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Abstract In this paper, we present a model of a trust-based recommendation system on
a social network. The idea of the model is that agents use their social network to reach
information and their trust relationships to filter it. We investigate how the dynamics of
trust among agents affect the performance of the system by comparing it to a frequency-
based recommendation system. Furthermore, we identify the impact of network density,
preference heterogeneity among agents, and knowledge sparseness to be crucial factors for
the performance of the system. The system self-organises in a state with performance near
to the optimum; the performance on the global level is an emergent property of the system,
achieved without explicit coordination from the local interactions of agents.

Keywords Recommender system · Trust · Social network

1 Introduction and motivation

In recent years, the Internet has become of greater and greater importance in everyone’s life.
People use their computers for communication with others, to buy and sell products on-line,
to search for information, and to carry out many more tasks. The Internet has become a social
network, “linking people, organisations, and knowledge” [33] and it has taken the role of a
platform on which people pursue an increasing amount of activities that they have usually
only done in the real-world.

This development confronts people with an information overload: they are facing too much
data to be able to effectively filter out the pieces of information that are most appropriate
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for them. The exponential growth of the Internet [21] implies that the amount of information
accessible to people grows at a tremendous rate. Historically, people have—in various situa-
tions—already had to cope with information overload and they have intuitively applied a num-
ber of social mechanisms that help them deal with such situations. However, many of these,
including the notion of trust, do not yet have an appropriate digital mapping [23]. Finding
suitable representations for such concepts is a topic of on-going research [1,10,17,23,27,29].

The problem of information overload has been in the focus of recent research in computer
science and a number of solutions have been suggested. The use of search engines [9] is one
approach, but so far, they lack personalisation and usually return the same result for every-
one, even though any two people may have vastly different profiles and thus be interested in
different aspects of the search results. A different proposed approach are recommendation
systems [24–26,30].

In the following, we present a model of a trust-based recommendation system which, in an
automated and distributed fashion, filters information for agents based on the agents’ social
network and trust relationships [6,15,19,25].

Trust is a topic which has recently been attracting research from many fields, including,
but not limited to, computer science, cognitive sciences, sociology, economics, and psychol-
ogy. As a result of this, there exists a plethora of definitions of trust, some similar to each
other, some different from each other. In the context of our model, trust can be defined as the
expectancy of an agent to be able to rely on some other agent’s recommendations.

There are many areas of application in which such systems, or similar ones, are appli-
cable: some obvious examples would be the facilities to share opinions and/or ratings that
many shopping or auctioning web sites offer, but the same principles of combining social
networks and trust relationships can be applied in other domains as well: for example, in
the scientific community, in form of a recommendation system for journal, conference, and
workshop contributions.

The model that we are going to present enables a quantitative study of the problem and
also provides a sketch for a solution in terms of a real Internet application/web service. The
idea at the core of the model is that agents

• leverage their social network to reach information; and
• make use of trust relationships to filter information.

In the following, we describe the model and the results obtained by simulating the model
with multi-agent simulations. To some extent, it is also possible to make analytical predic-
tions of the performance of the system as a function of the preferences of the agents and the
structure of the social network.

The remainder of the paper is organised as follows: in the following section, we put our
work into the context of the related work. Then, we present our model of a trust-based rec-
ommendation system on a social network. This is followed by an analysis of the results
from computer simulations and analytical approximations of the model. Subsequently, we
illustrate a number of possible extensions and conclude with a summary of the work.

2 Related work

Recent research in computer science has dealt with recommendation systems [26,30]. Such
systems mostly fall into two classes: content-based methods suggest items by matching agent
profiles with characteristics of products and services, while collaborative filtering methods
measure the similarity of preferences between agents and recommend what similar agents
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have already chosen [30]. Often, recommendation systems are centralised and, moreover,
they are offered by entities which are not independent of the products or services that they
provide recommendations on—often, this constitutes a bias or conflict-of-interest.

Trust is a topic which is of ubiquitous importance to people. This is why it has been
studied in many disciplines, among them computer science, cognitive sciences, sociology,
economics, and psychology [1,10,17,23,29]. In computer science, trust was initially seen as
a method to enhance security systems [17]: cryptography allows to ensure the authenticity,
confidentiality, and integrity, of the communication between two parties Alice and Bob, but
it does not allow Alice to judge how trustworthy Bob is, and vice versa. In such contexts,
trust has often been formalised with logical models [20,22]. For a more detailed overview of
trust in the literature, please refer to [29].

Additionally, the diffusion of information technologies in business and social activities
results in intricate networks of electronic relationships. In particular, many economic activi-
ties via electronic transactions require the presence of or benefit from a system of trust and
distrust in order to ensure the fulfilment of contracts [23,29]. However, trust plays a crucial
role not only by supporting the security of contracts between agents, but also because agents
rely on the expertise of other trusted agents in their decision-making.

Along these lines, some recent works have suggested to combine distributed recommen-
dation systems with trust and reputation mechanisms [14,24,25]. It is because of the fact that
both building expertise and testing items available on the market are costly activities, individ-
uals in the real world attempt to reduce such costs through the use of their social/professional
networks.

