the expected closing time specified in the VCB manual.
This implies that even though the VCB is still able to perform
mechanical close operations, it may not function properly
to carry or interrupt the current. The trend of the closing
time tc in Figure 5 can be divided in three stages based
on their characteristics: initiation (i < 5000), stationary
(5000 < i < 20000), and wearing stage (i > 20000). The
first initiation stage has low closing time but high standard
deviation. The stationary stage has stable mean and low
standard deviation. In the final wearing stage, both the mean
and the standard deviation increase.

Besides the overall increasing trend in closing time, we
can observe some anomalies: 1) two peaks appear between
the operation number 5000 and 10000 and 2) one peak occurs
between the operation number 15000 and 20000. The causes



of these peaks could not be explained by domain experts and
the underlying reasons for these peaks could not be clarified.

Key Moments Detection: Our proposed key moments
detection algorithm is able to detect t2 accurately without any
delay, which is verified by the closing time from the contact
separation measurements. The BS algorithm is also able to
detect the closing time but with a delay of approximately
8ms. The closing time increases because both latch time t1
and the operating mechanism time t2 − t1 increase. This
implies that the wearing of the VCB has an impact on the
latch and also on the operating mechanisms. In case only t1
increases but not t2− t1, it could be used as an indicator for
faults that are only impacting the latch.

VII. CONCLUSIONS AND OUTLOOK

In this work, we proposed a key moments detection
algorithm for identifying key moments during close operation
from vibration signals during an accelerated VCB life testing
without load. The closing time inferred from the vibration
signals can be used for non-intrusive VCB condition moni-
toring. Our proposed method is able to perform continuous
condition monitoring without the need to disconnect VCB
from the grid. With the detected key moments, it is even
possible to distinguish between the closing time and the latch
initiation time. Our proposed algorithm is able to detect the
closing time precisely without any delay. The alternative BS
algorithm shows a substantial delay in the detection.

The collected dataset from the accelerated lifetime testing
provides information about the evolution of the VCB con-
dition. This is the first time that a full trajectory of time to
failure has been continuously monitored. In the conducted
experiment, the VCB was able to operate more than 26000
open-close operations until the friction in the operating
mechanism increased to a level that prevents it from further
operation. The dataset was made publicly available.

This work opens many research directions. For example,
in substations, CBs are always operated with current load.
Therefore, the vibration patterns could be different from
those without load. The monitoring should, thus, be extended
to load conditions as well. Furthermore, we observed a
continuous degradation. However, there are possible sudden
or evolving failures, resulting in different fault patterns and
fault evolution trends. Moreover, it is important to emphasize
that the vibration signals contain more information than
the latch and the closing time. Evaluating this additional
information on the health condition and also evaluating how
the vibration signals may be affected by other potential fault
types is left for future research. Finally, the application of
our detection method on different types of CBs is left for
future research.
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