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Abstract
Aim: Understanding the variation in community composition and species abundances 
(i.e., β- diversity) is at the heart of community ecology. A common approach to ex-
amine β- diversity is to evaluate directional variation in community composition by 
measuring the decay in the similarity among pairs of communities along spatial or 
environmental distance. We provide the first global synthesis of taxonomic and func-
tional distance decay along spatial and environmental distance by analysing 148 data-
sets comprising different types of organisms and environments.
Location: Global.
Time period: 1990 to present.
Major taxa studied: From diatoms to mammals.
Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) 
and the rate of distance decay as the slope of an exponential fit using generalized lin-
ear models. We used null models to test whether functional similarity decays faster or 
slower than expected given the taxonomic decay along the spatial and environmental 
distance. We also unveiled the factors driving the rate of decay across the datasets, 
including latitude, spatial extent, realm and organismal features.
Results: Taxonomic distance decay was stronger than functional distance decay along 
both spatial and environmental distance. Functional distance decay was random given 
the taxonomic distance decay. The rate of taxonomic and functional spatial distance 

mailto:caio.roza@helsinki.fi
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1  |  INTRODUCTION

Biodiversity on Earth is shrinking (IPBES, 2019). Understanding 
its distribution is therefore paramount to inform conservation ef-
forts and to evaluate the links between biodiversity, ecosystem 
functioning, ecosystem services and human well- being (Cardinale 
et al., 2012). The variation in the occurrence and abundance of 
species in space and time (i.e., β- diversity) is at the heart of com-
munity ecology and biogeography because it provides a direct 
link between local (α) and regional (γ) diversity (Mori et al., 2018). 
Moreover, β- diversity has become an essential currency in spatial 
(Kraft et al., 2011) and temporal (Blowes et al., 2019) comparisons 
of biodiversity patterns and their underlying drivers. The β- diversity 
is also informative in the context of biodiversity conservation and 
practical management decisions in rapidly changing environments 
(Gossner et al., 2016).

A common approach to examine spatial β- diversity is to consider di-
rectional turnover in community composition with distance (i.e., distance 
decay) (Anderson et al., 2011; Nekola & White, 1999). The similarity 
among the pairs of biological communities typically decreases (“decays”) 
with increasing spatial or environmental distance (Nekola & White, 1999). 
This pattern stems mainly from dispersal limitation [related to physical 
barriers and dispersal ability (Hubbell, 2001)] and species- specific re-
sponses to spatially structured environmental variation [related to en-
vironmental filters and evolutionary processes (Cottenie, 2005)] and is 
well documented in observational (Astorga et al., 2012) and theoretical 
studies (Morlon et al., 2008) and in meta- analyses (Soininen et al., 2007). 
Although the patterns and drivers of taxonomic β- diversity are relatively 
well studied in the biogeographical literature, whether the same pat-
terns occur for functional β- diversity is much less understood (Villéger 
et al., 2012).

Understanding functional diversity relies on trait- based ap-
proaches, which are built on the idea that the environment se-
lects species based on their ecological requirements and that 
functional traits capture these requirements better than spe-
cies identity (McGill et al., 2006). Thus, a trait- based approach 
should reflect the functional response of biotic communities to 

environmental gradients better than an approach based only on 
the taxonomic identities of species and should predict better how 
biotic communities respond to environmental changes (Mouillot 
et al., 2013). Functional diversity has been investigated widely at 
the α- diversity level (Buisson et al., 2013; Villéger et al., 2008), 
but our understanding of functional β- diversity is much more lim-
ited and fragmented (Heino & Tolonen, 2017; Penone et al., 2016; 
Villéger et al., 2013). Comparing the patterns of functional and 
taxonomic β- diversity across different biotic groups, ecosystems 
and geographical contexts has the potential to contribute greatly 
to a mechanistic understanding of the drivers behind the spatial 
variation in ecosystem functionality and shed further light on how 
environmental change might affect ecological communities.

Several ecological processes can be inferred from the correlation 
between taxonomic and functional similarity. For example, a coupling 
of taxonomic and functional distance decay might indicate that species 
from the regional pool have equal probabilities of reaching all sites, but 
local communities are assembled based on local habitat constraints on 
organisms present at each site (Sokol et al., 2011). This generates func-
tional clustering (i.e., trait variability is smaller than expected given the 
taxonomic composition) at the site level, but overdispersion (i.e., trait 
variability is larger than expected given the taxonomic composition) at 
the regional level. This phenomenon has been observed, for example, 
for specific leaf area of tree communities along an elevational gradi-
ent (Swenson et al., 2011). However, high taxonomic β- diversity does 
not always mean high functional β- diversity (Leibold & McPeek, 2006; 
Mouillot et al., 2013) (Figure 1a). In fact, a functional decay stronger than 
expected given the taxonomic decay might occur if the species in the 
two communities are functionally more divergent than expected given 
the species pool. In contrast, a weaker functional decay than expected 
given the taxonomic decay might occur if local communities under 
same habitat constraints are subsamples of multiple regional pools with 
different species composition. Therefore, the most pressing question 
is whether functional similarity decays typically faster or slower along 
environmental gradients than expected given the taxonomic decay, 
as suggested by some earlier studies (Carvalho et al., 2020; Sokol 
et al., 2011; Swenson et al., 2011).

decay was fastest in the datasets from mid- latitudes. Overall, datasets covering larger 
spatial extents showed a lower rate of decay along spatial distance but a higher rate of 
decay along environmental distance. Marine ecosystems had the slowest rate of decay 
along environmental distances.
Main conclusions: In general, taxonomic distance decay is a useful tool for biogeo-
graphical research because it reflects dispersal- related factors in addition to species 
responses to climatic and environmental variables. Moreover, functional distance 
decay might be a cost- effective option for investigating community changes in het-
erogeneous environments.