Such complex networks, in particular their structure and function, are the subject of an
extensive and growing body of research across disciplines [28]. Social networks have received
special attention [5] and it has been shown that their structure plays an important role in
decision-making processes [4,7,13].

With respect to existing models of trust-based recommender systems operating on social
networks in the literature [14,19,25], the contributions of our work are the following: we
provide analytical results for the performance of the system within a range of network den-
sity, preference heterogeneity among agents, and knowledge sparseness. We also report on
extensive multi-agent simulations supporting our predictions. The notion of trust that we use
is quite general because it relies on the utility of an agent from interacting with other agents.
Thus, it can be extended to represent more than just the similarity of preferences between two
agents [16,34]. With respect to [25], besides the above, our model includes a mechanism for
propagation of trust along paths in the social network. Finally, we provide a framework which
allows the study of two crucial aspects, evolution and robustness, both from an analytical
point-of-view, but also by multi-agent simulations; in this respect, the framework could be
validated against empirical data along the lines of [24].

3 Model description

The model deals with agents which have to decide for a particular item that they do not
yet know based on recommendations of other agents. When facing the purchase of an item,
agents query their neighbourhood for recommendations on the item to purchase. Neighbours
in turn pass on a query to their neighbours in case that they cannot provide a reply themselves.
In this way, the network replies to a query of an individual by offering a set of recommenda-
tions. One way to deal with these recommendations would be to choose the most frequently
recommended item. However, because of the heterogeneity of preferences of agents, this
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may not be the most efficient strategy in terms of utility. Thus, we explore means to incor-
porate knowledge of trustworthiness of recommendations into the system. In the following,
we investigate, by means of analytical calculations and computer simulations, under which
conditions and to what extent the presence of a trust system enhances the performance of a
recommendation system on a social network.

3.1 Agents, objects, and profiles

We consider a set SA of NA agents a1, a2, a3, . . . , aNA . The idea is that the agents are con-
nected in a social network such as, for example, of people and their friends [3,28,31] that
are recommending books to each other. Hence, each agent has a set of links to a number
of other agents (which we call its neighbours). These links are not necessarily symmetric,
i.e. the graph is directed. In reality, social networks between agents evolve over time; in
other words, relationships form, sustain, and also break up. In this paper, we mainly focus
on a static network while dynamic networks will be investigated more thoroughly in further
work. At this stage, we assume the network to be described by a random graph [8,12]—the
usual choice in absence of knowledge of the real structure of the modeled social network. We
are aware that random graphs are not always a good approximation of real networks. Thus,
for further analysis of the model, it will be appropriate to experiment with several different
topologies as discussed in [2].

Furthermore, there exists a set SO of NO objects, denoted o1, o2, o3, . . . , oNO . These
objects represent items, agents, products, buyers, sellers, etc.—anything that may be sub-
ject to the recommendations—i.e. books as in the running example. We further assume that
objects are put into one or more of NC categories from SC , denoted c1, c2, . . . , cNC , where
these categories are defined by the system and cannot be modified (i.e. added, removed, or
redefined) by the agents. In the scenario where the recommendation system is on books, cat-
egories could be ‘epicurean philosophy’, ‘Swiss folklore’, or ‘medieval archery’. We denote
the fact that an object oi is in category c j by stating oi ∈ c j .

Each agent ai is associated to one certain preference profile which is one of NP prefer-
ence profiles in the system, where SP = {p1, p2, p3, . . . , pNP }. In the following, we will
use the terms ‘preference profile’, ‘profile’, and ‘preferences’ interchangeably. Such a profile
pi is a mapping which associates to each object o j ∈ SO a particular corresponding rating
r j ∈ [−1, 1], pi : SO → [−1, 1]. This is illustrated in Fig. 1. In the current version of the
model, we only consider discrete ratings where −1 signifies an agents’ dislike of an object, 1
signifies an agents’ favour towards an object. In a future version of the model, this assumption
can be relaxed; we chose to initially focus on a discrete rating scheme because most of the
ones found on the Internet are of such type. We assume that agents only have knowledge
in selected categories and, in particular, they do only know their own ratings on objects of
other categories subsequent to having used these objects. Thus, each agent is and remains an
expert only on a set of initially assigned selected categories.

3.2 Trust relationships

In this model, we also consider trust relationships between agents: each agent ai keeps track
of a trust value Tai ,a j ∈ [0, 1] to each of its neighbour agents a j . These values are initialised
to Tai ,a j = 0.5. It is important to stress that trust relationships only exist between neighbours
in the social network; if two agents are not directly connected, they also cannot possibly have
a trust relationship with each other. However, two such agents may indirectly be connected to
each other through a path in the network. For example, agent ai could be connected to agent
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Fig. 1 Agents rating objects: this
is a bipartite graph with the
agents on the left hand side and
the objects on the right hand side,
the ratings being the connections.
The set of all possible ratings of
an agent constitutes its respective
profile

1

3

2

a j through agents ak and al , should ak and al , ai and ak , as well as al and a j be neighbours.
We can then compute a trust value along the path path(ai , a j ) from ai to a j —in the example,
path(ai , a j ) = {(ai , ak), (ak, al), (al , a j )}—as follows:

Tai ,...,a j =
∏

(ak ,al )∈path(ai ,a j )

Tak ,al (1)

i.e. the trust value along a path is the product of the trust values of the links on that path. Of
course, there may be more than one path between two agents; in such cases, each path has
its own trust value. Figure 2 illustrates a part of such a social network of agents and a chain
of trust relationships between two agents.

