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A B S T R A C T

The numerical modeling of thin shell structures is a challenge, which has been met by a variety of finite
element method (FEM) and other formulations—many of which give rise to new challenges, from complex
implementations to artificial locking. As a potential alternative, we use machine learning and present a Physics-
Informed Neural Network (PINN) to predict the small-strain response of arbitrarily curved shells. To this end,
the shell midsurface is described by a chart, from which the mechanical fields are derived in a curvilinear
coordinate frame by adopting Naghdi’s shell theory. Unlike in typical PINN applications, the corresponding
strong or weak form must therefore be solved in a non-Euclidean domain. We investigate the performance of
the proposed PINN in three distinct scenarios, including the well-known Scordelis–Lo roof setting widely used
to test FEM shell elements against locking. Results show that the PINN can accurately identify the solution
field in all three benchmarks if the equations are presented in their weak form, while it may fail to do so
when using the strong form. In the small-thickness limit, where classical methods are susceptible to locking,
training time notably increases as the differences in scaling of the membrane, shear, and bending energies lead
to adverse numerical stiffness in the gradient flow dynamics. Nevertheless, the PINN can accurately match the
ground truth and performs well in the Scordelis–Lo roof benchmark, highlighting its potential for a drastically
simplified alternative to designing locking-free shell FEM formulations.
1. Introduction

Shells are solids that are significantly thinner in one dimension com-
pared to the other two and serve as integral components of both natural
and man-made structures. Technically speaking, shells are arbitrarily
curved surfaces embedded in three-dimensional (3D) space, endowed
with a (spatially variant or uniform) thickness normal to that surface.
Therefore, shells can be efficiently approximated by a two-dimensional
(2D) theory, capturing the out-of-plane kinematics by some simplifying
assumptions, which are valid as long as the thickness is small compared
to the in-plane extensions. Due to their evident importance, shells have
attracted considerable interest in the scientific community, especially
since the second half of the last century, when Naghdi contributed what
is often considered the standard reference for the theoretical treatment
of shell structures (Naghdi, 1973).

From a mathematical perspective, the mechanical problem is usu-
ally defined on the shell midsurface, a 2D manifold embedded in
the 3D physical space. The shell governing equations—in the form
of a set of partial differential equations (PDEs) or the corresponding
variational problem—must be solved on that manifold, which implies
notable technical differences compared to the typically considered
Euclidean space. Depending on the chosen shell model, the shape
of the surface, and boundary conditions, analytical solutions can be

∗ Corresponding author.
E-mail address: dmk@ethz.ch (D.M. Kochmann).

found for a small class of special cases. In general and typical for
engineering practice, however, one must rely on numerical methods
to obtain solutions. To this end, the finite element method (FEM)
is widely used in commercial (Simulia, 2014; COMSOL, 2019) and
open-source frameworks (Hale et al., 2018), though other approaches
such as mesh-free methods exist as well (Hale and Baiz, 2012). We
note that the implementation of shell models into the FEM setting is
technically complex, as they are deeply rooted in differential geometry.
Furthermore, special care must be taken to ensure that the chosen finite
element space is free from locking, which arises if certain deformation
modes cannot be represented. Addressing these limitations of mesh-
based methods has led to a plethora of research over the past decades,
as summarized in Chapelle and Bathe (2011). Although the imple-
mentation of shell models has been considerably simplified in recent
years (Hale et al., 2018), the choice of suitable shape functions and
discretization techniques to prevent locking still requires significant
user experience and/or model fine-tuning.

Recently, methods of machine learning and, more specifically, deep
learning (Lecun et al., 2015) have gained interest for applications in the
natural sciences and engineering. Traditionally, such methods operate
in a data-driven setting and may learn system responses by identifying
correlations based on a large dataset gathered from experiments or
vailable online 4 November 2022
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Fig. 1. Definition of the shell midsurface based on the chart 𝝓, which maps from the reference domain 𝜔 to the physical domain 𝛺. Besides the global frame with basis {𝒆1 , 𝒆2 , 𝒆3},
e construct from 𝝓 a local covariant basis {𝒂1 ,𝒂2 ,𝒂3} at any point 𝑃 , with 𝒂1 and 𝒂2 spanning the local tangent plane and 𝒂3 being normal to the midsurface.
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imulations. This can drastically accelerate subsequent evaluations to
romote inexpensive surrogate models (Zheng et al., 2021; Bastek et al.,
022). In contrast to such methods stand the so-called Physics-Informed
eural Networks (PINNs), which, although originally proposed decades
go (Lagaris et al., 1998), have only recently gained traction (Raissi
t al., 2019) due to advances in computing power. PINNs do not
equire any data to obtain the response of the physical system. In-
tead, the governing equations are directly incorporated into the loss
unction of the deep learning framework, so that minimization of the
oss becomes equivalent to fulfilling the physical governing equations.
INNs have successfully been applied to diverse areas such as fluid
echanics (Cai et al., 2022), heat transfer (Cai et al., 2021), and

olid mechanics (Haghighat et al., 2021). Alongside their empirical
uccess, there is a growing body of theoretical underpinning, e.g., to
ound errors (Mishra and Molinaro, 2022) or to improve the rate of
onvergence (Wang et al., 2022).

When it comes to structural mechanics, prior work on PINNs has
hown promising results for predicting the structural response of plates
Li et al., 2021; Zhuang et al., 2021) (which can be understood as the
implest case of initially flat shells). Recently, this work was extended
o composite plates and the special class of (shallow) cylindrical shells
oupled to Extreme Learning Machines with improved computational
fficiency but reduced accuracy, especially if trained without external
ata (Yan et al., 2022).

Motivated by the reported success, we here present a PINN frame-
ork for simulating the mechanical response of arbitrarily curved

ontinuous shells. We evaluate the accuracy of the solutions obtained
ith this framework in comparison to FEM solutions. Although we

oresee this framework to be of primary interest to the computational
echanics community, this study may also, in a more general sense,

hed light on the performance of PINNs in non-Euclidean domains for
set of non-trivial physical equations and extends prior studies (Tang

nd Fu, 2021). As the basis for our formulation, we consider the linear
aghdi shell model, suitable for the description of small-strain deforma-

ions of arbitrarily shaped shell structures. This model includes shear
eformation, which enables the accurate description of comparably
hick shells of significant relevance in engineering practice.

The remainder of this contribution is organized as follows. Naghdi
hell theory, including a short primer on the necessary differential
eometry concepts, is summarized in Section 2. In Section 3 we briefly
ntroduce the general setting of PINNs and detail the application to
aghdi shell theory. We validate the framework by comparing it with

eference FEM solutions in Section 4, where we consider a representa-
ive set of three shell structures with fundamentally distinct curvatures
nd boundary conditions. Section 5 concludes our study and discusses
2

xtensions and generalizations.
. Naghdi shell model

.1. Geometrical preliminaries

We begin by introducing those concepts from differential geometry
equired to describe the shell kinematics. In general, a shell is a 3D body
ounded by two outer surfaces and a thickness as the distance between
hose two surfaces. Its shape can be described by the midsurface, located
n the middle of the two outer surfaces. Typically, the thickness of the
hell is much smaller than the characteristic dimensions of the midsur-
ace and thus admits a reduced kinematic parameterization in terms of
he (2D) midsurface only. For better differentiation, in the following,
e reserve Latin indices for 3D quantities (i.e., 𝑖, 𝑗,… = 1, 2, 3), while
reek indices relate to the 2D midsurface (i.e., 𝛼, 𝛽,… = 1, 2), based on
hich the majority of the necessary geometric measures can be derived.
uperscripts (⋅)𝑖 refer to contravariant components of a tensor, while
ubscripts (⋅)𝑖 refer to covariant components. Furthermore, Einstein’s
ummation convention is tacitly implied. Bold symbols indicate tensors
f order one or higher. A single dot denotes a simple contraction,
.g., contracting two second-order tensors 𝑨,𝑩 with base vectors 𝒂 is
ritten as

⋅ 𝑩
def
= 𝐴𝛼𝛽𝐵𝛽𝛾𝒂𝛼 ⊗ 𝒂𝛾 , (1)

hile a colon denotes a double contraction, i.e.,

∶ 𝑩
def
= 𝐴𝛼𝛽𝐵𝛽𝛼 . (2)

n the following, we partly follow the derivation in Gaile (2011) but
ocus only on the key steps necessary for our study; further details and
xplanations can be found in Ciarlet (2005).

