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The angular orientation of an anisotropic scatterer with cylindrical symmetry in a linearly polarized light
field represents an optomechanical librator. Here, we propose and theoretically analyze an optimal measurement
scheme for the two angular degrees of freedom of such a librator. The imprecision–back-action product of this
scheme reaches the Heisenberg uncertainty limit. Furthermore, we propose and analyze a realistic measurement
scheme and show that, in the absence of spinning motion around the symmetry axis, measurement-based ground-
state cooling of the rotational degrees of freedom of an anisotropic point scatterer levitated in an optical trap is
feasible.

DOI: 10.1103/PhysRevA.105.053504

I. INTRODUCTION

At the heart of optomechanics lies the task of measuring
and controlling mechanical motion using light [1]. To a large
extent, the optomechanics community has focused on transla-
tional degrees of freedom, such as the position of a mirror [2],
of a nanomechanical membrane [3], or of a particle in an
optical trap [4]. Recently, rotational degrees of freedom of
anisotropic particles levitated in optical and radio-frequency
traps have attracted significant attention [5–9]. A dumbbell,
composed of two identical spherical particles in touching con-
tact, is an example of an anisotropic scatterer. In a linearly
polarized laser field, dumbbells align with their long axis
along the polarization direction due to the exerted optical
torque. For small angular deviations around the equilibrium
position, this angular motion represents a harmonic oscillator
degree of freedom, termed libration. Gaining quantum con-
trol of these libration modes is an exciting prospect [10–14]
since it may allow the investigation of quantum coherent
evolution of the rotational degrees of freedom of macro-
scopic objects [15–17]. Accordingly, a quantum toolbox of
rotational motion may provide an avenue that complements
current efforts to investigate macroscopic superposition states
using the center-of-mass motion of levitated particles [18].
Another prospect of optically levitated rotors is to harness
them as torque sensors to investigate the elusive physics of
rotating bodies, such as the rotational Casimir effect and
vacuum friction [19–22]. Those developing levitated librators
into a quantum resource can take inspiration from the mea-
surement and control schemes developed for center-of-mass
modes [23,24]. One of the crucial ingredients for quantum
control of these modes has been the optimization of their
optical detection [25]. While the first steps to measure and
feedback control the libration modes of levitated nanoparti-
cles have been taken [8,26], an understanding of the optimal

detection process for the orientation of an optically levitated
dumbbell is still missing.

In this paper, we analyze the detection of the librational
motion of a lossless dipolar point scatterer with cylindrical
symmetry (such as a dielectric nanodumbbell) in a linearly po-
larized laser field. First, we propose and theoretically analyze
an ideal detection system to measure both angular degrees
of freedom. We show that the imprecision–back-action prod-
uct of our measurement scheme reaches the limit set by the
Heisenberg uncertainty relation and is thus optimal. Second,
we propose and analyze a realistic detection scheme that has
the potential to allow for measurement-based ground-state
cooling of librational motion.

II. SYSTEM UNDER INVESTIGATION

Throughout this work, we consider an absorption-free
anisotropic dipolar point scatterer with cylindrical symmetry
described by its polarizability tensor α

↔. For a scatterer with
vanishing material loss in the optical frequency range of in-
terest, the imaginary part of the polarizability (which is due
to radiation loss) is negligible for our purposes, such that α

↔

can be taken as purely real. In a frame of reference with the
space-fixed Cartesian x axis aligned with the scatterer’s body-
fixed symmetry axis, the polarizability takes the form α

↔ =
α0diag[1, 1 − �, 1 − �] [13]. Here, α0 is the polarizability
along the scatterer’s symmetry axis, while � < 1 character-
izes the anisotropy of the scatterer. An example of such a
scatterer of particular practical relevance is the workhorse
of rotational optomechanics, a dumbbell composed of two
touching subwavelength spheres, as illustrated in Fig. 1(a).
The scatterer is irradiated by a light field (angular frequency
ω0), which is linearly polarized along x at the location of
the scatterer and has amplitude E0. We note that only the
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FIG. 1. (a) Asymmetric scatterer with cylindrical symmetry de-
picted as a dumbbell composed of two touching spheres. The
orientation of the dumbbell is described by the orientation of its
axis of symmetry, illustrated by the dashed arrow. (b) Illustration of
the coordinate system. The space-fixed laboratory frame is described
by the Cartesian coordinate axes x, y, and z. The orientation of
the dumbbell (shown as the dashed arrow) can be described by the
orientation of its symmetry axis relative to the space-fixed Cartesian
axes. Small deviations of this symmetry axis from the Cartesian x
axis can be described by the rotation angle δ around the z axis and
the rotation angle ε around the −y axis. (c) Illustration of optimal
detection scheme for the angle ε. The dumbbell is driven by an
x-polarized field, exemplarily illustrated in red as a beam of light
traveling along the z axis. The tilt by ε gives rise to an induced dipole
moment along z. The field Esc generated by that z-oriented dipole
(illustrated in green) populates the mode u(z). For optimal detection,
that scattered field is mixed with a strong local oscillator field Eε

lo

in the same dipolar radiation mode (illustrated in yellow). The field
intensity is measured on a 4π detector, illustrated as the dashed black
line.

