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A B S T R A C T

Prescribing optimal operation based on the condition of the system, and thereby potentially prolonging
its remaining useful lifetime, has tremendous potential in terms of actively managing the availability,
maintenance, and costs of complex systems. Reinforcement learning (RL) algorithms are particularly suitable
for this type of problem given their learning capabilities. A special case of a prescriptive operation is the
power allocation task, which can be considered as a sequential allocation problem whereby the action space
is bounded by a simplex constraint. A general continuous action-space solution of such sequential allocation
problems has still remained an open research question for RL algorithms. In continuous action space, the
standard Gaussian policy applied in reinforcement learning does not support simplex constraints, while the
Gaussian-softmax policy introduces a bias during training. In this work, we propose the Dirichlet policy for
continuous allocation tasks and analyze the bias and variance of its policy gradients. We demonstrate that
the Dirichlet policy is bias-free and provides significantly faster convergence, better performance, and better
robustness to hyperparameter changes as compared to the Gaussian-softmax policy. Moreover, we demonstrate
the applicability of the proposed algorithm on a prescriptive operation case in which we propose the Dirichlet
power allocation policy and evaluate its performance on a case study of a set of multiple lithium-ion (Li-I)
battery systems. The experimental results demonstrate the potential to prescribe optimal operation, improving
the efficiency and sustainability of multi-power source systems.
1. Introduction

Prescribing an optimal course of action based on the current system
state, and thereby potentially prolonging its remaining useful lifetime,
has tremendous potential in terms of actively managing the availability,
maintenance, and costs of complex systems [1–3]. In fact, it is a se-
quential decision-making task that either requires very good dynamical
models or models with very good learning capabilities. Reinforce-
ment learning (RL) algorithms have recently demonstrated superior
performance on sequential decision-making tasks [4]. In particular,
model-free RL, which estimates the optimal policy without relying on
a model of the dynamics of the environment, has recently yielded very
promising results in many challenging tasks across areas as diverse as
gaming [5,6], control problems [7,8], prescriptive maintenance [9] and
auto machine learning (AutoML) [10].

An important application of prescriptive operations for multi-power
source systems is power allocation with the goal of prolonging the life-
time or the usage time of the systems, thereby improving availability,
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maximizing efficiency, or minimizing cost. These types of prescriptive
operation tasks can be considered as sequential allocation problems.
One of the major characteristics of allocation problems is that the
action space is bounded by a simplex constraint. This constraint makes
the application of RL algorithms in a continuous action space partic-
ularly challenging. Besides power allocation [11], both sequential and
single-step allocation tasks are commonly encountered in several other
application scenarios, such as task allocation [12], resource alloca-
tion [13,14], order allocation [15], redundancy allocation [16,17] and
portfolio management [18]. Particularly for allocation tasks involving
complex systems, system state and reliability considerations are crucial.

Several research studies have focused on allocation tasks with re-
inforcement learning [18–21]. However, one of the main limitations
of the previously proposed RL approaches for allocation tasks is that
they were solely able to operate in a discretized action space. This
discretization typically precludes, on the one hand, fine-grained allo-
cation actions since the number of discretized actions may become
vailable online 30 April 2022
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intractably high [22]. On the other hand, the action space needs to be
carefully adjusted if the number of possible allocation options changes.
These two aspects substantially limit the scalability of the existing
approaches.

To enable more general allocation decision-making, continuous ac-
tion space is required [23,24]. For continuous action-space sequential
allocation problems, the RL algorithms need to satisfy the simplex
constraints as outlined above. However, the most commonly applied
Gaussian policy in other RL tasks is not able to satisfy the simplex
constraints [23–26]. Gaussian-softmax policy could be an alternative
solution [18]. However, this function is not injective and has additional
drawbacks, such as its inability to model multi-modality [27]. This
leads to less efficient training and less effective performance.