Let us assume that the midsurface of a smooth continuous shell is
iven by a 2D chart 𝝓 ∶ R2 → R3, i.e., a smooth injective mapping
rom a reference domain 𝜔 ⊂ R2 into the physical space 𝛺 ⊂ R3, as
chematically shown in Fig. 1. We describe a position on the shell by
urvilinear coordinates (𝜉1, 𝜉2) ∈ 𝜔, which are defined on the manifold,
o the midsurface is entirely defined by 𝝓(𝜉1, 𝜉2) ∈ 𝛺.

To describe local quantities, we construct a covariant basis at each
oint of the midsurface as

𝛼 =
𝜕𝝓
𝜕𝜉𝛼

for 𝛼 = 1, 2, 𝒂3 =
𝒂1 × 𝒂2

‖𝒂1 × 𝒂2‖
. (3)

From this basis, we retrieve the (covariant) components of the metric
tensor,

𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 , (4)

which capture in-plane deformation and rotations of a material point
on the midsurface.
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When taking derivatives along a curve on the midsurface, we must
account for the change of the local basis along that curve. For a vector
field 𝒗 = 𝑣𝛼𝒂𝛼 defined on the midsurface, we thus obtain
𝜕𝒗
𝜕𝜉𝛽

= 𝑣𝛼,𝛽𝒂 𝛼 + 𝑣𝛼𝒂 𝛼
,𝛽 = 𝑣𝛼|𝛽𝒂 𝛼 + 𝑏𝛼𝛽𝑣𝛼𝒂3, (5)

here we introduced the (more standard) differential geometric nota-
ion with the surface covariant derivative

𝛼|𝛽 = 𝑣𝛼,𝛽 − 𝛤 𝜌
𝛼𝛽𝑣𝜌 (6)

nd the Christoffel symbol
𝜌
𝛼𝛽 = 𝒂𝛼,𝛽 ⋅ 𝒂 𝜌 (7)

s a measure for the in-plane curvature. The normal component is
haracterized by the second fundamental form, which measures the
xtrinsic (i.e., out-of-plane) curvature of the midsurface as
𝛼
𝛽 = −𝒂3,𝛽 ⋅ 𝒂 𝛼 = 𝒂3 ⋅ 𝒂 𝛼

,𝛽 . (8)

urthermore, we relate the convected (covariant) basis vectors
𝒈1, 𝒈2, 𝒈3}, which are not necessarily parallel to the midsurface, to the
idsurface basis vectors 𝒂𝑖 via

𝛼 =
(

𝛿𝜆𝛼 − 𝜉3𝑏𝜆𝛼
)

𝒂𝜆, 𝒈3 = 𝒂3 so that 𝒈𝛼 ⋅ 𝒈𝛽 = 𝛿𝛽𝛼 (9)

with the Kronecker delta 𝛿𝜆𝛼 . Lastly, we express the third fundamental
form as

𝑐𝛼𝛽 = 𝑏𝜌𝛼𝑏𝜌𝛽 . (10)

Note that in order to integrate over the shell in physical space, we
may conveniently relate the physical surface area differential d to the
reference coordinates via the determinant of the metric tensor, 𝑎 = det 𝒂
according to

d = ‖𝒂1 × 𝒂2‖d𝜉1 d𝜉2 =
√

det 𝒂d𝜉1 d𝜉2
def
=

√

𝑎d𝜉1 d𝜉2. (11)

2.2. Shell model

For the mechanical description of a shell structure, we adopt the
conventions of the so-called five-parameter shell model, for which the
reader is referred to Naghdi (1973) for a more comprehensive deriva-
tion. We express the undeformed configuration of a shell in 3D physical
space as

𝜱(𝜉1, 𝜉2, 𝜉3) = 𝝓(𝜉1, 𝜉2)+𝜉3𝒂3(𝜉1, 𝜉2), (𝜉1, 𝜉2) ∈ 𝜔 ⊂ R2, 𝜉3 ∈ [−𝑡∕2, 𝑡∕2],

(12)

where we assume the thickness 𝑡 to be constant. To obtain the displace-
ments, we assume that the normal fibers are inextensible and remain
straight after deformation, which is also known as the Reissner–Mindlin
kinematic assumptions. As a consequence (and because the material
fibers as assumed infinitesimally thin), we can express the rotation of
each material fiber uniquely by a rotation vector normal to this fiber,
i.e., via 𝜃𝜆𝒂 𝜆. The overall displacement vector field is hence composed
of a translation of points and the introduced rotation of the associated
director as

𝑼 = 𝑼 (𝜉1, 𝜉2, 𝜉3) = 𝒖(𝜉1, 𝜉2) + 𝜉3𝜃𝜆(𝜉1, 𝜉2)𝒂 𝜆(𝜉1, 𝜉2). (13)

To measure deformations in the (small-strain) regime of linearized
kinematics, we consider the linearized Green–Lagrange strain tensor

𝐸𝑖𝑗 =
1
2
(

𝒈𝑖𝑼 ,𝑗 + 𝒈𝑗𝑼 ,𝑖
)

, (14)

whose components evaluate to (see Appendix A)

𝐸𝛼𝛽 = 1
2
(

𝑢𝛼|𝛽 + 𝑢𝛽|𝛼
)

− 𝑏𝛼𝛽𝑢3 + 𝜉3
[

1
2

(

𝜃𝛼|𝛽 + 𝜃𝛽|𝛼 − 𝑏𝜆𝛽𝑢𝜆|𝛼 − 𝑏𝜆𝛼𝑢𝜆|𝛽

)

+ 𝑐𝛼𝛽𝑢3

]

+
(𝜉3)2 (

𝑏𝜆𝜃 + 𝑏𝜆𝜃
)

, (15)
3

2 𝛽 𝜆|𝛼 𝛼 𝜆|𝛽
𝐸𝛼3 =
1
2
(𝜃𝛼 + 𝑢3,𝛼 + 𝑏𝜆𝛼𝑢𝜆), (16)

𝐸33 = 0. (17)

As the shell is assumed to be thin, those terms that are quadratic in 𝜉3

are neglected, and we retrieve the strain contributions of the Naghdi
shell model as

𝑒𝛼𝛽 (𝒖) =
1
2
(

𝑢𝛼|𝛽 + 𝑢𝛽|𝛼
)

− 𝑏𝛼𝛽𝑢3,

𝑘𝛼𝛽 (𝒖,𝜽) =
1
2
(

𝜃𝛼|𝛽 + 𝜃𝛽|𝛼 − 𝑏𝜆𝛽𝑢𝜆|𝛼 − 𝑏𝜆𝛼𝑢𝜆|𝛽
)