driving field at the scatterer position is of relevance and the
mode shape of the driving field plays no role. The scatterer
experiences a torque aligning its long axis with the polariza-
tion direction of the field. In this aligned situation, the dipole
moment induced in the scatterer by the driving field points
purely along the x direction and is given by px = α0E0. We are
interested in measuring the angular deviation of the scatterer’s
orientation from this equilibrium position.

For small angular deviations, it is sufficient to consider
rotations around the space-fixed Cartesian y and z axes. Ac-
cordingly, the orientation of the scatterer is fully described by
two angles δ and ε, where δ denotes a rotation of the scatterer
around the z axis and ε denotes a rotation around the −y axis,
as illustrated in Fig. 1(b). Note that a third rotation around the
x axis does not appear due to the symmetry of the scatterer.
For small angles δ and ε, the order in which these rotations
are effected is irrelevant. The induced dipole moment (in the
space-fixed Cartesian frame) is then p = RzR−yα

↔RyR−zE0nx,

with the rotation matrices Rz (around the z axis by δ) and Ry

(around the y axis by ε) and the Cartesian unit vector nx. To
linear order in angles δ and ε, we find p = [1,�δ,�ε]α0E0.
With px being the component of the dipole moment along
the polarization direction, we can thus express the remaining
components of the dipole moment as py = �δpx and pz =
�εpx.

III. IDEAL MEASUREMENT SYSTEM

The central question answered in this paper is the fol-
lowing: how can we optimally infer the orientation of the
anisotropic scatterer (i.e., angles δ and ε) in a linearly po-
larized electromagnetic field? In other words, we seek to
determine the orientation of a radiating dipole with dipole
moment p by analyzing its radiation field.

In a rotating frame at the optical laser frequency ω0, we
can write the complex electric far field generated by the dipole
p = [px, py, pz] in spherical space-fixed coordinates as [27]

Esc(r, θ, φ) = ω2
0

ε0c2

eikr

4πr
G
↔

p, (1)

where ε0 is the vacuum permittivity and c is the speed of light
in vacuum. We denote the column vectors of the Green’s ten-
sor G

↔
as G

↔ · ni = √
8π/3 u(i), where ni are the (space-fixed)

Cartesian unit vectors (i ∈ {x, y, z}). The polarization u(i) of
the field emitted by a dipole oriented along Cartesian axis i is
given by [27]

u(i) =
√

3

8π
[(ni · nθ )nθ + (ni · nφ )nφ], (2)

where nθ is the space-fixed unit vector along the polar di-
rection (relative to the z axis) and nφ is the one along the
azimuthal direction. These dipolar modes are orthogonal in
the sense that ∫

d
 u(i) · u( j) = δi j, (3)

where the integral is over the full solid angle and δi j denotes
the Kronecker delta. Integrating the intensity (ε0c/2)|Esc|2
over the surface of a sphere yields the total scattered power
P0 = ω4

0α
2
0E2

0 /(12πε0c3) to linear order in ε and δ. In the
following discussion, it is sufficient to analyze the fields on
the surface of a sphere centered at the origin with some large
radius R. To ease our notation, we renormalize the electric
field on this reference sphere and define

E sc(θ, φ) :=
√

ε0c

2
Re−ikREsc(R, θ, φ)

= √
P0(u(x) + �δu(y) + �εu(z) ). (4)

Integration of this field’s modulus squared over the full
solid angle yields the total scattered power P0 = ∫

d
 |E sc|2.
Throughout this paper, electric fields (in V/m) are denoted by
E, while the renormalized fields (in

√
W) are denoted by E .