Note that this implies the assumption that trust is able to propagate through the network.
In other words, we take the position that “if i trusts j , and j trusts k, then i should have a
somewhat more positive view of k based on this knowledge” [19].

Trust transitivity is a condition for trust propagation and there have been fierce discussions
in the literature whether or not trust is transitive. From the perspective of network security
(where transitivity would, for example, imply accepting a key with no further verification
based on trust) or formal logics (where transitivity would, for example, imply updating a
belief store with incorrect, impossible, or inconsistent statements) it may make sense to
assume that trust is not transitive [11,20,22]. Others attribute trust some degree of transitiv-
ity [18,19]. Furthermore, it has been shown empirically [14,15,19] that in scenarios similar
to ours, it can be assumed that “trust may propagate (with appropriate discounting) through
the relationship network” [19]. In our model, discounting takes place by multiplying trust
values along paths.

It is important to remark that we do not allow recommendations by other agents to influence
the preferences of an agent on items. Rather, recommendations are suggestions. An agent
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Fig. 2 Social network of agents and their trust relationships: a section of the social network around agent ai ,
indicating a chain of trust relationships to agent a j and ordering the neighbours according to their distance in
hops (‘orders of neighbourhood’)

merely selects one and then, based on its experience, draws its own consequences, regardless
of the recommendation.

3.3 Temporal structure, search for recommendations

The model assumes a discrete linear bounded model of time. In essence, there are two possible
types of search for a recommendation:

1. Ranking within a category (RWC): agents query for a particular category and search
recommendations for several objects in this category in order to decide for one of the
recommended objects in the response from the network—typically the best one.

2. Specific rating for an object (SRO): agents query for a particular object and search rec-
ommendations on this very object in order to decide for or against using it, based on the
response from the network.

Both variants are possible within the framework of our model: in fact, we use SRO to
establish RWC.

At each time step t , each agent ai (in random order) selects a category c j (again, in random
order, with the constraint that the agent is not an expert on the category) and searches for
recommendations on the network. The protocol for agent’s search proceeds as follows:

1. Agent ai prepares a query(ai , c j ) for category c j and then transmits it to its neighbours.
2. Each neighbour ak receives query(ai , c j ) and either
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(a) returns a response(ak, ai , (o j , r j ), Tai ,...,ak ), if it knows a rating r j for a particular
object o j in c j that it can recommend, i.e. if pk(o j ) = r j > 0 (only positive
ratings are communicated, we do not consider negative ones at this stage for sake
of simplicity in the decision making process)

(b) or, passes query(ai , c j ) on to its own neighbours if it does not know a rating r j for
the particular category c j .

Notice that an agent ak knows the rating r j for a particular object o j only if it has either
experienced it or if it is an expert on the category c j of the object. Furthermore, each agent
along the path computes only a part of the product Tai ,...,ak —i.e. on the path path(a1, a2, a3,
a4), agent a3 would pass Ta3,a4 to a2 and then, a2 would compute Ta2,a3,a4 = Ta2,a3 Ta3,a4

and pass it to agent a1 who then can compute Ta1,a2,a3,a4 = Ta1,a2 Ta2,a3,a4 .
It is assumed that agents keep track of the queries they have seen. Now there are two

strategies to guarantee that the algorithm terminates: either,

• agents do not process queries that they have already seen again (“incomplete search”, IS);
or,

• agents pass on queries only once, but, if they have an appropriate recommendation, can
return responses more than once (“complete search”, CS).

In essence, both are a form of breadth-first search on the social network of agents, but
with different properties: the former returns, for each possible recommendation, only one
possible path in the network from the querying to the responding agent; the latter, however,
returns, for each possible recommendation, each of the possible paths in the network from
the querying to the responding agent.

As we will see later, this is a crucial difference for the decision-making of agents. For a
given recommendation, there might be several paths between the querying and the respond-
ing agent. The IS returns a recommendation along one of these paths, while the CS returns a
set of recommendations along all possible paths. Some paths between two agents have high
trust, some have low trust. The IS may return a recommendation along a low-trust path even
though there exists a high-trust path, thus providing an agent with insufficient information for
proper decision-making. Of course, there is also a pitfall with the CS—it is computationally
much more expensive. In the literature, this issue of potentially having multipe paths for a
recommendation has been discussed [18], and we will come back to it when discussing the
decision-making of the agents.

