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Linewise Non-Rigid Point Cloud Registration
Miguel Castillón , Pere Ridao , Member, IEEE, Roland Siegwart , Fellow, IEEE,

and César Cadena , Member, IEEE

Abstract—Robots are usually equipped with 3D range sensors
such as laser line scanners (LLSs) or lidars. These sensors acquire
a full 3D scan in a line by line manner while the robot is in
motion. All the lines can be referred to a common coordinate
frame using data from inertial sensors. However, errors from noisy
inertial measurements and inaccuracies in the extrinsic parameters
between the scanner and the robot frame are also projected onto
the shared frame. This causes a deformation in the final scan
containing all the lines, which is known as motion distortion. Rigid
point cloud registration with methods like ICP is therefore not
well suited for such distorted scans. In this paper we present a
non-rigid registration method that finds the rigid transformation
to be applied to each line in the scan in order to match an existing
model. We fully leverage the continuous and relatively smooth robot
motion with respect to the scanning time to formulate our method
reducing the computational complexity while improving accuracy.
We use synthetic and real data to benchmark our method against a
state-of-the-art non-rigid registration method. Finally, the source
code for the algorithm is made publicly available.1

Index Terms—Autonomous vehicle navigation, non-rigid
registration, point set registration, range sensing.

I. INTRODUCTION

POINT set registration is typically used to process range
data coming from sensors mounted on robotic platforms,

such as laser line scanners (LLSs) or lidars. These sensors do
not acquire all the 3D points at once, but rather line by line. All
the lines can be referred to a common coordinate frame using
data from inertial sensors. However, errors from noisy inertial
measurements and inaccuracies in the extrinsic calibration are
also projected onto the shared frame. This causes a deformation
in the final scan containing all the lines, which is known as mo-
tion distortion. This distortion varies smoothly through the scan
lines: each scan line tends to have suffered a similar deformation
to its neighbouring lines (see Fig. 1(c)). Motion distortion is
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Fig. 1. Linewise non-rigid registration of real scans. The experiments (a)
were carried out with our underwater LLS [1], [2] mounted on the AUV
Girona1000 [3]. The 3D CAD model of the structure (b) was used as reference
model. Errors in navigation data result in scans affected by motion distortion
(c). Our method successfully finds the set of transformations to be applied to the
scan in order to fit the model (d).

especially relevant for sensors with low refresh frequency or for
robots with relatively high dynamics. In our case, we use an
underwater LLS [1], [2] with a typical scan density of 50 lines
per scan running at 1 Hz (50 lines per second). Since it only
takes around 20 ms to acquire all the points in each line, we can
safely assume in-line rigidity.

In order to undistort the scan, we can model the spatial
transformation T that needs to be applied to the scan point
cloud Y as a set of rigid transformations, one for each scan
line: T = {T1 . . . TL} for a scan made up of L lines. Thus, a
3D point y ∈ R3 in the l-th line of Y will be transformed by
the rigid transform Tl ∈ SE(3), with rotation Rl ∈ SO(3) and
translation tl ∈ R3, as Tl(y) = Rly + tl.

In this letter, we present a novel non-rigid registration algo-
rithm that fully leverages a priori knowledge on range sensors
to allow smooth inter-line deformation while keeping in-line
rigidity. This notably limits the space of feasible solutions and re-
sults in improved accuracy and reduced computational complex-
ity when compared to a state-of-the-art non-rigid registration
method. Furthermore, we offer an open-source implementation
of the method.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Contextualization: A great effort has been done in mobile
robotics in the last decade to obtain accurate and consistent 3D
data from range sensors mounted on moving platforms [4]–[6].
These works typically parameterize the robot trajectory using
a continuous representation, such as B-splines, rather than dis-
crete poses, which they aim to optimize by fitting observations
from the range sensor. This continuous-time SLAM formulation
presents the advantage of allowing an easy fusion of inertial and
range sensors, even if they are not perfectly synchronized, while
minimizing the motion distortion present in the scans.