According to Eq. (4), the information about angles δ and ε

is encoded in the amplitudes of the u(y) and u(z) dipolar modes,
respectively. In order to extract these amplitudes and infer the
scatterer’s orientation, we use the homodyne detection scheme
illustrated in Fig. 1(c). In this scheme, we combine the signal
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field E sc with a local oscillator (LO) field, with an amplitude
much larger than that of the signal. In Appendix A, we show
explicitly that an LO field in the same mode as the signal field
maximizes the signal-to-noise ratio on the detector. Thus, we
choose

Eδ
lo =

√
Plo u(y) (5)

as our LO field for measuring δ and Eε
lo = √

Plo u(z) for mea-
suring ε. To keep our discussion of the ideal measurement
scheme accessible, we consider a measurement of either δ or ε

at one time. Nevertheless, we stress that one can, in principle,
measure both angles simultaneously since their associated
radiation modes are orthogonal according to Eq. (3).

The power measured by our detector dedicated to the angle
δ then reads

Pδ
det =

∫
d


∣∣Eδ
lo + E sc

∣∣2 = Plo + 2
√

PloP0�δ, (6)

where we assumed P0 � Plo. The signal Pδ
det indeed provides a

linear measurement of the orientation angle δ, as desired. An
analogous calculation for Pε

det yields an expression identical
to Eq. (6), with δ replaced by ε. Assuming that the noise on
our detector is dominated by photon shot noise with power
spectral density SPP = h̄ω0Plo/(2π ) (h̄ is the reduced Planck
constant, and ω0 is the optical frequency) [28], we find the
measurement imprecision

Sδδ = Sεε = 1

2π

1

�2

h̄ω0

4P0
. (7)

Here, Sδδ and Sεε denote the power spectral densities (PSDs)
of the measurements of δ and ε, respectively [29]. In
Appendix A, we provide a generalized treatment for the mea-
surement imprecision of any linear measurement limited by
photon shot noise. There, we provide a quantum-mechanical
derivation of SPP.

With Eq. (7), we have derived the measurement impreci-
sion of our detection scheme for the angular orientation of
an anisotropic dipolar scatterer in a linearly polarized electro-
magnetic field. Equation (7) shows that the imprecision noise
scales inversely with the number of photons scattered per unit
time, which is given by P0/(h̄ω0). This behavior is well known
for any linear measurement limited by photon shot noise.
Furthermore, the imprecision noise scales inversely with the
(square of the) optical anisotropy �. Indeed, for an isotropic
scatterer with � = 0, the measurement imprecision diverges
since the scattered field cannot provide any information about
the scatterer’s orientation.

Finally, we note that in a realistic scenario, a dumbbell will
possess at least some slight deviation from perfect cylindrical
symmetry. In this case, the orientation vector (δ, ε, ϕ) must be
considered three-dimensional, with ϕ being the rotation angle
around the long axis of the dumbbell. In Appendix B, we show
that to linear order in the orientation (δ, ε, ϕ), the scattered
field does not depend on the rotation ϕ. In addition, the cor-
rection of the detector signal, Eq. (6), due to the rotation ϕ is
suppressed by the factor �′/� � 1, where �′ characterizes
the small anisotropy between the scatterer’s short axes. In
conclusion, we can safely neglect any deviation from a perfect
cylindrical symmetry due to its small effect on our result.

IV. MEASUREMENT BACK-ACTION

Having determined the imprecision of our measurement
scheme for the orientation angles δ and ε of the anisotropic
scatterer, we now turn to an analysis of the measurement
back-action. This back-action arises as a torque noise driv-
ing the rotational motion of the scatterer and was derived
previously [13,30,31]. To make this paper self-contained, we
provide a particularly simple and didactic treatment here.

The system under consideration is still the anisotropic scat-
terer with polarizability α

↔ = α0diag[1, 1 − �, 1 − �], with
its long axis aligned to an x-polarized electric driving field, as
outlined in Sec. II. The instantaneous torque τ(t ) experienced
by a dipole moment ptot(t ) interacting with an electric field
E tot(t ) is given by [32]

τ(t ) = ptot(t ) × E tot(t ). (8)

Throughout this section, ptot(t ) and E tot(t ) are real-valued,
time-dependent quantities. As before, all vectors are in the
space-fixed Cartesian frame. We split the electric field into the
deterministic driving field E(t ) = E0 cos(ω0t )nx and a fluctu-
ating background field Ẽ(t ) = [Ẽx(t ), Ẽy(t ), Ẽz(t )], such that
the total field reads E tot(t ) = E(t ) + Ẽ(t ). Throughout this
work, we denote fluctuating quantities with a tilde and as-
sume they are statistically stationary, random variables of zero
mean. The total dipole moment of the scatterer is ptot(t ) =
α
↔E tot(t ), where we approximated the polarizability α

↔ as
purely real and given by its value at the optical frequency ω0.