3.4 Decision-making

As a result of a query, each agent ai possesses a set of responses from other agents ak .
It now faces the issue of making a decision for a particular object. The agent needs to
decide, based on the recommendations in the response, what would be the appropriate choice
of all the objects recommended. In the following, we denote query(ai , o j ) = Q and a
response(ak, ai , (o j , r j ), Tai ,...,ak ) ∈ R where R is the set of all responses. The values of trust
along the path provide a ranking of the recommendations. There are many ways of choosing
based on such rankings; we would like to introduce an exploratory behaviour of agents and
an established way of doing so consists in choosing randomly among all recommendations
with probabilities assigned by a logit function [32]. For this purpose, it is convenient to first
map trust into an intermediate variable T̂ , ranging in [−∞,∞]:

T̂ai ,...,ak = 1

2
ln

(
1 + 2(Tai ,...,ak − 0.5)

1 − 2(Tai ,...,ak − 0.5)

)
∈ [−∞,∞] (2)
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i.e. T̂ai ,...,ak = −∞ for Tai ,...,ak = 0 and T̂ai ,...,ak = ∞ for Tai ,...,ak = 1. Then,

P(response(ak, ai , (o j , r j ), Tai ,...,ak )) = exp(β T̂ai ,...,ak )∑
R exp(β T̂ai ,...,al )

∈ [0, 1] (3)

where β is a parameter controlling the exploratory behaviour of agents (when T̂ai ,...,ak = ±∞,
P(response(ak, ai , (o j , r j ), Tai ,...,ak )) is computed as a limit). With such transformations we
achieve to have trust values Tai ,...,ak to lie in [0, 1] which is required in order to propagate
them as well as negative values of T̂ai ,...,ak when the trust towards an agent is very small—
otherwise, agents would keep choosing recommendations even from untrustworthy agents
with finite probability. For β = 0, the probability of choosing each response will be the same
(i.e. this is equivalent to a random choice), but for β > 0, responses with higher associated
values of Tai ,...,ak have higher probabilities. To decide for one of the objects, the agent chooses
randomly between all recommendations according to these probabilities.

Now, suppose that an agent received a recommendation from another agent, but through
many paths. For example, ai may be linked to ak through a j , but also through al . Then, each
of the two responses would be assigned a probability according to Eq. 3. Since recommen-
dations coming along paths of high trust will have a higher probability of being chosen, this
implies that recommendations coming along paths of low trust are still part of the decision-
making process, but with much lower probability. This approach is similar to [18] (where
only the highest path is considered, and all lower paths are discarded) and the issue has also
been discussed in [22].

For benchmarking the trust-based approach of selecting recommendations, we consider an
alternative decision-making strategy, namely a frequency-based approach without any trust
relationships being considered at all. In this approach, an agent chooses randomly among
each of the recommendations with equal probability for each of the recommendations.

3.5 Trust dynamics

In order to enable the agents to learn from their experience with other agents, it is necessary to
feedback the experience of following a particular recommendation into the trust relationship.
This is done as follows: subsequent to an interaction, agent ai who has acted on a rating
through its neighbour, agent a j , updates the value of trust to this neighbour, based on the
experience that he made. Let ok be the chosen object. Then, assuming agent ai having profile
pi , pi (ok) = rk is the experience that ai has made by following the recommendation trans-
mitted through a j . It is convenient to define the update of T (t +1) in terms of an intermediate
variable T̃ (t + 1):

T̃ai ,a j (t + 1) =
{

γ T̃ai ,a j (t) + (1 − γ )rk for rk ≥ 0
(1 − γ )T̃ai ,a j (t) + γ rk for rk < 0

(4)

where T̃ai ,a j (0) = 0 and γ ∈ [0, 1]. Because T̃ai ,a j ∈ [−1, 1], we have to map it back to the
interval [0, 1]:

Tai ,a j (t + 1) = 1 + T̃ai ,a j (t + 1)

2
∈ [0, 1] (5)

The distinction between rk ≥ 0 and rk < 0 creates, for values of γ > 0.5, a slow-positive
and a fast-negative effect which usually is a desired property for the dynamics of trust: trust
is supposed to build up slowly, but to be torn down quickly. The trust update is only applied
between neighbouring agents. Although the trust along pathways between two non-neighbour
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agents Tai ,...,a j is used for choosing a recommendation, this is not used to establish a value of
trust towards non-neighbour agents. The trust along pathways between two non-neighbour
agents Tai ,...,a j changes only as a result of changes on the links of the path, i.e. changes
between neighbour agents.

Our intention is to keep the trust dynamics local, i.e. restrict it to neighbours. Any other
approach would require agents to maintain global knowledge. The performance of the system
results from the development of pathways of high trust and thus is an emergent property of
local interactions between neighbouring agents.

It is important to note that—in the current version of the model— as a result of the trust
dynamics, trust Tai ,a j evolves to a value which reflects the similarity of agents ai and a j . This
is consistent with the observation in the literature that there is a correlation between trust and
similarity [16] and that, in a recommendation system, “recommendations only make sense
when obtained from like-minded people exhibiting similar taste” [34]. In fact, our mechanism
could be seen as a possible explanation of this correlation. However, as stated, there are other
interpretations of trust in different disciplines, in particular cognitive science, sociology, and
psychology.