K E Y W O R D S
β- diversity, biogeography, environmental gradient, spatial distance, trait
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F I G U R E  1  (a) Taxonomic and functional distance decay. Two scenarios of distance decay of taxonomic and functional similarities along 
spatial and environmental distance. In scenario 1 (for simplicity, we consider here replacement only), the replacement occurs among species 
that have different traits (i.e., colours), which leads to both taxonomic and functional distance decay. In scenario 2, the replacement occurs 
among species that have similar traits, which leads to zero functional distance decay measured by the slope. (b) Master hypothesis: spatial 
distance decay is stronger for taxonomic similarities than for functional similarities, whereas environmental distance decay is stronger for 
functional similarities. (c) Specific hypotheses (higher values indicate steeper slopes) across datasets. For latitude, spatial distance decay 
is flatter in the datasets from higher latitude and, more notably, for taxonomic similarities than for functional similarities. Environmental 
distance decay is steeper in datasets from higher latitude for functional similarities, whereas it does not vary notably with latitude for 
taxonomic similarities. For spatial extent, both taxonomic and functional spatial distance decay are flatter in the datasets covering a larger 
spatial extent, whereas environmental distance decay is steeper in datasets covering a larger extent. For realm, marine ecosystems show 
flatter spatial and environmental distance decay than terrestrial and freshwater systems. Abbreviations: FRE = freshwater systems;  
MAR = marine systems; TER = terrestrial systems 

(a)
(b)

(c)
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1.1  | Hypotheses

Following the first comprehensive distance decay meta- analysis 
(Soininen, McDonald, et al., 2007), our understanding of community 
turnover along spatial and environmental gradients has increased no-
tably. Here, based on existing ecological literature and theory, and as 
an initial step towards synthesizing knowledge, we tested four hy-
potheses concerning the differences between taxonomic and func-
tional distance decay along the spatial and environmental distance. 
The master hypothesis (H1a) is that the distance decay along spatial 
gradients is stronger for taxonomic similarity than for functional sim-
ilarity. This is because spatial factors relate more to taxonomic than 
functional composition owing to dispersal processes, dispersal his-
tory and speciation (Soininen et al., 2016). Such a hypothesis should 
be valid when functional traits do not comprise dispersal- related 
traits. In contrast (H1b), distance decay along environmental gradi-
ents is stronger for functional similarity than for taxonomic similar-
ity because functional composition should respond more strongly to 
environmental variation (Meynard et al., 2011; Soininen et al., 2016) 
(Figure 1b).

1.1.1  |  Latitudinal gradients

We also generalize the effects of major geographical and environ-
mental factors in the three hypotheses that are tested across the 
datasets. For example, latitudinal effect has been recognized as 
a relevant factor in meta- analyses (Soininen et al., 2007) and case 
studies (Qian et al., 2009), and these studies suggest that β- diversity 
should decrease with increasing latitude (Figure 1c). This is indicated 
by the faster latitudinal decline in γ- diversity than in α- diversity 
(Hillebrand, 2004; Soininen, 2010) and the decrease in slopes of the 
species– area relationships (proxy for turnover) with latitude (Drakare 
et al., 2005). Moreover, Rapoport's rule (Stevens, 1989) postulates 
that species range sizes are larger at high latitudes, leading to lower 
β- diversity (but see Rohde, 1996). Therefore, we hypothesize (H2a) 
that the rate of taxonomic distance decay along spatial gradients is 
generally slower in the datasets that originate from higher latitudes. 
In contrast, functional distance decay along a spatial gradient might 
be faster in the datasets from higher latitudes because large- scale 
environmental heterogeneity tends to increase towards the poles 
(Soininen & Hillebrand, 2007; Soininen, McDonald, et al., 2007; 
Terborgh, 1973). Thus, environmental filtering becomes stronger 
with increasing latitude (Jarzyna et al., 2021; Lamanna et al., 2014), 
leading to functionally clustered communities locally that become 
increasingly overdispersed along the regional environmental gradi-
ent. This would result in a faster rate of functional distance decay 
along environmental gradients at higher latitudes (H2b). An alterna-
tive hypothesis is that extreme climatic conditions at high latitudes 
decrease functional diversity because abiotic filtering limits the 
number of possible ecological strategies found in a biotic community 
(Cornwell & Ackerly, 2009), resulting in a relatively slow rate of func-
tional distance decay.

1.1.2  |  Spatial extent

Distance decay is also likely to be affected by the spatial extent of a 
given study (Nekola & McGill, 2014; Steinbauer et al., 2012). It has 
been shown that distance decay has a power- law shape at spatial 
extents that do not exceed regional species pools and an exponen-
tial shape when extent encompasses multiple species pools (Nekola & 
McGill, 2014). This suggests that the slope of the relationship becomes 
flatter with increasing spatial extent (Soininen, McDonald, et al., 2007), 
mainly because regional species diversity is limited with a certain upper 
boundary (Triantis et al., 2011). Furthermore, environmental hetero-
geneity affects the diversity of species (Pianka, 1966) and functional 
traits at a regional level (Questad & Foster, 2008), but such effects are 
likely to be scale dependent (Gazol et al., 2013; Laanisto et al., 2012). 
To summarize, we hypothesize (H3a) that the rate of distance decay 
along spatial gradients is generally slower in the datasets covering 
larger spatial extent. In contrast (H3b), the rate of distance decay along 
environmental gradients is generally faster when the spatial extent is 
larger, especially for functional similarities.

1.1.3  |  Realms

We also expect the patterns of distance decay to vary among realms. 
In general, marine ecosystems are environmentally more homogene-
ous than terrestrial or freshwater ecosystems, at least in the open 
ocean (Clarke, 1992), and typically show weaker dispersal barriers 
than terrestrial or freshwater ecosystems (Bierne et al., 2003; Cornell 
& Harrison, 2014). Therefore, we hypothesize (H4) that the datasets 
from marine ecosystems generally have slower rates of taxonomic and 
functional distance decay than the other ecosystems.

Here, we tested these hypotheses using datasets that cover a 
wide range of biotic groups, from unicellular diatoms to vascular 
plants, fungi, invertebrates, fish, birds, amphibians and mammals, 
and that originate from marine, terrestrial and freshwater ecosys-
tems spanning broad latitudinal gradients (Figure 2). To account 
for major biological differences in biotic groups, we also investi-
gated whether distance decay varied among different- sized taxa or 
among taxa with different dispersal modes (Bie et al., 2012; Jenkins 
et al., 2007). By using such a comprehensive, multi- realm and multi- 
taxon dataset, we explore patterns at a more general level compared 
with case studies that have examined both taxonomic and functional 
β- diversity but considered only a single or few biotic groups.