We are interested in the fluctuating optical torque τ̃(t ),
which to first order in the field fluctuations reads

τ̃(t ) = α0E(t ) × Ẽ(t ) + [α↔Ẽ(t )] × E(t )

= α0E0� cos(ω0t )

⎛
⎝ 0

−Ẽz(t )
Ẽy(t )

⎞
⎠. (9)

This expression was derived at the equilibrium position δ =
ε = 0. The next order correction in δ and ε is much smaller
and can be neglected. We thus find for the PSD of the y
component of the torque fluctuations τ̃y

Syy
ττ (ω) = 1

2π

∫ ∞

−∞
dt ′ 〈τ̃y(t + t ′)τ̃y(t )〉 eiωt ′

= α2
0E2

0

4
�2

[
Szz

EE (ω + ω0) + Szz
EE (ω − ω0)

]
, (10)

where Szz
EE (ω) is the PSD of Ẽz(t ) and the angle brackets de-

note ensemble and time averaging. An analogous expression
is obtained for Szz

ττ (ω), which depends on Syy
EE (ω). Note that in

Eq. (9), both τ̃(t ) and Ẽ(t ) could be Hermitian quantum op-
erators or classical, real-valued random processes with PSDs
Sii

ττ (ω) and Sii
EE (ω), i ∈ {x, y, z}, respectively. In both cases, in

the experimentally accessible regime of |ω| � ω0, the PSDs
of the torque fluctuations arise from the symmetric part of the
field PSDs, which in vacuum are given by [33]

1

2

[
Sii

EE (ω0 + ω) + Sii
EE (−ω0 + ω)

]

≈ 1

2

[
Sii

EE (ω0) + Sii
EE (−ω0)

] = h̄|ω0|3
12π2ε0c3

. (11)
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In quantum theory, these field fluctuations can be seen as
being a consequence of the fact that the ladder operators
describing the electromagnetic field do not commute. In the
framework of stochastic electrodynamics, these correlations
are postulated to originate from a classical electromag-
netic background field chosen such that each mode at
frequency ω carries energy h̄ω/2 [34,35]. With these cor-
relations for the fluctuating fields, the scattered power
P0 = ω4

0α
2
0E2

0 /(12πε0c3), and the assumption |ω| � ω0, the
PSDs of the fluctuating torque components τ̃y and τ̃z read

Syy
ττ = Szz

ττ = 1

2π
�2h̄2 P0

h̄ω0
. (12)

The x component of the torque fluctuations vanishes, accord-
ing to Eq. (9), such that we have Sxx

ττ (ω) = 0.
Let us compare our result for the torque noise to the lit-

erature. Seberson and Robicheux derived the energy heating
rate Ė for a librator due to photon shot noise [31]. When
converting our result for the torque noise to an energy heat-
ing rate according to Ė = πSττ /I [28,36], we recover the
result given in Ref. [31]. We note that the simple relationship
between the torque noise and energy heating rate assumes
simple harmonic oscillator dynamics of the libration mode.
The situation is more involved when the scatterer spins around
its axis of symmetry, which gives rise to a coupling of the
libration modes [8,14].

Let us interpret Eq. (12). The measurement back-action is
proportional to the total number of photons scattered per unit
time P0/(h̄ω0) since the photons are the source of the recoil
torque. Since each photon carries an angular momentum of h̄,
the measurement back-action (which scales with the torque
variance) is proportional to h̄2. Finally, the (square of the)
optical anisotropy � enters Eq. (12) since an optical field
cannot exert any torque on a lossless scatterer with vanishing
anisotropy.

As an aside, we note that our treatment provides inter-
esting insight into the role of classical noise, which may be
present in the (x-polarized) driving laser. Such classical laser
noise would increase Ẽ beyond the level set by the vacuum
fluctuations in Eq. (11). Interestingly, while the (vacuum)
fluctuations in the y and z components of the electric field
dominate the torque fluctuations according to Eq. (9), driving
laser fluctuations Ẽx make no appearance, such that classi-
cal laser noise does not lead to torque noise to linear order.
For this reason, optomechanical systems based on levitated
dipolar scatterers are particularly resilient to classical laser-
intensity noise. Classical noise that does indeed enter Eq. (9)
is polarization noise. In contrast to classical intensity noise,
polarization noise is easier to combat in practice since it can
be suppressed with purely passive optical components.