+ 𝑐𝛼𝛽𝑢3,

𝛾𝛼(𝒖,𝜽) = 𝜃𝛼 + 𝑢3,𝛼 + 𝑏𝜆𝛼𝑢𝜆,

(18)

where 𝑒𝛼𝛽 (𝒖), 𝑘𝛼𝛽 (𝒖,𝜽), and 𝛾𝛼(𝒖,𝜽) are interpreted as membrane, bend-
ing, and shear strains, respectively. Owing to the variational structure
of the problem, the total potential energy functional of a homogeneous,
isotropic, linear elastic shell becomes

𝛱[𝒖,𝜽] = 1
2 ∫𝜔

[

C𝛼𝛽𝜎𝜌
(

𝑡𝑒𝛼𝛽𝑒𝜎𝜌 +
𝑡3

12
𝑘𝛼𝛽𝑘𝜎𝜌

)

+ D𝛼𝛽 𝑡𝜅𝛾𝛼𝛾𝛽

]

d −𝑊ext,

(19)

ith fourth- and second-order tensor components

𝛼𝛽𝜎𝜌 =
2𝜆𝜇

𝜆 + 2𝜇
𝑎𝛼𝛽𝑎𝜎𝜌 + 𝜇(𝑎𝛼𝜎𝑎𝛽𝜌 + 𝑎𝛼𝜌𝑎𝛽𝜎 ), (20)

𝛼𝛽 = 𝜇𝑎𝛼𝛽 , (21)

where 𝜆 and 𝜇 are the Lamé elastic moduli. 𝑊ext represents the work
done by external forces. For further details we refer to Naghdi (1973),
Gaile (2011) and only emphasize that the elasticity tensors in (20)
are derived under plane-stress conditions through the thickness, while
the shear correction factor 𝜅 accounts for the nonlinear distribution of
shear strains across the thickness. For a homogeneous, isotropic base
material, its value is taken as 𝜅 = 5∕6.

To identify the equilibrium configuration for a given set of essen-
tial boundary conditions and external loading, we may leverage the
principle of minimum potential energy,

{𝒖∗,𝜽∗} = arg min {𝛱[𝒖,𝜽] s.t. essential BCs} , (22)

which constitutes the basis for the weak form used in the FEM setting.
Of course, we can equivalently express the equilibrium conditions in
terms of the strong form, as presented in detail in Chapelle and Stenberg
(1998). To this end, we denote the membrane and shear force tensor
as well as the bending moment tensor by, respectively,

𝒏 = 𝑡C ∶ 𝒆, 𝒒 = 𝑡D ⋅ 𝜸, 𝒎 = 𝑡3

12
C ∶ 𝒌. (23)

The equilibrium equations in 𝜔 follow as

div𝒎 − 𝒒 = 𝟎,
div(𝒏 − 𝒃 ⋅𝒎) − 𝒃 ⋅ 𝒒 + 𝒇 = 𝟎,

div 𝒒 + 𝒃 ∶ (𝒏 − 𝒃 ⋅𝒎) + 𝑓3 = 0,

(24)

with the natural boundary conditions

𝒎 ⋅ 𝝂 = 𝟎, (𝒏 − 𝒃 ⋅𝒎) ⋅ 𝝂 = 𝟎, 𝒒 ⋅ 𝝂 = 0 (25)

on the free boundary 𝜕𝜔N, where 𝝂 is the unit outward normal perpen-
icular to the tangent plane. 𝒇 represents the distributed body force

tangential to the shell surface, and 𝑓3 the out-of-plane force component.
Note that the divergence must again consider the curvilinear base and
is obtained by contracting the covariant surface derivative on the last
two indices, i.e., for a vector 𝒂 and second-order tensor 𝑩 we have

div𝒂 = 𝑎𝛼
|𝛼 , div𝑩 = 𝐵𝛼𝛽

|𝛽 . (26)

Note that we here consider the so-called five-parameter model, which
has five degrees of freedom: the three displacement field components
𝒖 ∈ R3 and the two rotation components 𝜽 ∈ R2, since rotations of
the material fibers around their own axis (also referred to as drilling)
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are neglected. To prevent this by construction, we directly solve for the
rotations with respect to the two base vectors of our local basis, which
are tangential to the surface (i.e., 𝒂1 and 𝒂2). The displacement field is
instead defined in the global Cartesian frame denoted by �̂� ∈ R3 and
must thus first be transformed to the local frame via the linear mapping

𝒖 = 𝑻 �̂�, 𝑻 =
⎛

⎜

⎜

⎝

| | |

𝒂1 𝒂2 𝒂3
| | |

⎞

⎟

⎟

⎠

T

, (27)

before assembling the corresponding strains in (18). Lastly, note that
𝑻 necessarily depends on position 𝝃, so care must be taken when
evaluating the covariant derivatives of 𝒖 via �̂�.

3. Physics-informed neural network framework

In this section, we present the details of the PINN framework as
sketched in Fig. 2. We first give a brief introduction to the general PINN
methodology, before providing details of the application in the above
shell setting.

3.1. General PINN setting

Consider the general form of a system governed by PDEs on a
domain 𝛺 ⊂ R𝑑 , abbreviated as

 [𝒚(𝒙)] = 𝟎, 𝒙 =
(

𝑥1, 𝑥2,… , 𝑥𝑑
)

∈ 𝛺, 𝒚 =
(

𝑦1(𝒙), 𝑦2(𝒙),… , 𝑦𝑛(𝒙)
)

∈ R𝑛,

(28)

and boundary conditions

[𝒚(𝒙)] = 𝟎, 𝒙 ∈ 𝜕𝛺, (29)

where  is a differential operator,  is a boundary condition operator,
𝜕𝛺 is the boundary of the domain, and 𝒚 is the solution of the set
of PDEs for all 𝒙 ∈ 𝛺. The fundamental idea of PINNs is to approx-
imate 𝒚 via a feed-forward multi-layer neural network  , which is
parameterized by weights and biases collected in 𝝉, i.e.,

𝒚(𝒙) ≈  (𝒙; 𝝉) = 𝝉 (𝒙). (30)

To identify the set of hyperparameters 𝝉 that best fulfills (28) and
(29), the PINN is trained to minimize the residual arising from not
exactly fulfilling these equations. Notably, we can employ automatic
differentiation (typically used to optimize the internal weights and
biases of the network) to obtain derivatives appearing in (28) and
(29) by evaluating the partial derivative of the output with respect to
the input coordinates (Raissi et al., 2019), provided that the chosen
activation function of our PINN is sufficiently smooth. To numerically
estimate the residual, each equation is evaluated at a total of 𝑁c
sampled collocation points, the average of which is taken as the loss
function of the network to be minimized by first- or second-order
optimizers such as Adam (Kingma and Ba, 2014) or L-BFGS (Liu and
Nocedal, 1989), respectively. For further details, the reader is referred
to Raissi et al. (2019).

Note that certain classes of PDEs (including the present shell model,
as explained above) possess a variational structure, i.e., the solution 𝒚
can also be interpreted as an extremal point of a functional 𝐼[𝒚]. Instead
of directly enforcing the strong form given by (28) and (29), we can
thus equivalently minimize 𝐼[𝒚], which has sometimes been referred to
as the Deep Ritz Method (E and Yu, 2018). This relaxes the conditions
on the solution space, as it reduces the order of the highest derivatives
appearing in the governing equations.