2  | MATERIAL AND METHODS

2.1  | Data collection

We gathered our data by directly contacting data owners or using 
the existing data sources, such as GrassPlot (Biurrun et al., 2021; 
Dengler et al., 2018), sPlot (Bruelheide et al., 2019) and CESTES 
(Jeliazkov et al., 2020). We included datasets that provided raw data 
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of species abundances, functional traits, environmental variables 
and spatial coordinates of the study sites. A few datasets (n = 6) 
provided only species occurrence rather than abundance informa-
tion (Supporting Information Appendix S1). The traits included in 
the datasets were chosen by data owners from a suite of traits that 
should respond well to environmental variation. For plant datasets 
compiled from the sPlot database, trait information was commonly 

derived from the TRY database (Kattge et al., 2011). Regarding the 
CESTES database, we compiled 48 datasets, specifically from: fish 
communities (Brind’Amour et al., 2011; Chong- Seng et al., 2012; 
Cleary et al., 2016; Villéger et al., 2012), terrestrial vascular plants 
(Bagaria et al., 2012; Chmura et al., 2016; Eallonardo et al., 2013; 
Frenette- Dussault et al., 2011; Fried et al., 2012; Jamil et al., 2013; 
van Klink et al., 2017; Meffert & Dziock, 2013; Pakeman, 2011; 

F I G U R E  2  Study design highlighting (a) a map of the study sites coloured according to the realms (FRE = freshwater; MAR = marine; 
TER = terrestrial); (b) the number of datasets for major biotic groups; and (c) the distribution of the datasets with respect to spatial extent, 
number of study sites, functional γ- diversity (log10 hypervolume SD3), taxonomic γ- diversity (number of species), number of environmental 
variables and latitude 
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Raevel et al., 2012; Ribera et al., 2001; Robroek et al., 2017),  
aquatic macroinvertebrates (Díaz et al., 2007; Gallardo et al., 2009; 
Jeliazkov et al., 2014), terrestrial arthropods (Barbaro & van 
Halder, 2009; Barbosa et al., 2015; Bartonova et al., 2016; Dziock 
et al., 2011; Gibb et al., 2015; Gonҫalves- Souza et al., 2014; van 
Klink et al., 2017; Krasnov et al., 2015; Lowe et al., 2018), birds 

(Barbaro et al., 2012, 2017; Barbaro & van Halder, 2009; Charbonnier 
et al., 2016; Cleary & Renema, 2007; Meffert & Dziock, 2013), bats 
(Charbonnier et al., 2016; Farneda et al., 2015), bryophytes (Robroek 
et al., 2017), butterflies (Bartonova et al., 2016; Robinson et al., 2014), 
corals (Rachello- Dolmen & Cleary, 2007) and foraminifera (Cleary 
& Renema, 2007). We included only datasets with ≥10 sites, two 
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environmental variables and three traits or trait categories. In some 
cases, more than one dataset, representing different taxonomic 
groups with different responses to the environment and dispersal 
abilities (e.g., stream macroinvertebrates and diatoms) was collected 
in the same study area. In total, 148 datasets representing 17 major 
biotic groups from terrestrial (n = 87), freshwater (n = 41) and marine 
(n = 21) environments were assembled, amounting to >17,000 study 
sites around the globe (Figure 2). Of the 148 datasets, 118 were pub-
lished in peer- reviewed journals (Appendix S1). Taxa were identified 
mostly to species or morphospecies; in a few cases, we used data at the 
genus level if existing taxonomic knowledge did not allow individual 
species to be distinguished. Within biotic groups, traits were gener-
ally the same or at least covered similar functional roles (Appendix S1). 
Finally, each dataset included (1) a sites- by- species abundance matrix; 
(2) a species- by- traits table; (3) a sites- by- spatial coordinates table; 
and (4) a sites- by- environmental variables table (Figure 3a). Detailed 
information about collected datasets can be found in Appendix S1 and 
information about data curation in Appendix S2. All the data curation 
and further analyses were performed in the software R v.4.0.2 using 
the appropriate R packages. We will consistently refer to the functions 
used and their respective packages from here on.

2.2  |  Community similarity

When estimating community similarities, we used both occurrence 
and abundance data, because occurrences are informative about the 
drivers and patterns of communities along geographical gradients, 
whereas abundances inform patterns along environmental gradients 
well (Declerck et al., 2011). The similarity in species composition be-
tween two communities (hereafter, taxonomic similarity) was esti-
mated with the function beta in the package BAT v.2.7.0 (Cardoso 
et al., 2020). For the similarity in trait composition (hereafter, func-
tional similarity), we first represented the ecological niche spaces of 
species as n- dimensional hypervolumes (Hutchinson, 1957) sensu 
Blonder (2018). We used probabilistic hypervolumes based on the 

Gaussian kernel density estimator instead of other widely used 
methods (e.g., convex hulls; Villéger et al., 2013) because it allows 
the inclusion of abundance information in the estimation of func-
tional space and it gives different probabilities to more or less popu-
lated areas of the functional space, being less influenced by outliers 
(Mammola & Cardoso, 2020; Mammola et al., 2021). Community 
similarity (S) ranges between zero and one and is commonly calcu-
lated for pairs of communities as the sum of the unique features of 
each community divided by the sum of the shared features between 
communities and the unique features of each community. We esti-
mated the taxonomic and functional similarities between communi-
ties j and k using the Sørensen similarity index as: 

where a is the sum of the shared features between the communities j 
and k, b is the sum of the unique features of community j, and c is the 
unique features of community k. When estimating taxonomic similar-
ities, each species is a feature that may or may not be shared by two 
communities (Figure 3b). For functional similarities, each feature com-
prises the area of the hypervolume that is either shared between two 
communities or unique to each community (Figure 3b).

To construct the hypervolume of each community, we first cal-
culated the pairwise difference between species using the Gower 
similarity index. We used Gower similarity as modified by Bello 
et al. (2021) because it gives balanced weights for categorical, con-
tinuous, dummy and fuzzy- coded variables. The modified gower dis-
tance was calculated with the function gawdis within the package 
gawdis v.0.1.3 (Bello et al., 2021). Then, we ran a principal coordi-
nates analysis (PCoA) on this distance matrix and summarized the 
trait data in three PCoA axes, following a trade- off between compu-
tation time and information quality. Using the three PCoA axes, we 
constructed the hypervolume using the function kernel.build from 
BAT. Finally, we estimated the amount of overlap between two hy-
pervolumes, in addition to the unique area of each community, using 
the function kernel.beta of BAT that builds on hypervolume_set of  

