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1 Introduction

High-energy scattering among longitudinally polarized electroweak vector bosons (WL)

is obviously the most direct probe of the dynamics of electroweak symmetry breaking

(EWSB) ([1–10]; “Vector boson scattering at high mass” in [11]). If a light Higgs boson

(H) exists, then processes involving H, along with WL, are similarly important [12]. Un-

fortunately W beams are not available, and so we cannot, strictly speaking, directly study

their collisions. However that should not be a problem of principle, as we know very well

that, because of initial state radiation, the quanta that probe short distance physics in

high energy collisions are all eminently virtual. So, for instance, even though quarks and

gluons do not even exist as asymptotic states, we can still study their short distance inter-

actions via the parton model, or, more formally, thanks to factorization theorems. With

the intuition offered by the parton model, it is then natural to expect that at sufficiently

high energy, much above the W mass m, and with a proper selection of the kinematics

of the final states, one should also be able to effectively test the collisions of W bosons.

Considering the prototypical reaction qq → q′q′WW one would expect that to be the case

in the regime where the transverse momentum PW⊥ of the W ’s is much larger than that of

the final state fermions p⊥, that is where the latter are forwardly emitted. In that regime

it seems intuitively obvious that the class of diagrams shown in figure 1a will dominate

over all others, like for instance figure 1b, because the low virtuality V1 and V2 of the

intermediate W , which characterizes the forward emission, parametrically enhances their
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Figure 1. Diagrammatic contributions to the qq → q′q′WW process. On the left, the scattering

topology. On the right, one representative “radiation” diagram.

propagators. Furthermore, in first approximation one expects to be able to neglect V1,2 in

the hard WW → WW subamplitude and to replace it with that for equivalent on-shell

quanta. The differential cross section would then nicely factorize into a term describing

q → q′W splitting, which is controlled by known interactions, times the hard WW →WW

scattering which is where new phenomena may well appear. This idea, inspired by the

equivalent photon method [13–15], is known as the effective W approximation (EWA) [16–

24] and was largely employed in the 80’s to simplify and speed up the computations of

processes involving WW → X. However, the conceptual validity of EWA was questioned

by various authors, both in the early days and also more recently [25–27]. It is only in the

case of a heavy Higgs, with strongly-coupled EWSB, that the issue has been set firmly, in

favor of the validity of EWA (and factorization), in a very nice paper by Kunszt and Soper

(KS) [28] in the late ’80’s. Later, the advent of powerful packages that allow to reliably and

easily compute the exact cross section [29–35], including also radiative corrections [36, 37],

has seemingly made EWA obsolete. Indeed, one often heard remark is that there is no way

to single out diagrams with the scattering topology of figure 1a, and that all diagrams are

equally important. We find that viewpoint disturbing for at least two reasons. On one

side because it seems to entail that factorization fails for massive vector particles. On the

other, because it suggests that it simply does not make sense, even in an ideal experimental

situation, to extract in a model independent way the on-shell 〈WWWW 〉 correlator from

experimental data: the interesting physics of WW scattering would always be mixed up

in an intricate way with SM effects. We thus believe that studying the conditions for the

applicability of EWA is important, and timely as well. Obviously the goal is not to find

a fast and clever way to do computations. One should view EWA as a selection tool that

allows to identify the relevant kinematic region of the complete process, the one which is

more sensitive to the EWSB dynamics. One would want to focus on the kinematics where

EWA applies not to speed up the computations, but to gain sensitivity to the relevant

physics.

In this paper we shall analyze in detail the applicability of EWA. We will find, not

surprisingly, that, in the proper kinematic regime, factorization is valid and EWA works
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egregiously. In order to prove that, we shall not need to focus, as KS did, on the case of

a heavy Higgs or a strongly interacting EWSB sector, actually we shall not even need to

restrict on the specific sub-process WW →WW . Factorization indeed does not rely in any

way on the detailed nature of the hard sub-process. It relies instead on the existence of a

large separation of virtuality scales between the sub-process and the collinear W emission.

That only depends on kinematics and corresponds to requiring forward energetic jets and

hard high P⊥ outgoing W ’s. When those conditions are imposed EWA works well, for both

longitudinally and transversely polarized W ’s, also including the case of weakly-coupled

EWSB (light and elementary Higgs) where all helicities interact with the same strength

∼ gW at all energies.

One serious issue in the applicability of EWA is the size of the subleading corrections.

In practice one would like to know how well it can be applied at the LHC with 14 TeV in

the center of mass. A detailed quantitative answer to this question is beyond the scope

of the present paper, we shall content ourselves with deducing a parametric estimate of

the corrections. Our result is that typically the corrections scale quadratically with the

inverse of the hardness H of the WW collision, and can be estimated as ∼ m2/H2 and

p2
⊥/H

2.1 We will give a numerical confirmation of this scaling, finding however a typically

large numerical prefactor that enhances the corrections.

The paper is organized as follows. In section 2.1 we will introduce the EWA formula,

discuss the basic physical reasons for its validity and state our results concerning the scaling

of the corrections. In section 2.2 we will confirm these results in two examples, the processes

qW− → q′W+W− and qq → q′q′W+W−, by comparing explicitly the exact cross section

with its EWA approximation. Section 3 contains our analytical derivations, and constitutes

the main part of the paper. In section 3.1 we introduce the technical tools that are needed

in our derivation; in section 3.2 we compute the amplitude for the “soft” q → q′W splitting

and, finally, in section 3.3 we derive the EWA formula. We discuss the parametric estimate

of the corrections in section 3.4, while section 3.5 illustrates some aspects of our derivation

in the case of the WW →WW sub-process. Finally, we report our conclusions in section 4.

2 Basic picture and explicit checks

While the general derivation of the EWA, which we will present in section 3, is rather

technical, the basic picture that underlies its validity is instead very simple and intuitive.

In the present section we will first of all illustrate this picture and afterwards we will check

the approximation explicitly in the relevant example of WW →WW scattering in the SM

with a light Higgs. By the numerical comparison among the exact and the EWA cross

sections we will also establish the scaling of the corrections to the approximation, a scaling

which we will deduce analytically and cross-check in section 3.

2.1 Basic picture

Let us consider a generic scattering process, of the type q X → q′ Y , in which a massless

quark (or a lepton) q scatters on an unspecified initial particle X, gets converted into a

1Parametric enhancements are possible but only in very peculiar situations, as we shall discuss.
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X
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)
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(
EX , ~0, −E

)
Pq′ =

(√
(1− x)2E2 + p2

⊥, ~p⊥, E(1− x)
)

~p⊥ = {p⊥ cosφ, p⊥ sinφ}

Figure 2. Pictorial representation of the qX → q′Y process, which defines our parametrization of

the quark momenta Pq and Pq′ in the center of mass frame. The momentum fraction x is taken to

be in the (0, 1) interval and far enough from the extremes in order for the first condition in eq. (2.2)

to be satisfied.

second quark q′ possibly of different charge and produces an unspecified final state Y . The

processes we are interested in are the “weak” ones, in which the only relevant interaction

of the quarks is provided by the standard minimal weak coupling with the W bosons. To

simplify the discussion we ignore the QCD interactions and set to zero the hypercharge

coupling g′. In practice, we assume that the only relevant quark vertex is given by

Lq =
g

2
qLσ

aγµqLW
a
µ . (2.1)

We see no obstruction to include hypercharge vertices and we do not expect any qualitative

change in the conclusions.

Apart from the minimality of the quark’s interaction in eq. (2.1), which however is very

well motivated experimentally and therefore does not constitute a limitation,2 we will not

need any other assumption on the theory that governs the dynamics of the weak bosons.

Given that we aim, as explained in the Introduction, to use EWA as a tool for probing

the presently unknown EWSB sector, it is important to stress (and to prove, as we will do

in section 3) that the validity of EWA does not rely on any assumption on EWSB. The

sector responsible for the W interactions is generic and, given the typical energy E of the

scattering process, can be depicted as a set of particles with mass below or around E that

interact through a set of couplings ci, possibly originating by integrating out states that

are much heavier than E. For example, suppose that the EWSB sector just consists of

the standard Higgs model. If the Higgs is light (mH . E), the appropriate description

of the W s and Higgs interactions is provided by the linear Higgs Lagrangian, and only

contains renormalizable couplings. If on the contrary the Higgs is heavy (mH � E), the

W interactions are dictated by the non-renormalizable σ-model obtained by integrating it

out; our general analysis will encompass both possibilities.