3.2. Application to shells

As derived in Section 2.2, the governing system of PDEs in the case
4

of shell structures is given by (24) and (25). For a given set of boundary i
conditions, our PINN takes as input a set of curvilinear coordinates 𝝃 ∈
𝜔 ⊂ R2 and predicts the corresponding (global) displacements �̂� ∈ R3

and (local) rotations 𝜽 ∈ R2 over the given (reference) domain 𝜔, from
which the strains, forces/moments and, subsequently, the strong form
can be constructed. Note that for natural boundary conditions (relating
to applied forces or moments) defined on 𝜕𝜔N ⊆ 𝜕𝜔 the solution
must satisfy (25), while for essential boundary conditions defined on
𝜕𝜔D ⊆ 𝜕𝜔 we impose

�̂�(𝝃) = �̄�(𝝃) and 𝜽(𝝃) = �̄�(𝝃), for 𝝃 ∈ 𝜕𝜔D, (31)

here �̄�(𝝃) and �̄�(𝝃) are the prescribed displacements and rotations,
espectively, and 𝜕𝜔 = 𝜕𝜔D ∪ 𝜕𝜔N, and 𝜕𝜔D ∩ 𝜕𝜔N = ∅ with 𝜕𝜔
enoting the outer boundary of 𝜔. When considering the strong form
24) and (25), the residual or, equivalently, the loss 𝐿strong of the PINN

is estimated by using a measure of the deviation such as the mean-
squared error, which gives the total loss based on the strong form as

strong(𝜏) = r(𝜏) + bc(𝜏) = r(𝜏) + bc,N(𝜏) + bc,D(𝜏), (32)

here, with 𝝃𝑖 = (𝜉1, 𝜉2)𝑖 denoting the location of the 𝑖th collocation
oint,

r(𝜏) =
1
𝑁c

𝑁c
∑

𝑖=1

[

‖ div𝒎𝜏 (𝝃𝑖) − 𝒒𝜏 (𝝃𝑖)‖22

+ ‖ div(𝒏𝜏 (𝝃𝑖) − 𝒃(𝝃𝑖) ⋅𝒎𝜏 (𝝃𝑖)) − 𝒃(𝝃𝑖) ⋅ 𝒒𝜏 (𝝃𝑖) + 𝒇 (𝝃𝑖)‖22
+ ‖ div 𝒒𝜏 (𝝃𝑖) + 𝒃(𝝃𝑖) ∶ [𝒏𝜏 (𝝃𝑖) − 𝒃(𝝃𝑖) ⋅𝒎𝜏 (𝝃𝑖)] + 𝑓3(𝝃𝑖)‖22

]

(33)

nd

bc,N(𝜏) =
1
𝑁N

𝑁N
∑

𝑖=1

[

‖𝒎𝜏 (𝝃𝑖) ⋅ 𝝂(𝝃𝑖)‖22 + ‖[𝒏𝜏 (𝝃𝑖) − 𝒃(𝝃𝑖) ⋅𝒎𝜏 (𝝃𝑖)] ⋅ 𝝂‖22

+ ‖𝒒𝜏 (𝝃𝑖) ⋅ 𝝂(𝝃𝑖)‖22
]

, (34)

bc,D(𝜏) =
1
𝑁D

𝑁D
∑

𝑖=1

[

‖�̂�𝜏 (𝝃𝑖) − �̄�(𝝃𝑖)‖22 + ‖𝜽𝜏 (𝝃𝑖) − �̄�(𝝃𝑖)‖22
]

. (35)

ote that sufficiently large numbers of collocation points for the resid-
als in the domain, on the natural and essential boundaries, denoted by
c, 𝑁N, and 𝑁D, respectively, must be sampled to offer a good approx-

mation of the total residual. The selection of the collocation points and
eights can be random or according to some low-discrepancy sequence

uch as the Sobol sequence for a faster rate of convergence (Sobol’,
967), which was chosen here unless explicitly stated otherwise.

As the loss function (32) consists of a total of 15 terms (five equi-
ibrium equations, five natural boundary conditions, and five essential
oundary conditions), it can be further simplified by directly imposing
he essential boundary conditions on the PINN output. For example,
onsider the simple case of a square plate that is clamped on one edge,
.g.,

̄ (𝝃) = 𝟎 ∧ �̄�(𝝃) = 𝟎 ∀ 𝜉1 = 0, 𝜉2 ∈ [0, 1]. (36)

efining the trial function 𝜑(𝝃) = 𝜉1 to be multiplied with the PINN
utput (see Fig. 2) will trivially fulfill this essential boundary condition
nd thus allows us to omit (35) in this special case. For more complex
eometries, general frameworks to construct suitable distance functions
xist and can be extended to also satisfy the natural boundary condition
y construction (Sukumar and Srivastava, 2022).

As indicated before, we may equivalently leverage the variational
tructure of the problem and, instead of solving the strong form,
inimize the potential energy functional (22). In this case, an approx-

mation of the total potential energy and hence the loss is given by
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Fig. 2. PINN architecture and corresponding loss. The PINN predicts the (scaled) global deformations �̂�∗ and rotations 𝜽∗ at a collocation point 𝝃𝑖, which are multiplied by
the trial function 𝜑 to impose the Dirichlet BCs. Based on these five parameters and the given chart 𝜙, the shell equations can be assembled equivalently in their strong or weak
forms, which define the loss function for the training of the network.
weak(𝜏) =
|𝜔|
𝑁c

𝑁c
∑

𝑖=1

( 1
2
𝑡𝒆𝜏 (𝝃𝑖) ∶ C(𝝃𝑖) ∶ 𝒆𝜏 (𝝃𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
membrane energy

+ 1
2
𝑡3

12
𝒌𝜏 (𝝃𝑖) ∶ C(𝝃𝑖) ∶ 𝒌𝜏 (𝝃𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bending energy

+ 1
2
𝜅𝑡𝜸𝜏 (𝝃𝑖) ⋅ D(𝝃𝑖) ⋅ 𝜸𝜏 (𝝃𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
shear energy

− 𝑊ext,𝜏 (𝝃𝑖)
⏟⏞⏞⏟⏞⏞⏟

external work

)

√

𝑎(𝝃𝑖),

(37)

where |𝜔| = ∫𝜔 d𝜉1 d𝜉2 denotes the total area of the reference do-
main. This formulation offers various advantages: besides the reduced
highest order of differentiation (saving computational costs), natural
boundary conditions must not be incorporated by additional equations
and thus further simplify the loss function to a single term (without
potential ambiguity about the weighting of the various terms in the
loss function).

Lastly, note that we can leverage automatic differentiation to not
only assemble the loss function and train the network but also to
efficiently and accurately evaluate all geometric quantities such as the
fundamental forms introduced in Section 2.1 directly at the correspond-
ing collocation points, which entirely depend on the prescribed chart
𝝓(𝝃). Since these quantities remain constant in the considered small-
strain setting, we evaluate and store those before the training stage of
our PINN and subsequently save computational resources. This is in
contrast to mesh-based methods, in which these quantities are typically
evaluated at quadrature points via interpolation between the element
nodes, which, depending on the given chart and interpolation may lead
to a loss in accuracy for insufficiently refined meshes in subdomains
with high local curvature. Besides, the computation of the out-of-plane
normal may require additional averaging schemes between adjacent
elements (Gaile, 2011).