(1)Sjk = 1 −
b + c

2a + b + c

F I G U R E  3  The analytical framework described in a stepwise manner: (a– c) hierarchical description of the methods performed at dataset 
level, including the estimation of similarities and distance in addition to the distance decay models of each dataset; and (d) description of the 
tests performed after the compilation of the metrics from all datasets. (a) The four objects used in the analyses: a species- by- traits table, 
a sites- by- species matrix, a sites- by- coordinates table and a sites- by- environment table. (b) The calculation of taxonomic and functional 
similarities and of spatial and environmental distance. In the first example, only species identities are considered, and because sites k and 
k do not share any species, community similarity (blue) equals zero. In the second example, the functional traits of species are considered, 
and community similarity (orange) is higher than zero. The third example shows how spatial distance was calculated as the geographical 
distance between pairs of sites using spatial coordinates. The fourth example illustrates how sites far from each other may show similar 
environmental conditions and therefore small environmental distance. Environmental distance was calculated as the Euclidean distance 
between pairs of sites considering the standardized environmental variables. (c) Illustration of the metrics extracted to study the distance 
decay across datasets. The strength of distance decay was measured from Mantel tests using Spearman correlations (Mantel r), and the 
rate of decay was measured as the slopes of generalized linear models following a quasibinomial family with a log link. The models were 
built separately for each response variable (taxonomic or functional similarity) and explanatory variables (spatial or environmental distance), 
totalling four Mantel r values and four slopes. Also, the data of marine fish from the Mediterranean Sea are shown as an example in which 
the distance decay of similarity along environmental distance is stronger (higher Mantel r) for functional similarity than for taxonomic 
similarity, irrespective of the rate of decay (slope). (d) Description of the analyses used to test the hypotheses and which metrics were 
considered for each analysis. The strength (Mantel r) of decay was used to test hypothesis H1, and the rate of decay (slope) was used to 
hypotheses H2– H4 



1408  |    GRACO- ROZA et Al.

hypervolume v.2.0.1 (Blonder & Harris, 2019). For functional similar-
ities, if two communities do not share any species, taxonomic simi-
larity would be, by definition, lower than functional similarity if any 
continuous trait (e.g., body size; Figure 3b) is included. Details of the 
calculation of similarities using the Sørensen- based indices for oc-
currence and abundance data can be found in the (Appendix S2). The 
main results are given for occurrence data in the main text, whereas 
abundance- based results can be found in the (Appendix S3).

2.3  |  Spatial and environmental distance

For each dataset, spatial distance was calculated as the geographi-
cal distance (in kilometres) between the pairs of sites using the func-
tion earth.dist of the package fossil v.0.4.0 (Vavrek, 2011) (Figure 3b). 
Environmental distance was calculated as the Euclidean distance be-
tween all the pairs of sites, considering the standardized environmen-
tal variables within each dataset (Figure 3b), with the function vegdist 
of the package vegan v.2.5– 6 (Oksanen et al., 2019). From the original 
environmental variables in each dataset, we only kept the continuous 
variables with <5% missing values (for data curation, see Appendix S2). 
Given that the datasets contained different numbers and types of 
environmental variables, the values of environmental distance were 
context dependent and not very informative for comparison across 
datasets. We therefore assumed that the environmental gradient 
increased with spatial extent and rescaled the actual environmental 
distance to range between zero and one in each dataset by dividing 
actual values by the maximum environmental distance of the dataset.

2.4  | Distance decay of similarity

To comply with the assumption of nonlinearity in the distance de-
cays, the strength of the distance decay relationship was assessed 
by ranked Mantel tests (using a Spearman correlation, i.e., Mantel r).  
The rate of the decay was modelled as the slope of generalized linear 
models (GLMs) following a quasi- binomial family with log- link (Millar 
et al., 2011), representing a negative exponential curve between the 
community similarity and distance (Figure 3). One of the main as-
sumptions of the distance decay is that the slope of the relationship 
should be negative (Nekola & McGill, 2014), and positive slopes sug-
gest either periodicity in the environmental gradient or a mismatch 
between the communities and the measured environmental variables 
(Nekola & White, 1999). Therefore, whenever datasets showed posi-
tive distance decay slopes, these were transformed to zero values. 
In total, five datasets had positive slopes for taxonomic similarities, 
whereas 11 datasets had positive slopes for functional similarities.

2.5  |  Statistical analysis

We tested our master hypothesis using two different approaches. 
Firstly, we investigated whether taxonomic or functional distance 

decay is stronger along spatial and environmental distance (H1) by 
performing Student’s paired t tests to compare Mantel r drawn from 
taxonomic and functional similarity for each dataset, considering 
both spatial and environmental distance (Figure 3d). Secondly, 
we generated a null distribution of functional similarity values by 
randomizing the names of the species across the trait table 999 
times. At each iteration, the functional similarities were calculated 
and regressed against spatial and environmental distance. The 
slopes of these relationships were used to obtain a null distribution 
of slopes under the assumption that the rate of functional decay 
is random given the rate of taxonomic decay. Deviations from null 
distribution were tested using standardized effect sizes (SES; Gotelli 
& Graves, 1996); SES values >1.96 indicate that functional similarity 
decays faster than expected given taxonomic decay, whereas SES 
values <−1.96 indicate that functional similarity decays slower than 
expected given taxonomic decay (Swenson et al., 2011).

We also investigated the ecological and geographical factors driving 
the rate of the distance decay across datasets. Each dataset was char-
acterized with respect to: (1) latitude, recorded as the absolute mean 
value of all the sites of the dataset; (2) spatial extent, expressed as the 
largest pairwise distance (in kilometres) between study sites; (3) realm, 
classified into freshwater, marine and terrestrial environments; (4) body 
size information drawn from literature (Hillebrand, 2004; Peters, 1983), 
estimated as the mean log10- transformed fresh weight (in grams) of the 
biotic group included in the dataset; (5) dispersal mode, classified as 
active and passive modes and organisms dispersed by seeds; (6) tax-
onomic γ- diversity, expressed as the total number of species in the 
dataset; (7) functional γ- diversity, measured as the total volume of the 
union of the n- dimensional hypervolumes estimated within the data-
set (Mammola & Cardoso, 2020); (8) total number of study sites in the 
dataset; and (9) the number of environmental variables in the dataset. 
For body sizes, we note that although the size range within the biotic 
group can be large (up to five orders of magnitude), it is small com-
pared with the overall variation obtained across organism groups (12 
orders of magnitude). For more details on body size approximations, 
see the papers by Hillebrand (2004) and Drakare et al. (2005). The 
taxonomic γ- diversity was included to study whether there is a typical 
positive relationship between γ- diversity (taxonomic and functional) 
and β- diversity (Kraft et al., 2011; Lamanna et al., 2014). Functional 
γ- diversity was estimated using the function hypervolume_set of the 
package hypervolume v.2.0.12 (Blonder & Harris, 2019). Hypervolumes 
are expressed in units of SDs to the power of the number of trait di-
mensions used (i.e., three). The number of study sites and the number 
of environmental variables for each dataset were included to explore 
their potential effect on distance decay.