However, these methods are based on the implicit assumption
that there is enough overlap between consecutive scans. This
assumption is met by terrestrial lidars but not by underwa-
ter LLSs. State-of-the-art underwater LLSs typically have a
maximum range of around 3 to 5 meters and a field of view
(FoV) of around 40◦ × 40◦ in realistic visibility conditions,
due to the high attenuation rate of visible light when travelling
through water [7]. Furthermore, autonomous underwater vehi-
cles (AUVs) need to keep a safe distance of at least 1 m during
real operations in presence of water currents to avoid crashing
into the scanned structure. As a consequence of these factors, it
is very common that a relatively high percentage of scans fail
at capturing enough informative points and can effectively be
considered as empty point clouds. Nonetheless, in the context of
missions performed by AUVs such as inspection of an industrial
underwater structure, the CAD model of the target to be scanned
is usually available. For all these reasons, our method considers
the non-rigid registration of one scan at a time against the point
cloud sampled from the model of the structure. The result of our
method is an undistorted point cloud, which may later be used in
downstream applications, such as structural damage assessment.
Please note that this approach is motivated by our application
but its applicability is not limited to the underwater inspection
case, since very few assumptions have been made during the
design of the algorithm.

II. RELATED WORK

Many point set registration approaches have been proposed
in the literature. They can be classified according to how they
i) find correspondences between point clouds and ii) model the
transformationT . This section provides a brief overview of point
set registration algorithms that are closely related to ours: more
precisely, only feature-less methods are considered.

Regarding the choice of correspondences, iterative closest
point (ICP) [8], [9] follows the very simple yet effective
approach of assigning the closest point at each iteration. This
is known as hard-assignment. Thanks to its simplicity and low
computational complexity, ICP is probably the most popular
registration method. One of the factors that severely limits the
performance of ICP is the existence of noise in the data points.
Probabilistic methods overcome this limitation by soft-assigning
a correspondence probability between each pair of points. The
first method to use soft assignment in point set registration
was robust point matching (RPM) [10]. The alternating soft-
assignment of correspondences and transformation in RPM is an
equivalent to the expectation maximization (EM) algorithm [11]
for a Gaussian mixture model (GMM), if we consider one of the
sets as GMM centroids and the other as data points [12]. As
a matter of fact, point set registration is modelled as a GMM
likelihood maximization problem in several methods [13]–[15].

These methods normally add an extra distribution to the GMM
in order to account for outliers.

Regarding the choice of the transformation T , registration
methods are typically classified into rigid and non-rigid. Rigid
methods (like ICP) assume that a rigid transformation is enough
to relate both point sets, whereas non-rigid methods allow de-
formation. Non-rigid registration is naturally more challenging
due to the increased number of degrees of freedoms (DoFs).
Therefore, it is common for non-rigid techniques to include a
regularization term in their cost functions to avoid overfitting.
Non-rigid methods usually parameterize the transformation with
local displacement fields, which typically use either thin plate
spline (TPS) [16] or Gaussian kernels. An example of the
former is [13], which combined them with RPM resulting in
TPS-RPM. Another example is the correlation-based approach
proposed in [17] and extended in [14], which models both
point sets as GMMs and estimates the TPS parameters by
minimizing the L2 norm between the distributions. One of the
arguably most popular non-rigid methods, coherent point drift
(CPD) [18], uses a Gaussian kernel to define the radius of the
local displacement field. CPD is related to motion coherence
theory [19], [20], which imposes the assumption that neigh-
bouring points tend to move similarly. Among its strengths, its
Gaussian kernel provides a free parameter to control the locality
of deformations. Moreover, the algorithm is designed to estimate
the Gaussian width within the minimization framework instead
of using deterministic annealing, which results in reportedly
shorter runtimes and better performance [18]. When compared
to the correlation-based method in [14], CPD effectively mini-
mizes the KL divergence between two distributions rather than
the L2 norm, which yields better results because it weighs
the error according to its probability [18]. Several variants of
CPD have been presented which focus on improving different
aspects of the algorithm. For instance, [21] improves registration
quality and robustness in applications where correspondence
priors are available by integrating them in closed form, [22]
uses efficient Gaussian filtering methods to achieve substantially
faster computational performance while maintaining robustness,
and [23], [24] propose a Bayesian approach that accelerates the
registration process and guarantees convergence.