In further extensions of the model, trust Tai ,a j could include other notions such as “agent
a j cooperated with agent ai ”, “agent a j gave faithful information to agent ai ”, or “agent a j

joined a coalition with agent ai ”. In other words, Tai ,a j could be an aggregate of different
dimensions of trust, possibly measuring the faithfulness, reliability, availability, and quality
of advice from a particular agent.

3.6 Utility of agents, performance of the system

In order to quantitatively measure the difference of the trust-based approach of selecting
recommendations as compared to the frequency-based approach, it is necessary to define
measures for the utility of agents as well as for the performance of the system.

We define an instantaneous utility function for an agent ai following a recommendation
from agent a j on object ok at time t as follows:

u(ai , t) = ri (6)

where agent ai ’s profile determines pi (ok) = ri . We consider the performance of the system
to be the average of the utilities of the agents in the system:

�(t) = 1

NA

∑

ai ∈SA

u(ai , t) (7)

This gives us a measure for quantitatively comparing the difference that the trust-based
approach makes towards the frequency-based approach, both on the micro-level of an agent
and the macro-level of the system.

4 Results

One of the most important results of the model is that the system self-organises in a state
with performance near to the optimum. Despite the fact that agents only consider their own
utility function and that they do not try to coordinate, long paths of high trust develop in the
network, allowing agents to rely on recommendations from agents with similar preferences,
even when these are far away in the network. Therefore, the good performance of the system
is an emergent property, achieved without explicit coordination.
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Three quantities are particularly important for the performance of the system: the network
density, the preference heterogeneity among the agents, and the sparseness of knowledge. The
core result is that recommendation systems in trust-based networks outperform frequency-
based recommendation systems within a wide range of these three quantities:

• Network density: if the network is very sparse, agents receive useful recommendations on
only a fraction of the items that they send queries about; the denser the network, the better
the performance, but above a critical threshold for the density, the performance stabilises.
The proximity of this value to the optimum depends on the other two quantities.

• Preference heterogeneity: if the preferences of agents are homogeneous, there is no advan-
tage for filtering the recommendations; however, if the preferences of agents are all dif-
ferent, agents cannot find other agents to act as suitable filters for them. In between, when
preferences are heterogeneous, but ‘not too much’, the system performance can be near to
the optimum.

• Knowledge sparseness: when knowledge is dense (Nc and/or Np small), it is easy for an
agent to receive recommendations from agents with similar preferences. In the extreme
situation in which, for each category there is only one expert with any given preference
profile, agents can receive useful recommendations on all categories only if there exists a
high-trust path connecting any two agents with the same profile. This is, of course, related
to the density of links in the network.

The performance of the system thus depends, non-linearly, on a combination of these three
key quantities. Under certain assumptions, the model can be investigated analytically and in
a mean-field approach it is possible to make quantitative predictions on how these factors
impact the performance. These results are presented in Sect. 4.1. In Sect. 4.2, we illustrate
the properties of our recommendation system by describing the results of multi-agent simu-
lations of the model. As a benchmark, we compare the trust-based recommendation system
to a frequency-based recommendation system.

4.1 Analytical approximation

In the following, we derive an expression for the performance of the system as a function of
the frequency and heterogeneity of profiles across agents. We proceed as follows. We first
introduce the notion of similarity, ω of profiles. We then show, in the limit of a mean-field
approximation, that the fix points of trust between two agents are a function of the similarity
of their profiles. We then derive the value of the critical threshold for the network density
above which a subset of agents with the same profile is expected to form a connected com-
ponent. Above this threshold, agents with the same profile can receive recommendations on
all categories covered by the expertise of such a subset of agents. Under this hypothesis, and
in the stationary regime for the trust dynamics, the expected utility of an agent can easily
be computed, again in a mean-field approximation, based on the decision-making dynamics
used to choose among recommendations.

As common in the literature, the similarity between two profiles pi , p j is defined as

ωi, j = 1

NO

∑

ok∈SO

1 − ∣∣pi (ok) − p j (ok)
∣∣ (8)

The similarity of two agents is, for instance, 1 if their preferences over the products are
identical, and −1 if their preferences over the products are always opposite, and 0 if half of
their preferences are identical and half are opposite.
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Suppose there are only two profiles p1, p2 in the population. If profiles are evenly dis-
tributed among agents (n1 = 1/2), then the expected value of ω over a large set of pairs of
profiles is 〈ω〉 = 0. If instead, agents have only one profile, p1 = 1, then trivially 〈ω〉 = 1.