In this paper, we focus on continuous action-space sequential alloca-
tion tasks and propose a Dirichlet-policy-based reinforcement learning
framework for sequential allocation tasks. This enables us to overcome
the aforementioned limitations. The proposed Dirichlet policy offers
several advantages as compared to the Gaussian, Gaussian-softmax,
and discretized policies. The Dirichlet policy inherently satisfies the
simplex constraint. Moreover, it can be combined with all state-of-the-
art stochastic policy RL algorithms. This makes it universally applicable
for sequential allocation tasks. Ultimately, the proposed Dirichlet policy
exhibits good scalability and transferability properties. In this research,
we theoretically demonstrate that the Dirichlet policy is bias-free and
results in a lower variance in policy updates as compared to the
Gaussian-softmax policy. Finally, we experimentally demonstrate that
the Dirichlet policy provides significantly faster convergence, better
performance, and is more robust to changes in hyperparameters as
compared to the Gaussian-softmax policy.

The performance of the proposed prescriptive operation framework
in the context of sequential allocation problems is evaluated on a case
study of multi-battery system applications with the goal of prolonging
their working cycles. The developed framework only requires raw,
real-time current and voltage measurements, along with the incoming
power demand, as inputs. To the best of our knowledge, this is the
first time an algorithm has been capable of directly performing the load
allocation strategy in an end-to-end way (without the involvement of
any model-based state estimation). We will demonstrate that, compared
to the equally distributed load allocation, the average length of the
discharge cycle of the deployed four-battery system can be prolonged
by an average of 15.2% (and an eight-battery system by an average
of 31.9%) over 5000 random initializations and random load profiles,
thereby making the batteries more sustainable. Moreover, we will
demonstrate that when implemented on degraded batteries in second-
life applications with diverse degradation dynamics, the improvement
becomes even more pronounced, reflecting a 151.0% extension of
discharge cycles on average and thus enabling the reliable usage of
second-life batteries.

The contribution of this paper is twofold: (1) We propose a novel
RL-based solution for continuous action-space allocation tasks. In par-
ticular, we propose the Dirichlet policy and demonstrate its advantages
theoretically and experimentally. (2) Based on the proposed Dirichlet
policy, we set forth a prescriptive power allocation framework and eval-
uate its performance on multi-battery systems to prolong the service
cycles of these power source systems. The developed framework shows
the potential to improve the efficiency and sustainability of power
systems with greater effectiveness.

2. Related work

Prescriptive operation is a comparatively novel research direction
that goes beyond merely predicting the evolution of the system con-
dition and the remaining useful life. The main goal of prescriptive
operation is to develop algorithms that are not only able to predict
the required measures but also to prescribe an optimal course of
action based on the current system state. Different objectives can be
2

considered for prescriptive operation tasks, such as prolonging the
remaining useful lifetime and thereby improving the reliability and
availability of the system; completing a defined mission or reaching
an operational goal, even in the case of adverse conditions or faults;
and minimizing emissions and energy consumption. Several research
studies have recently taken up the concept of prescriptive operation [9,
28]. For example, one investigation, taking economic and environmen-
tal impact into account, has prescribed an approach to maintenance
operation that improves the efficiency of aircraft maintenance [9]. For
batteries, optimal charging schedules have been proposed to prolong
the remaining useful life (RUL) [29]. Prescriptive operation represents
a very promising and urgently required research direction with regard
to industrial applications due to the rising complexity and increasingly
demanding requirements of complex industrial assets [1,30]. The pre-
scriptive operation problems are, in fact, sequential decision-making
problems, for which RL methods have demonstrated very good learning
capabilities [9].