The essence of EWA is that the complete q X → q′ Y process is equivalent, at high

enough energies and under particular kinematic conditions, to the WX → Y hard sub-

process initiated by an on-shell W boson, convoluted with the splitting function that de-

scribes the collinear emission q → q′W . EWA is a particular example of the general

2In the kinematic regime where EWA applies, the Wqq̄ interaction is probed at a low virtuality where

the possible effect of new physics, parametrized by higher dimension operators, is negligible.
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Figure 3. The topology of the scattering contributions to the qX → q′Y process, the second dia-

gram contains a mixed gauge-goldstone propagator which arises because we work in the axial gauge.

phenomenon of factorization which typically takes place in the limit of highly energetic

and forward splitting. We therefore expect EWA to hold when the energy E of the process

is much larger than the mass m of the W and in the special kinematic regime in which

the quark undergoes, in the center of mass of the collision, a small angular deflection while

losing a sizable fraction of its initial energy. More precisely, in the parametrization of the

momenta defined by figure 2, the regime relevant for EWA is

E ∼ xE ∼ (1− x)E , δm ≡
m

E
� 1 , δ⊥ ≡

p⊥
E
� 1 , (2.2)

where no assumption is made, a priori, on the relative size of p⊥ and m. In that kine-

matic regime, let us consider, among the different diagrams contributing to q X → q′ Y ,

the “scattering” diagrams depicted in figure 3. At the Wq̄′q vertex, on-shell q and q′ are

respectively annihilated and created, together with the creation of an off-shell virtual W

of momentum

K ≡ Pq − Pq′ =

(√
x2E2 + p2

⊥ + m2 − V 2, − ~p⊥, xE
)
, (2.3)

where the virtuality (off-shelness) V is given by

V 2 = m2 − K2 ' m2 +
p⊥

2

1− x

[
1 +O

(p⊥
E

)2
]
. (2.4)

Once emitted, the virtual W enters the WX → Y sub-process, which we assume to be

characterized by a hardness H of order E. The hardness corresponds to the time scale of

the WX → Y sub-process. The virtuality V , instead, sets the time interval ∆T during

which the virtual W is indistinguishable, due the Uncertainty Principle, from an on-shell

physical W . The correction to the W energy due to off-shellness is indeed ∆E ∼ V 2/E,

from which ∆T ∼ E/V 2. Given that V is much smaller than E (V 2/E2 = O(δ2
m + δ2

⊥))

because of eq. (2.2), the time scale 1/E of the WX → Y sub-process is much shorter

than ∆T meaning that it must be possible to regard the W as an on-shell particle during

the hard scattering. The full process must factorize in terms of the on-shell WX → Y

cross section.

Technically, EWA can be stated as follows [16, 17]. Consider the exact cross-section

dσ(qX → q′Y ), integrated over the azimuthal angle φ (see figure 2) of the final quark but
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completely differential in all the other kinematic variables. In the δm,⊥→ 0 limit, according

to EWA the unpolarized cross-section dσ(qX → q′Y ) reduces to

dσEWA(qX → q′Y )

dxdp⊥
=

C2

2π2

{
f+(x, p⊥)× dσ(WQ

+X → Y )

+f−(x, p⊥)× dσ(WQ
−X → Y )

+f0(x, p⊥)× dσ(WQ
0 X → Y )

}
, (2.5)

where each line is associated with the exchange of an equivalent W boson of a different po-

larization r = ±, 0. The three splitting functions f± and f0 describe the collinear emission

of the polarized equivalent W and dσ(WQ
r X → Y ) denotes the totally differential polarized

cross-section of the WQ
r X → Y hard sub-process. In the sub-process the equivalent WQ

r is

treated as a perfectly physical on-shell particle of four-momentum

KW =
(√

x2E2 +m2, ~0, xE
)
. (2.6)

The variable x thus corresponds to the fraction of longitudinal momentum (which approx-

imately coincides with the energy for E � m) carried away by the equivalent W from the

fermionic line. Explicitly, the splitting functions are given by

f+(x, p⊥) =
(1− x)2

x

p3
⊥

(m2(1− x) + p2
⊥)2

,

f−(x, p⊥) =
1

x

p3
⊥

(m2(1− x) + p2
⊥)2

,

f0(x, p⊥) =
(1− x)2

x

2m2p⊥
(m2(1− x) + p2

⊥)2
. (2.7)

The label Q = ±1, 0 appearing in the previous equations denotes the electric charge differ-

ence between q and q′ and obviously corresponds to the charge of the equivalent W emitted

in the splitting. Depending on Q, the coefficient C in eq. (2.5) reads

C =
g

4
for Q = 0 ,

C =
g

2
√

2
for Q = ±1 . (2.8)

For processes initiated by two quarks, or by a quark and an antiquark qiqj → q′iq
′
jX which

both collinearly produce two equivalent W ’s, EWA straightforwardly generalizes to

dσEWA

(
qiqj → q′iq

′
jX
)

dxidxjdp⊥,idp⊥,j
=
∑
r,s

C2
i

2π2

C2
j

2π2
fr(xi, p⊥,i)f−s(xj , p⊥,j)× dσ

(
WQi
r W

Qj
s → X

)
,

(2.9)

where the inversion of the equivalent W polarization in the anti-quark splitting function

follows from CP conjugation.

The derivation of eq. (2.5), which we will describe in section 3, basically consists of a

Laurent series expansion of the exact scattering amplitude in the parameters δ⊥ = p⊥/E
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and δm = m/E, a procedure that will also allow us to establish the scaling of the corrections

to the approximation. We will find that the relative corrections are typically quadratic in

δm and in δ⊥, i.e.

δEWA ' max
[
δ2
m, δ

2
⊥
]
, (2.10)

even though they can be enhanced in some particular condition as we will discuss in

section 3.4. For instance, in the very low-p⊥ region p⊥ � m the error scales in some

cases as δEWA ' (m2/p⊥E)2 and in particular for p⊥ ' m2/E EWA fails even if δm and

δ⊥ are extremely small. We will confirm the above result in the following section, by

computing the corrections explicitly in the case of the WW →WW hard sub-process.

Before moving forward, two important comments are in order. The first is that for the

intuitive derivation of the EWA previously discussed it has been crucial to assume that the

WX → Y sub-process is genuinely hard, with a hardness H ∼ E and that it contains no

other softer scales. This excludes, for instance, the case where the momenta of the final

particles Y become soft, or collinear among each other, with PX or with the virtual W

momentum K. In order to apply EWA all those kinematic configurations must be avoided

by suitable cuts on the Y momenta. In the processes considered in the following section, for

instance, the region of forward WW → WW scattering is soft because it is characterized

by a low value of the t variable and will have to be excluded by a hard cut on the transverse

momentum PW⊥ of the final W ’s. Moreover, given that factorization relies on the hierarchy

among the virtuality of the soft splitting and the hardness H of the sub-process, one might

expect that a numerically more precise estimate of the corrections to the EWA could be

obtained by comparing p⊥ and m with H instead of E, i.e. by redefining δm = m/H and

δ⊥ = p⊥/H. We will verify this expectation in the following section, where H = PW⊥ .

The second comment is that the intuitive argument in favor of the EWA implicitly

relied on a gauge choice because of its starting point, which consisted in interpreting the

W propagator as the exchange of off-shell but otherwise perfectly physical W quanta. This

interpretation is only valid in “physical” gauges while in a generic one, including for instance

the covariant gauges, extra unphysical states propagate and the scattering diagrams are

not endowed with the physically transparent interpretation outlined above. This suggests

that the task of providing a technical proof of the EWA might be easier to accomplish if

working in a physical gauge, and this is indeed what we will do in section 3, where we will

choose the axial gauge.

2.2 Numerical comparison

In order to get a first confirmation of the validity of the EWA approximation in

eqs. (2.5), (2.9), we will now perform a numerical comparison of dσEWA with the exact

differential cross section dσEXACT in some explicit examples. We will quantify the accu-

racy of the approximation by computing

δEWA ≡ 2
dσEXACT − dσEWA

dσEXACT + dσEWA
, (2.11)

at some reference points in phase space. We will consider two processes: the 2→ 3

uW− → dW+W− . (2.12)
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and the 2→ 4 quark/antiquark scattering

uc̄→ ds̄W+W− , (2.13)

where we have chosen initial quarks of different families (we work at vanishing Cabibbo

angle) just for simplicity, in order to avoid a proliferation of diagrams with q q annihilation.

Let us describe the kinematics for the approximated and for the exact cross section.

The hard 2→ 2 cross section which appears in EWA, dσ (W+
r W

−
s →W+W−), is computed

by taking as independent kinematic variables the polar angle θ in the center of mass (C.M.)

of the collision and the azimuthal angle φW of the outgoing W+. The C.M. energy of the

W+W− system is instead fixed by the momenta of the incoming equivalent W ’s which, in

analogy with eq. (2.6), read

for the 2→ 3: K+ = (
√
m2 + E2x2, 0, 0, Ex) , K− = (

√
m2 + E2, 0, 0, −E) ,

for the 2→ 4: K+ = (
√
m2 + E2x2, 0, 0, Ex) , K− = (

√
m2 + E2y2, 0, 0, −Ey) ,

(2.14)

where y is the energy fraction of the equivalent W− coming from the anti-quark splitting.

The remaining relevant kinematic variables characterizing the 2→ 3 and 2→ 4 processes

(see eqs (2.5) and (2.9)) are just the absolute values of the outgoing quarks transverse

momenta. These are the same as for the kinematics of the exact process that we describe

below. In EWA one integrates on the quarks’ azimuthal angles, and thus the result does

not depend on φW .

