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Abstract:  10 

Alkylpalladium complexes are important intermediates in several industrially relevant catalytic reactions 
such as the Mizoroki–Heck, alkyl C–H activation and ethylene polymerisation. β-elimination - of either a 
hydride (β-Η) or a heteroatom (β-Χ) - is the most common decomposition pathway for these intermediates; 
this can either lead to the desired reaction as in the Mizoroki–Heck reaction, or it can hinder reaction 
progress as in ethylene/vinyl halide co-polymerisations. Despite the importance of these elimination 15 
processes, little mechanistic understanding exists with respect to the factors that control them. Here, we 
present a systematic investigation of the factors governing the competition between β-Η and β-Χ in 
catalytically relevant alkylpalladium complexes. These results enabled us to derive selection rules which 
dictate ligand choice to control selectivity for either elimination. This knowledge may allow chemists to 
manipulate β-eliminations in the design of chemoselective catalytic reactions for a wide range of 20 
applications. 

Main Text:  

The discovery and study of organometallic species have spurred the development of synthetic methods 
that have had a transformative impact on society, from the preparation of essential medicines to modern 

materials.1,2 A broad family of essential catalytic reactions, including Ziegler–Natta polymerisation, 25 

Mizoroki–Heck cross coupling, and alkyl C–H activation rely on transition metal-alkyl intermediates.3 These 
complexes are notably unstable, as they are prone to decompose through rapid β-elimination reactions of 

either a hydride (β-Η) or a heteroatom (β-Χ), generating an alkene and a M–H or M–X bond, respectively.3 

Depending on the desired synthetic outcome, these eliminations need to be either prevented or promoted, 
which makes understanding and predicting this behavior essential to the design of catalytic reactions, since 30 
they lead to chemically distinct products. 

Beta-hydride elimination (β-Η) is the main decomposition pathway for transition metal-alkyl complexes, 

often hindering their use in cross-coupling reactions (Fig. 1a). 1,3,4
 It is also an integral part of catalytic 

cycles for many important reactions, including the Mizoroki–Heck reaction, which has been used in the 

synthesis of highly complex and clinically important molecules such as cethromycin (Fig. 1a).5–8 As such, 35 

it has been studied extensively, with many metals and organic substrates being examined.3,9 Beta-

heteroatom elimination (β-X) is related to β-H, is similarly ubiquitous, but generally less studied and 
understood. It is also a transition metal-alkyl decomposition pathway, with important implications in polymer 
chemistry, where it inhibits the co-polymerisation of ethylene and vinyl halides or vinyl ethers and their 

derivatives (Fig. 1a).10–12 Many examples of stoichiometric β-X eliminations have been reported, involving 40 

metals such as Ni, Pd, Co, Rh and others.13–19 This fundamental step has also been exploited in catalysis. 

Examples include Mizoroki–Heck-type reactions (Fig. 1a) and asymmetric catalysis by Paioti et al., as well 
as the work of Tran et al. which shows a wide variety of X groups being eliminated in a synthetically relevant 

context (Fig. 1b).7,20–23  

As both β-elimination reactions proceed through metal-alkyl complexes, they will often be in direct 45 
competition, leading to chemically distinct alkene products; such competitions have thus far been optimised 

empirically and have been comprehensively reviewed by Le Bras and Muzart.24 Despite this inherent 
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competition in most systems, the ubiquity of both β-elimination reactions, and the potential for controlling 
reactivity to produce chemodivergent outcomes, there is a paucity of systematic studies examining the 
factors controlling their competition. Such studies would ideally reveal general mechanistic trends, offer in-
depth understanding and predictive power for reaction design. To the best of our knowledge, only two 

examples studying such competitions exist, by Zhu and Zhang et al. respectively (Fig. 1b).25,26 These 5 

studies are limited to a narrow set of parameters (few X groups, no added ligands) and offer no general 
guidelines for reaction control. A thorough investigation of the β-Η/β-Χ competition would provide 
fundamental understanding and insight into how to control it, thereby increasing chemists’ ability to design 
chemoselective catalytic reactions. Such findings would have wide impact, since transition metal-alkyl 
intermediates are of increasing importance, as saturated species are critical in the development of both 10 

materials science and medicinal chemistry.27–29  

We report mechanistic investigations into the β-Χ/β-Η competition in phosphine-ligated palladium-alkyl 
complexes. We were able to understand the origin of the observed selectivity and to derive selection rules 
for diverting the intermediates selectively down either pathway. Such information may aid chemists in 
manipulating β-eliminations in the design of chemoselective catalytic transformations. 15 