4.1.1 Trust dynamics

Consider the dynamics for the update of trust of agent ai towards a neighbouring agent a j

(Eq. 4). Assume the two agents have profiles pm and pn , respectively (since the number of
agents and of profiles are different, we don’t use pi and p j for the profiles as this would suggest
that there exactly as many profiles as agents). Let us then focus first only on recommendations
coming directly from a j . Equation 4 is a stochastic equation because recommendations are
provided by a j to ai on objects of randomly chosen categories. In a mean-field approxima-
tion, we replace the stochastic term, rk , with its average over time, which, by definition, is
ωm,n . It is then straightforward to check that the fix point of both cases of Eq. 4 is ωm,n . By
the time agent ai has developed a value of trust towards a j close to ωm,n , a j has done the
same with its own neighbours. In particular, if ωm,n is close to 1, then only recommenda-
tions from neighbours aw of a j towards which a j has developed high trust, are associated
with high values of trust along the path aw, a j , ai . The same holds, by induction, for longer
paths. Therefore, we can extend the mean-field approximation also to the general case of
recommendations received by ai indirectly through a j .

4.1.2 Random graph structure and critical density

It is known that in a random graph of N nodes and � links, a giant connected component
appears for values of � > (N − 1)/2, meaning that the probability that the network is con-
nected tends to 1 for large N (and correspondingly large �) [8,12]. Equivalently, above this
threshold, there is at least one path between any two randomly chosen nodes. In our model,
agents are connected in a random graph and have different preference profiles, distributed
randomly according to some frequency distribution. We can then ask what is the critical den-
sity of links (randomly drawn among agents of any profile) in the network such that there is
(in the limit of many agents) at least one path between any two agents with the same profile.
In this situation, a querying agent is able to receive recommendations from all other agents
of the same profile along paths which involve only agents of the same profile. If ni is the
frequency of agents of profile pi , we denote �i,i = �n2

i to be the number of links among
any two agents with same profile pi . The condition for the existence of a giant component
of agents with profile pi is �i,i > ((N − 1)/2), which implies � > ((N − 1)/(2n2

i ). For
instance, for two profiles with frequency n = 0.5, this formula leads to � = 2(N − 1). In
other words, the smaller the frequency of profile pi , the higher the critical number of links �

above which agents with profile pi become connected in a giant component.

4.1.3 Performance

As described in the decision-making process, at each time step, as a result of a query for a
given category, an agent ai receives a set of ratings associated with values of the trust along
the paths from which the responses come from. Each rating is selected with a probability
given by Eq. 3. Over time, the agent sends many queries. Let R be the set of all responses k
it receives over time. The expected value of the rating r , hence of the utility u of the agent,
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is then:

E(u) = E(r) =
∑

k∈R

rk Pk =
∑

k∈R rk exp(β T̂k)∑
k∈R exp(β T̂k)

(9)

The set R contains responses sent by many agents with different profiles. We can group the
set R by the set Sp of profiles of such agents. In a mean-field approach we can then replace the
ratings experienced by the agent ai , with profile pq , through following recommendations of
other agents with profile ps , with its average value ωq,s . In the same spirit, we can also replace
the value of trust towards all agents with profile ps by ωq,s . Then, Eq. 2 implies that exp(β T̂ )

is approximated with the value (1 + ω)/(1 − ω)
β
2 . This approximation is well-justified for

first neighbours. For the other agents, it is less accurate, but it may be expected to hold if the
network is well above the density threshold and in the stationary regime in which trust paths
have already developed. The expected utility of an agent, which, in the long run, coincides
with the expected value of the performance of the system, is then:

E(�) =
∑

s∈Sp
ωq,s(

1+ωq,s
1−ωq,s

)
β
2

∑
s∈Sp

(
1+ωq,s
1−ωq,s

)
β
2

=
∑

ω ω( 1+ω
1−ω

)
β
2 ν(ω)

∑
ω( 1+ω

1−ω
)

β
2 ν(ω)

(10)

where the second expression is obtained as follows: we group the set Sp by the values of
similarity between the profile of the querying agent and the profiles of the recommending
agents. Since, in a pair of querying-responding agents there is a finite number of combina-
tions of profiles, and their probability of occurrence depends the relative frequency of each
profile in the population (profiles are assigned randomly to the agents). Therefore, the proba-
bility of occurrence of each value of similarity ω, ν(ω) is known by construction. Each term

(1 + ω)/(1 − ω)
β
2 ν(ω) represents the probability of an agent choosing the recommendation

from an other agent with a given similarity value ω, multiplied by the probability that such
a similarity value occurs among the querying agent and the recommenders. This formula
allows to predict the expected utility of the system as a function of the distribution of the
profiles of preferences among the agents. The formula holds in the regime in which each
subset of agents of the same profile form a connected component and their joint expertise
covers all the categories. For instance, if we consider two profiles in the system p1 and p2,
with frequency n1 and 1−n1, the probability that a pair of agents consists of both p1, or both
p2, or mixed is, respectively: (n1)

2, (n2)
2 = (1−n1)

2 and 2(n1)(1−n1). The corresponding
values of ω are 1, 1,−1.

In the absence of trust (i.e., β = 0), Eq. 10 reduces to the expression of the expected value
of ω, yielding � = 4n2

1 − 4n1 + 1. In presence of trust (i.e., β > 0), the term with ω close
to 1 dominates, thus yielding � ≈ 1. These results will be confirmed empirically in the next
section.