The kinematics of the exact 2 → 4 process is parametrized as follows. The incoming

quark and anti-quark momenta are

Pu = (E, 0, 0, E) , (2.15)

Pc̄ = (E, 0, 0,−E) , (2.16)

while for the outgoing ones we have, in analogy with figure 2,

Pd =

(√
E2(1− x)2 + p2

⊥, p⊥ sin(φ), p⊥ cos(φ), E(1− x)

)
, (2.17)

Ps̄ =

(√
E2(1− y)2 + q2

⊥, q⊥ sin(ψ), q⊥ cos(ψ),−E(1− y)

)
. (2.18)

In order to compare with EWA we must however integrate over the azimuthal angles of the

outgoing quarks φ and ψ. As for the outgoing W+W− system, we describe it, as before, by

the angles θ and φW of the W+ in the W -pair center of mass frame. Notice that now, unlike

for the 2→ 2 EWA case, the boost of the W+W− system is not directed along the z-axis

but has a transverse component recoiling against the quark transverse momenta p⊥ and

q⊥. Nevertheless, by azimuthal symmetry, after integrating over φ and ψ, the remaining

dependence on φW is trivial.

As for the exact 2 → 3 process, we describe the quark kinematics by the same Pu
and Pd of eqs. (2.15), (2.17). In strict analogy we then define the WW system variables

– 8 –
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and integrate over the d-quark azimuthal angle φ. In the end, for the 2 → 3 process the

independent kinematic variables we fix in order to compute δEWA are p⊥, x and θ. For the

2→ 4 process there are two additional variables y, q⊥ associated with the c̄→ s̄ quark line.

The dependence on φW is trivial. It should be noticed that the comparison between EWA

and the exact cross section is not performed at exactly coincident kinematic points. This

is because in the kinematics of EWA the conservation of both transverse momentum and

energy is violated by the quark splitting into the equivalent vector bosons (eq. (2.14)). So

at corresponding values of θ and φW the outgoing W 4-momenta differ in EWA and in the

exact kinematics. The differences are however of order p2
⊥/E

2, m2/E2. That is precisely

the order at which we expect the approximation to hold.

Two final comments on the analysis that follows are in order. We shall also use a

variable kT , function of the independent kinematic variables, which corresponds to the

transverse momentum of the outgoing W+ in EWA kinematics. By defing sWW = (K− +

K+)2 the CM square energy in the EWA kinematics we have

kT = sin θ

√
sWW − 4m2

4
. (2.19)

Of course this quantity, as a function of θ, x, p⊥ (y, q⊥) differs from the outgoing trans-

verse momenta of either W ’s in the exact kinematics by an amount O(δ2
⊥, δ

2
m). We will

call this variable the pseudo-transverse-momentum. In all the analysis we shall pick a

reference point where the Higgs boson H has a mass mH = 2m and consider vanishing

hypercharge, compatibly with eq. (2.1). The scattering amplitudes are computed with the

FeynArts/FormCalc system [38–40] and the numerical integration over the jets’ azimuthal

angle is performed using the Cuba library [41].

2.2.1 Corrections as a function of the hardness of the final state W

As explained in section 2.1, a necessary condition for factorization is a hierarchy between

the virtuality (or the hardness) of the q → q′W ′ splitting and that of the WW → WW

subprocess. As such we compute δEWA as a function of the pseudo-tranverse-momentum

kT , by keeping the C.M. scattering angle θ and the outgoing jets transverse momenta fixed

while increasing the center of mass energy. In particular for the process in eq. (2.12) we

show our computation of δEWA as a function of kT /m in figure 4 for a fixed kinematics

given by

p⊥ = 45 GeV, x = 0.65, sin θ = 0.95 . (2.20)

As we are interested to the general behavior of the accuracy of EWA rather than to what

happens for each exclusive helicity channel the figure shows δEWA for 3 out of the 27

possible helicity configurations of the external states of the process. The selected helicity

configurations are the one with all longitudinal external states, which is interesting per

se, and the two lines corresponding to the maximal and minimal δEWA for the specified

kinematics. The lines not shown do not add significant information for our analysis as

they are very similar in shape to those in the figure. However it is important to stress

that we see that for all helicity configurations there is convergence, which shows that EWA
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Figure 4. Accuracy of EWA for the 2 → 3 process in eq. (2.12) as a function of kT /m for

fixed kinematics given by eq. (2.20). The helicities of the external W bosons in each process are

{λ(W−in ), λ(W+
out), λ(W−out)} as indicated by the colored labels at the right of the plot.
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Figure 5. Accuracy of EWA for the 2 → 4 process eq. (2.13) as a function of kT /m for fixed

kinematics given by eq. (2.21). The helicities of the external W bosons in each process are

{λ(W+
out), λ(W−out)} as indicated by the colored labels at the right of the plot.

captures the leading behavior of the exact cross-section. Indeed from the figure one can

read that δEWA scales like 1/k2
T , in agreement with the expectations. Notice however that

the corrections are numerically larger than the estimate δEWA ' m2/k2
T in eq. (2.10) (as

p⊥ < m in eq. (2.20) the corrections are dominated by m). This signals the presence of a

large numerical coefficient, typically of the order of a few. Indeed for fixed kT there is an

order of magnitude spread between the minimal and maximal δEWA in figure 4. It would be

interesting to investigate the impact of this numerical enhancement in an experimentally

realistic situation like the LHC at 14 TeV.

The analogous computation of δEWA for the process in eq. (2.13) is shown in figure 5

for a fixed kinematics given by

p⊥ = 20 GeV, q⊥ = 10 GeV, x = 0.4, y = 0.6, sin θ =

√
3

2
. (2.21)
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Figure 6. Accuracy of EWA as a function of pT /m for fixed kinematics as in eq. (2.22). The

helicities of the external W bosons in each process are {λ(W−in ), λ(W+
out), λ(W−out)} as indicated by

the colored labels at the right of each plot.
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Figure 7. Accuracy of EWA as a function of q⊥/m for fixed kinematics given in eq. (2.23). The

helicities of the external W bosons in each process are {λ(W+
out), λ(W−out)} as indicated by the

colored labels at the right of the plot.

In the figure we show the line corresponding to longitudinal final state W bosons and the

two lines corresponding to maximal and minimal δEWA. We note that also for this process

the scaling of the corrections to the EWA is such that δEWA ∼ k−2
T , in agreement with

eq. (2.10).

2.2.2 Corrections as a function of the hardness of the jets

The results shown so far are relative to points of phase-space where, according to eq. (2.10),

the corrections to EWA are dominated by m, as the chosen transverse momenta of the jets

in eqs. (2.20) and (2.21) are relatively low. To fully check the structure of the corrections in

eq. (2.10) we also have to study the dependence of δEWA on the quark transverse momenta.

For the 2→ 3 process we perform this study by fixing

E = 10 TeV, x = 0.65, sin θ = 0.86 , (2.22)
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and by computing δEWA as a function of p⊥/m. The results for the same helicity con-

figurations of the previous section are reported in figure 6. We notice, first of all, that

δEWA grows quadratically with p⊥ in the region p⊥ > m. In that region, as predicted by

eq. (2.10), the corrections must indeed go like p2
⊥/k

2
T . At low p⊥ � m different behaviors

are observed for different helicities of the external W bosons. For the process with three

longitudinal W bosons δEWA stabilizes to a constant value ' m2/k2
T . For the two other

cases δEWA scales like 1/p2
⊥ and for p⊥ ' m2/kT EWA fails completely. The corrections

can be estimated in this case as δEWA ' (m2/p⊥E)2 as anticipated in the discussion below

eq. (2.10). We will explain this behavior in great detail in section 3.4 and 3.5. For the

moment we anticipate that the only helicity channels for which δEWA is enhanced are those

dominated by the exchange of a transverse equivalent W . The enhancement of the relative

corrections at low p⊥ follows from the p-wave suppression of the leading order which affects

the transverse splitting functions in eq. (2.7). For the 2→ 4 process we perform the same

check by fixing

E = 10 TeV, p⊥ = 20 GeV, x = 0.4, y = 0.6, sin θ = 0.8 , (2.23)

and compute δEWA as a function of q⊥/m. The result is shown in figure 7 for the repre-

sentative cases of the helicity configurations of the previous section. As well as in the case

2→ 3 we observe the presence of two behaviors at low p⊥.

3 The equivalent W boson

The results of the previous section provide an extremely non-trivial confirmation of EWA,

but of course their validity is limited to a specific process, WW scattering, in a specific

model of EWSB, the Higgs model. The aim of the present section is to overcome these

limitations by deriving the EWA formula analytically and showing that its validity is neither

restricted to a specific class of scattering processes nor to a specific model of EWSB.