As a further side note, our treatment provides some fun-
damental insight into how to engineer the torque shot noise
acting on the anisotropic scatterer. Equation (9) shows that
τ̃y depends exclusively on the vacuum fluctuations along the
z direction Ẽz at the origin. To understand how to gain full
control over that field component, it is instructive to consider
the field impinging onto the scatterer in an expansion into
vector spherical harmonics [37,38]. In this basis, the only
mode leading to a finite electric field along z at the origin
is the dipole mode u(z). Therefore, it is only the noise in

LO

z
y

x

�

�

FIG. 2. Realistic detection scheme. A dumbbell (long axis along
x) is trapped in an x-polarized field. The scattered field is collected in
the forward direction and mixed with a strong y-polarized local os-
cillator (LO) before it is measured on a detector split into two halves
along the xz plane. The sum signal gives access to the orientation
angle δ, while the difference signal is proportional to the angle ε of
the dumbbell.

this mode which heats the libration angle ε. To modify most
efficiently the shot-noise heating of this libration mode using
squeezing, one therefore must feed a squeezed vacuum into
the incoming u(z) mode. The effect of squeezing any other
mode, e.g., the trapping beam, is limited by its mode overlap
with u(z). In analogy, for efficient suppression of shot-noise
heating of angle δ, the dipolar mode u(y) must be squeezed.

Returning to our problem of optimal orientation detection,
let us review our findings so far. In Sec. III, we computed
the measurement imprecision of our optimal measurement
scheme for angles δ and ε, given by Eq. (7). In this section,
we have derived the measurement back-action (12) experi-
enced by the scatterer due to the interference of the strong
driving field with the electromagnetic vacuum fluctuations.
Importantly, the product between the measurement impreci-
sion and the back-action yields the Heisenberg uncertainty
limit according to [28]

Szz
ττ × Sδδ = Syy

ττ × Sεε = 1

4π2

h̄2

4
. (13)

Thus, the measurement scheme presented in Sec. III indeed
represents an optimal scheme to resolve the angular orienta-
tion of the scatterer.

V. REALISTIC MEASUREMENT SCHEME

The measurement scheme presented in Sec. III has been
proven to be ideal, although it is hardly practical. In this sec-
tion, we analyze a simple and thus realistic detection scheme
and quantify its efficiency. In our realistic scenario, illustrated
in Fig. 2, the scatterer is again trapped by an x-polarized beam
propagating along the positive z axis. The trapping beam is
focused by a trapping lens and recollimated by a collection
lens. These lenses also collect the scattered light. Accord-
ing to Eq. (4), the information about the orientation angles
δ and ε is contained in dipolar radiation modes which are
symmetric with respect to the xy plane. Therefore, detection in
the forward direction and detection in the backward direction
have equal detection efficiency. Here, we choose to place our
detector in the forward direction, but we note that the treat-
ment of the scheme in backscattering is analogous. A strong
y-polarized reference field serving as a LO interferes with the
field collimated by the collection lens. This LO field is as-
sumed to be spatially homogeneous across the numerical aper-
ture of the collection lens and in phase with the signal field.

053504-4
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We stress that it is far from optimal to harness the transmit-
ted trapping beam as a local oscillator, an observation made al-
ready in Ref. [14]. Our objective is to determine the amplitude
of the scattered field, which encodes the orientation angles
δ and ε. However, due to the Gouy phase shift in a focused
field, the scattered field and the transmitted trapping beam are
in different quadratures and therefore are set up to detect the
phase of the signal field, not its amplitude [39]. The trans-
mitted trapping beam thus only generates shot noise on the
detector, without providing any information to linear order.
When detecting in the forward direction, one should therefore
either dump the trapping beam with a polarizing beam splitter
or use an LO which is much stronger than the transmitted
trapping beam, as we assume in our discussion and in Fig. 2.

For mathematical convenience, we treat the interference of
the LO field with the scattered field on the reference sphere
of the collection lens. When collimated, the LO field has the
polarization vector ny = sin(φ)nρ + cos(φ)nφ in cylindrical
coordinates (ρ, φ, z). According to the rules of field focusing,
as laid out in Ref. [27] (Chap. 3), on the lens’ reference sphere
this field takes the form

E lo =
√

Plo

πNA2 cos θ [sin φ nθ + cos φ nφ] (14)

in spherical coordinates (r, θ, φ). We use the complex notation
and normalization introduced in Sec. III, such that integration
of the LO field’s modulus squared over the reference sphere
within the numerical aperture NA = sin θm (given by the max-
imum collection angle θm) yields the total power in the LO
beam Plo.