For our investigation we selected Pd as the metal of interest and monophosphines as the ligands, given 
that this combination represents one of the most used classes of catalyst in synthetically important reactions 

such as the Suzuki–Miyaura, Mizoroki–Heck, Negishi, Tsuji–Trost and Kumada–Corriu.30 As transition 

metal-alkyl complexes are quite unstable, we generated them in situ through oxidative addition of benzyl 
bromides, which bear the X group of interest at the homobenzylic position (Fig. 1c).  20 

We prepared several substrates bearing various synthetically relevant X groups; these include halides, 
phosphate, sulfonate and carboxylate esters (Fig. 2a). To gain insight on the kinetics of the competition, 
we monitored reaction progress over time using 1H NMR. The organic products of the reactions serve as 
convenient reporters for the reaction selectivity. We initiated our studies using Pd(PtBu3)2 as the model Pd 
source, as it is a well-defined, highly reactive, and commercially available complex, which has been used 25 

as a catalyst in numerous transformations.31 Upon reaction with our substrates it gave rise to fast oxidative 

addition, followed by β-H and/or β-Χ elimination, all at room temperature. 

The experimentally obtained selectivity was plotted against the aqueous pKa of the conjugate acid (pKaH) 

of the X group being examined, in analogy to classic physical organic chemistry analyses (Fig. 2b).32 The 

y axis is a scale which represents the selectivity of the reaction; 1 represents complete β-Χ selectivity, -1 30 
complete β-Η selectivity, and 0 a 1:1 mixture of the two products (see SI section S3.1). The obtained graph 
shows a sigmoidal relationship between the two variables, with the function crossing the x axis at a pKaH of 
approximately -2 (Fig. 2b). The data was fit with a logistical regression function and the confidence intervals 
for both fit (dark grey) and prediction (light grey) are shown (see SI section S3.3). Based on the observed 
relationship between pKaH and selectivity, we conclude that Pd-assisted β-Χ eliminations are promoted by 35 
better leaving groups (see SI section S3.2 and S4.3). Next, we examined the case of fluoride (pKaH ~ 3) 
elimination, as it is a synthetically important example,33–35 since β-F elimination is common in methods 
involving β-X21,23,36,37 and is difficult to circumvent.38 Our model predicts a ratio of 45:1 favouring β-Η; 
indeed, an experimental ratio of >50:1 in favour of β-Η was obtained, illustrating the predictive capability of 
the selectivity/pKaH relationship (Fig. 2c). This represents a rare example of β-H being preferred over β-F 40 
and is line with early computational studies which suggested this could be the case. 38–40 

Having validated our approach and observed a clear trend for a commonly used phosphine-Pd system, we 
next sought to probe whether the nature of the ligand could influence the overall selectivity of the process, 

as is the case for many other reactions involving Pd.41,42 Next, we focused on the most common 

combination of Pd and phosphine in the literature, namely Pd/PPh3.43 As with Pd(PtBu3)2, the relationship 45 
between selectivity and pKaH of X displayed a sigmoidal relationship, with the same equation describing the 
function of best fit (Fig. 2d), further validating our previous findings. The data show that the choice of 
phosphine strongly affects the preference of Pd-assisted β-Χ eliminations, with a difference of nearly 7 units 
in the pKaH of X that results in 1:1 competition. Interestingly, despite the preference of PPh3 to favour β-Χ, 
the overall trend remains similar and a clear correlation with the pKaH of the leaving X group is still observed.  50 

To understand the origin of the strong ligand effect, we decided to systematically probe the role of the 
phosphine ligand on the reaction. Since PPh3 and PtBu3 differ in both steric and electronic properties, we 
decided to first interrogate the effect of varying the electronic properties, as this is easily achieved without 
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affecting steric parameters by using various para-substituted triarylphosphines. We selected the substrate 
with X = OAc as the model substrate for these studies, since it displayed competition near 1:1 in our studies 
with PPh3.  