Our method draws inspiration from CPD in modelling the
problem as a GMM and in parameterizing the regularization
term as a local displacement field ruled by a Gaussian kernel.
However, it differs from it in the parameterization of the trans-
formations T : we exploit the a priori knowledge of the working
principles of LLSs to reduce the dimensionality of the non-rigid
displacement field by imposing in-line rigidity.

Within the family of non-rigid methods that characterize the
deformation as a displacement field, CPD is the most common
method to compare against. Like ICP for rigid methods, CPD is
a simple and general method that can be set as a fair baseline for
comparison. Moreover, CPD has an open-source implementa-
tion that can be readily used. For these reasons, we selected it as
the non-rigid method against which we benchmark our algorithm
in Section IV.

III. METHOD

The goal of our method is to register two 3D point sets. The
model X is composed of N points, X = [x1 . . .xn . . .xN ]T ,
and the deformable point set Y contains M points, Y =
[y1 . . .ym . . .yM ]T . In fact, Y is assumed to be made up of L
lines, where line l hasPl points, with

∑
l Pl =M . The variables
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TABLE I
VARIABLES IN THE PROPOSED METHOD

TABLE II
SIZES OF THE AUXILIARY MATRICES

defined in this section are gathered in Tables I and II. Please note
that M � L.

The points in Y represent the centroids of a GMM, and the
points X represent data points generated by the GMM. In order
to account for outliers, we add an extra uniform distribution
to the model. The probability density function of the resulting
mixture is:

p(xn) = w
1

N
+ (1− w)

M∑
m=1

P (m)p(xn|m), (1)

with w, 0 ≤ w ≤ 1 weighting the outliers contribution. We
assign equal weights to all the components in the GMM:
P (m) = 1

M . All the normal distributions in the GMM
(p(xn|m) = N (xn|T (ym, ξ),Σm)) are assumed to have
equal, isotropic variances σ2:

p(xn|m) =
1

(2πσ2)3/2
exp

(
−||xn − T (ym, ξ)||2

2σ2

)
, (2)

where ξ are the updated centroids of the GMM. Given all
the observations X , the combined negative log-likelihood to
minimize is:

E(ξ, σ2) = −
N∑
n=1

log

M∑
m=1

P (m)p(xn|m) (3)

Due to the difficulty in directly minimizing E, we use the
expectation maximization (EM) technique instead. This method
consists on iterating over two steps. First, in the E-step we fix
the parameters (ξ, σ2) and compute the probability of every
possible correspondence. Then, in the M-step we fix these
correspondence probabilities and minimize a cost function. In
the E-step, we compute the probability that data point xn was

generated by the component m as its posterior probability:

pmn = P (m|xn) =
exp

(
−||xn−T (ym,ξ)||2

2σ2

)
∑M
m′=1 exp

(
−||xn−T (ym′ ,ξ)||2

2σ2

)
+ c

,

(4)
where c = w

1−w
M(2πσ2)3/2

N . Then, for the M-step we define the
expectation of the complete negative log-likelihood function
E [18]:

Q(ξ, σ2) =
1

2σ2

∑
n

∑
m

pmn||xn − T (ym, ξ)||2

+
3

2
NP log σ2, (5)

where NP =
∑
n

∑
m pmn. Jensen’s inequality states that Q is

an upper bound for E [25], so minimizing Q also minimizes
E. Up to this point, the derivation is the same as in [18].
However, our method proposes to define T as a set of L rigid
transformations. We still need to introduce a regularization term
in the objective function in order to apply the a priori knowledge
that transformations of neighbouring lines tend to be similar. We
can define this field as p : N �→ SE(3), which relates each line
index with a 6-DoF rigid transformation.2 In order to transform
centroid y, p is first evaluated at the line number of y, l:

T (y) = p(l)⊕ y, (6)

where the operator ⊕ denotes 3D composition [26]. Then, we
can introduce the regularization term φ(p) weighted with a
regularization parameter λ > 0:

Q(ξ, σ2) =
1

2σ2

∑
n

∑
m

pmn||xn − p(l)⊕ y||2

+
3

2
NP log σ2 +

λ

2
φ(p) (7)

The term φ(p) is introduced to ensure smoothness in the field
of rigid transformations. In our case, smoothness refers to a
measure of the oscillatory nature of the field p. In the frequency
domain, the field p can be said smooth if it has most of its energy
at low frequency (small bandwidth). Therefore, we can define
φ(p) as a measure of the remaining energy in p after applying
a high-pass filter to it [27]:

φ(p) =

∫ |p̃(s)|
G̃(s)

ds, (8)

where the symbol ˜ indicates the Fourier transform, and G̃ is
some positive function that tends to zero as ||s|| → ∞ (so that 1

G̃
is a high-pass filter), where s belongs to the complex frequency
domain resulting from the Laplace transform. The field p that
minimizes this energy in (8) has the form [28]:

p(l) =
L∑
k=1

wk G(l, k) + ψ(l), (9)

where ψ(l) is a term in the nullspace of φ. From the theory of
reproducing kernels [29] it is known that ifG is a positive definite
function, then (8) is a norm in its corresponding reproducing
kernel Hilbert space (RKHS). The key intuition behind this

2Please note that this field is different from the field v : R3 �→ R3 proposed
in [18].
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definition is that this squared norm of function φ can be thought
of as a generalization to functions of the quadratic form of an
n-vector [30]. Therefore, its nullspace contains only the zero
element: ψ(l) = 0. In order to meet this requirement, we choose
the radially symmetric Gaussian function:

G(l, k) = exp

(
− (l − k)2

2β2

)
, (10)

where the Gaussian width β controls the locality of the area in
which smoothness is applied. As explained in [18], this choice
of kernel agrees with motion coherence theory [19]. There, the
authors chose it because it has second order derivatives and it
generates analytic solutions.

If we stack wk and G(l, k) in (9) into matrices W and
G, respectively, we obtain: p(l) = glW and φ(p) = ||p||2H =
tr(W TGW ), where gl is the l-th row of G. Substituting in the
cost function:

Q =
1

2σ2

∑
n

∑
m

pmn||xn − glW ⊕ ym||2

+
3

2
NP log σ2 +

λ

2
tr(W TGW ) (11)

Please note that index l changes according to the line in the
scan to which the sum index m belongs. Now, our goal is to
find the weights W that minimize Q. In order to ease our task,
we separate the rotational from the translational components:
U and V , respectively. U are the first three columns of W , and
V the last three. We can then rewrite the distance function in
(11):

glW ⊕ ym = ymRot(glU)T + glV (12)

Please note that the rotation matrix is transposed because ym is
a row vector. Rotations are parameterized using the Euler angles
roll around x, pitch around y, and yaw around z, in ZY X order.
Moreover, we can also use the properties of the trace to rewrite
the regularization term in (11), tr(W TGW ) = tr(UTGU) +
tr(V TGV ), and we can define tl = glV andRl = Rot(glU),
so that the final cost function can be rewritten as:

Q =
1

2σ2

∑
n

∑
m

pmn||xn − (ymRT
l + tl)||2

+
3

2
NP log σ2 +

λ

2
tr(UTGU) +

λ

2
tr(V TGV )

(13)

subject to RT
l Rl = I and det(Rl) = 1, ∀ l ≤ L. Please note

that these two constraints are naturally observed in the con-
struction of each rotation matrix Rl out of Euler angles. In the
remaining of the section we show how to compute the weights
U and V that minimize the cost function in (13).

A. Solving for V

First, we solve for V by setting the corresponding partial
derivative of the cost function in (13) to zero. The resulting
expression is:(

σ2λIL×L + F T diag (P1N )FG
)
V

= F TPX − F T diag (P1N )Y DR
T , (14)

where P is the probability matrix made up of elements pmn,
IL×L is the L× L identity matrix, 1N is an N -vector of all

ones, R = [R1 · · · Rl · · · RL ], and

F = [diag (1P1
, . . . ,1PL

)] , (15)

Y D =

⎡
⎢⎣diag

⎛
⎜⎝

y1

...
yP1

,

yP1+1

...
yP1+P2

, · · ·

⎞
⎟⎠
⎤
⎥⎦ . (16)

The optimal V ((14)) can be rewritten as:

V = A−BRT , (17)

with A = ZF TPX , B = Z F T diag(P1N )Y D and
Z = (σ2λIL×L + F T diag(P1N )FG)−1.