In a reinforcement learning task, the agent observes the environ-
ment or system state and prescribes an action in order to maximize the
cumulative expected future reward. The action space can be discrete,
continuous, or mixed. The Q-Learning [31], as well as deep Q-network
(DQN) [32] and related variants such as double-DQN [33], are nor-
mally designed for discrete action-space tasks. To enable continuous
action space, policy-based algorithms such as proximal policy optimiza-
tion (PPO) [23], trust region policy optimization (TRPO) [26], and soft
actor–critic [24] have been proposed. These algorithms represent the
stochastic policy via a Gaussian distribution and the agent can sample
from the distribution to get the specific action. Besides the stochastic
policy, the deep deterministic policy gradient (DDPG) [25] uses a
deterministic policy to tackle the continuous action-space problem.
However, DDPG produces a relatively weak performance in complex
problems [24]. Moreover, beta policy has been proposed to improve
the efficiency when physical constraints are present [22].

Allocation tasks are very commonly encountered in real-world pre-
scriptive operation problems. However, the application of reinforce-
ment learning to this type of problem and the elaboration of the
theoretical perspective have remained relatively unexplored. The task
is to find an optimal distribution of a limited resource given some
defined goal and constraints. All allocation tasks need to fulfill the
constraint that the action space is bounded by a simplex constraint.
Examples of allocation tasks include computational resource alloca-
tion, which is highly useful for emerging applications with intense
computational resource demands, such as industrial automation [34],
blockchain applications [13], and unmanned aerial vehicle (UAV) ap-
plications [35]. Reliability redundancy allocation can help improve
system reliability and minimize the cost, weight, or volume [36,37].
Order allocation is becoming increasingly important to commercial
enterprises like passenger transportation service companies [38,39],
food delivery services [40], and other logistics providers [41]. Optimal
allocation directly influences the efficiency and profit of such com-
panies, who are relying on limited resources. In the financial field,
portfolio management is, in fact, also an allocation problem [18].
Unfortunately, a general solution in RL for allocation problems with
the simplex constraint is still lacking and remains an open research
question.

A crucial application field of both allocation problems and pre-
scriptive operation is power allocation [42] in multi-power source
configurations, which has recently been gaining in importance. A ma-
jor challenge for power allocation strategies for multi-power source
systems has been the design of optimal allocation strategies that take
distinct observed states into account and consider different dynamics.
For example, in multi-battery systems, the individual batteries com-
monly start diverging in their states of health and remaining capacities
through use [42–44]. Small dissimilarities at the beginning of the
lifetime may be amplified by different usage profiles. Once any of the

individual batteries reaches the end of discharge (EoD), the normal
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operation of the entire system is impacted. Since individual batteries
in the system may have dissimilar states of charge that are not directly
measurable, distributing the power equally between all batteries is
not optimal. Allocating the power demand in an optimal way to each
of the individual batteries has the potential to not only prolong the
discharge cycle of the entire multi-battery system but also its lifetime,
thus improving the sustainability of the batteries.

Different power allocation strategies have been proposed, includ-
ing rule-based [45–47] and optimization-based approaches [48,49].
There are several limitations to these approaches. In the rule-based
load allocation, each specific state would require the definition of
customized rules. Thus, the rule-based approaches require extensive
prior knowledge as well as extensive experiments for the different
conditions that, for example, take into account the state of charge
(SoC) or state of health (SoH), which cannot be measured directly.
A major drawback of rule-based approaches is that they are typically
designed for a specific system and partly for specific usage and operat-
ing conditions. Moreover, prior knowledge and model information are
also typically required. Therefore, if there is any change in the system
configuration or the operating requirements, the allocation rules need
to be adjusted. Even for a simple scale-up from four to eight batteries,
the allocation rules need to be carefully adjusted. Moreover, since the
feedback of such predefined rules is typically delayed, they are also
hard to optimize, resulting in sub-optimal solutions.

Optimization-based methods typically require model information.
The allocation task is then solved by optimization or control algorithms,
such as model predictive control (MPC) [50,51] and Robust MPC [52].
These approaches are vulnerable to uncertainties and changes in the
schedule of the power profile. Also, to the best of our knowledge, they
all rely on extracted information from physics-based models, such as
SoC. Furthermore, they are typically computationally intense, espe-
cially for high-dimensional allocation problems. Thus, it is challeng-
ing for optimization-based methods to deal with complex real-world
systems in real time.