Finally, we used boosted regression trees (BRTs) to test the effects 
of latitude (H2), spatial extent (H3) and realm (H4) on the rate of taxo-
nomic and functional distance decay along spatial and environmental 
distance across the datasets. The BRT parameters were selected to 
amplify the deviance explained by the model. We tested interaction 
depths of 0.1, 0.01 and 0.001, and learning rates between two and 
five. The best models were the ones with a learning rate of five and 
interaction depth of 0.001. Given that the datasets in this study have 
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not always followed the same sampling methodology and show differ-
ent functional traits and environmental variables, we fitted the BRT 
models following a Laplace distribution of the errors to reduce the 
absolute error loss from the variation among datasets. We included 
taxonomic and functional γ- diversity, number of sites and number of 
environmental variables in the dataset as predictor variables for con-
trolling the heterogeneity across datasets within the model (Figure 3d). 
The BRT models were fitted using the function gbm.step of the pack-
age dismo v.1.1– 4 (Hijmans et al., 2017). Given that some predictors 
could show cross- information (e.g., marine ecosystems have smaller 
organisms than terrestrial systems in our datasets), we tested whether 
there were significant interactions between predictors in BRTs using 
the functions gbm.interaction. For understanding how gbm.interac-
tion works and for more in- depth details about BRTs, we refer to the 
(Appendix S2 and references therein). Additionally, we performed 
sensitivity analysis to ensure that the patterns detected were not an 
artefact of sample size. In the sensitivity analysis, models were refitted 
using subsampled data with 90, 70 and 50% of the full observations.

We partitioned the similarities into replacement and richness 
difference components following the methodology described in the 
(Appendix S2). Replacement gives the variation resulting from the 
substitution of species (taxonomic replacement) or functional traits 
(functional replacement), whereas richness differences account for the 
variation resulting from net differences induced by the loss/gain of spe-
cies or traits (Carvalho et al., 2012). We showed the full results of the 
distance decay using occurrence- based total similarities (Equation 1), 
but we also used abundance- based similarities and showed their main 
findings in the main text, with further details in the (Appendix S3). To 
keep the narrative concise, in the main text we show only the results 
of the partitioned components using occurrence data. All figures were 
built using the packages from the tidyverse suite (Wickham et al., 2019).

3  |  RESULTS

3.1  |  Strength of the distance decay

The distance decays showed a wide range of shapes, from very steep 
decays to almost flat relationships (Figure 4). The average Mantel r 
using occurrence data along spatial distance for taxonomic similarities 
was .254 (SD ±0.197) and .115 (SD ±0.143) for functional similarities. 
Spatial distance decays of taxonomic similarities were significantly 
stronger than the distance decays of functional similarities when con-
sidering both occurrence (Figure 4a; t = 13.124, p < .001, d.f. = 146) 
and abundance data (Appendix S3; Figure S3.3), supporting H1a that 
spatial distance decay is stronger for taxonomic than functional simi-
larities (Figure 4a). In 31 datasets, the spatial distance decay of func-
tional similarities was stronger than taxonomic similarities.

However, our results did not support H1b, because the distance 
decay for taxonomic similarities (mean Mantel r = .272, SD ±0.176) 
was also, on average, stronger than for functional similarities (mean 
Mantel r = .150, SD ±0.144) along environmental distance, consider-
ing both occurrence (Figure 4b; t = 10.342, p < .001, d.f. = 146) and 

abundance data (Appendix S3; Figure S3.3). Note, however, that 32 
of 148 datasets had stronger distance decay of functional similarities 
than taxonomic similarities along environmental gradients.

3.2  |  Rate of the distance decay

The mean slope of the spatial distance decay was −0.009  
(SD ±0.028) for taxonomic similarities and −0.004 (SD ±0.020) for 
functional similarities (Figure 4a). Null models showed that only 
13 datasets had a functional distance decay significantly different 
from expected given taxonomic decay, with three datasets having 
faster slopes and 10 having slower slopes (Figure 4a). For environ-
mental distance, the mean slope of the distance decay was −1.077  
(SD ±1.066) for taxonomic similarities and −0.355 (SD ±0.031) for 
functional similarities (Figure 4b). Null models along environmental 
distance showed that only 11 datasets had a functional distance 
decay significantly different from expected given the taxonomic 
decay, from which only one was slower (Figure 4b).

Regarding the biotic groups, terrestrial plants had the steepest 
slopes along spatial distance for both taxonomic and functional 
similarities (Figure 5). Along environmental distance, corals had the 
steepest slopes along spatial distance, whereas foraminifera had the 
steepest slopes along environmental distance (Figure 5). Similar pat-
terns were found for abundance- based similarities, except for the 
biotic groups, where aquatic plants had the steepest slopes along 
spatial distance (Appendix S3; Figure S3.4).

Across datasets, BRT explained 35.4% of the deviance of the 
slopes of the spatial distance decay for taxonomic similarities and 
38.3% for functional similarities using occurrence data. For the 
distance decay along environmental distance, BRT explained only 
14.4% of the deviance of the slopes of the decay of taxonomic 
similarities and 6.6% for functional similarities. Spatial extent, 
latitude and γ- diversity contributed the most to the variation in 
slopes along either spatial or environmental distance using both 
occurrence-  and abundance- based similarities (Figures 6a and 7a; 
Appendix S3; Figures S3.5 and S3.6). We found interactions for the 
BRT only on taxonomic similarities along environmental gradients. 
These were between: (1) taxonomic γ- diversity and body size (inter-
action size = 5.09); and (2) spatial extent and latitude (interaction 
size = 3.79). These are probably related to the higher number of spe-
cies included in the datasets containing small biotic groups and the 
fact that larger datasets had a mean latitude near the equator. There 
was no evident effect of sample size on the main patterns according 
to the sensitivity analysis (Appendix S2; Figures S2.1 and S2.2).

3.3  |  Latitudinal patterns

The slopes of spatial distance decay of both taxonomic and functional 
similarities were steepest in datasets centred at c. 35– 45°, providing 
only partial support for H2a that distance decay was flatter at high 
latitudes (Figure 6a). Note that spatial distance decay decreased 
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sharply towards the poles. The slopes of environmental distance 
decay were flattest in the datasets at c. 50° (Figure 6b). However, 
note that functional distance decay increased towards the poles, pro-
viding partial support to hypothesis H2b. Similar patterns were found 
for abundance- based similarities (Appendix S3; Figure S3.5).

3.4  |  Spatial extent

The distance decay of taxonomic and functional similarities was flat-
ter in the datasets that covered a larger spatial extent for both occur-
rence (Figure 6a) and abundance data (Appendix S3; Figure S3.5a), 
supporting hypothesis H3a that distance decay becomes flatter 
with increasing spatial extent. For environmental distance, distance 
decay was steeper in the datasets that covered larger spatial extents 
only for taxonomic similarities, but functional distance decay did not 
vary with extent. Thus, our results agreed, in part, with H3b that dis-
tance decay would become steeper with larger spatial extent.