We reacted the chosen substrate with isolated homoleptic Pd(0) complexes ligated with para-substituted 
triarylphosphines bearing electron-withdrawing (Cl) and electron-donating (OMe, NMe2) groups (Fig. 3a). 5 

By plotting the obtained selectivity against the Tolman electronic parameter (TEP) for each ligand, 44,45 we 

observe that β-Χ is promoted by more electron rich ligands. 

Despite having very similar electronic character (TEP 2054 cm-1 and 2056 cm-1 respectively), P(p–NMe2–
C6H4)3 and PtBu3 lead to opposite outcomes, suggesting an overriding influence of steric effects (Fig. 3b). 
It is known that Pd(PtBu3)2 forms monophosphine T-shaped Pd-aryl complexes after oxidative addition, as 10 

a result of the large steric demand of the PtBu3 ligand.46–49 In contrast, the less sterically demanding aryl 

phosphine Pd(0) complexes are known to generally form diphosphine square planar Pd(II) complexes after 

oxidative addition of aryl or benzyl electrophiles.50 We hypothesised that this sterically controlled change 

in ligation state of the reactive intermediate could be the reason for the observed discrepancy. To 
experimentally confirm that the speciation change also occurs with benzyl electrophiles, we reacted 15 
Pd(PtBu3)2 with excess BnBr and characterised the product of the reaction by 31P{1H} NMR and single 
crystal X-ray diffraction, confirming the presence of only one phosphine (Fig. 3b; see SI sections S2.2 and 
S6). We also performed in situ variable temperature NMR experiments, which showed the continued 
presence of PtBu3 during the course of the reaction, providing additional evidence supporting the 
monophosphine intermediate hypothesis (see SI section S5.6).  20 

To further examine our hypothesis about the effect of the intermediate’s ligation state on β-Χ/β-Η selectivity, 
we selected another trialkyl phosphine with a similar TEP to PtBu3 in order to evaluate its reactivity. In 
contrast to PtBu3, PCy3 has been shown to form diphosphine ligated complexes and has the appropriate 

electronic profile (TEP 2056 cm-1, Fig. 3b).51–53 If the hypothesis holds, reaction of a substrate that displays 

β-Χ/β-Η competition with PtBu3 should give exclusive β-Χ with PCy3. Reacting the appropriate substrate (X 25 
= OMs) with both Pd(PtBu3)2 and Pd(PCy3)2, we obtained β-Χ/β-Η competition and exclusive β-Χ products 
respectively, in line with the ligation state hypothesis (Fig. 3c). This is further corroborated by reaction with 
the substrate with X = OCOAr (Ar = p–NO2–C6H4), where Pd(PtBu3)2 gives rise to exclusive β-Η and 
Pd(PCy3)2 to exclusive β-Χ. It should be noted that the ligation state of transition metal-phosphine species 
has been recently shown to have a strong influence on reactivity by Newman-Stonebreaker et al, further 30 

supporting our hypothesis.54 

To rationalise the striking difference in elimination preference, we undertook experiments using 
stereochemical probes to investigate the stereochemical requirements of β-X (see SI section S5.5). By 
using the two diastereomers of 1,2-dibromopropylbenzene, we were able to deduce that both syn- and anti-
eliminations are permissible pathways for β-Χ, the latter being preferred; these findings agree with the 35 

results reported by others.20,55 

Based on the above evidence, we propose that sterically demanding ligands promote the formation of three-
coordinate T-shaped intermediates, which accelerate the stereospecific syn-β-Η elimination by virtue of 
their vacant coordination site. This acceleration of the β-Η elimination has been suggested before as a 
reason for the inherent challenge of using large ligands (which promote reductive elimination) in alkyl-alkyl 40 
cross-couplings.56 This is further supported by the fact that in order to suppress β-Η elimination, 
multidentate ligands are often employed and that tetracoordinate complexes are found to require 
dissociation of one ligand prior to β-Η.57,58 The relative preference for β-Χ is not altered by the vacant 
coordination site, due to both syn- and anti-eliminations being accessible. This leads to a relative increase 
in β-H, allowing selective β-Η in the presence of Χ groups that are eliminated in reactions where 45 
diphosphine intermediates are at play (e.g. X = F). 