Machine learning approaches have been increasingly applied to
different battery management tasks, including predicting the future
capacity [53,54], SoC [44,55–57], SoH, and remaining useful life
(RUL) [58]. In the power allocation domain, reinforcement learning-
based approaches have also been recently investigated in a similar
context [19]. Compared to the rule-based and optimization-based ap-
proaches mentioned above, the proposed model-free RL-based frame-
work provides an alternative solution while overcoming some of their
limitations. Unlike rule-based approaches, the strategies for different
systems can be learned with model-free RL without any manual feature
engineering or prior knowledge. The learned policy demonstrates supe-
rior computational efficiency compared to optimization-based methods.
This property is particularly important for real-time applications. More-
over, model-free RL is suitable for finding the optimal policy in tasks
where the dynamics are either unknown or affected by a large uncer-
tainty [59]. Under such conditions, the optimization-based methods
may fail to find a feasible strategy. Besides, the deep RL typically
shows very good performance on end-to-end control tasks and does not
require any manual feature engineering. Previous RL-based methodolo-
gies addressed power allocation tasks by discretizing the action and
state spaces, defining different weight combinations [19,21,60]. This
significantly reduces their scalability and transferability. Due to the
exploding action space problem, it is not feasible to directly increase
the number of weight combinations for a more fine-grid decision-
making [25,61]. Thus, to enable a more general power allocation
strategy, continuous action space and corresponding approaches [23,
24] are needed.

3. Preliminaries

A Markov decision process (MDP) is a discrete-time stochastic con-
trol process. At each time step, the process is in a state 𝑠 and its
3

𝑡

associated agent chooses an action 𝑎𝑡 from the set of possible actions.
Given the action, the process moves into a new state 𝑠𝑡+1 at the next
step and the agent receives a reward 𝑟𝑡; see Fig. 1 below:

An MDP can be described as a tuple (𝑆,𝐴, 𝑟, 𝑃 , 𝜌), where 𝑆 is the set
of states that is able to precisely describe the current situation, 𝐴 is the
et of actions, 𝑟(𝑠, 𝑎) is the reward function, 𝑃 (𝑠′|𝑠, 𝑎) is the transition
robability function, and 𝜌(𝑠) is the initial state distribution.

MDPs have been used to describe an environment in reinforcement
earning. In a general reinforcement learning setup, an agent is trained
o interact with the environment and get a reward from this interaction.
he goal is to find a policy 𝜋 that maximizes the cumulative reward
(𝜋):

(𝜋) = E𝜏∼𝜌𝜋

∞
∑

𝑡=0
𝑟(𝑠𝑡, 𝑎𝑡) (1)

While the standard RL merely maximizes the expected cumulative
ewards, the maximum entropy RL framework considers a more general
bjective [62], which favors stochastic policies. This objective shows a
trong connection to the exploration–exploitation trade-off and aims at
reventing the policy from getting stuck in local optima. Formally, it is
iven by:

(𝜋) = E𝜏∼𝜌𝜋

∞
∑

𝑡=0
[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛽(𝜋(⋅|𝑠𝑡))], (2)

here 𝛽 is the temperature parameter that controls the stochasticity of
he optimal policy.

. Methodology

To solve the continuous action-space allocation tasks, we introduce
or the first time the Dirichlet policy. In the following, we first the-
retically demonstrate that the Dirichlet policy is bias-free and has a
ower variance of policy update as compared to the Gaussian-softmax
olicy. Moreover, we experimentally demonstrate that the Dirichlet
olicy provides a significantly faster convergence, better performance,
nd is more robust to changes in hyperparameters as compared to the
aussian-softmax policy. Additionally, we combine the Dirichlet distri-
ution with the state-of-art soft actor–critic for the proposed Dirichlet
ower Allocation Policy.