To quantify the performance of our realistic measurement
scheme for angle δ, we must analyze its imprecision noise Sre

δδ

and compare it to that of the ideal measurement Sδδ , given
by Eq. (7). The relevant figure of merit is thus the detection
efficiency ηδ = Sδδ/Sre

δδ . An analogous treatment must be car-
ried out for angle ε. As detailed in Appendix A, the detection
efficiencies associated with the measurements of δ and ε are
given by the overlap integral between the chosen LO field
Eq. (14) and the signal field Eq. (4). According to Eq. (A9),
we find for the angle δ the detection efficiency

ηδ = 1

Plo

(∫
d
 u(y) · E lo

)2

= 3U 2

8π2NA2 , (15)

with

U (θm ) =
∫ 2π

0
dφ

∫ θm

0
dθ sin θ

√
cos θ

× [cos θ sin2 φ + cos2 φ]

= 2π

15

[
8 − 3 cos

5
2 (θm ) − 5 cos

3
2 (θm )

]
. (16)

In Fig. 3, we plot the detection efficiency ηδ as a function
of numerical aperture as a solid blue line. To quantify the
price we pay for the practicability of the realistic detection
scheme, it is instructive to consider the detection efficiency for
an NA of unity, for which we find ηmax

δ = 32/75. This result
is remarkably close to the value of one half provided by ideal
detection in a single half-space. The deviation from the opti-
mal result arises from the imperfect overlap of the LO field (a
plane wave) with the signal field (radiation field of a dipole).

0

0.2

0.4

0 0.4 1
NA

0.2 0.80.6

FIG. 3. Detection efficiencies ηδ (blue solid line) and ηε (orange
dashed line) of our realistic detection scheme according to Eqs. (15)
and (17) as a function of the numerical aperture (NA) of the col-
lection lens. The black dashed horizontal line marks η = 1/9, the
detection efficiency required to feedback cool to a phonon occupation
number n = 1.

Having analyzed the detection efficiency for the angle δ,
let us turn to the angle ε, which is encoded in the mode u(z),
whose field strictly points along nθ . When projected onto the
local oscillator Eq. (14), the overlap integral contains the term
sin φ, such that integration of φ over the domain [0 · · · 2π ]
yields a vanishing signal. Therefore, we split the detector into
an “upper” half in the range φ = [0 · · · π ] and a “lower” half
corresponding to φ = [−π · · · 0] (see Fig. 2). While summing
the signals from these two halves leads to the detection of the
angle δ, as discussed, subtracting the signals provides access
to the angle ε. We thus find for the detection efficiency of the
angle ε

ηε = 6V 2

π2NA2 , (17)

with

V (θm ) =
∫ θm

0
dθ sin2 θ

√
cos θ. (18)

We plot ηε by an orange dashed line in Fig. 3. We note
that ηε is consistently lower than ηδ . This observation can
be explained by two reasons. First, the angle ε gives rise to
a dipole moment induced in the scatterer pointing along z.
This dipole radiates predominantly into the xy plane, such that
the signal is poorly captured by a collection optic of finite
numerical aperture positioned along the z axis. Second, even
at a numerical aperture of unity, the overlap of the y-polarized
LO field (or any other linearly polarized LO field) with the
radiation mode u(z) of the z dipole is rather poor.

It is possible to double the detection efficiency for ε in the
forward direction by splitting the field at a polarizing beam
splitter into the y component (and using a y-polarized local
oscillator to interfere with it, as discussed) and the x compo-
nent, which has to be interfered with by an x-polarized local
oscillator. Due to the symmetry of the problem, the detector
for the x component should be split into “left” and “right”
halves. As already mentioned, a technical difficulty arises in
forward scattering because the transmitted trapping field is x
polarized, such that the local oscillator in that polarization
direction has to be much stronger than the trapping field. In
backscattering, this technical problem is absent.
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Let us discuss the consequences of our findings for
measurement-based quantum control of libration modes of
levitated nanoparticles. While a dumbbell spinning around its
symmetry axis shows intricate dynamics, the libration modes
reduce to two uncoupled harmonic oscillators in the absence
of a spinning motion [14]. Here, we analyze the cooling per-
formance that can be expected from linear feedback control
for harmonic-oscillator degrees of freedom, i.e., a librating
particle that does not spin around its axis of symmetry. For
any harmonic oscillator, in a regime where the dominant
heating rate is due to measurement back-action, linear feed-
back control allows for cooling to a mean phonon occupation
n = (η−1/2 − 1)/2, limited by only the detection efficiency
η [3]. Accordingly, cooling to phonon occupation of unity (re-
garded as “ground-state cooling” by the community) requires
a detection efficiency of 1/9, which is marked by the black
dashed horizontal line in Fig. 3. At a realistically achievable
numerical aperture of 0.9, we find for the angle ε a detection
efficiency ηε = 0.07 and an associated phonon occupation
nε = 1.4. For the angle δ, we find ηδ = 0.31, allowing for
cooling to phonon occupation nδ = 0.4. Therefore, cooling
the δ libration mode to its quantum ground state appears
feasible with our realistic detection scheme. One should keep
in mind that our estimation is rather conservative given that
the detection efficiencies plotted in Fig. 3 can be significantly
improved with some additional technical overhead. The ef-
ficiency ηδ can be doubled by implementing both a forward
and backward detection system. Furthermore, the efficiency
ηε plotted in Fig. 3 can be quadrupled by implementing
both a forward and backward detection system and analyzing
both polarization components. Therefore, regarding the per-
formance of a feasible detection scheme, ground-state cooling
of librational motion appears within experimental reach.