Before proceeding it is worth recalling what is the main methodological obstacle in

establishing EWA, the one that often causes confusion. When working with Feynman dia-

grams, the derivation of EWA, or of any factorization based on virtual quanta, amounts to

trashing some diagrams and approximating others. However individual Feynman diagrams

do not have absolute physical meaning, as their functional form and their numerical value

depend on the chosen parametrization of the fields and, in particular, on the choice of

gauge. In an arbitrary gauge, each trashed diagram, or the neglected off-shell piece in the

diagrams of Figure 1a, can be arbitrarily sizeable, making the validity of the approximation

not manifest at all. Of course the existence of a gauge where all the neglected terms are

one by one numerically negligible would be sufficient to establish the approximation in all

other gauges as well. To better appreciate how EWA stands as regards the above issue, it

is sufficient to focus on the diagram in figure 1a. In an obvious notation it can be written

as (see also the discussion in section 3.3){
J1
µ(V 2

1 )
Pµν(~p1, V

2
1 )

p2
1 −m2

}{
J2
ρ (V 2

2 )
P ρσ(~p2, V

2
2 )

p2
2 −m2

}
Aνσ(V 2

1 , V
2

2 ) , (3.1)

– 12 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
2

where we have highlighted the dependence of the amplitude for the WW →WW subpro-

cess on the virtuality V 2
i ≡ m2 − p2

i of the intermediate W ’s. The above contribution to

the total amplitude has a (pole) singularity at Vi = 0. More importantly, it is the only

contribution featuring such a singularity. It therefore follows that the leading behavior at

the singularity, the residue, is fully accounted by the above term, and as such is gauge

independent. To obtain the leading behavior we simply have to replace V1 = V2 = 0 ev-

erywhere in the numerator in eq. (3.1). Notice that in order to reach the pole we formally

need to go to complex momenta, but that is not a problem. The residue will itself be a

gauge invariant function of momenta. Its continuation back to real momenta is precisely

the EWA amplitude. The 1/Vi poles in the EWA amplitude signify that the process of

emission of the forward fermions and of the virtual W takes place over a length and time

scales much bigger than those associated with the WW → WW subprocess. It is thus

intuitive that the probability for the two phenomena should factorize. On the other hand,

the other diagrams and the subleading terms in eq. (3.1) do not feature such a singularity

and can be interpreted as transitions where all quanta (both the fermions and the W) are

emitted in a single hard collision associated to a time and length scale of order 1/E. The

presence of a single scale E implies that all the quanta are emitted in low partial waves

and smoothly populate phase space: that smooth topology leads to negligible interference

with the pronged topology that dominates the factorized amplitude. Notice, for instance,

that when considering the Taylor expansion of the subamplitude

Aρσ(V 2
1 , V

2
2 ) = Aρσ(0, 0) +A(1,0)

ρσ (0, 0)V 2
1 +A(0,1)

ρσ (0, 0)V 2
2 + . . . (3.2)

the terms beyond the first, which are neglected in EWA, combine with the propagator

to give non-singular contributions. These have obviously the same structure as the con-

tributions from all the other Feynman diagrams, like figure 1b. Thus they cannot be

independently gauge invariant. Indeed it was noticed long ago that, in both the unitary

and Rξ gauges, the terms beyond the first in eq. (3.2) display an unphysical growth with

powers of E/m. The problem of these gauges is that, for different reasons, they feature

singularities at m → 0. The unitary gauge is singular in both the propagator and the

external polarization vectors. The Rξ gauge has a well behaved propagator, however there

is freedom in the choice of the polarization vectors decribing the longitudinal polarizations.

The usual choice, where the Goldstones fields are set to zero, is also singular. Because of

these singularities, it turns out that the formally subleading terms in eq. (3.2) are instead

parametrically enhanced. In some cases there is one power of E/m for each external line

in the WW →WW subprocess and one finds [25]

A(1,0)(0, 0)

A(0, 0)
∼ 1

E2

(
E

m

)4

(3.3)

implying that at E � m, the numerical value of the diagram is completely dominated by

the “unphysical” gauge dependent contribution. In the gauges where that happens power

counting is not manifest, and in order to establish EWA one cannot just neglect some

diagrams and approximate others. In those gauges the computation of the full set of dia-
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grams is needed, in order to take into account for numerically formidable, but conceptually

trivial, cancellations.

On the other hand the axial gauge, which was already adopted by KS, does not suffer

from the above problems in that it is both physical and, above all, non-singular at m→ 0.

The axial gauge is therefore the obvious choice to properly power-count all diagrams and

establish the validity of EWA at the quantitative level. It is the choice we shall make in

this section, by focussing on the general process qX → q′Y . In subsection 3.1 we shall

describe the main technical tools, while in subsections 3.2 and 3.3 we shall expand the

subamplitudes to establish EWA. In sections 3.4 and 3.5 we shall discuss the parametric

dependence of the corrections to EWA.

3.1 Axial gauge and Feynman diagrams

As just explained, we shall work in the axial gauge. Following [28] and references therein,

we fix the gauge by picking a space-like 4-vector nµ aligned along the beam direction

nµ = (0, 0, 0, 1)µ . (3.4)

For each of the three Q = ±1, 0 charge eigenstates, the gauge-fixing condition

nµWQ
µ = 0 (3.5)

is strictly enforced by a delta-function in the functional integral. That ensures the field

independence of the gauge variation of the gauge-fixing functional and the decoupling of

the ghosts. Unlike in the covariant Rξ gauges, in the axial gauge the mixings among gauge

fields and Goldstones are not cancelled and the propagators are thus non-diagonal. They

can be regarded as matrices in the 5-dimensional space formed by the 4 Wµ components

plus the Goldstone and are given by

PIJ =
i

q2 −m2
NIJ , (3.6)

with

Nµν(q) = − ηµν +
qµnν + qνnµ

qL
+
qµqν
q2
L

,

Nµg(q) = Ngµ(q)∗ = −im 1

qL

(
nµ +

qµ
qL

)
,

Ngg(q) = 1 +
m2

q2
L

. (3.7)

The three lines of the above equations describe respectively gauge-gauge, gauge-Goldstone

and Goldstone-Goldstone propagation, while qL ≡ q · n denotes the projection of q along

the beam direction. Obviously, because of the gauge-fixing (3.5), the propagator matrix

annihilates the 5-vector (nµ, 0) and therefore has rank 4. Moreover, as it will become

apparent from the following discussion, for on-shell momentum, q2 = m2, the rank of the

numerator N is further reduced down to 3, corresponding to the physical polarizations of
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a massive vector. That is what makes the axial gauge “physical” and therefore best suited

for our proof of EWA.

For the process q X → q′ Y , considering the virtuality V 2 ≡ m2 − (Pq − P ′q)2 defined

in eq. (2.4), we can divide the Feynman diagrams into two classes. The first class, that we

name “scattering diagrams”, consists of the diagrams with a 1/V 2 pole (see figures 3), (8b),

while the second class consists of all the others. In particular, among various topologies,

the second class contains diagrams with W ’s radiated from the qq′ fermion line and thus

we refer to it as the class of “radiation diagrams” , though the term is somewhat improper.

An example of radiation diagram is shown in figure 8a, but other examples can be obtained

from a scattering diagram like figure 8b, by permuting q′ with a quark in the inclusive final

state Y . Notice that although the contribution of any given diagram is gauge dependent,

the total contribution featuring a 1/V pole is obviously gauge independent. Now, assessing

the validity of the EWA amounts to assessing by how much and in which kinematic regime

the 1/V pole part in the scattering diagrams dominates over all the other contributions.

In practice, by working in the axial gauge, it will be enough to consider just the scattering

diagrams and focus on their expansion in δ⊥ and δm in the kinematic region where V � E.

In other words, the radiation diagrams neither imply further cancellations nor bring in more

sizeable corrections. That is because of two reasons. First of all, as we shall see below, in the

axial gauge power counting is straightforward: unlike what happens in covariant gauges or

in the unitary gauge, the amplitudes associated with individual Feynman diagrams do not

feature spurious 1/m singularities.3 Secondly, it is easy to see that, under the reasonable

assumption that the quarks interact with the EWSB sector only via the exchange of W ’s,

the radiation diagrams cannot be enhanced with respect to the scattering ones by simply

cranking up some coupling. That is obvious for diagrams that are obtained by permutation

of quarks lines in scattering diagrams. Moreover inspection of figure 8 clarifies that it is

true also for diagrams with a genuine radiation structure: given one such diagram in

figure 8a we can construct a scattering one, figure 8b, by attaching the building blocks

W → Yi on a boson line. The new diagram contains exactly the same couplings as the

original one, meaning that any large coupling which is present in the radiation diagrams

must unavoidably appear also in the scattering ones. Notice that the converse is not true,

the simplest example is found in the higgsless SM where the strong quadrilinear coupling

among longitudinal W ’s, which grows with the energy as (E/v)2 � 1, only contributes

to qWL → q′WLWL through a scattering diagram. In that situation, the radiation type

diagrams are further suppressed and it is even more justified to neglect them. In view of the

above we will not need to consider the radiation diagrams explicitly any longer, their effect

is either comparable or smaller than that of the subleading terms in the scattering diagrams.