3.3. Implementation details

As with any deep learning framework, there is a large variety
of hyperparameters to consider, ranging from the choice of network
architecture (i.e., the number of layers and neurons per layer as well as
5

the activation function) to the training parameters (i.e., the number of
collocation points that the strong or weak form is evaluated on, weight
initialization, artificial weights on different loss terms) to the choice
of the optimizer. In the context of PINNs, numerous studies on the
influence of such hyperparameters can be found in the literature (Raissi
et al., 2019; Zhuang et al., 2021; Jagtap et al., 2020). We summarize
that a fine-tuned network architecture, evaluated on an increasing
number of collocation points, improves the accuracy of the solution
to some extent. Nevertheless, such improvements are typically rather
marginal for a reasonable choice of hyperparameters and may not
be able to mitigate some of the more fundamental failures of PINNs
previously observed in certain scenarios, e.g., when solving the Allen–
Cahn equation with sharp transitions in the solution fields. In such
cases, more elaborate strategies such as adaptive sampling must be
pursued to improve the accuracy of the predicted solutions to an accept-
able level (Wight and Zhao, 2020; Krishnapriyan et al., 2021). As our
investigations confirm the general trend observed in the literature with
regards to the choice of hyperparameters, we will omit in-depth param-
eter studies for which we refer the reader to, e.g., Zhuang et al. (2021),
and only highlight interesting observations where deemed appropriate.
For all subsequent studies, we use a standard feedforward multi-layer
perceptron with three hidden layers and 50 neurons per layer using the
GELU activation function (Hendrycks and Gimpel, 2016), which was
empirically found to give the best results. We used Pytorch (Paszke
et al., 2019) for the implementation and its default version of the
L-BFGS solver (Liu and Nocedal, 1989) with enabled Strong-Wolfe
conditions to optimize the networks.

4. Results

Having derived the general setup of our PINN applied to shell the-
ory, we proceed to test its performance on three fundamentally distinct
shell problems, addressing hyperbolic, parabolic, and elliptic shapes as
well as different boundary conditions, as shown in Fig. 3. Specifically,
we consider (a) a hyperbolic paraboloid clamped on one edge, which
we also refer to as partly clamped, and subject to gravity loading,
(b) a cylinder segment clamped in �̂�2, �̂�3 on the two curved edges

and subject to gravity loading (this is also known as the Scordelis–Lo
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Fig. 3. Considered case studies. (a) A hyperbolic paraboloid clamped on one edge and subject to gravity loading. (b) The Scordelis–Lo Roof benchmark (Belytschko et al., 1985),
consisting of a cylindrical shape clamped in �̂�2 , �̂�3 on the curved edges and subject to gravity loading (𝜃0 = 40◦). (c) A fully clamped hemisphere subject to a vertical load at its
center, modeled by a Gaussian kernel.
Fig. 4. Comparison of the predicted �̂�3-displacement field as obtained from the FEM and PINN frameworks (based on both the strong and weak forms with 𝑁c = 2,048) for the
partly clamped hyperbolic paraboloid subject to gravity loading, shown in the reference domain. Displacements are scaled by a factor of 0.005 for consistency with Fig. 7.
roof benchmark in the context of FEM frameworks (Belytschko et al.,
1985)), and (c) a fully clamped hemisphere subject to a concentrated
Gaussian load. Since all benchmarks are in the realm of linear elasticity
and geometrically linear theory, the choice of Young’s modulus 𝐸
and magnitude 𝑓 of the applied load simply re-scales the solution
fields. Therefore, without loss of generality, we set 𝐸 = 𝑓 = 1 for
all subsequent studies to not artificially inflate the magnitudes of the
different terms at the beginning of the training, which has been shown
to deteriorate the convergence of PINNs (Wang et al., 2021).

To validate the results, we perform FEM simulations of all three
benchmarks, using the open-source library FEniCS-Shells (Hale et al.,
2018), which offers a comparably simple implementation of the typi-
cally rather complex shell formulations. For all presented results, the
FEM mesh was refined until convergence was observed.

4.1. Partly clamped hyperbolic paraboloid

We first consider a shell with the midsurface defined by the chart
𝝓(𝜉1, 𝜉2) = {𝜉1, 𝜉2, (𝜉1)2 − (𝜉2)2} with (𝜉1, 𝜉2) ∈ [−1∕2, 1∕2] (i.e., 𝐿 = 1),
6

also referred to as a hyperbolic paraboloid (Hale et al., 2018), which has
a negative mean Gaussian curvature. As stated above, we can efficiently
pre-compute all necessary geometric measures such as the fundamental
forms based on the chart (and its derivatives with respect to 𝜉1, 𝜉2) by
leveraging Pytorch’s autograd engine, which gives us the exact quantity
at the chosen collocation points via automatic differentiation.

The one-sided clamping is formally expressed by �̂� = 𝟎 and 𝜽 = 𝟎
for all 𝜉1 = −1∕2, so that we define the trivial trial function 𝜑(𝝃) =
𝜉1 + 1∕2 to fulfill these Dirichlet boundary conditions. The gravity
load is implemented in the strong form and enters the weak form as
𝑊ext = − ∫𝜔 𝜌𝑔𝑡�̂�3 d with 𝜌𝑔 = 1 (as explained above). We set Poisson’s
ratio to 𝜈 = 0.3 and consider a characteristic thickness of 𝑡∕𝐿 = 0.1.

For both strong and weak forms, 2,048 collocation points were
sampled in the reference domain. Additionally, the strong form requires
the explicit evaluation of the natural boundary conditions on the three
unclamped edges, for which an additional 512 collocation points each
were sampled.

We compare the results based on the PINNs applied to both the
strong and the weak forms with the results from FEniCS in Fig. 4, where
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Fig. 5. Average relative 𝐿2-error of the five solution fields, computed as 1
5

(

∑3
𝑖=1

√

(𝑢𝑖,FEM − 𝑢𝑖,PINN)2∕𝑢2𝑖,FEM +
∑2

𝑗=1

√

(𝜃𝑗,FEM − 𝜃𝑗,PINN)2∕𝜃2𝑗,FEM

)

, with respect to the FEM solution over
100 training epochs based on the strong and weak forms. We first consider the original problem, i.e., a partly clamped shell, and, in addition, investigate the performance of both
the strong and weak forms for the simpler problem of a fully clamped shell. ∗Trained using 𝑁c = 16,384 (other results for 𝑁c = 2,048).
Fig. 6. Comparison of the deformation predicted by the FEM and PINN framework (based on both the strong and weak forms with 𝑁c = 2,048) for the fully clamped hyperbolic
paraboloid subject to gravity load in the physical space, shown in its deformed configuration. The surface color corresponds to the norm of the rotation fields, |𝜽| = |𝜃1| + |𝜃2|.
Displacements are scaled by a factor of 0.005 for improved visibility.
the solution for the �̂�3-displacement field is evaluated over the reference
domain. For analogous comparisons of the other four solution fields
(based on the weak form only, since the strong form offers no further
insights) we refer to Fig. B.13. Both the strong and weak form were
trained for 100 epochs, at which the loss has approximately converged,
as shown in Fig. 5a.