.1. Implications of the Gaussian policy

In reinforcement learning, a policy is always required to determine
hich action to take given the current state. In practice, the stochastic
olicy is usually parameterized by a conditioned Gaussian distribution
𝜃(𝐱|𝑠) =  (𝜇𝜃(𝑠), 𝛿𝜃(𝑠)), where 𝜇 and 𝛿 are the outputs of the neural
etworks. However, the action 𝐱 sampled from 𝜋𝜃 is not directly
pplicable to allocation tasks since the constraint ∑𝑁

𝑖=0 𝑎𝑖 = 1 is not
atisfied. It is straightforward to pass the generated candidate action 𝐱
o a softmax function 𝜎 ∶ R𝑁 → R𝑁 to obtain the allocation action:

𝑖 = 𝜎(𝑥𝑖)𝑖 =
𝑒𝑥𝑖

∑𝑁
𝑖=1 𝑒

𝑥𝑖
(3)

However, we show in the following that this approach would gen-
erate two side effects: a biased estimation and a larger variance. Both
of these would jeopardize the policy learning.

4.1.1. Bias
In allocation problems, the policy gradient is written as follows:

E𝑔(𝜃) = E𝑠 ∫

1

0
𝜋(𝑎|𝑠)∇𝜃 log𝜋(𝑎|𝑠)𝑄𝜋 (𝑠, 𝑎)d𝑎 (4)

It should be noted that the softmax function is not injective and
any possible 𝐱 can result in the same action 𝑎. More specifically, the

softmax function is invariant under translation by the same value in
each coordinate, i.e. 𝜎(𝐱 + 𝑐1) = 𝜎(𝐱) for any constant 𝑐 ∈ R. When
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Fig. 1. Reinforcement learning schematic.
the softmax function is combined with the Gaussian policy to generate
appropriate allocation actions, the distribution of 𝑎 is, in fact, relevant
to the distribution of the candidate action 𝐱 and the probability density
function (PDF) satisfies

𝜋(𝑎|𝑠) = ∫

∞

−∞
𝜋𝜃(𝐱 + 𝑐1|𝑠)d𝑐 (5)

Substituting the above relation into the policy gradient follows that

E𝑔(𝜃) = E𝑠 ∫

∞

−∞ ∫

∞

−∞

𝜋𝜃(𝐱 + 𝑐1|𝑠)∇𝜃 log∫
∞

−∞
𝜋𝜃(𝐱 + 𝑐1|𝑠)𝑄𝜋 (𝑠, 𝜎(𝐱))d𝐱d𝑐

(6)

However, the policy gradient estimator E𝑔̂ used in the ordinary RL
algorithm is unaware of the inner integration over the scalar variable
𝑐, as in the following

E𝑔̂(𝜃) = E𝑠 ∫

∞

−∞
𝜋𝜃(𝐱|𝑠)∇𝜃 log𝜋𝜃(𝐱|𝑠)𝑄𝜋 (𝑠, 𝐱)d𝐱 (7)

As the mapping of the candidate action to the allocation action is
done in the environment (the specific allocation task), the estimator is
created based on the candidate action and inevitably introduces a bias.
Even if we assume that the learned critic based on the candidate action
can predict the return precisely, i.e. 𝑄𝜋 (𝑠, 𝐱) = 𝑄𝜋 (𝑠, 𝜎(𝐱)),∀𝑥, the bias
still exists due to the unawareness of the marginalization over 𝑐.

One might also wonder whether using the transformed allocation
action 𝑎 to compute the policy gradient can yield an unbiased estima-
tion. Unfortunately, this is not the case. This would be equivalent to
replacing the candidate action 𝑥 in (7) with 𝑎. Though it looks similar
to the form in (4), the distributions 𝜋𝜃 and 𝜋 are not equivalent. In the
end, this will only result in even more biased results.