3.2 Splitting amplitudes

Let us now consider the generic weak process qX → q′Y defined in section 2.1, focusing on

the contributions from scattering diagrams of figure 3 to the amplitudeAsc(qX → q′Y ). We

3In those other gauges, the unphysical singular terms cancel when summing up all diagrams thus making

power counting non-straightforward.
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→

q q′

Y1

q′q

Yn

Y1

X Y0

Yn

X Y0

Figure 8. (a) a representative radiation diagram: unlike the scattering diagrams, these diagrams

do not have the p⊥/V
2 or m/V 2 singularity; (b) a representative scattering diagram: the virtual

W propagator leads to a 1/V 2 pole.

would like first of all to rewrite those diagrams, without any approximation, in a form suited

to perform the expansion of eq. (2.2). To this end we derive a decomposition of the N s

in the vector boson propagator, for a generic off-shell momentum q, in terms of a suitably

chosen basis of polarization vectors, by proceeding as follows. A generic 4-momentum

qµ = (q0, ~q⊥, qL)µ , (3.8)

which we take for simplicity with positive energy, but arbitrary norm q2 = q2
0 − q2

L − q2
⊥,

can always be put in the form4

qµ =

(√
q2
L + q2, ~0, qL

)
µ

, (3.9)

by means of a Lorentz boost in a direction orthogonal to the beam. Such a boost also

leaves nµ invariant. One can explicitly check that the boost characterized by the velocity
~β = (~q⊥/q0, 0) does the job

B(~q⊥/q0, 0) ν
µ qν = qµ , B(~q⊥/q0, 0) ν

µ nν = nµ ,

where B(~β) ν
µ denotes the standard boost matrix. Given that n is invariant under B, it

is convenient to work out the basis of polarization vectors in the boosted frame where q

takes the form of eq. (3.9), and then obtain the ones in the original frame by boosting back

with B. In the boosted frame the Nµν matrix takes a very simple diagonal form and it is

immediate to identify the “natural” basis for its decomposition. Boosting it back we obtain

Nµν(q) =
∑
h=±1

(
εhµ

)∗
εhν +

1 + q2
L/m

2

1 + q2
L/q

2
ε0
µε

0
ν ,

Nµg(q) = ε0
µ εg ,

Ngg(q) = ε∗g εg , (3.10)

4The discussion which follows assumes that q20 − q2⊥ = q2L + q2 > 0, this condition obviously holds for

the virtual W momentum of eq. (2.3) to which these manipulations will be applied.
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where

ε±1
µ (q) = B(~q⊥/q0, 0) ν

µ

(
0, 1/

√
2, ∓i/

√
2, 0

)
ν
,

ε0
µ(q) = B(~q⊥/q0, 0) ν

µ

−
√

1 + q2/q2
L√

1 + q2
L/m

2
, 0, 0, 0


ν

= − m

qL

√
1 +m2/q2

L

(
nµ +

qµ
qL

)
,

εg(q) = i
√

1 +m2/q2
L . (3.11)

Clearly, the above equations rely on a choice of the normalizations and on the definition of

the Goldstone’s wave function εg, which we performed in such a way to get unit coefficient

in the decomposition (3.10) of Nµg, of Ngg and of the transverse part of Nµν .

In the on-shell limit q2 → m2 the numerator NIJ reduces, as anticipated, to a rank-3

matrix and its 3 non-null eigenvectors span the space of the physical W states. Follow-

ing [28], we choose as a basis the two “transverse” wave-functions given by the 5-vectors

E±1
I = (εµ±1, 0), plus the “longitudinal” one E0

I = (εµ 0, εg), andNIJ =
∑

h=±,0
(
EhI
)∗
EhJ .

Notice that with this definition the polarized W states are not exactly eigenstates of the

helicity but of the angular momentum along the beam direction in the q = q frame as it

becomes apparent from eq. (3.11) by checking that the polarization states transform with

a phase under rotations in the plane transverse to the beam. In the lab frame, the trans-

formation property of the polarization vectors under transverse rotations is also simple,

let us work it out for future use. Consider a rotation R ν
µ (θ) of the momentum q in the

transverse plane, defined by

q′µ → q(θ)
µ = R ν

µ (θ)qν = (q0, cos θq1
⊥ + sin θq2

⊥, cos θq2
⊥ − sin θq1

⊥, qL)µ . (3.12)

The composition rules of Lorentz transformations imply that

B(~q
(θ)
⊥ /q0, 0) ν

µ = R µ′
µ B(~q⊥/q0, 0) ν′

µ′ R
−1 ν

ν′ ,

from which it is immediate to check that the polarization vectors (3.11) satisfy

R−1 ν
µ εhν(q(θ)) = eihθεhµ(q) , (3.13)

with h = ±1, 0. According to the above equation, which is valid for a generic off-shell

momentum q, our polarization vectors correspond to wave functions with (total) angular

momentum h along the beam axis, J3 = h.

Let us now consider a generic scattering diagram, we will rewrite its amplitude by

applying the decomposition (3.10). Notice that in the axial gauge, as figure 3 shows, there

are two kind of scattering diagrams, which we denote as type “A” and “B” depending on

whether the fermion line is attached to a gauge-gauge or to a gauge-Goldstone propaga-

tor. There is no contribution from the Goldstone-Goldstone propagator because massless

quarks do not couple directly to the Goldstones. The momentum K flowing in the W

propagator is given by eq. (2.3), using eq. (3.10) we rewrite each scattering diagram, up to
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corrections of O(δ2
⊥) + O(δ2

m) that originate from expanding the second term in the first

line of eq. (3.10), as

Asc.−A = − i

V 2

∑
h=±1

[
Jµ
(
εhµ

)∗] [
εhνAνQ

]
− i

V 2

[
Jµ
(
ε0
µ

)∗] [(
1 − V 2

m2

)
ε0
νAνQ

] [
1 + O(δ2

⊥ + δ2
m)
]
,

Asc.−B = − i

V 2

[
Jµ
(
ε0
µ

)∗] [
εsAgQ

]
, (3.14)

where AνQ denotes the “hard” amputated amplitude of the gauge field W ν
Q on the X and Y

states, while AgQ is the Goldstone amplitude on the same external states. The “soft” part

of the scattering diagrams, associated to the quark vertex in eq. (2.1), is instead contained

in the chiral current J , which is given by

Jµ(Pq′ , Pq) ≡ −2iC uL(Pq′)γ
µuL(Pq) = −2iC χ†(Pq′)σ

µχ(Pq) , (3.15)

where C depends on the charge of the virtual W and is given in eq. (2.8). The equation

above has been written in the Weyl basis where the γ matrices are

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−11 0

0 11

)
, (3.16)

and the wave function for massless spinors of helicity −1/2 and generic momentum Pµ =

(p0, p1, p2, p3)µ can be taken to be

uL(P ) =

(
χ(P )

0

)
, χ(P ) =

1√
p0 + p3

(
p0 + p3

p1 + i p2

)
. (3.17)

The above choice for the spinor wave function is fully analogous to the choice of polarization

vectors in eq. (3.13): it is obtained by boosting the helicity eigenfunction χ0 from the frame

where p⊥ = 0 to the lab frame

χ(P ) = ΛLχ0 = ΛL(p⊥/p0)

(√
2p3

0

)
, (3.18)

where

ΛL(p⊥/p0) = e−ηiσi/2 ηi =
pi⊥

2|p⊥|
ln

(
1− |p⊥|/p0

1 + |p⊥|/p0

)
. (3.19)

In analogy with eq. (3.13), the spinor wave functions transform under rotations in the

transverse plane according to

e−iθσ3/2χ(p(θ)) = e−iθ/2χ(p) (3.20)

and thus correspond to eigenstates with J3 = −1/2. A consequence of the above is that the

current, being helicity preserving, transforms as a vector under rotations in the transverse

plane, without the appearance of extra momentum-dependent phases.

Jµ(P ′
(θ)
, P (θ)) = Rµµ′J

µ′(P ′, P ) . (3.21)
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It is a simple exercise, at this point, to compute the “splitting amplitudes”, i.e. the

soft part of the amplitude (3.14). In the expansion of eq. (2.2) the result is

− i

V 2

[
Jµ
(
ε±1
µ

)∗]
= 2C

p⊥e
±iφ

V 2
g±(x)

[
1 + O(δ2

⊥ + δ2
m)
]
,

− i

V 2

[
Jµ
(
ε0
µ

)∗]
= 2C

m

V 2
g0(x)

[
1 + O(δ2

⊥ + δ2
m)
]
, (3.22)

where

g+(x) =
√

2

√
1− x
x

,

g−(x) =
√

2
1

x
√

1− x ,

g0(x) = 2

√
1− x
x

. (3.23)

The dependence of the result on

p⊥e
−iφ ≡ p1

⊥ − ip2
⊥ ≡ p̃⊥ (3.24)

follows from eqs. (3.13) and (3.21), according to which the splitting amplitude into a vector

boson of helicity h changes by a phase e−ihθ under a rotation in the transverse plane.

That result is a reflection of angular momentum conservation: the amplitude for helicity

h corresponds to a final state with orbital angular momentum −h so as to compensate

for the spin of the vector boson. By the resulting selection rule the longitudinal splitting

amplitude arises at zeroth order in p⊥ while the transverse splitting amplitudes only arise

at first order. Similarly the subleading corrections to all amplitudes are quadratic in p⊥.

Notice that the subleading corrections are also quadratic in the mass m, because m appears

linearly only in the prefactor of the longitudinal splitting amplitude while all the other terms

are quadratic. That result is associated to a reparametrization of the lagrangian and the

fields under which the gauge fields are invariant, Wµ →Wµ, while the Goldstone fields are

odd, π → −π, and the mass changes sign, m→ −m (see discussion in section 3.4).