B. Solving for U

The cost function ((13)) can be written in matrix form:

Q =
1

2σ2

[
tr
(
XT diag

(
P T1M

)
X

)
− 2tr

(
XTP TY R

)

+ tr
(
(Y R)

T diag (P1N )Y R

)]
+

3

2
NP log σ2

+
λ

2
tr(UTGU) +

λ

2
tr(V TGV ), (18)

whereY R is the registered point set:Y R = T (Y ) = Y DR
T +

Ft, with t = [t1 · · · tl · · · tL]T . In fact, Y R can be expressed as
a function of R:

Y R = C +DRT , (19)

whereC = FGA andD = Y D − FGB. Using (17) and (19)
and dropping out the terms that do not depend on U , (18) can
be rewritten as:

Q =
1

2
tr
(
RSRT

)
+ tr

(
TRT

)
+

λ

2
tr(UTGU), (20)

where S = λBTGB + 1
σ2D

T diag(P1N )D and T = −λAT

GB + 1
σ2 (diag(P1N )C − PX)TD. Please note that S is

symmetric. The optimal U that minimizes the cost function is
found by setting the corresponding partial derivative to zero:

∂Q

∂U
= JTR vec (RS + T ) + vec(λGU) = 0 (21)

The operator vec(·) flattens the matrix in column-major order.
The transpose of the jacobian JR is a sparse matrix computed
as:

JTR =

⎡
⎢⎢⎢⎢⎣

diag
(

vec(∂R1

∂φ ), . . . , vec(∂RL

∂φ )
)

diag
(
vec(∂R1

∂θ ), . . . , vec(∂RL

∂θ )
)

diag
(

vec(∂R1

∂ψ ), . . . , vec(∂RL

∂ψ )
)

⎤
⎥⎥⎥⎥⎦ (22)

The elements in JR are the jacobians of R with respect to roll,
pitch and yaw, respectively. Finally, (21) is solved numerically.

The optimal σ2 is found by setting the corresponding partial
derivative of (18) equal to 0:

σ2 =
1

3NP

[
tr
(
XT diag

(
P T1M

)
X

)
− 2tr

(
XTP TY R

)

+ tr
(
(Y R)

T diag (P1N )Y R

) ]
(23)
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Algorithm 1: Linewise Non-Rigid Registration.
1: Inputs: X , Y , λ > 0, β > 0, 0 ≤ w ≤ 1
2: Initialize: Y R = Y , σ2 = 1

3NM

∑
n

∑
m ||xn − ym||2

3: Build F , Y D, G : gij = exp(− (i−j)2
2β2 )

4: while not converged do
// E-Step:

5: pmn =
exp (− ||xn−yRm ||2

2σ2 )

w
1−w

M(2πσ2)3/2

N +
∑M

m′=1 exp (− ||xn−y
Rm′ ||2

2σ2 )

// M-Step:
6: A = ZF TPX , B = Z F T diag(P1N )Y D

7: C = FGA, D = Y D − FGB
8: S = λBTGB + 1

σ2D
T diag(P1N )D

9: T = −λATGB + 1
σ2 (diag(P1N )C − PX)TD

10: Solve U from JTR · vec(RS + T ) + vec(λGU) = 0
11: Build R
12: Y R = C +DRT

13: σ2 = 1
3NP

[tr(XT diag(P T1M )X)−
−2tr(XTP TY R) + tr((Y R)

T diag(P1N )Y R)]
14: end while
15: Return: Y R, T

The method presented in this section is summarized in
Algorithm 1. In comparison with CPD, both methods share the
same E-step (building the P matrix). However, the different
parameterization of the transformation T applied to the moving
point set Y makes the M-step different. It is worth noting that
our method does not optimize all the parameters (U , V , σ2) at
once but rather iteratively by means of partial derivatives. Such
iterations decrease the Q function but not to an exact minimum,
which is known as the generalized EM algorithm [11].