While the PINN using the strong form as the loss function fails
to converge to the FEM solution, the PINN based on the weak form
succeeds at accurately matching the solution of FEniCS. This confirms
the trend observed in Li et al. (2021), there for the simpler case of
a plate. Interestingly, we observed an increase in the average 𝐿2-error
for the weak form using 𝑁c = 2,048 collocation points after around
60 epochs, as the PINN identified a configuration with smaller total
potential energy than the physical solution due to a too coarse sampling
of the collocation points. Increasing the number of collocation points to
larger values (we selected, e.g., 𝑁c = 16,384) does consistently remove
this effect. We generally find that the inherent over-parameterization
of the network may lead to such non-physical artifacts, if the sampled
collocation points are too coarse. To furthermore explain why the weak
form greatly outperforms the strong form, we refer to its two obvious
advantages: besides reducing the required order of differentiation,
natural boundary conditions are directly incorporated and must not be
expressed by additional terms in the loss function, which facilitates the
training.
7

We hypothesize that it is particularly the extended loss function
(with five additional terms) that contributes to the failure of the strong-
form-based PINN to approximate the physical solution, which we verify
by considering a simpler problem. If the hyperbolic paraboloid is fully
clamped (i.e., on all four boundaries), no additional terms due to
natural boundary conditions enter the loss function of the strong form.
Instead, we can incorporate the Dirichlet boundary conditions in 𝜑(𝝃) =
[(𝜉1)2 − 1∕4][(𝜉2)2 − 1∕4]. Again, we consider 𝑁c = 2,048 collocation
points in the reference domain and train the PINN using both the strong
and weak form for completeness. As the results in terms of the relative
𝐿2-error presented in Fig. 5b confirm, the PINN using the strong form is
indeed able to approximate the FEniCS solution in this simpler setting,
although it is still considerably outperformed by the PINN trained via
the weak form. For a more intuitive interpretation and comparison of
solutions, we plot the results for the fully clamped case in the physical
space in Fig. 6. This confirms the suitability of the PINN using the
strong form in this simpler setting. Nevertheless, the solution is still
notably off from the true solution, which is much better approximated
by the weak form for the same number of training epochs.

The inability of the PINN to approximate the true solution using
the strong form (especially considering the partly clamped hyperbolic
paraboloid) highlights the inherent challenges of training PINNs with a
growing number of terms in the loss function. Although the PINN does
have the capability to represent the solution with the given architecture
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Fig. 7. Comparison of the deformation predicted by the FEM and PINN framework (based on the weak form with 𝑁c = 16,384) for the partly clamped hyperbolic paraboloid
subject to gravity load in the physical space, shown in its deformed configuration. The surface color corresponds to the norm of the rotation fields, |𝜽| = |𝜃1| + |𝜃2|. To highlight
the difference in the underlying methods, we display a coarsened version of the selected FEM mesh and the first 1,024 points of the selected Sobol sequence in the corresponding
plots. Displacements are scaled by a factor of 0.005 for improved visibility.
(as observed using the same architecture trained on the weak form), it
may not be trivial to identify the corresponding parameters with the
standard solvers offered in contemporary machine learning libraries.

While further strategies to alleviate the training have been pro-
posed, e.g., via scaling the different terms of the loss function so that
their gradients are of equal magnitude (Wang et al., 2021) or using
insights from treating PINNs as so-called Neural Tangent Kernels (Wang
et al., 2022), the superiority of the weak form is obvious. Besides
drastically higher converge rates, it is also computationally significantly
less demanding—both in terms of required operations and storage due
to the reduced order of derivatives required. While the training of the
strong form took approx. 70s/epoch, using the weak form drastically
reduced the training time to approx. 3.8s/epoch (4.5s/epoch for 𝑁c =
16,384) on a single Nvidia Quadro RTX 6000. It is for these reasons that
we restrict the remaining studies to the weak form only.

The FEM results and PINN solution based on the weak form (for
𝑁c = 2,048) for the original problem of the partly clamped hyperbolic
paraboloid are compared in Fig. 7 (with more detailed information
on the relative 𝐿2-errors provided in Table B.1). We observe accurate
predictions of the displacement fields throughout the simulation do-
main, which contains non-trivial membrane- and bending-dominated
zones (Hale et al., 2018). This example hence provides a first promising
demonstration of the capabilities of PINNs for non-trivial shell map-
pings. In the following, we continue by analyzing the performance of
PINNs for a different, popular shell map, with special emphasis on the
small-thickness limit.

4.2. Scordelis–Lo roof

In the second case study, we consider the so-called Scordelis–Lo roof
benchmark, which is widely used in classical FEM settings to test nu-
merical shell implementations against (membrane) locking (Ding et al.,
2021; Wallner et al., 2018; Kefal and Oterkus, 2020). The literature on
the underlying reasons and methods to mitigate locking is rich and has
been of interest for decades, so any attempt at summarizing previous
efforts in a few sentences must fall short. We, therefore, refer to the
summary given in Chapelle and Bathe (2011) for in-depth information
and restrict to a high-level explanation. Locking arises when the chosen
function space of an FEM framework is unable to represent the defor-
mation modes of the physical solution. This is especially critical for
small shell thicknesses, as pure membrane or bending states, in this
case, are typically more pronounced and require a sufficient function
8

space to converge to the correct solution. A variety of methods and
improved shell elements have been proposed to mitigate locking in
the FEM setting (see Chapelle and Bathe, 2011 and the references
therein). However, their implementation is generally non-trivial and
may further rely on parameters that must numerically be estimated
for good performance, such as the so-called splitting parameter in Hale
et al. (2018). Mathematically robust shell FEs in any membrane- and
bending-dominated regime are still out of reach (Hale et al., 2018).

In the following, we numerically investigate the performance of
the proposed PINN in a setting where locking is classically observed.
We hypothesize that such degeneracies of classical methods should not
occur in the PINN setting due to the solution space stemming from the
highly nonlinear nature of the multi-layer perceptrons coupled to the
selected nonlinear activation function (GELU).

Following the benchmark proposed in Belytschko et al. (1985) and
scaling it appropriately, we consider the chart 𝝓(𝜉1, 𝜉2) = {𝜉1, 1∕2
sin(𝜉2), 1∕2 cos(𝜉2)} with 𝜉1 ∈ [−1∕2, 1∕2] and 𝜉2 ∈ [−2𝜋∕9, 2𝜋∕9]
(corresponding to a cylinder segment of angle 𝜃0 = 40◦, as indicated
in Fig. 3b, and 𝐿 = 1, 𝑟 = 1∕2), a characteristic thickness of 𝑡∕𝐿 = 0.005
and 𝜈 = 0. The shell is subject to gravity loading, so that again1

𝑊ext = − ∫𝜔 𝑡2�̂�3 d. Furthermore, the two ends of the cylinder are
clamped in �̂�2, �̂�3, i.e., �̂�2 = �̂�3 = 0 for all 𝜉1 = {−1∕2, 1∕2}, so that we
may define the trial function 𝜑(𝝃) = (𝜉1 + 1∕2)(𝜉1 − 1∕2) to account for
the Dirichlet boundary conditions. Note that there is a rigid body mode
associated with �̂�1, which we suppress by fixing the corresponding
degree of freedom for a single node in the FEM setting and by defining
a second trial function 𝜑′(𝝃) = (𝜉1)2 + (𝜉2)2 to multiply �̂�∗1 in the PINN
setting.

To evaluate the performance of an implementation, the vertical
displacement �̂�3 at the midpoint of the free edge is typically compared
to the reference solution �̂�3 = −0.3024 (Belytschko et al., 1985). In
addition, we obtain a reference FEM solution from FEniCS simula-
tions (using partial selective reduced integration to mitigate potential
locking, as proposed in Hale et al. (2018)). Note that in the original
formulation (Belytschko et al., 1985) 𝐸 = 4.32 × 108 and a gravity
load of 𝑓 = 360 per domain area were chosen, and the physical shell
was larger by a factor of 50 so that we must appropriately scale the

1 We here scale the applied gravitational force with 𝑡 to ensure that the
deformation fields do not diverge in the small-thickness limit. Note that, as
before, different force magnitudes simply re-scale the solution fields.