3.5  |  Realms

Marine ecosystems typically had flatter slopes in comparison 
to freshwater or terrestrial ecosystems, thus agreeing with H4 
(Figure 6). However, the importance of the realms in BRTs was low 

overall. A similar pattern emerged for abundance- based similarities 
(Appendix S3; Figure S3.5).

3.6  | Organismal variables and dataset features

Organisms relying on seed dispersal had steeper slopes along spatial 
and environmental distance than other dispersal types, but the overall 
importance of dispersal mode was low (Figure 7b). The slopes of both 
spatial and environmental distance decays were steeper for larger- 
bodied organisms in taxonomic and functional similarities (Figure 7a,b). 
Taxonomic γ- diversity had a U- shaped relationship with slopes for 
distance decay along spatial and environmental distance (Figure 7b). 
Slopes of distance decay had an overall flattening trend towards higher 
functional γ- diversity for both spatial and environmental distance 
(Figure 7a,b). Generally, taxonomic slopes were steeper in the datasets 
where the number of study sites was higher (Figure 7a), whereas the 
opposite was true for functional slopes. The slopes were flatter when 
datasets contained only a few environmental variables (Figure 7b).

3.7  |  Replacement and richness differences

The slopes of taxonomic and functional replacement along spatial 
distance decreased rapidly in the datasets above 35° (Appendix S4; 

F I G U R E  4  The distance decay along (a) spatial distance and (b) environmental distance. The light blue lines show the distance decay 
of taxonomic similarity, and the orange lines show the distance decay of functional similarity. The first and second columns show the rate 
(slope) of the taxonomic and functional distance decay, respectively; the third column shows the strength (Mantel r) of the distance decay of 
taxonomic and functional similarities; and the fourth column shows the standardized effect sizes of the slopes of each dataset 

(a)

(b)

The rate and strength of the distance decay

Mean = -0.005(sd ± 0.024) Mean = -0.004(sd ± 0.018)

Mean = -0.463(sd ± 0.566) Mean = -0.392(sd ± 0.333)
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Figure S4.7a). Along environmental distance, the taxonomic re-
placement increased towards higher latitudes, whereas the func-
tional replacement had a U- shaped pattern, with a decrease from 
low to mid- latitudes (c. 45°) and a sharp increase towards the poles 
(Appendix S4; Figure S4.7b). For the richness differences compo-
nent, the slopes of taxonomic similarities were steepest in the 
datasets at c. 45° for the spatial distance decay, whereas the slopes 
of functional similarities became notably steeper with latitude 
(Appendix S4; Figure S4.8a). For environmental distance, slopes be-
came flatter from low to high latitudes up to c. 50° for taxonomic 
similarities, whereas for functional similarities, slopes did not vary 
along latitude (Appendix S4; Figure S4.8b). Both replacement and 
richness differences showed flatter spatial slopes with increasing 
spatial extent (Appendix S4; Figure S4.7 and S4.8). In contrast, envi-
ronmental slopes became steeper with spatial extent for taxonomic 
replacement and flattened for functional replacement (Appendix S4; 

Figure S4.7b), whereas the functional slopes showed an opposite 
pattern (Appendix S4; Figure S4.8b). Furthermore, marine ecosys-
tems showed the flattest slopes for taxonomic replacement along 
environmental gradients (Appendix S4; Figure S4.7b), whereas ter-
restrial ecosystems had the flattest slopes for richness differences 
(Appendix S4; Figure S4.8b). Details about the organismal variables 
and dataset features can be found in the (Appendix S4; Figures S4.9 
and S4.10).

4  | DISCUSSION

Community ecology, macroecology and biogeography have lacked a 
comprehensive evaluation of functional β- diversity across different 
taxa and ecosystems globally. Earlier studies suggest that functional 
β- diversity better reflects environmental variability compared with 

F I G U R E  5  The average rate of decay (slopes) of biotic groups using occurrence data along spatial and environmental distance. The 
vertical dashed lines highlight the zero rate (absence of decay), and the horizontal lines indicate the standard deviation of the mean. The blue 
circles show the rate of decay of taxonomic similarities, and the orange circles show the rate of decay of functional similarities. Large error 
bars are attributable to low sample size (i.e., a low number of datasets for a given taxon) 
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taxonomic β- diversity and that focusing on functional β- diversity 
might help us, for example, to gain an understanding of how humans 
impact ecosystems by modifying the local environment (Meynard 
et al., 2011; Sokol et al., 2011; Spasojevic et al., 2014; Weinstein 
et al., 2014). This is because functional traits should reflect best the 
ecological requirements of species. Using a comparative analysis 
across biotic groups, ecosystem types and realms, we show here that 
taxonomic distance decay is generally stronger along spatial gradi-
ents than functional distance decay and that the decay of functional 
similarities along environmental gradients is typically not stronger 
than the decay of taxonomic similarities, unlike previous suggestions.

4.1  |  The strength of the distance decay of 
taxonomic and functional similarities

The stronger signal of taxonomic than functional distance decay 
along space provides empirical evidence that taxonomic distance 

decay is a robust approach for ecological and biogeographical stud-
ies, supporting H1a. Compositional differences effectively sum-
marize dispersal- related factors in addition to species responses 
to climatic and other spatially structured environmental variables. 
However, spatial distance decay of functional similarities might not 
reflect the geographical differences in biotic communities well. This 
is likely to stem from the different roles played by deterministic and 
stochastic factors shaping community composition, because it has 
been shown that dispersal limitation or species pool effects should 
be more important for taxonomic than for functional composition 
(Soininen et al., 2016). Some morphological or morphometric traits 
are informative when exploring geographical patterns in functional 
composition (Soininen et al., 2016); for example, seed mass and 
wood density explained the variability of tree communities along 
broad spatial gradients better than species identity alone (Siefert 
et al., 2013). The type of dispersal is also an important trait to include 
when assessing community- level patterns along spatial gradients 
(Bie et al., 2012). Unsurprisingly, we found that the datasets with 

F I G U R E  6  Relative effects (expressed as percentages) of geographical factors on the rate of decay along (a) spatial distance decay and 
(b) environmental distance decay of the total component of taxonomic (TAX, light blue) and functional (FUN, orange) similarities using 
occurrence data across datasets. Partial dependence plots show the effects of a predictor variable on the response variable after accounting 
for the average effects of all other variables in the model. Positive values indicate an increase in the rate of decay (steeper slopes) compared 
with the mean rate, whereas negative values indicate a decrease in the rate of decay (flatter slopes) compared with the mean rate. Semi- 
transparent lines represent the actual predicted effects; continuous lines represent LOESS fits to predicted values from boosted regression 
trees (BRTs). We show here only the variables related to the specific hypotheses [i.e., latitude, spatial extent and realms (FRE = freshwater; 
MAR = marine; TER = terrestrial)] 