We followed the proposal in [18] to alleviate the compu-
tational burden of the E-step by using fast Gauss transform
(FGT) [31]3 to evaluate the Gaussian kernel and to compute
the matrix-vector products PX , P1N , and P T1M .

IV. RESULTS

This section presents the registration results of applying our
method to synthetic and real scans (Section IV-A and IV-B,
respectively). The tests were conducted using an Intel i7-9750H
CPU at 2.60 GHz with 16 GB of RAM. The C++ implementation
exploited parallelization on the 12 cores whenever possible.
Results of the proposed method were benchmarked against a
rigid and a non-rigid method. The chosen rigid method was
generalized ICP (G-ICP) [32]4. The chosen non-rigid method
was CPD5. Different performance aspects were quantitatively
evaluated, such as registration accuracy, robustness to noise, ro-
bustness to different types and amplitudes of deformations, and
runtimes. Throughout the experiments, all methods were given
identical, reasonably good initial guesses. In all the boxplots
presented in this section, the length of the whiskers represent
the 1.5 interquartile range of the data.

As already explained in Section I, our method has been
developed in the context of mobile underwater scanning. AUVs

3Implementation from https://github.com/gadomski/fgt
4Implemented in PCL https://pointclouds.org/documentation/classpcl_1_1_

generalized_iterative_closest_point.html
5Implementation from https://github.com/gadomski/cpd

Fig. 2. Three different examples of real distorted scans (before registration).
Each scan only covers a rather small area of the structure due to the limited FoV
of the LLS. The distortions present a smooth distribution.

Fig. 3. Registration process of simulated vertical scan lines (red) with an
incomplete version of the Stanford bunny model (blue) using the proposed
method.

are usually equipped with modern inertial navigation systems
(INSs), which are more accurate than inertial sensors mounted
on terrestrial robots, especially for measuring orientation. For
example, the INS mounted on Girona1000 has orientation errors
smaller than 0.10◦ around all three axes6 thanks to its high-end
fiber optic gyroscopes (FOGs). By examining the experimental
scans (such as Fig. 2) and the navigation data, it can be concluded
that the translational component of the distortion is predominant
over the rotational one. The synthetic dataset used in Section IV-
A was designed to be consistent with the experimental dataset
used in Section IV-B but with higher deformations: we applied
errors of tens of millimeters in translation and of up to 2◦ in
rotation (which is 20x higher than expected in reality). The
applicability of our method to realistic scenarios is proved by the
low registration errors in Section IV-B (for a visual example, see
the registration process from Fig. 1(c) to Fig. 1(d)). Please note
that the fact that we test our method on datasets relevant to our
use case does not shrink its applicability, since no assumption
was made in the design of the algorithm other than in-line
rigidity.

A. Synthetic Data

The proposed method was first validated using simulated
data from two different datasets: the Stanford bunny and an
underwater industrial site. The Stanford bunny was used to
visually verify the performance of the proposed method on a
well-known model. We simulated line scans and applied dif-
ferent, smoothly-changing rigid transformations to each line
(see Fig. 3(a)), following a sinusoidal function. As shown
through the iterations in the figure, the proposed method
achieved good results (see Fig. 3(e)). Despite the upper part

6https://www.ixblue.com/wp-content/uploads/2022/01/Phins%
20Compact%20Series%20-%20Datasheet.pdf

https://github.com/gadomski/fgt
https://pointclouds.org/documentation/classpcl_1_1_generalized_iterative_closest_point.html
https://pointclouds.org/documentation/classpcl_1_1_generalized_iterative_closest_point.html
https://github.com/gadomski/cpd
https://www.ixblue.com/wp-content/uploads/2022/01/Phins%20Compact%20Series%20-%20Datasheet.pdf
https://www.ixblue.com/wp-content/uploads/2022/01/Phins%20Compact%20Series%20-%20Datasheet.pdf
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Fig. 4. Challenging example of a synthetically generated scan registered against an incomplete model of the underwater pipe structure. The upper pipe and valve
are missing in the model but present in the scan. Figures (b)–(d) compare visually the registration results of ICP, CPD and our method. Black dots in these figures
show the ground truth.