VI. CONCLUSION

In conclusion, we have theoretically analyzed the problem
of measuring the orientation of an asymmetric scatterer with
cylindrical symmetry in a linearly polarized light field. We
have devised an optimal detection scheme for each of the two
angles describing the scatterer’s orientation, and we have ana-
lyzed the associated measurement imprecision. To prove that
our measurement scheme is optimal, we have derived the as-
sociated measurement back-action and demonstrated that the
imprecision–back-action product meets the Heisenberg uncer-
tainty limit. Furthermore, we have proposed and analyzed a
realistic detection scheme. The efficiency of our realistic mea-
surement scheme is sufficient to allow for measurement-based
feedback cooling of one angular degree of freedom of an
anisotropic optically levitated particle to its quantum ground
state of motion in the absence of spinning motion around
the symmetry axis. With some additional technical overhead,
ground-state cooling of both angular degrees of freedom is
within reach.
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APPENDIX A: GENERALIZED LINEAR MEASUREMENT

In this Appendix, we treat the case of a generalized linear
measurement. First, we determine the optimal local oscillator
(LO) field to extract a scalar quantity linearly encoded in a
signal field. Second, we derive the measurement imprecision
of such a generalized linear measurement in the presence of
photon shot noise in the case of optimal and suboptimal LO
fields.

Suppose that a dimensionless quantity x is linearly encoded
in a signal field given by xE s(
). This quantity x could, for
example, be one of the angles δ or ε in the main text. Assume
that this signal field strikes a detector surface A(
), which is
parametrized by 
, at normal incidence. A LO field E lo(
)
is superposed with the signal field to cause interference on
the detector. Let this LO field carry a total power Plo =∫

A d
E∗
lo · E lo, where the asterisk denotes complex conjuga-

tion. Note that throughout this Appendix, as in Secs. III and V,
all fields are expressed in complex notation and normalized
such that integration of their modulus squared over a solid
angle yields their power. The detector signal fluctuates due to
photon shot noise. We now show that, in order to minimize the
measurement imprecision for x, the field distribution E lo(
)
must be in the same mode as the signal field E s(
).

We start with the power P received by our detector,

P =
∫

A
d
 |E lo + xE s|2 = Plo + Cx, (A1)

where we expanded to first order in the signal field and intro-
duced the calibration factor C, which converts our signal from
units of x to units of power,

C = 2
∫

A
d
 Re[E∗

lo · E s]. (A2)

The detected power P has a constant offset given by the local
oscillator power Plo and an interference term Cx and therefore
represents a linear measurement of the quantity x. The power
fluctuations due to the photon shot noise of the dominating
power Plo have a white-noise floor with power spectral density
(PSD) [28]

SPP = h̄ω0

2π
Plo, (A3)

such that the PSD of the imprecision noise of x is

Sxx = SPP

C2
. (A4)

Equation (A3) arises in a rigorous quantum-mechanical treat-
ment by interpreting the (positive-frequency part of the) field
E as a bosonic annihilation operator. This operator is asso-
ciated with a single electric-field mode characterized by the
detector surface A(
). For a coherent field, as in our case, we
can write E = Ē + E (+) as a sum of a coherent amplitude Ē
and the annihilation operator (or the positive-frequency part
of the field) E (+) accounting for the vacuum fluctuations. The
coherent amplitude Ē is identical to the amplitude of our
treatment above and in the main text. The power P of our
detector is then given by the sum of its mean value P̄ [which
is identical to our Eq. (A1)] and the operator P̂, representing
the fluctuations. To linear order in the field fluctuations, we
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find P̂ = ∫
d
 (Ē∗

loE (+) + Ē loE (−) ), where E (−) is the cre-
ation operator (or the negative-frequency part) of the vacuum
field. Finally, the two-time correlation of the detector power is
computed as [40,41]