(a)

(b)
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larger spatial extent and species pool size were more likely to have 
a stronger distance decay of taxonomic than functional similarities 
(Appendix S5; Table S5.1). We argue that when the study extent is 
large it might cross several species pools, and it is more likely that 
species occurrences are also affected by historical and dispersal- 
related factors and not only by environmental preferences (Soininen 
et al., 2016). Furthermore, we found that passive dispersers and 
datasets with higher functional γ- diversity were less likely to have 
stronger decay of taxonomic similarities than functional similari-
ties. In our datasets, passive dispersers were microorganisms and, 
therefore, efficient dispersers with a good ability to reaching sites 
with suitable environmental conditions (Bie et al., 2012; Fontaneto, 
2019). Thus, for these taxa, functional distance decay should be 
more informative than taxonomic distance decay.

Regarding environmental gradients, functional distance decay 
was also weaker than taxonomic distance decay. Although coun-
terintuitive, this relationship has been found previously (Heino & 
Tolonen, 2017; da Silva & Hernández, 2015; Teittinen & Virta, 2021). 
For example, Teittinen and Virta (2021) observed stronger distance 
decay of taxonomic than functional similarities along environmental 
gradients, which they attributed to the greater number of species 
than functional traits in their data. Also, Heino and Tolonen (2017) 
found similar results for macroinvertebrate communities of boreal 
lakes and related it to the trait resolution, which could probably be 

improved by the addition of several other physiological traits rele-
vant for the organisms in question. Here, additional analysis showed 
that increasing spatial extent, species pool and the number of en-
vironmental variables significantly increased the probability of a 
dataset having stronger decay of taxonomic similarities compared 
with functional similarities (Appendix S5; Table S5.2). In fact, the 
ratio between taxonomic and functional decay depends on whether 
the species replaced from one community to another are a random 
subsample of functionally redundant species from the regional pool 
(Swenson et al., 2011). Also, species pool size and functional redun-
dancy typically exhibit a positive correlation (Cannicci et al., 2021; 
Mouillot et al., 2014), which, in turn, should increase the functional 
similarities between sites (Jarzyna & Jetz, 2018). We suggest that 
within a large species pool, the functional redundancy of species in-
creases, given the limited set of trait combinations and/or available 
niches. Therefore, smaller species pools are more likely to have func-
tionally unique species and lower functional similarities than larger 
pools. In the case of large pools, we found that taxonomic decay was 
often stronger than functional decay. Furthermore, because species 
pool size increases with study extent (Drakare et al., 2005; Palmer 
& White, 1994; Triantis et al., 2011), the datasets with larger extents 
had slower functional distance decay even along environmental gra-
dients, and taxonomic composition turned out to be the best de-
scriptor of distance decay patterns. Another possible reasoning is 

F I G U R E  7  Relative effects (expressed as a percentage) of organismal variables and dataset features on the rate of decay along (a) spatial 
distance and (b) environmental distance, considering the total component of taxonomic (light blue lines) and functional (orange lines) 
similarities using occurrence data across datasets. Partial dependence plots show the effects of a predictor variable on the response variable 
after accounting for the average effects of all other variables in the model. Positive values indicate an increase in the rate of decay (steeper 
slopes) compared with the mean rate, whereas negative values indicate a decrease in the rate of decay (flatter slopes) compared with the 
mean rate. Semi- transparent lines represent the actual predicted effects; continuous lines represent LOESS fits to predicted values from 
boosted regression trees (BRTs). We show here the organismal variables and the variables related to the dataset features 

(a)

(b)
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that filtering on a given trait might filter other traits concomitantly, 
and if the focal trait is not included in the analyses, a mismatch be-
tween functional composition and the environment is expected. On 
the contrary, a dataset might comprise traits not affected by the en-
vironment, which tends to increase the functional similarity among 
sites. Therefore, because functional diversity patterns depend 
strongly on the traits measured (Zhu et al., 2017), the choice of traits 
should be planned carefully.

4.2  |  The effect of latitude on the rate of 
distance decay

In addition to our master hypothesis, we investigated whether the 
rate of distance decay showed consistent variation across realms, 
along geographical gradients and among major taxonomic groups. 
We did not find slower rates of decay along spatial distances in the 
datasets at higher latitudes, but we found a unimodal relationship 
with the highest decay rate at c. 30°. Similar results have been found 
earlier in terrestrial vertebrates when considering only the turno-
ver component of β- diversity (Castro- Insua et al., 2016) and for the 
total β- diversity of marine phytoplankton (Martin et al., 2021). It is 
noteworthy that our latitudinal patterns were related mainly to the 
replacement component for both taxonomic and functional decay 
(Appendix S4; Figure S4.7). Regarding environmental gradients, 
we found opposing patterns compared with spatial gradients, with 
the flattest rates of decay in the datasets near 50° and a notable 
increase from 60° towards the poles. A hump- shaped relationship 
between functional diversity and latitude has also been found previ-
ously for aquatic macroinvertebrates (Múrria et al., 2020), also with 
the minimum at c. 50°. Múrria et al. (2020) were studying patterns 
in functional dispersion, whereas we found here that the breakpoint 
was related mainly to the differences in richness for taxonomic simi-
larities and replacement for functional similarities.

Traditionally, latitudinal patterns of biodiversity have been ex-
plained by Rapoport's rule, positing that there is an increase in spe-
cies range size towards high latitudes (Stevens, 1989), hence lower 
taxonomic replacement. However, the breakpoints found in our 
data suggest that some additional factors might have generated 
the patterns. For example, landscape fragmentation might increase 
β- diversity (Jamoneau et al., 2012), especially at mid- latitudes that 
showed the highest levels of human impact in this study (Halpern 
et al., 2008; Venter et al., 2016). Also, it has been suggested pre-
viously that the distance decay along spatial distances is stronger 
at mid- latitudes than at the poles because northern communities 
result from postglacial recolonization processes, flattening distance 
decay relationships (Gómez- Rodríguez & Baselga, 2018). Although 
inferring processes from observational data is difficult (Cadotte & 
Tucker, 2017), we would like to speculate on some possible mech-
anisms generating our breakpoint patterns. Strong seasonality, 
resource scarcity and climatic stress should select only the highly 
specialized taxa and modify the functional space towards the poles 
(Lamanna et al., 2014). Therefore, it is plausible that the climatic 

stress leads to an increase in richness differences in communities to-
wards the poles, as observed in vertebrates elsewhere (Castro- Insua 
et al., 2016). Moreover, as environmental heterogeneity increases 
towards the poles, and functional clustering is expected to be stron-
ger at higher latitudes (Jarzyna et al., 2021; but see Kruk et al., 2017), 
we suggest that strong environmental filtering in datasets at higher 
latitudes (above 50°) selects for the species with different trait com-
binations between sites, thereby increasing the rate of functional 
decay. The latitudinal decrease in the rate of abundance- based 
functional distance decay (Appendix S3; Figure S3.3) is further evi-
dence of an optimal utilization of the functional space, as has been 
observed earlier exclusively for marine organisms (Edie et al., 2018). 
However, these potential explanations should be tested further.