4.1.2. Variance
In addition to the bias, the Gaussian policy also has the drawback

that the variance of the policy gradient estimator is proportional to
1∕𝜎2. This will induce the variance to reach infinity as the policy
converges and becomes deterministic (𝜎 → 0) [22].

To illustrate this, a useful insight is gained by comparing the policy
gradient with the natural policy gradient [63]. The policy gradient in
(7) does not necessarily produce the steepest policy updates [64], while
the natural policy gradient does. The natural policy gradient is given
by

𝑔nat(𝜃) = E𝑠𝐹−1(𝜃)𝑔̂(𝜃) (8)

where 𝐹 denotes the Fisher information matrix, defined as

𝐹 = E
[

∇ log𝜋 (𝑎|𝑠)∇ log𝜋 (𝑎|𝑠)𝑇
]

(9)
4

𝑎∼𝜋𝜃 𝜃 𝜃 𝜃 𝜃
The policy gradient vector is composed of the length and the direction.
The ordinary policy gradient may have the correct direction but not
necessarily the correct length. The natural policy gradient adjusts the
learning rate according to the policy distribution and produces the
steepest step. As shown in [22], the Fisher information matrix for
Gaussian policy is proportional to 1∕𝜎2, which implies that the more
deterministic the policy is, the smaller the update step that should be
taken. In the end, the constant update steps will overshoot and increase
the variance of the policy gradient estimator.

4.2. Dirichlet policy

Since the general Gaussian or Gaussian-softmax policy are not di-
rectly applicable to the optimization of allocation problems, applying
standard reinforcement learning frameworks or other control algo-
rithms to allocation tasks will result in sub-optimal results that suffer
from excessive parameter tuning and/or model complexity. To improve
the stability and convergence speed of optimization tasks of allocation
problems in continuous action spaces, we propose parameterizing the
policy using Dirichlet distribution, which inherently satisfies the sim-
plex constraint and enables an efficient optimization of allocation tasks
in continuous action spaces:

𝜋𝜃(𝑎|𝑠) =
1

𝐵(𝛼)

𝑁
∏

𝑖=1
𝑎𝛼𝑖−1𝑖 (10)

where 𝐵(𝛼) denotes the multivariate beta function and can be expressed
in terms of the gamma function 𝛤 as follows:

𝐵(𝛼) =
∏𝑁

𝑖=1 𝛤 (𝛼𝑖)

𝛤 (
∑𝑁
𝑖=1 𝛼𝑖)

. (11)

Here, the distribution is shaped by the shape parameters 𝛼, which is
the output of the neural network 𝑓𝜃(𝑠). Thus, the policy is eventually
determined by 𝜃.

4.2.1. Bias of the Dirichlet policy
The action 𝑎 sampled from the Dirichlet policy (10) naturally satis-

fies the constraints on actions in allocation problems, i.e. ∑𝑁
𝑖=0 𝑎𝑖 = 1

and 𝑎𝑖 ≥ 0 [65]. Thanks to this property, it is possible to directly
sample actions that qualify as allocation actions from the Dirichlet
policy, without the need to further constrain them. As a result, the
policy gradient estimator E𝑔̂(𝜃) for Dirichlet policies takes the same
form as the natural policy gradient E𝑔(𝜃) in (4) and is bias-free.
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4.2.2. Variance of the Dirichlet policy
Let 𝐴 =

∑𝑁
𝑖=1 𝛼𝑖

og𝜋𝜃(𝑎|𝑠) = log(𝛤 (𝐴)) −
∑

𝑖=1
log(𝛤 (𝛼𝑖)) +

∑

𝑖=1
(𝛼𝑖 − 1) log(𝛤 (𝑎𝑖)) (12)

Taking the fact that 𝜕𝐴∕𝜕𝛼𝑖 = 1 and 𝜕𝛼𝑗∕𝜕𝛼𝑖 = 0 into account results in:

𝜕 log𝜋𝜃(𝑎|𝑠)
𝜕𝛼𝑖

= 𝜓(𝐴) − 𝜓(𝛼𝑖) + log(𝑎𝑖) (13)

ith the second order derivative
𝜕2 log𝜋𝜃(𝑎|𝑠)

𝜕𝛼𝑖𝜕𝛼𝑗
= 𝜓 ′(𝐴) − 𝜓 ′(𝛼𝑖)𝛿𝑖𝑗 (14)

where 𝜓 ′(𝑧) = 𝜓 (1)(𝑧) and 𝜓 (𝑚)(𝑧) = 𝑑𝑚+1

𝑑𝑧𝑚+1
ln𝛤 (𝑧) is the polygamma

function, the 𝑚th derivative of the logarithm of the gamma function.
According to the regularity conditions [66], the Fisher information

atrix can also be obtained from the second-order partial derivatives
f the log-likelihood function,

(𝛼) = − E𝑎 𝜋𝜃

⎡

⎢

⎢

⎢

⎣

𝜕2 log𝜋𝜃 (𝑎|𝑠)
𝜕𝛼1𝜕𝛼1

⋯ 𝜕2 log𝜋𝜃 (𝑎|𝑠)
𝜕𝛼1𝜕𝛼𝑁

⋮ ⋱ ⋮
𝜕2 log𝜋𝜃 (𝑎|𝑠)
𝜕𝛼𝐾 𝜕𝛼1

⋯ 𝜕2 log𝜋𝜃 (𝑎|𝑠)
𝜕𝛼𝑁 𝜕𝛼𝑁

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜓 ′(𝛼1) − 𝜓 ′(𝐴) ⋯ −𝜓 ′(𝐴)
⋮ ⋱ ⋮

−𝜓 ′(𝐴) ⋯ 𝜓 ′(𝛼𝑁 ) − 𝜓 ′(𝐴)

⎤

⎥

⎥

⎦

(15)

The variance of the Dirichlet policy is given by 𝑉 𝑎𝑟[𝑎𝑖] =
𝛼𝑖(𝐴−𝛼𝑖)
𝐴(𝐴+1) . As the

policy becomes deterministic given different states, certain allocation
actions 𝛼𝑖 and 𝐴 approach infinity simultaneously. As shown in [22],
𝜓 ′(𝑧) goes to zero as 𝑧 goes to infinity. Thus, the inverse of the Fisher
information matrix goes to infinity. This ensures that the update steps
will not overshoot and the variance of the policy gradient goes to zero.

To summarize, the Dirichlet policy can intrinsically produce unbi-
ased policy gradient estimations, while the variance of policy updates
is also guaranteed to be lower than that of the Gaussian policy. These
are both favorable properties to enhance the convergence speed and
allocation performance.

4.3. Simplex regression experiment

To demonstrate the efficiency and effectiveness of the proposed
methodology, we first evaluate it on a simple simplex regression task.
The objective is to reconstruct and sequence a 4-dimensional simplex
from a 3-dimensional vector obtained by randomly removing a di-
mension from the target 4-dimensional simplex. For example, given a
random simplex vector [0.4, 0.2, 0.3, 0.1], after a dimension is randomly
removed, the input data becomes [0.4, 0.3, 0.1]. The target output is
hen the ranked reconstructed simplex [0.1, 0.2, 0.3, 0.4]. We use the

Mean Average Error (MAE). We apply the proposed Dirichlet policy
framework and compare it to the Gaussian-softmax policy. The result
shows that the Dirichlet distribution performs better and is more ro-
bust to hyperparameters such as, for example, the different learning
rates. The Dirichlet policy performs two times better compared to
Gaussian-softmax policy with a learning rate of 0.01. In addition, the
Dirichlet policy is more robust against different learning rates, while
the Gaussian-softmax policy failed with a high learning rate of 0.1. See
Fig. 2.