3.3 Derivation of EWA

In the previous section we worked out the fermion current factors in eq. (3.14), which are

associated with the collinear splitting q → q′W . Next we should deal with the factors

associated with the hard transition. Those we would like to replace with the on-shell

WX → Y scattering amplitudes. The hard amplitudes Aν, gQ and the polarization vectors

εh, g depend on the momentum of the virtual W , parametrized by K in eq. (2.3). As K is

nearly on shell it is convenient to rewrite it as

K =
(
ω~k

√
1− V 2/ω2

~k
, ~k
)
, (3.25)

where ω~k =

√
m2 + |~k|2 is the on-shell energy of a real W with the same 3-momentum

~k = (−~p⊥, xE) as the virtual W . The deviations from on-shellness only affect the energy
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component K0 of K by an amount of relative size O(V 2/ω2
~k
) = O(δ2

⊥ + δ2
m). In the hard

region the amplitudes are well behaved functions of the external momenta and so are the

wave functions. Thus the subprocess amplitudes in eq. (3.14) can be safely expanded in

the virtuality V

[ε · A] ≡M(V 2) =M(0) +M′(0)V 2 +O(V 4) . (3.26)

The reasonable expectation is that, barring cancellations that we shall discuss below, the

radius of convergence of the above expansion is controlled by the hardness of the subprocess,

as quantified by the virtuality H of its internal lines, that is M′(0)/M(0) ∼ 1/H2. By

assuming, for simplicity, H ∼ E, we can then write

Asc.−A = 2C
p⊥
V 2

∑
h=±1

e∓iφg±(x)
[
ε+
ν Aν

]
on

(~k)
[
1 +O(δ2

⊥ + δ2
m)
]

+ 2C
m

V 2
g0(x)

[
ε0
νAν

]
on

(~k)
[
1 +O(δ2

⊥ + δ2
m)
]

+2C
1

kL
g0(x)Alocal ,

Asc.−B = 2C
m

V 2
g0(x) [εgAg]on(

~k)
[
1 +O(δ2

⊥ + δ2
m)
]
, (3.27)

where all the amplitudes and the polarization vectors in the square brackets are computed,

as explicitly indicated, for an on-shell W with 4-momentum (ω~k,
~k). The term denoted

as Alocal, collects all the contributions proportional to the V 2/m2 term in the parenthesis

in the second line of eq. (3.14), and is thus non singular as V → 0. Now, focusing on

the interesting regime V ∼ m ∼ p⊥, it is instructive to power count the various terms.

Those associated with the on-shell amplitudes are O(1/V ). The presence of a 1/V pole

indicates that the virtual W is emitted and absorbed at well separated spacetime points.

On the other hand the term Alocal is O(V 0) and not-singular as V → 0, like the local

amplitude mediated by a contact term. Thus the term Alocal belongs to the same class

as the contribution from the diagrams with radiation topology described in section 3.1.

Explicitly we find

Alocal = (nν +Kν/kL)AνQ
[
1 +O(δ2

⊥ + δ2
m)
]
, (3.28)

where we made use of the explicit form of the ε0 vector in eq. (3.11). Finally, notice

that the subleading corrections to the 1/V pole terms, those associated with δ2
⊥ and δ2

m ,

correspond to O(V ) contributions, that are thus further suppressed with respect to Alocal.

The above discussion would be invalidated by the occurrence of on-shell cancellations,

that badly change our estimate M′(0)/M(0) ∼ 1/H2. The most obvious thing that can

happen is that M(0) = 0, corresponding to a vanishing amplitude for the subprocess,

which is not our hypothesis.5 Leaving out the trivial case M(0) = 0, we can identify

two other more subtle sources for such cancellations, one physical and one unphysical.

The first possibility, corresponding to a genuine physical effects, is that “helicity selection

rules”6 suppressM(0) by some power of m/E with respect to naive power counting. This

5For M(0) = 0 the 1/V pole is absent, corresponding to the possibility of parametrizing the qX → q′Y

process by a contact interaction. That can be done via a field redefinition or, equivalently, by using the W

equations of motion.
6Of the type involved in the cancellation of MHV amplitudes.
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could happen for peculiar polarizations of the external states described by X and Y , but

we do not expect it to happen for all polarizations. Thus for sufficiently inclusive initial

and final states there should be no issue: the estimate of the corrections in eq. (3.27) will

safely apply to the dominant helicity channels, which of course are the ones which are not

subject to cancellations. In section 3.5 we will discuss examples of these these helicity

induced cancellations. The second possibility, associated instead to an unphysical effect,

arises in gauges where the propagator and/or the polarization vectors are singular for

m→ 0. In those gauges, that include the unitary and Rξ gauges but not the axial gauge,

naive power counting is spoiled by the presence of terms which, diagram by diagram,

grow off-shell like powers of E/m. More precisely, in those gauges one finds spurious

contributions M′(0)/M(0) ∼ E2/m4 that completely invalidate an approach based on

diagrammatics [25]. Those spurious terms are unphysical and cancel only upon summation

of the whole set of diagrams. The axial gauge has the great advantage that the cancellation

is manifest diagram by diagram, simply because no such term can arise due to the absence

of 1/m singularities! The origin of this problem is simply that M′(0), unlike M(0), is an

unphysical gauge dependent quantity. Because of the above issue, the validity of EWA

was put in doubt by ref. [26, 27]. Our basic point, that simply follows and extends the

discussion in [28], is that the problem is easily avoided by working in the axial gauge.

In fact EWA can also conveniently be derived by working in the Rξ gauge, by noticing

that one has the freedom of chosing a parametrization where the polarization vectors are

non-singular as m → 0. That is the parametrization that is most suitable for proving the

equivalence between longitudinally polarized vectors and eaten Goldstones in high-energy

scattering. We will present this alternative approach in a forthcoming paper.

In eq. (3.27) we can already recognize the various terms of the EWA formula reported

in eq. (2.5). At the leading order, the terms in the first line in Asc.−A coincide with

the WQX → Y scattering amplitude with transversely polarized incoming W ’s while the

term in second line, in combination with Asc.−B, reconstructs the longitudinally polarized

amplitude. Indeed, in the axial gauge, the on-shell WL state is a coherent superposition

of the gauge and Goldstone fields. That is why the amplitude for WL involves the sum

of two terms. Using a compact notation the total qX → q′Y amplitude can therefore be

rewritten as

A =
2C

V 2

[
p̃⊥A+ + p̃∗⊥A− +mA0 +

V 2

kL
Alocal

] [
1 +O(δ2

m + δ2
⊥)
]
, (3.29)

A± = g±(x)
[
ε±ν Aν

]
on

(~k) , A0 = g0(x)
{[
ε0
νAνQ

]
on

(~k) + [εgAg]on(
~k)
}
. (3.30)

Eq. (3.29), by neglecting the subleading Alocal term (as well as the δ2
⊥ and δ2

m correc-

tions) yelds a “generalized EWA”

AgEWA =
2C

V 2
[p̃⊥A+ + p̃∗⊥A− +mA0] (3.31)

which provides an approximation for the amplitude of the complete process in terms of the

hard on-shell scattering amplitude of an equivalent W boson. The resulting differential

cross section is more accurate than the standard approximation in eq. (2.5), because it
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maintains the information on the φ distribution of the forward jet, which is instead inte-

grated in the standard EWA. The φ distribution is determined by the interference among

the individual subamplitudes in eq. (3.31). Moreover, as we shall clarify better below, for

processes dominated by A0, as it often happens at sufficiently high energy in composite

Higgs models, this generalized EWA includes in a consistent manner the leading O(δ⊥)

corrections to the differential rate coming from the interference between A0 and A±. We

will discuss the implications of this generalized EWA formula in a forthcoming paper.

To obtain eq. (2.5) we just need to further expand the subamplitudes in p̃⊥
E ,

p̃∗⊥
E

Ai = A(0,0)
i +A(1,0)

i

p̃⊥
E

+A(0,1)
i

p̃∗⊥
E
. . . (3.32)

for i = (+,−, 0, local) and keep only the very leading term

A(0,0) =
2C

V 2

[
p̃⊥A(0,0)

+ + p̃∗⊥A
(0,0)
− +mA(0,0)

0

]
(3.33)

The resulting approximation corresponds to replacing the momentum ~k = (−~p⊥, xE) of

the equivalent W , with a fully collinear one ~kW = (−~0, xE) as in eq. (2.6). Modulo the

splitting function factor in front (see eq. (3.30)), A
(0,0)
+,−,0 represent the WX → Y amplitudes

for a fully collinear equivalent W . We thus find the differential cross section

dσ(qX → q′Y )EWA

=
1

2Eq2EX |1− vX |

ˆ
φ

|A(0,0)|2
2

d3Pq′

2Eq′ (2π)3 dΦY (2π)4δ4(P tot
Y + Pq′ − Pq − PX)

' 2C2

V 4
· p⊥dp⊥xdx

(2π)22(1− x)
×
[
p2
⊥|A

(0,0)
+ |2 + p2

⊥|A
(0,0)
− |2 +m2|A(0,0)

0 |2
]

× 1

2Eq2EW |vW − vX |
dΦY (2π)4δ4(P tot

Y −KW − PX) , (3.34)

where dΦY denotes the phase space of the final state Y and the 1/2 factor comes from

the average on the two polarizations of the incoming q. Notice that by performing the dφ

integral the interference terms cancel, since the A(0,0)
i do not depend on φ. To obtain the

second equality we have employed a few kinematic relations that are easily extracted from

section 2.1, in particular we used that Eq = E, d3Pq′ = Ep⊥dp⊥dφdx and that EW = xE,

Eq′ = (1 − x)E up to quadratic corrections, we also used vW ' 1 in the relative velocity

term. The incoherent sum of squared amplitudes, when taking into account the splitting

function coefficient in their definition eq. (3.30), together with the flux and phase space

factor for the WX → Y process in the third line, are then easily seen to reproduce eq. (2.5).