4.3  |  The effect of spatial extent on the rate of 
distance decay

The rate of spatial distance decay was slower in the datasets cover-
ing a larger spatial extent, suggesting that regional species pools are 
limited and that new species are not found constantly at the same 
frequency when extent is larger. Lower decay rates in larger study 
areas could also result from repeated patterns in environmental 
variation; that is, environmental patchiness or natural periodicity 
in the environment (Nekola & White, 1999). In agreement with our 
hypothesis, we also found that the rate of taxonomic decay along 
environmental distance was higher in the datasets covering a larger 
spatial extent. These findings indicate that spatial distance decay is 
more affected by species pool effects and dispersal processes than 
environmental distance decay, possibly because the latter reflects 
more strongly the level of local deterministic environmental filter-
ing processes. Similar evidence has accumulated from case stud-
ies conducted in various ecosystems (Meynard et al., 2011; Sokol 
et al., 2011; Weinstein et al., 2014; Zagmajster et al., 2014). The 
finding that the rate of distance decay along environmental dis-
tance was higher in the datasets covering larger extents indicates 
the stronger environmental filtering for larger study areas. We also 
note that, in our BRT models, the extent, latitude and γ- diversity 
had by far the largest relative importance, suggesting that their in-
terplay shapes distance decay to a great extent.

4.4  |  The effect of realm on the distance decay

We found evidence for a lower rate of distance decay in marine ver-
sus terrestrial or freshwater ecosystems. Overall, this finding agrees 
with an earlier meta- review on β- diversity (Soininen, McDonald, 
et al., 2007), suggesting that large- scale diversity patterns are gen-
erally weaker in marine ecosystems (Bierne et al., 2003). Given that 
connectivity, energy flows, dispersal modes, body size structure and 
trophic dynamics differ substantially between dry and wet ecosys-
tems (Shurin et al., 2006), it is vital to investigate possible differ-
ences in turnover among the realms more closely.
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4.5  | Organismal variables and dataset features

Organism size did seem to affect taxonomic or functional distance 
decay along spatial and environmental gradients, because the slopes 
typically increased with organism body size. This might be because 
β- diversity should be low among the small microbial taxa with ef-
ficient passive dispersal (Soininen, McDonald, et al., 2007). The 
rationale behind this idea is that efficient dispersal homogenizes 
communities among sites, resulting in lower β- diversity (Mouquet & 
Loreau, 2003). Body size is also a key driver of the biological com-
plexity of organisms (Heim et al., 2017), and it might be that smaller 
organisms show a much more limited set of trait combinations than 
macroorganisms, leading to a lower functional redundancy among 
larger species. Furthermore, our knowledge about the taxonomy 
and functional traits of organisms is typically size dependent. For ex-
ample, the identification of larger species is much easier than that of 
microorganisms, which also applies to the identification and meas-
urement of soft functional traits (Hodgson et al., 1999; Martínez 
et al., 2021). Therefore, the values of functional β- diversity of small 
organisms might typically be underestimated.

Patterns in environmental distance decay were relatively con-
gruent with spatial distance decay regarding dispersal mode, 
suggesting that taxa dispersing passively do not seem to track en-
vironmental gradients more efficiently compared with less disper-
sive taxa. It might also be that small- sized taxa were filtered along 
some unmeasured spatially structured environmental gradients, and 
the pattern was thus detected as spatial turnover even if caused by 
some underlying unmeasured environmental factors. Forthcoming 
studies would benefit greatly from disentangling the signal of un-
measured environmental variables from true dispersal limitation 
(Stegen et al., 2013).

4.6  |  Study design

There are also some possibly influential aspects in our study design 
that should be discussed. Although the study is global in its extent, 
the availability of datasets was not evenly distributed geographi-
cally. This is a well- known problem in biodiversity research (Titley 
et al., 2017) that calls for complementary studies to verify that these 
trends hold true in poorly sampled regions. Also, we relied on the 
suite of traits and environmental variables included in the original 
datasets, hence the collection of traits and environmental variables 
used differed somewhat among datasets even for the same focal 
taxonomic groups. Although traits covered mostly the same func-
tional roles of the species, the variation in traits and environmental 
variables across datasets increases the uncertainty on how envi-
ronmental variables filter the functional structure of communities 
in different contexts and how strong the community– environment 
relationships might be. An alignment of key traits and environmental 
variables is therefore desirable but requires a suite of sister stud-
ies following the same protocol, which is, unfortunately, not yet 
available. Moreover, the fact that some of the biotic groups (e.g., 

bryophytes, corals, foraminifera) were underrepresented in our 
analysis, with only a few datasets included (Figure 2), or the total 
lack of some taxa (e.g., bacteria, and aquatic and terrestrial mam-
mals), makes it more difficult to generalize distance decay across 
certain taxa.

4.7  |  Concluding remarks

We believe our analysis is an important step towards a more com-
prehensive understanding of patterns and drivers of functional β- 
diversity, particularly in comparison to the patterns and drivers of 
taxonomic β- diversity that have so far attracted much more research 
interest. Here, we found that functional distance decay is scale de-
pendent and a product of large- scale geographical factors (latitude) 
and taxonomic and functional γ- diversity but is also driven by the 
biology of organisms to some degree. In general, taxonomic distance 
decay is a useful tool for many aspects of biogeographical research 
because it reflects dispersal- related factors in addition to species re-
sponses to climatic and other spatially structured environmental var-
iables. However, functional distance decay might be a cost- effective 
option for investigating how species respond to the environment, 
especially for microorganisms (e.g., microalgae), which are typically 
difficult to identify to the species level. Overall, the present findings 
and data shed light into the congruence between the functional and 
taxonomic diversity patterns globally and provide useful new infor-
mation to the field of functional biogeography.
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