Fig. 5. Synthetic benchmark based on 20 different simulated scans of the underwater pipe structure.

Fig. 6. Accuracy comparison for increasing levels of noise in the scan.

of the model being missing, the in-line rigidity enforced by our
method pulls the points without correspondences towards their
true position.

The presented method was also synthetically validated us-
ing a mock-up model of an underwater industrial site (see
Fig. 1(b)). The dimensions of the whole structure are approxi-
mately 3500× 2100× 1300 mm and it is made up of different
types of pipes and valves. The diameter of the pipes is of 60 mm.
The points for X were sampled from the model using a voxel
grid of 5 mm. This scenario was designed to be more realistic
and therefore challenging than the Stanford bunny. First, as it
can be seen in Fig. 4, the scan does not contain points that would
be occluded from a given point of view of the scanner: in this
case, the scanner is assumed to view the structure from above.
Second, points in the scan and in the model are subsampled
differently and therefore there are no direct correspondences.
Unless otherwise stated, the metric used in all the boxplots of
synthetic data is the 3D distance of each point to its ground truth
after registration. We use this metric because the main goal of

Fig. 7. Accuracy comparison for different deformation levels using two
different metrics.

our work is to minimize the distortion present in the scans. The
red lines in the boxplots refer to the median.

A visual example of how the three different methods compare
in this dataset can be found in Fig. 4. Note that in this case
only an incomplete subset of the model was considered in
order to test the robustness of the method: the upper pipe and
its valve are present in the scan but missing in the model. A
different rigid transformation was applied to each scan line.
The distribution of these transformations followed a sinusoidal
pattern, with a maximum distortions of 40 mm in translation and
2◦ in rotation. The boxplot in Fig. 4(e) shows how the proposed
method achieves a more accurate registration than ICP and CPD.
ICP naturally fails at registering the distorted scan because it
incorrectly assumes that all the points in it can be treated as a
rigid body (see Fig. 4(b)). CPD is able to accurately register
the points that are close to the visible parts of the structure.
However, it fails at registering the points corresponding to the
missing upper pipe and valve (see Fig. 4(c)). The reason for it is
that coherence in CPD applies to 3D distances between points,
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Fig. 8. Experimental benchmark based on 14 different scans of the underwater pipe structure.

Fig. 9. Comparison of a registration result of a real scan using both methods
(number 4 in Fig. 8). In this case, both methods achieve similar errors when
using the distance-to-model. However, our method maintains the structure of
the scan much better than CPD thanks to the in-line rigidity constraint.

irrespective of which line they correspond to. On the other hand,
our method exploits the fact that all the points in each line share
the same rigid transform, even if they are distant in 3D space.
This makes that the final registration result is closer to the ground
truth (see Fig. 4(e)).

1) Benchmark Ideal Conditions: Our method was bench-
marked against CPD on 20 simulated scans of the underwater
pipe structure (see Fig. 5). ICP was no longer considered because
it consistently achieved much worse results than the non-rigid
methods (see Fig. 4(e)). All the scans were noise-free and made
up of 20 lines. The structure did not have any missing parts.
The different scans featured different deformation shapes and
directions (always smooth), and different number of points per
line. The maximum deformation level was 40 mm in translation
and 2◦ in rotation, following a sinusoidal pattern. It can be seen in
Fig. 5 that the proposed method systematically outperforms CPD
in this diverse set of scans. The parameter values chosen for our
method were (β, λ, w) = (60, 80, 0.1), and equivalent values for
CPD. These values were chosen empirically on a subset of the
simulated data and it was observed that slight variations of up to
around 40% did not have a very noticeable impact on the results.
However, an automatic procedure to estimate these parameters
should be further studied, as proposed in Section V.