3.4 Corrections to EWA

In the previous section we have established the validity of EWA in the formal limit of

extremely high energy, much above the jet p⊥ and the W mass. This result is reassuring

as it guarantees the observability in principle (i.e., under ideal experimental conditions) of

the on-shell W boson collisions. In practice, however, the energy is limited and the EWA

formula could receive large corrections. A hypothetical measurement of the equivalent W

– 22 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
2

boson scattering could therefore be affected by a potentially large intrinsic (systematic)

error which is very important to quantify. This is the aim of the present section, in

which we derive a parametric estimate of the deviations of the exact cross section from the

EWA formula.

To start with, let us discuss the corrections due to the subleading terms in equa-

tion (3.30), which we neglected in order to obtain the generalized EWA formula of eq. (3.31).

Aside from the generic δ2
⊥, δ

2
m that originate from the expansion of the various matrix el-

ements, corrections arise from the Alocal term, which is seemingly suppressed only by one

power of δ⊥, δm and therefore potentially gives the most sizable effect. However the rele-

vance of Alocal crucially depends on the relative size of the amplitudes for different helicities

A±, A0, Alocal. In general different sizes for the amplitudes involving the gauge fields on

one side and the Goldstone bosons on the other are expected. That is particularly true in

models where the electroweak symmetry breaking sector is strongly coupled. Thus, while

we expect A± ∼ Alocal as they both just involve the gauge field on the equivalent W line,

it turns out that A0 and A± typically have rather different sizes. In order to understand

this point let us recall a useful selection rule controlling the appearance of powers of m in

physical quantities. The lagrangian for Goldstones π and gauge fields Wµ (with or without

a SM Higgs) is invariant under the reparametrization

Wµ →Wµ , π → −π , m→ −m, (3.35)

according to which the sign of m is not a physical observable. Since the probability AA∗
is an observable, the amplitude A must be either even or odd under m → −m. Indeed,

because of eq. (3.35) and because of the structure of the polarization vectors E±I , E
0
I

(below eq. (3.11)), we conclude that A± and A0 have opposite parities (more directly one

can deduce that by noticing the relative power of m with which they enter A). In full

generality we must then have
A±
A0
∼
(m
E

)2n+1
b , (3.36)

where b is a dimensionless ratio of couplings. In most cases (as in the examples of the

following section) the simplest possibility is realized, that is either n = 0 or n = −1, so

that the asymptotically subleading polarized amplitude is suppressed with respect to the

leading one by m/E. In practice we therefore need to consider only two cases:

1)
|A±|
|A0|

∼ m

E
b , 2)

|A0|
|A±|

∼ m

E
b , (3.37)

(we stress that since the two cases are logically distinct, the coefficient b has different

meaning and size in the two cases). From the above equations we see that in the typical

situation there will be a hierarchy, due to the m/E factor, among A± and A0. It is

however possible to obtain |A±/A0| = O(1), but only in a specific range of energies and

by the compensating effect of a very large b, of order E/m. We will illustrate an example

of that in the following section, notice however that the by far more common situation

is b = O(1).
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In order to better understand the nature of the b parameter it is useful to restore the

dimensionality of }. That way the coupling associated to an n-field vertex has dimension-

ality n/2− 1. For instance the gauge coupling g and the Higgs quartic λ have respectively

dimension 1/2 and 1. Since b describes the ratio among homogeneous quantities it should

be dimensionless. In any given theory we then know what powers to expect in b. For

instance in the SM we must have b = (g2/λ)p = (m2/m2
H)p.

Let us consider now the squared amplitude integrated over φ, which is the object we

need in order to derive the final EWA formula in eq. (2.5). By expanding the subamplitudes

in p⊥, as in eq. (3.32), under the reasonable assumption E∂p⊥Ai ∼ O(Ai), the result has

the structureˆ
φ
|A|2 ∝ p2

⊥A2
± +m2A2

0 + p2
⊥
m

E
A±A0 + V 2m

E
A±A0 +

V 4

E2
A2
± + . . . , (3.38)

where to simplify the notation we simply indicated by A± and A0 the leading terms A(0,0)
±

and A(0,0)
0 , defined in eq.s (3.32), (3.33), and estimated the subleading terms according to

A(m,n)
i ∼ Ai. In eq. (3.38), the third term arises from cross terms of the type (A(0,0)

0 )∗A(0,1)
+

and (A(1,0)
0 )∗A(0,0)

+ , while the fourth term comes from (A(0,0)
0 )∗A(0,0)

local. The dots represent

terms of even higher order. Notice that the leading interference between A± and Alocal

vanishes upon integration over φ. Focussing again on the physically interesting region

p⊥ ∼ m we find that the relative corrections to the EWA formula scale like

δEWA ∼
m

E

|A±A0|
max(|A±|2, |A0|2)

∼ m

E
min(|A0/A±|, |A±/A0|) . (3.39)

We see that δEWA is always smaller than m/E, and it become of order m/E only if A0 and

A± are comparable.

In both cases considered in eq. (3.37) δEWA becomes

δEWA ∼
m

E
min

[
mb

E
,
E

mb

]
. (3.40)

Let us analyze this formula in some more detail. For asymptotically high energies, δEWA

does scale quadratically with the energy, but with a possibly large prefactor b: δEWA ∼
bm2/E2. The corrections grow as E decreases and at the critical value E ' mb they become

of order m/E ∼ 1/b. This behavior could be captured by a phenomenological formula

δEWA = C1
m2

E2
b

1

1 + C2
m2

E2 b2
, (3.41)

with C1,2 order one parameters. Notice that in the above discussion we have been implicitly

assuming b > 1. Only for that case, does eq. (3.41) represent the leading correction.

Otherwise, δEWA is dominated by δ2
⊥, δ

2
m in equation (3.30), that is the irreducible effects

of taking the on-shell limit of the various matrix elements. In the end we always have

δEWA > m2/E2.

One region worth considering is p⊥ � m, focussing for simplicity on the more common

case b ' 1. In that case, the corrections scale differently for processes dominated by the
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longitudinal or the transverse amplitude, which correspond respectively to case 1) and case

2) in eq. (3.37). In case 1), eq. (3.38) implies as usual

δEWA ∼
m2

E2
. (3.42)

In case 2), instead, the corrections from the local term are enhanced

δEWA ∼
m2

E2

m2

p2
⊥
, (3.43)

notice in particular that the EWA breaks down completely for p⊥ ∼ m2/E. For smaller pT ,

the transverse contribution becomes negligible, while the contribution fromA0 ∼ (m/E)A±
scales precisely like the local contribution. Notice that a similar phenomenon does not take

place for the splitting into massless vector bosons, like gluons and photons, since in that

case the virtuality V 2 also goes to zero like p2
⊥.

Finally, we should also consider the case of intermediate jet transverse momentum:

E � p⊥ � m, in which the corrections are always

δEWA ∼
p2
⊥
E2

. (3.44)

Notice that in the more typical situation, b ∼ 1 and p⊥ 6� m, the corrections are simply

given, as anticipated in section 2.1, by eq. (2.10).

3.5 The example of WW scattering

The general considerations of the previous sections are conveniently illustrated in the ex-

plicit example of the WW scattering process, which we already considered in section 2.2.

We work in the Higgs model (with vanishing hypercharge, compatibly with eq. (2.1)) and

we compute the totally polarized on-shell scattering amplitude W+
p1W

−
p2 →W+

p3W
−
p4 . For in-

stance, in the high energy (E � m, E � mH) and fixed angle limit, the + + ++ amplitude

(i.e., {p1, p2, p3, p4} = {1, 1, 1, 1}), reads

A+ = − 2g2

sin2 (θ/2)
+O(m2/E2) , (3.45)

where E and θ denote respectively the energy and the scattering angle of the W+ in the

center of mass frame. The above result complies perfectly with the expectations of power

counting for the scattering amplitude among transversely polarized W ’s: two powers of g

and constant scaling with energy. Moreover the Coulomb singularity at θ = 0 is due to

the negligibility of the W mass in the limit of high-energy and fixed angle. Consider now,

instead, the −+ ++ amplitude, we would expect the same scaling with the energy but

instead we find

A− =
m2

E2
· 3g2 cos2 (θ/2)

2
, (3.46)

which is suppressed by an additional factor m2/E2. This is one example of the “helicity-

induced” cancellations we mentioned in section 3.3: the on-shell amplitude is anomalously
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reduced with respect to its power counting estimate and there is no reason why this reduc-

tion should persist also in the case of off-shell external states. This potentially constitutes

a problem for our derivation of the EWA formula because it could lead to an enhance-

ment of the relative corrections, as explained in section 3.3. Actually, the cancellation in

equation (3.46) could have been guessed by remembering the usual helicity cancellations in

massless gauge theories. By crossing the −−−− amplitude and making all the external

lines initial we obtain −+ ++, since the latter must vanish in the massless limit, there

should be a reduction for m � E. Notice that this reduction factor must be an even

power of m/E, because of the m→ −m selection rule of eq. (3.35). Again, because of that

selection rule, the 0 + ++ amplitude must be odd under m→ −m and indeed we find

A0 =
m

E
· g

2 cot (θ/2)√
2

. (3.47)

The suppression in this case is perfectly understood by power-counting, therefore it must

persist also off-shell and does not signal any worrisome on-shell cancellation.