GPP(τ ) = h̄ω0P̄δ(τ ) + 〈: P̂(t + τ )P̂(t ) :〉
= h̄ω0Ploδ(τ ) + O(x). (A5)

Here, : · : denotes normal ordering of the bosonic operators;
that is, all creation operators E (−) are moved before all anni-
hilation operators E (+). With the electric field in the vacuum
state |0〉, we have E (+) |0〉 = 0 and 〈0|E (−) = 0, and thus,
the normally ordered correlation term vanishes. The PSD SPP

of Eq. (A3) follows from Eq. (A5) by Fourier transforma-
tion [29].

Let us return to our analysis of Eq. (A2). We now express
both the LO field E lo = √

Ploulo and the signal field E s =√
Psus with their respective mode functions ulo and us, which

are normalized according to∫
A

d
 u∗
lo · ulo =

∫
A

d
 u∗
s · us = 1. (A6)

With the power of the signal field Ps = ∫
A d
E∗

s · E s, we can
express the imprecision PSD as an overlap integral between
the LO and signal-mode functions as

Sxx = h̄ω0

8π

1

Ps

(∫
A

d
 Re[u∗
lo · us]

)−2

. (A7)

Our task is now to find a mode function ulo which mini-
mizes Sxx by maximizing the mode overlap with us. According
to the Cauchy-Schwarz inequality, this maximized overlap
is achieved when the LO mode is equal to the signal mode
uideal

lo = us. We thus find the minimal imprecision noise PSD

Sideal
xx = h̄ω0

8π

1

Ps
. (A8)

Let us apply this general finding to the problem of orientation
detection from the main text. According to Eq. (4), the signal
power associated with each of the angles δ and ε is given by
Ps = P0�

2, such that Eq. (A8) yields Eq. (7) from the main
text.

For a realistic detection system characterized by the (non-
ideal) LO mode ulo, the detection efficiency η, defined as the
ratio between the ideal imprecision noise Sideal

xx and the actual

imprecision noise Sxx as given by Eq. (A7), is hence

η = Sideal
xx

Sxx
=

(∫
A

d
 Re
[
u∗

lo · uideal
lo

])2

. (A9)

The detection efficiency is therefore given by the overlap inte-
gral between the used LO field ulo and the ideal LO field uideal

lo .
We use Eq. (A9) in the main text to determine the realistic
detection efficiencies for δ and ε in Eqs. (15) and (17).

APPENDIX B: DUMBBELL WITH BROKEN
CYLINDRICAL SYMMETRY

In the main text, we have assumed a scatterer with perfect
cylindrical symmetry. Here, we assume the more realistic
scenario that the scatterer still has a clearly defined long axis
but additionally possesses a slight asymmetry in the transverse
directions. Accordingly, we write the scatterer’s polarizability
as α

↔ = α0diag[1, 1 − � + �′/2, 1 − � − �′/2] in a frame
aligned with the particle axes. Here, �′ < � is a small
anisotropy between the scatterer’s short axes. We still assume
the first component, α0, largely exceeds the other two such
that the particle aligns with the light’s polarization axis. In
addition to the rotations δ (around z) and ε (around −y),
we allow for an arbitrary rotation ϕ around the x axis. The
induced dipole moment p now reads

p = RzR−yRxα
↔R−xRyR−zE0nx

= px

⎛
⎝ 1

�δ

�ε

⎞
⎠ − px

�′

2

⎛
⎝ 0

δ cos 2ϕ + ε sin 2ϕ

δ sin 2ϕ − ε cos 2ϕ

⎞
⎠

+ O(δ2, ε2, εδ), (B1)

where px = α0E0 as in the main text. We expanded the expres-
sion to first order in δ and ε, while ϕ is not restricted. The first
term in the final expression is the one discussed in the main
text and is due to the main anisotropy � between the main
(x) axis and the other axes. In addition, we now find a second
term due to the small anisotropy �′. Its size is a factor �′/�
smaller than the main term. In this second term, the angles δ

and ε appear in both the y and z components of the induced
dipole moment. This leads to a mixing of the signals on the
detector, depending on the rotation ϕ. Interestingly, the angle
ϕ appears only to second order (as a product with δ or ε). A
linear measurement of ϕ is hence not possible.
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