4.2 Computer simulations

For the simulations we have used the following parameters to the model: we consider Na =
100 agents, and the simulations are averaged over Nr = 100 runs. The size of each category
is the same and we vary Nc ∈ {10, . . . , 50} and Np ∈ {2, 4, 6}; No is usually adjusted such
that there are at least two objects in each category. Profiles are distributed such that the sum
over a profile is 0 on average—across the profile, categories, and agents. Each agent is an
expert on 1 category. Further, for the social network we assume a random directed graph
with a given number of agents, Na , and a given total number of links, �. The network density
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Fig. 3 Dynamics of trust and logit function. Left: slow-positive fast-negative dynamics of trust. Trust between
two agents of the same profile (black dotted line), between two agents of opposite profiles (blue dashed line).
In case that an agent recommends an object that is rated negatively, trust drops quickly and recovers slowly
(red solid line). Right: impact of the choice of the exploration parameter β on the decision-making. The slope
of the sigmoid-like function increases for increasing values of β
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Fig. 4 Performance versus Time for Nc = 10 (left) and Nc = 50 (right). Over time, performance approaches
the optimum—with learning (top black line), this process is accelerated. Different curves correspond to dif-
ferent values of γ ∈ {0.2, 0.4, 0.6, 0.8}. Increasing values of γ lead to curves approaching the optimum faster
(corresponding colours: red, green, blue, yellow)

is then defined as d = �/Na(Na − 1). Agents are connected randomly with respect to their
profile.

Figure 3 (left) shows that the update rule of trust as described by Eqs. 4 and 5 produces the
desired slow-positive fast-negative dynamics. Trust between two agents of the same profile
evolves to 1 (black dotted line, partially covered by the red solid line). Trust between two
agents of opposite profiles evolves to 0 (blue dashed line). In case that an agent recommends
an object that is rated negatively, trust drops quickly and recovers slowly (red solid line).
The probability of choosing a recommendation depends critically on the parameter β, which
controls the exploratory behaviour of agents, as shown in Fig. 3 (right).

Over time, each agent develops a value of trust towards its neighbours which reflects the
similarity of their respective profiles. After some time, paths of high trust develop, connect-
ing agents with similar profiles. As a result, the performance of the system, as defined in
Eq. 7 increases over time and reaches a stationary value which can approach the optimum,
as shown in Fig. 4, where the curves correspond to different values of γ . Increasing values
of γ lead to curves approaching the optimum faster.
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Fig. 5 Performance versus density for different Nc (in blue circles and red triangles, 10 and 50 categories,
respectively). Incomplete search (left) and complete search (right). For sparse knowledge, the complete search
performs much better than the incomplete search. The benchmark of a frequency-based system is represented
by black squares

We have also simulated a situation in which, prior to the start of the dynamics, there
is a learning phase in which the agents explore only the recommendations of their direct
neighbours on the categories that these claim to be expert on. This way, the trust dynamics
already start from a value deviating from the neutral point of 0.5 and closer to one of the fix
points (see Eq. 4). In this case, the performance is optimal from the beginning on (top black
curve). Interestingly, the system evolves, even in the normal dynamics, to the same value that
is reached with the learning phase, supporting the idea that the optimal performance is an
emergent behaviour of the system.

In the model description, we have described two types of search. Fig. 5—the performance
� of the system plotted against increasing values of density d in the network—shows that
the search type becomes important when the knowledge is sparse. We notice a sigmoid shape
which would become steeper for systems with larger numbers of agents. We consider differ-
ent Nc, corresponding to levels of sparseness of knowledge (in blue circles and red triangles,
10 and 50 categories, respectively, Np = 2). With the incomplete search algorithm, the
performance deteriorates. With the complete search algorithm, the system reaches the opti-
mal performance even in the case of maximally sparse knowledge (50 categories means that
there is only 1 expert from each profile in each category). In both plots of Fig. 5, the black
squares correspond to the frequency-based recommendation system used as benchmark. In
fact, without trust, the performance is 0 on average, because random choices lead to an equal
distribution of “good” and “bad” objects (with respect to profiles).

We now illustrate the role of preference heterogeneity. We consider first the case in which
there are two possible, opposite, profiles in the population, say p1 and p2. We define the
fraction of agents characterised by the first profile as n1. In Fig. 6 (left), we plot the per-
formance of the system with and without trust (red triangles and blue squares, respectively)
against increasing values of n1. When n1 = 0.5 there is an equal frequency of both pro-
files, while when n1 = 1 all agents have the first profile. For the system without trust, the
performance increases for increasing n1. In fact, despite that choices are random, agents
receive recommendations which are more and more likely to match the preferences of the
majority. On the other hand, the minority of agents with the profile p2 are more and more
likely to choose wrong recommendations, but their contribution to the performance of the
system decreases. The simulation results are in good agreement with the predictions obtained
in the analytical approximation (black dotted lines), Eq. 10. For the system with trust the
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Fig. 6 Effect of heterogeneity on performance. The trust-based approach performs well also in very homo-
geneous systems; in the extreme case of very heterogeneous systems, performance drops. Left: performance
as a function of the fraction n1 of agents with profile p1, with trust (red triangles) and without trust (blue
squares). Right: performance as a function of network density d with different numbers of profiles Np (blue
squares: Np = 2, green circles: Np = 4, red triangles: Np = 6). The benchmark of a frequency-based system
is represented by black crosses