However the helicity induced cancellation which we discovered in eq. (3.46) is not very

dangerous. In particular it does not invalidate our derivation of the EWA for the process

qW−p3 → q′W+
p3W

−
p3 , with {p1, p2, p3} = {1, 1, 1}, where the external helicities are + + +.

In that case, all the three amplitudes A± and A0 appear, corresponding to the possible

helicities of the intermediate equivalent W . The leading contribution to the total 2 → 3

amplidute comes from just A+ in eq. (3.45) while the others, and in particular A−, are

subleading precisely because they are canceled. The on-shell cancellation simply implies

that we cannot control the off-shell corrections to A−, but these are irrelevant because they

are at most as big as A−, and anyhow subleading with respect to A+. In practice, the

derivation is saved by theA+ term, which is leading and not canceled. Consider now instead

the −+ + process, {p1, p2, p3} = {−1, 1, 1}, for which the three sub-amplitudes read

A+ =
m2

E2
· 3g2 cos2 (θ/2)

2
,

A0 =
m3

E3
· g

2
(
−4 +m2

H/m
2 + 9 cos θ

)
8
√

2 tan (θ/2)
,

A− =
m4

E4
· g

2
(
2m2

H/m
2 + 9 cos θ − 1/2(3 + cos θ) csc2 (θ/2)

)
16

. (3.48)

The complicated trigonometric structure of the above equations and also the dependence on

the Higgs-W mass ratio mH/m, which we take momentarily to be of order one, do not play

any role in the following discussion, for which we just need to focus on the m/E dependence

of the various terms. Denoting ε = m/E, we see that A+ and A− scale respectively as ε2

and ε4 while they were expected from power counting to be of order ε0. The suppression

of both A+ and A− can again be understood in terms of the amplitude cancellations in

massless gauge theories, after crossing, these amplitudes become respectively −+−−and

−−−−. The occurrence of the double cancellation in A− is instead unexplained.7 For

what concerns the validity of the EWA, the problem with the −+ + process is that both

7Notice that also the longitudinal amplitude A0 is suppressed in eq. (3.48), it scales like ε3 instead than
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the polarized subamplitudes that are expected to lead by power counting are canceled!

Because of that cancellation we cannot control the size of the corrections, which could,

in principle, be as big as the leading order, thus invalidating the EWA. Of course, the

price of the multiple cancellation is that the total amplitude is also canceled so that the

potential failure of the EWA in this particular helicity channel, which is subleading, would

not show up as a violation of the EWA if we compute only the unpolarized cross section.

The dominant helicity amplitudes, such as the + + + previously discussed, are by definition

not canceled, and the derivation of the EWA applies without caveats.

The message is then clear: our derivation of EWA, as we presented it in the previous

sections, does apply to polarized processes where at least one subamplitude is not sup-

pressed, and, a fortiori, for the total unpolarized cross section. However, at least in its

present formulation, our proof does not apply to polarized processes where a cancellation

occurs in all intermediate channels. Looking at table 1, where we collected the scaling with

ε = m/E of all the helicity amplitudes, we find that, up to parity and charge conjugation,

the polarized processes where our proof fails are −+ +, 0 + +, 00+ and −0+. The same

caveat could apply, a priori, also to the qq → q′q′W+
p1W

−
p2 polarized 2→ 4 processes. How-

ever, as table 1 shows, it never happens that all the helicity channels associated to the two

equivalent W ’s cancels simultaneously, there is always at least one channel which is not

canceled, i.e. of order ε0.

We stress that the above discussion only shows that our derivation is not valid in

some case, and not that the EWA must necessarily fail. It is not excluded that some

other mechanism, not taken into account in our approach, like for instance a cancellation

affecting the total (exact) 2 → 3 amplitude, suppresses also the corrections by the same

amount as the on-shell EWA amplitudes. To investigate the status of the EWA in the

potentially problematic channels we performed an explicit computation of δEWA along

the lines of the computation presented in section 2.2. The result is presented in figure 9

which shows that EWA is satisfied also by those 2→ 3 helicity channels where the leading

sub-amplitude is suppressed. We find this rather interesting because it means that the

diagrammatic methods employed in the previous section, in which the origin of helicity

induced cancellations is not transparent, does not capture entirely the essence of the EWA

and the reasons for its validity. This suggests that it might be worth looking for a non-

diagrammatic proof of the EWA, which would encompass also the “anomalous” processes.

Finally, we would like to use WW scattering to illustrate the possible enhancement

of the subleading corrections via a large ratio of couplings b, as discussed in the previous

section. Consider the 0 + 0 process, the subamplitudes are

A+ = g2 cot2 (θ/2) ,

A0 = −m
E
· g

2
(
2 +m2

H/m
2 + 3 cos θ

)
4
√

2 tan (θ/2)
,

A− =
m2

E2
· g

2
(
4 +m2

H/m
2 + 9 cos θ

)
8

. (3.49)

ε. This cancellation cannot be inferred by the standard MHV cancellations in the massless theory because

it involves the longitudinal polarizations. It corresponds, in the massless theory, to a cancellation of the

Goldstone amplitude with three gauge fields of −−− helicity (after crossing).
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Figure 9. Accuracy of EWA for the 2 → 3 process in eq. (2.12) as a function of kT /m for fixed

kinematics given by eq. (2.20). The helicities of the external W bosons are those that result in an

anomalous suppression of the sub-amplitudes involved in EWA as shown in table 1. The helicity

configuration in each process is {λ(W−in ), λ(W+
out), λ(W−out)} as indicated by the colored labels at

the right of the plot.

W out
+ , W out

− = + +

W in
+ W in

− Scaling

+ + ε0

0 + ε

− + ε2

+ 0 ε

0 0 ε2

− 0 ε3

+ − ε2

0 − ε3

− − ε4

W out
+ , W out

− = 0 0

W in
+ W in

− Scaling

+ + ε2

0 + ε

− + ε0

+ 0 ε

0 0 ε0

− 0 ε

+ − ε0

0 − ε

− − ε2

W out
+ , W out

− = +, −
W in

+ W in
− Scaling

+ + ε2

0 + ε

− + ε0

+ 0 ε

0 0 ε0

− 0 ε

+ − ε0

0 − ε

− − ε2

W out
+ , W out

− = 0 +

W in
+ W in

− Scaling

+ + ε

0 + ε0

− + ε

+ 0 ε2

0 0 ε

− 0 ε2

+ − ε

0 − ε2

− − ε3

Table 1. The table shows the scaling of the polarized amplitudes with the parameter ε = m/E for

ε→ 0. In the limit, the Higgs mass mH is kept constant and of order m. The missing combinations

can be obtained by exploiting the C and P symmetry of the W lagrangian.

Apart from the by now habitual m2/E2 cancellation which affects A−, the peculiarity of

this channel is that the Higgs quadrilinear coupling λ, which appears through the ratio

m2
H/m

2 ' λ/g2 ≡ b, does not contribute to all the subprocesses. In particular, it does

not contribute to the leading process A+. Therefore, if b � 1, the subleading process A0

is enhanced and this results in an enhancement of the relative corrections as explained in
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section 3.4. Equation (3.37) reads, in this particular case,

A0

A+
' m

E
b =

m2
H

Em
, (3.50)

which could be made parametrically large in the hypothetical situation of a very light

W boson.

4 Conclusions and outlook

In this paper we have discussed how, in an ideal experimental situation, it is possible to

access the scattering process of on-shell equivalent W bosons disentangling it from the

complete partonic interaction. We have shown that this can be achieved in the kinematic

regime of forward energetic jets, where the complete process factorizes as a hard scattering

convoluted with the collinear emision of the equivalent W boson. This is of course nothing

but a statement on the validity of EWA, which we have found to hold up to corrections

that scale quadratically with the hardness H of the W interaction. Quantitatively, the rel-

ative deviations can be typically estimated as Max[p2
⊥/H

2, m2/H2], with p⊥ the forward

jet transverse momentum. Actually, we have also found that the corrections could be en-

hanced, but only in very peculiar situations with, probably, a very limited practical impact.

Our work could be extended in several directions, some of which we will explore in

a forthcoming publication. First of all, we should quantify better the level of accuracy

of EWA in the practical experimental conditions of the LHC collisions. Notice that the

deviations from EWA are regarded, from our viewpoint, as systematic errors in the deter-

mination of the equivalent W boson cross section, thus it is crucial that they be kept under

control. On the theoretical side, we plan to complement the analysis of the present paper,

based on the axial gauge, with a covariant gauge derivation of EWA which presents several

interesting aspects. It would also be interesting, in the future, to extend the derivation

to higher orders in the perturbative expansion, including in the first place QCD radiative

corrections. Another result of our paper deserving further study is the derivation of a

generalized EWA formula, eq. (3.31), which provides a prediction of the totally differential

cross section. In particular it also describes the distribution of the forward jet azimuthal

angle, which is instead integrated over in the standard EWA.

Finally, one interesting aspect of our derivation is that it is definitely not complete

because it does not account for the validity of EWA in some peculiar polarized processes,

like those listed in section 3.5, which are affected by on-shell suppressions closely analogous

to the cancellation of tree-level polarized amplitudes in massless gauge theories. Since the

latter ones do not have a clear interpretation in terms of Feynman diagrams, it is not

surprising that dealing with such processes becomes cumbersome with our diagrammatic

methods. To go beyond, probably, a non-diagrammatic approach would be needed.
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