European Journal of Mechanics / A Solids 97 (2023) 104849J.-H. Bastek and D.M. Kochmann
Fig. 8. Comparison of the deformation predicted by the FEM and PINN framework (based on the weak form) for the Scordelis–Lo roof benchmark in the physical space, shown
in the deformation configuration. The surface color corresponds to the norm of the rotation fields, |𝜽| = |𝜃1| + |𝜃2|. Displacements are scaled by a factor of 0.001 for improved
visibility.
Fig. 9. Comparison of the �̂�3-displacement fields predicted by the FEM and PINN framework (based on the weak form) for the Scordelis–Lo roof benchmark in the reference
domain. Displacements are scaled by a factor of 0.001 for consistency with Fig. 8.
displacements to compare them with the PINN solution. The solution
admits a field partly dominated by pure membrane strains and a
boundary layer of pure bending strains, which is why it is selected
as a typical test to check for locking. We trained the PINN using
the weak form for 1,000 epochs with 𝑁𝑐 = 65,536 collocation points.
Results are presented in Figs. 8 and 9 (with additional plots for the
remaining solution fields presented in Fig. B.14). Remarkably, the PINN
is indeed able to approximate the solution fields of the FEM to high
accuracy, with the corresponding 𝐿2-errors presented in Table B.1. Both
FEM and PINN solutions approach the reference value of Belytschko
et al. (1985) closely with �̂�3,FEM = −0.302 and �̂�3,PINN = −0.297 (if
re-scaled consistently). This confirms our hypothesis that PINNs can
indeed overcome some of the intricacies of conventional mesh-based
methods in the context of shell structures.

Let us also address the commonly observed convergence problems
for small shell thicknesses. The different energy contributions in the
weak form, i.e., the membrane, shear, and bending energies, scale
differently with thickness 𝑡. While the former two scale linearly with 𝑡,
the bending energy is proportional to 𝑡3, which drastically increases the
difference in magnitude of these terms for small values of 𝑡, especially
so for a random initialization of the PINN. In the small-thickness limit,
the corresponding condition number of the Hessian of the loss function
with respect to the PINN parameters becomes large, which greatly and
negatively impacts the training convergence due to stiff gradient flow
dynamics (Wang et al., 2021). A numerical study on the convergence
9

behavior of the proposed PINN for different thickness-to-length ratios
is presented in Fig. 10. Training times indeed correlate adversely with
the thickness-to-length ratio and may take up to 10,000 epochs to reach
an acceptable error for extremely thin shells.

A more quantitative assessment of the impact of ill-posed loss
functions on the convergence can be obtained through the lens of the
neural tangent kernel (Wang et al., 2022), which has led to ideas on
how to artificially scale the different contributions in the loss function
to accelerate convergence. While such techniques show promise for
loss terms that represent fundamentally different contributions (such
as the PDE residual and boundary conditions), it is not possible to
leverage such ideas in this setup, since changing the contribution of the
different energies also changes the actual physical setup of the shell. To
further improve the convergence rate in this setting indeed constitutes a
fundamentally different challenge, which is outside of the scope of this
work. Nevertheless, the study of the limitations of PINNs under such
extreme settings deserves further theoretical and numerical studies,
which might also provide a deeper understanding of the performance
and limitations of PINNs in more general settings.

4.3. Hemisphere under concentrated load

In the last case study we consider a fully clamped hemisphere
subject to a vertical load centered at its midpoint. The chart is given
by 𝝓(𝜉1, 𝜉2) = {𝜉1, 𝜉2,

√

1 − (𝜉1)2 − (𝜉2)2} with (𝜉1, 𝜉2) ∈ 𝐷 (𝐷 =
1 1
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Fig. 10. Average relative 𝐿2-error for the trained epochs of the five solution fields as compared to the FEM solution for different characteristic thicknesses of the Scordelis–Lo
roof benchmark. Besides the different ratios of 𝑡∕𝐿, we select the same problem setup and hyperparameters, as described in Section 4.2.
Fig. 11. Comparison of the deformation predicted by the FEM and PINN framework (based on the weak form) for the fully clamped hemisphere subject to a concentrated load
in the physical space, shown in the deformed configuration. The surface color corresponds to the norm of the rotation fields, |𝜽| = |𝜃1|+ |𝜃2|. Displacements are scaled by a factor
of 0.05 for improved visibility.
{𝒌 ∈ R2 ∶ ‖𝒌‖ ≤ 1} denoting the closed unit disk in 2D, and
thus 𝑟 = 1) and we set 𝑡∕𝑟 = 0.05 and 𝜈 = 0.3. As a point load
gives rise to a displacement singularity at the point of application, we
instead approximate it by a Gaussian kernel centered at the midpoint
as 𝑓 (𝝃) = exp[−([𝜉1]2 + [𝜉2])2∕0.1] (so that 𝑊ext = − ∫𝜔 𝑡𝑓 (𝝃)�̂�3 d).
We formalize the clamping by �̂� = 𝟎 and 𝜽 = 𝟎 for all (𝜉1, 𝜉2) ∈ 𝑆1
(with 𝑆1 = {𝒌 ∈ R2 ∶ ‖𝒌‖ = 1} denoting the unit circle). The
clamped boundary conditions are encoded in the trial function 𝜑(𝝃) =
[1 − (𝜉1)2 − (𝜉2)2]∕2. This elliptical geometry is again fundamentally
different from the two previous benchmarks, which were hyperbolic
and parabolic, respectively. We here trained the PINN using the weak
form for 100 epochs with 𝑁𝑐 = 78,400 collocation points transformed to
the unit disk by the low distortion map proposed in Shirley and Chiu
(1997).

Results are presented in Figs. 11 and 12, with additional plots
for the remaining solution fields available in Fig. B.15. Again, the
solution obtained with the PINN compares well to the FEM solution;
the 𝐿2-errors are summarized in Table B.1, indicating a high degree of
agreement.
10
4.4. Discussion

The three benchmarks outlined above indicate a level of robustness
of PINNs for solving variational problems on manifolds, as the PINNs
perform well regardless of the given chart and corresponding curvature
as well as for different reference domains, boundary, and loading con-
ditions. Using the weak form has clear advantages over the strong form
and generally leads to a good agreement between PINN predictions and
FEM-based results. While PINNs may not (yet) compete with traditional
solvers in terms of computational efficiency in the small-thickness limit,
it is worth highlighting that—unlike standard FEM frameworks, which
typically require drastic mesh refinement to converge—fairly simple
PINN architectures provide a sufficiently expressive function space that
can accurately represent the true solution fields in the small-thickness
limit. Though the increase in required training epochs is, in terms of
computational expenses, in some sense comparable to mesh refinement,
the underlying reason for this behavior is a fundamentally different
one (viz. the optimization algorithm) and deserves further study. Also,
note that the presented (shearable) Naghdi shell formulation is typically
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Fig. 12. Comparison of the predicted �̂�1-displacement field of the FEM and PINN framework (based on the weak form) for the fully clamped hemisphere subject to a concentrated
load in the reference domain, shown in the deformed configuration. Displacements are scaled by a factor of 0.05 for consistency with Fig. 11.
applied to rather thick shells, as we can otherwise neglect the shear
contributions and consider a more suitable, simpler (unshearable) shell
theory. While the different thickness scaling between the membrane
and bending energies and the resulting ill-posed loss function in the
small-thickness limit will remain, such simplified models will likely
facilitate the training to some extent.