performance is almost unchanged by the frequency. This very strong result has the following
explanation: the social network is a random graph in which agents have randomly assigned
profiles. Agents assigned to p2 decrease in number, but, as long as the minority, as a whole,
remains connected (there is a path connecting any two such agents) they are able to filter the
correct recommendations. At some point the further assignment of an agent to p1 causes the
minority to become disconnected and to make worse choices. In the simulations, this hap-
pens when n1 = 0.9 and n2 = 0.1. Another way of investigating the role of heterogeneity
of preferences is to consider an increasing number of profiles in the population, each with
the same frequency. In the extreme case in which, for each category there is only one expert
with any given preference profile, the performance, at constant values of network density d ,
drops dramatically, as shown in Fig. 6 (right).

5 Extensions

So far, we have made the assumptions that (1) agents are self-interested in the sense of
bounded rationality, but do not act randomly, selfishly, or maliciously and that (2) the social
network of agents is fixed and does not change over time—no agents join or leave the net-
works and no links are rewired, added, or dropped. In reality, both of these assumptions need
to be relaxed, so in further work, we plan to investigate the behaviour of the system with
respect to these issues.

5.1 Evolving social network

Considering a fixed network between agents does not appropriately depict reality; usually,
social networks evolve over time with links being created and deleted at each time step. For
example, the network could evolve in the following manner: at certain intervals over time,
each agent ai randomly picks one of its links—e.g., to agent a j —and rewires it to a random
other agent in the network or keeps it, both with a certain probability. Of course, it would
make sense to tie this probability to the level of trust the agent has on the particular link
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(a) (b)

(c) (d)

Fig. 7 Snapshots of the evolution of a network of 40 agents in two profiles and 80 links at time t = tstart
and t = tend for β = 0 and β = 1, respectively. When β = 0, disconnected clusters of agents with the same
profile form, when β = 1, interconnected clusters of agents with the same profiles form. For β > 0, agents
develop stronger ties to agents of the same profile than to agents of different profiles

considered for rewiring:

P(rewire) = 1 − Tai ,a j (11)

P(keep) = Tai ,a j (12)

i.e. P(rewire) + P(keep) = 1.
Figure 7 shows how snapshots of the evolution of a sample network of agents at different

stages for different values of β look when applying this mechanism. Note the random graph
structure at t = tstart and the community fragmentation at t = tend. This illustrates the
dilemma between exploration and exploitation faced by the agents. For β = 0, agents choose
randomly, thus performing worse, but they explore many of the other agents repetitively and
their trust relationships converge to the steady state of the trust dynamics of Eqs. 4 and 5.
Then, over time, links with low trust are rewired and links with high trust are kept. This leads
to the emergence of two disconnected clusters. Eventually, subsequent to the formation of
clusters, such agents will perform well, as any recommendation will come from an agent of
the same profile. For β = 1, agents choose according to the strength of trust relationships,
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thus performing better, and they are able to exploit their knowledge. However, they exploit
stronger links while not even exploring weaker ones. This results in clustering, but with inter-
connections between clusters. As networks in reality are evolving, it is important to study
the impact of such behaviour on the system in more detail.

5.2 Robustness against Random, Selfish, and Malicious Agents

Another extension of the model focuses on the robustness of the recommendation system
against attacks. For this purpose, three different additional types of agents can be consid-
ered: (1) Random agents are agents that, instead of giving correct recommendations, give a
random recommendation. Having such agents in the system mimics the effect of noise on
communication channels. (2) Selfish agents are agents that do not return recommendations
except in the case that they have already received responses through the agent that initiated
the query. (3) Malicious agents are agents that intentionally give recommendations that do not
correspond to their own beliefs—i.e., they recommend what they would not use themselves,
and vice versa. We are interested in the performance of the recommendation system with
respect to differing fractions of such agents in the system: To what extent is the performance
affected? Is there a critical value of the fraction of such agents for which the recommendation
system becomes unusable? For applications in reality, an analysis of these topics is crucial.

6 Summary and conclusions

We have outlined a model for a trust-based recommendation system that combines the con-
cepts of social networking and trust relationships: agents use their trust relationships to filter
the information that they have to process and their social network to reach knowledge that is
located far from them. Probably the most striking result of this work is that the recommenda-
tion system self-organises in a state with performance near to the optimum; the performance
on the global level is an emergent property of the system, achieved without explicit coor-
dination from the local interactions of agents. With this model, we strive towards building
an archetypal model for recommendation systems by combining the concepts of social net-
working and trust relationships.
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