Overall, these investigations have led us to derive some selection rules for the β-Χ/β-Η competition (Fig 
3d). Electron-rich ligands promote β-Χ, possibly due to an increased electron density which can be donated 
into the C–X σ*. Ligands that are small enough to permit the formation of diphosphine-Pd(II) intermediates 
also promote β-Χ relative to β-Η. Conversely, electron-poor ligands promote β-Η relative to β-Χ, as do large 50 
ligands which promote the formation of monophosphine-Pd(II) intermediates. 
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In summary, by studying the stoichiometric reactivity of Pd complexes bearing monodentate phosphine 
ligands, we have uncovered the factors governing the competition between β-Χ and β-Η. The first 
observation we made was that the ability to perform β-Χ is contingent on the leaving group ability of the X 
group; lower pKaH of X enables β-Χ. More electron-rich ligands promote β-Χ, while β-Η is promoted by more 
electron-poor ligands, though the influence of electronic effects is much smaller than that of steric effects. 5 
The size of the ligand influences the reaction by controlling the ligation state of the intermediate. A 
monophosphine and a diphosphine pathway operate; the former is promoted by large ligands and strongly 
favours β-Η due to the presence of a free coordination site on Pd. This allows selective β-Η elimination in 
the presence of X groups with a pKaH > 0 at room temperature. The diphosphine pathway is favoured by 
smaller ligands and appears to preferentially eliminate X groups with an approximate pKaH < 6 at room 10 
temperature. 

We believe that this work will serve as a roadmap for further study of this competition and for guiding 
catalyst selection for the development of new methods incorporating β-Χ and β-Η elementary steps. Further 
investigations into the role of Lewis acids, salt additives, bases, the choice of metal, the denticity and class 
of ligand and other factors are still necessary to fully appreciate the opportunities available for control over 15 
the selectivity. 

Methods:  

Intramolecular Competition Reactions. The appropriate Pd(0) complex (1.0 eq.) and HMDSO (internal 
standard, varying amount) was dissolved in THF-d8 (0.4 mL) on a Schlenk-line using an NMR tube adapter. 
The appropriate benzyl bromide (1.0 eq.), which was previously dried on the Schlenk-line using vacuum/N2 20 
cycles, was then also dissolved in THF-d8 (0.3 mL) and transferred to the NMR tube using a syringe and 
metal needle. For reactions using Pd(PtBu3)2, an 1H NMR spectrum of the sample was then measured 
within 10 minutes (time elapsed from addition of the electrophile solution to end of acquisition of the 
spectrum) from the start of the reaction. The reaction was then periodically monitored by 1H NMR over time 
to collect kinetic information about the reaction. 25 

Selectivity Expression and Regression Function. For our analyses, we decided to employ the following 
function to express the obtained ratios of β-hydride (β-H) and β-heteroatom (β-X) products as a single 
value: 

𝑓 (
[β𝐻]

[β𝑋]
) = 1 −

[β𝐻]

[β𝑋]
   𝑓𝑜𝑟   

[β𝑋]

[β𝐻]
≥ 1   𝒐𝒓   𝑓 (

[𝛽𝐻]

[𝛽𝑋]
) =

[β𝑋]

[β𝐻]
− 1   𝑓𝑜𝑟   

[β𝑋]

[β𝐻]
 

This expression ensures a continuous function without asymptotes (e.g. expressing the selectivity as a ratio 30 
leads to infinity when one of the two products is not detected) which also provides intuitive bounds. A value 
of 1 represents complete β-X selectivity, -1 represents complete β-H selectivity and 0 represents a 1:1 
mixture of β-H and β-X products. 