2) Robustness to Noise: The performance of our method in
presence of noise was compared to CPD in Fig. 6. The noise
was only applied to the 3D position of the points in scan and it
followed a normal distribution centered around 0 with increasing
values of standard deviation, as shown in the x axis. Our method
consistently yielded lower errors than CPD for all levels of noise.

3) Deformation Amplitude: The performance of both meth-
ods on relatively large deformations was studied in Fig. 7.
Considering for now only the columns with the label “Error”
in the figure, it can be seen that our method can successfully
register scans with deformations of 70 mm achieving errors
in the order of a few mm (please note that the diameter of

TABLE III
RUNTIME. FASTEST METHOD IS MARKED IN BOLD

the pipes is 60 mm). Our method once again outperforms
CPD.

4) Metric Comparison: Until now we have only worked with
synthetic data. The registration metric that we have used was
the final error with respect to the ground truth. However, this
ground truth is not available when working with experimental
data. One of the most commonly used metrics in that case
is the distance to the closest point in the model. This metric,
however, tends to underestimate the registration error because
it assigns low errors to points converging towards any point in
the model, even if far from their ground truth. This effect is
depicted in Fig. 7. For both levels of deformation, our method
outperforms CPD when we consider the error with respect to
the ground truth, as explained in Section IV-A3. If we use the
distance-to-model metric instead, both methods are assigned
lower errors, which can lead to false interpretations of the
results.

5) Runtimes: A comparison of runtimes for different sizes of
the scan and of the model can be found in Table III. It can be seen
how an increasing number of points per line affects CPD much
more than it does our method: a 5x increment in the number of
points per line (from 50 to 250) results in a 40x increment in CPD
runtime but only 3.5x increment for our method. Increasing the
number of points in the model has little effect in both of them,
mainly thanks to the use of FGT in the E-step of both. Finally,
increasing the number of lines in the scan affects both CPD and
our method: doubling the number of lines (from 20 to 40) results
in a similar increment in runtime for both methods.

B. Real Data

The proposed method was also validated on real data. The
data was gathered in a set of experiments carried out in the water
tank at the CIRS lab using our recently developed underwater
scanner [2] mounted on Girona1000 [3] (see Fig. 1(a)). The goal
of the experiments was to navigate around the structure in the
figure while acquiring 3D data. Each scan line was projected to
the world reference frame using data from the INS in the robot.

Out of these experiments, a set of 14 scans was established
to benchmark our method against CPD (see Fig. 8). The metric
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used in this figure is the distance to the closest point in the
model. The magnitude of the errors of both methods is larger
than in the synthetic dataset, mainly due to experimental errors
such as small geometric discrepancies between the model and
the real structure. In any case, our method consistently outper-
forms CPD, achieving final reconstruction errors in the order
of a few mm. The parameter values chosen for our method
were (β, λ, w) = (40, 100, 0.1), and equivalent values for CPD.
These values were chosen empirically on a subset of the sim-
ulated data. A more robust method to determine these values
according to the actual deformation of the scans should be further
investigated (see experiments 1 and 11 in Fig. 8).

In order to better understand these results, we present a visual
comparison of both registration methods in Fig. 9. We see that
both methods can fit the model relatively well. However, our
method successfully maintains the global topology of the scan
by enforcing rigidity of points belonging to the same line. On
the other hand, CPD achieves low distance to model but fails at
maintaining straight scan lines (please bear in mind the effect of
the distance metric, as explained in Section IV-A4).

V. CONCLUSION

In this work we propose a novel non-rigid registration algo-
rithm that fully leverages on knowledge of the working princi-
ples of 3D scanners used by robots. We proved using synthetic
and experimental data that our method is able to outperform
state-of-the-art non-rigid registration methods, achieving higher
accuracy with a lower computational complexity. Moreover, we
have made the source code publicly available. Future work in
this line of research may involve making our method more
robust to relatively bad initial guesses, and including a way
of automatically estimating the needed parameters. Finally, the
results of applying this algorithm in real robotic scenarios can
be used as observations in a SLAM framework or to refine the
extrinsic calibration parameters of the scanner.
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