5. Conclusion

We have presented a PINN approach to solve for the mechanical
(small-strain) response of arbitrarily shaped shell structures. Using
Naghdi shell theory, the formulation is based on three translational
and two rotational degrees of freedom. Since this theory is defined
on the midsurface manifold of the shell, the PINN must solve the
shell equations in a non-Euclidean domain. Results for three classical
benchmark examples demonstrate that PINNs are indeed capable of
solving the shell equations on arbitrary manifolds and that results
compare well to solutions obtained via FEM.

In agreement with previous studies, considering the strong form
of the equations as the PINN loss leads to poor convergence in cer-
tain settings, mainly due to the increased amount of (competing) loss
terms compared to the weak form, which consistently outperforms
the strong form. Furthermore, we observe worse convergence with
decreasing shell thickness, which we attribute to stronger changes
in the solution fields and, more importantly, the increasingly imbal-
anced loss function. Nevertheless, we demonstrated that PINNs show
potential in representing the physical solution in this small-thickness
limit, for which classical methods are prone to show locking—without
applying numerical adaptations that are usually not straightforward to
implement. On the contrary, implementing the shell equations in the
PINN setting is comparably elegant and simple, and it does not require
any adjustments to successfully predict solutions in the small-thickness
setting, as demonstrated by successfully passing the Scordelis–Lo roof
benchmark. One can therefore exploit PINN-based methods such as
the one presented here to serve as a sanity check for FEM to ensure
locking-free behavior.

It would be of interest to further study the convergence behavior of
PINNs in the small-thickness limit towards an improved understanding
of the challenges of training PINNs in a general sense. Besides, fur-
ther improvements to reduce the computational efforts are necessary
to make PINNs competitive with well-established FEM techniques.
Lastly, their straightforward extension to inverse problems or topol-
ogy optimization is promising, as the computational efficiency may
quickly surpass the FEM setting and automatic differentiation provides
analytical sensitivities for free.
11
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Appendix A. Derivation of the strain measures

We here provide the mathematical steps required in the derivation
of the Green–Lagrange strain tensor components. Starting from (14),
i.e.,

𝐸𝑖𝑗 =
1
2
(

𝒈𝑖𝑼 ,𝑗 + 𝒈𝑗𝑼 ,𝑖
)

, (A.1)

we compute the above derivatives as (omitting the dependency on 𝜉𝑖

for conciseness)

𝜕𝑼
𝜕𝜉𝛼

= 𝜕𝒖
𝜕𝜉𝛼

+ 𝜉3
𝜕(𝜃𝜆𝒂 𝜆)
𝜕𝜉𝛼

. (A.2)

Note that these partial derivatives are taken along a curve on the shell’s
midsurface with changing base vectors. Therefore, the evaluation of the
above derivatives leads to

𝜕𝒖
𝜕𝜉𝛼

=
𝜕(𝑢𝜆𝒂 𝜆 + 𝑢3𝒂 3)

𝜕𝜉𝛼
= 𝑢𝜆|𝛼𝒂 𝜆 + 𝑏𝜆𝛼𝑢𝜆𝒂3 + 𝑢3,𝜆𝒂 3 − 𝑢3𝑏𝜆𝛼𝒂 𝜆,

𝜕(𝜃𝜆𝒂 𝜆)
𝜕𝜉𝛼

= 𝜃𝜆|𝛼𝒂 𝜆 + 𝑏𝜆𝛼𝜃𝜆𝒂3,
(A.3)

and
𝜕𝑼 = 𝜃𝜆𝒂 𝜆. (A.4)

𝜕𝜉3

https://github.com/jhbastek/PhysicsInformedShellStructures
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Fig. B.13. Comparison of the �̂�1 , �̂�2 , 𝜃1 , 𝜃2-solution fields predicted by the FEM and PINN framework (based on the weak form with 𝑁c = 16,384) for the partly clamped hyperbolic
paraboloid subject to gravity load in the reference domain. Displacements are scaled by a factor of 0.005 for consistency with Fig. 7.
If we further replace the 3D basis vectors 𝒈𝑖 in (A.1) by (9), we find the
Green–Lagrange strain tensor components as

𝐸𝛼𝛽 = 1
2
(𝑢𝛼|𝛽 + 𝑢𝛽|𝛼) − 𝑏𝛼𝛽𝑢3

+ 𝜉3
[

1
2

(

𝜃𝛼|𝛽 + 𝜃𝛽|𝛼 − 𝑏𝜆𝛽𝑢𝜆|𝛼 − 𝑏𝜆𝛼𝑢𝜆|𝛽

)

+ 𝑐𝛼𝛽𝑢3

]

+ (𝜉3)2
[

1
2

(

𝑏𝜆𝛽𝜃𝜆|𝛼 + 𝑏𝜆𝛼𝜃𝜆|𝛽

)

]

, (A.5)

𝐸 = 1 (𝜃 + 𝑢 + 𝑏𝜆𝑢 ), (A.6)
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𝛼3 2 𝛼 3,𝛼 𝛼 𝜆
𝐸33 = 0. (A.7)

Appendix B. Solution details for the presented benchmarks

In this section, we summarize the solution fields not shown in the
main article for all three benchmarks along with the 𝐿2-errors for each
case and solution field.

B.1. Solution fields for the partly clamped hyperbolic paraboloid

See Fig. B.13.
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Fig. B.14. Comparison of the �̂�1 , �̂�2 , 𝜃1 , 𝜃2-solution fields predicted by the FEM and PINN framework (based on the weak form) for the Scordelis–Lo roof benchmark in the reference
domain. Displacements are scaled by a factor of 0.001 for consistency with Fig. 8.
B.2. Solution fields for the Scordelis–Lo roof

See Fig. B.14.

B.3. Solution fields for the fully clamped hemisphere

See Fig. B.15. Note that we observed artifacts in the 𝜃1,2 solution
fields close to the boundary in the FEM solution, which is due to mesh
irregularities, as quantitatively shown for 𝜃1 in Fig. B.16. Further stud-
ies showed that this effect persists even with increased mesh resolution
13
and is indeed an inherent consequence of the mesh partition. While a
fully regular mesh might mitigate this effect, this is only attainable for
regular geometries and highlights another advantage of the mesh-free
PINN.

B.4. Errors of the three reported benchmarks

See Table B.1.
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Fig. B.15. Comparison of the �̂�2 , �̂�3 , 𝜃1 , 𝜃2-solution fields predicted by the FEM and PINN framework (based on the weak form) for the fully clamped hemisphere subject to a
concentrated load in the reference domain. Displacements are scaled by a factor of 0.05 for consistency with Fig. 11. ∗We only consider a radius up to 0.96, as otherwise artifacts
from the FEM mesh dominate the error plots, see also Fig. B.16.
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Fig. B.16. Unphysical artifacts in the 𝜃1 solution field of the FEM framework due to
non-uniform meshing.

Table B.1
Relative 𝐿2-error of the PINN solution fields based on the weak
form, compared to the FEM solutions for the three considered
case studies (including in parentheses in (a) the errors for the
increased collocation point sampling with 𝑁c = 16,384).
(a) Hyperbolic paraboloid

�̂�1 0.107 (0.0139)
�̂�2 0.104 (0.017)
�̂�3 0.0502 (0.00833)
𝜃1 0.0426 (0.00759)
𝜃2 0.0652 (0.0125)

(b) Scordelis–Lo roof

�̂�1 0.0417
�̂�2 0.0362
�̂�3 0.0353
𝜃1 0.0353
𝜃2 0.0372

(c) Hemisphere

�̂�1 0.0287
�̂�2 0.0274
�̂�3 0.00648
𝜃1 0.0329
𝜃2 0.0277
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