For building the model which allows for prediction of new values, we employed a Gompertz equation of the 
form: 35 

𝑓(𝑝𝐾𝑎𝐻)  =  𝐴 𝑒(− 𝑒(𝐵 − 𝐶 𝑝𝐾𝑎𝐻))  +  𝐷 

The following references are relevant to the methods employed in this paper and have been discussed in 
the supplementary information. 59–86 

Data Availability:  

The experimental data as well as the characterization data for all the compounds prepared during these 40 
studies are provided in the Supplementary Information. Crystallographic data are available from 
the Cambridge Crystallographic Data Centre with the following codes: CCDC 2150620 and CCDC 
2150621. Copies of the data can be obtained free of charge via 
https://www.ccdc.cam.ac.uk/structures/.  

Code Availability:  45 

All code and raw data files are available on Zenodo at 10.5281/zenodo.6617212.  
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Figure Legends/Captions:  

Fig. 1. Background and description of current work. (a) The importance of both β-H and β-X in enabling transition-metal catalysed reactions, illustrated 15 
by the synthesis of the natural product cethromycin and the functionalisation of carbohydrate derivatives. (b) Some challenges posed by β-eliminations 
in cross-coupling of alkyl electrophiles and in the copolymerisation of vinyl halides with ethylene, where they lead to off-cycle species and polymerisation-
inactive complexes respectively. (c) Relevant previous work involving catalytic Pd-assisted β-X elimination (Tran et. al) and their competition with β-H 
elimination in stoichiometric reactions (Zhang et al.). (d) The work described here, assessing the relative preference for β-X or β-Η elimination reactions 
in Pd-alkyl monodentate phosphine complexes, which leads to the derivation of selection rules for achieving chemoselectivity for either elimination.  20 

Fig. 2. Investigation of the influence of X group. (a) Reactions carried out to assess the effect of X group identity in the β-X vs. β-Η competition 
experiments, with X groups used outlined. (b) Selectivity vs. the aqueous pKa of the conjugate acid of the X group (pKaH) for reactions which utilise 
Pd(PtBu3)2. Selectivity ranges from 1 (exclusive β-X) to -1 (exclusive β-H) and 0 represents no selectivity i.e. a ratio of 1:1 β-Χ and β-Η organic products. 
The colour of the datapoints indicates whether β-H (green) or β-X (purple) is preferred. This graph depicts kinetic selectivities. The line represents a fitted 
parametric Gompertz equation. The darker grey shading represents the 1σ confidence interval of fit and the lighter grey the 1σ prediction interval; they 25 
are depicted with the shown bounds as beyond these the model predicts exclusive selectivity for either β-H (-1) or β-Χ (1). The data labels specify which 
X group the data point corresponds to. (c) Predicted and experimental values for the selectivity in the reaction with the fluorine bearing substrate and 
Pd(PtBu3)2, using the model depicted in the graph in (b). (d) Selectivity against pKaH of the X group for Pd(PPh3)3; details for the graph are the same as 
(b). 

Fig. 3. Effect of phosphine ligand choice on reaction outcome. (a) Examination of the role of ligand electronic effects on the β-Χ and β-Η competition, 30 
using the acetate bearing substrate as a model. The graph depicts the selectivity (defined as in Fig. 2b) plotted against the Tolman electronic parameter 
(TEP) of the tested phosphines. (b) Divergent reactivity of two phosphines with similar TEP values. The monophosphine-Pd product of oxidative addition 
of BnBr with Pd(PtBu3)2 was characterized by XRD and is shown; thermal ellipsoids are shown at 50% probability and hydrogen atoms are omitted for 
clarity. Some examples are provided showing that aryl phosphines form diphopshine-benzyl-Pd complexes and PCy3 forms diphosphine-Pd complexes 
and has TEP similar to PtBu3. (c) Experiments comparing the reaction of different substrates with Pd complexes with Pd(PtBu3)2 and Pd(PCy3)2, which 35 
form T-shaped monophosphine-Pd and square planar diphosphine-Pd intermediates respectively, while having similar electronic profiles. (d) Short 
summary of the derived selection rules from our investigations. Phosphine ligands which are very sterically demanding enforce the formation of a T-
shaped monophosphine-Pd intermediate and so promote β-Η, as do electron-poor ligands. Conversely, electron-rich ligands can more effectively donate 
into the C-X σ* orbital and so promote β-X. Smaller ligands which form square planar diphosphine-Pd intermediate also promote β-X relative to β-H due 
to the lack of a vacant coordination site which is required for β-H. 40 
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