For the neural networks in the numerical experiment, we use a fully
connected multi-layer perceptron (MLP) with three hidden layers of 64
units each, outputting the 𝛼 of a Dirichlet distribution or the 𝜇 and
𝜎 of a Gaussian distribution. For the Dirichlet distribution network,
in the first layer, the Leaky-ReLU activation function [67] is applied.
In the second layer, the tanh activation function is applied. The 𝛼
is modeled by a softplus element-wise operation with log(1 + exp(𝑥)).
A constant 1 is added to the output to make sure that 𝛼 ≥ 1. The
5

r

Fig. 2. Numerical experiment results. We compare the learning curves of both output
layers with two different learning rates: 0.1 and 0.01, where the shaded areas show
the 1-SD confidence intervals over multiple random seeds.

choice of the activation function is motivated by the design of the Beta
policy [22]. For the Gaussian-softmax network, the hidden layers have
Leaky-ReLU [67] as the activation function, while the final output layer
is mapped to a simplex with a softmax function.

4.4. Soft actor–critic

In this paper, we applied the off-policy reinforcement learning al-
gorithm soft actor–critic (SAC) [24] with the proposed Dirichlet policy.
The SAC is based on the maximum entropy reinforcement learning
framework [68], where the objective is to maximize both the entropy
of the policy and the cumulative return. As a result, it significantly
increases training stability and improves exploration during training.
Furthermore, it was demonstrated to be 10 to 100 [24] times more
data-efficient as compared to any other on-policy algorithms applied
to traditional RL tasks.

For the learning of the critic, the objective function is defined as:

𝐽 (𝑄) = E(𝑠,𝑎)∼

[ 1
2
(𝑄(𝑠, 𝑎) −𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))2

]

(16)

where 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is the approximated target of 𝑄:

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎) = 𝑅(𝑠, 𝑎)+

𝛾[𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′, 𝑓 (𝜖, 𝑠′)) − 𝛽 log𝜋(𝑎′|𝑠′)]
(17)

The objective function of the policy network is given by:

𝐽 (𝜋) = E
[

𝛽[log(𝜋𝜃(𝑓𝜃(𝜖, 𝑠)|𝑠))] −𝑄(𝑠, 𝑓𝜃(𝜖, 𝑠))
]

(18)

here 𝜋𝜃 is parameterized by a neural network 𝑓𝜃 , 𝜖 is an input
ector, the  ≐ {(𝑠, 𝑎, 𝑠′, 𝑟)} is the replay buffer for storing the MDP
uples [32], and 𝛽 is a positive Lagrange multiplier that controls the
elative importance of the policy entropy versus the cumulative return.

.5. Hyperparameter setting

For the following experiments, we combine the proposed Dirichlet
olicy with the SAC framework. For the policy network, we use the
ame architecture design as for the toy experiment with the difference
hat: (1) 256 units are used and (2) for the additional Q-network,
e use a fully connected MLP with three hidden layers of 256 units,
utputting the Q-value. All the hidden layers use Leaky-ReLU as the
ctivation function. Fig. 3 illustrates the networks. It is worth pointing
ut that we adopt the same neural architecture as that used in the
AC [24]. This neural architecture, typically utilized in other control
asks, has yielded good performance in applications including cart–pole
alancing [24], humanoid walking [24], real-world robot control [69],

eal quadrotor control [70], and others [23,26]. More information
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Fig. 3. Overview of the neural network architectures.

Table 1
SAC hyperparameters.
Hyperparameters Value

Minibatch size 1024
Learning rate - Actor 1e−4
Learning rate - Critic 3e−4
Target entropy −

√

𝑑
Target smoothing coefficient (𝜏) 0.005
Discount (𝛾) 0.99
Updates per step 1

regarding the task-specific input data and output action may be found
in Section 5.

Our implementation exploits the double Q-learning technique [71],
whereby two Q-functions {𝑄1, 𝑄2} are parameterized by neural net-
works with parameters 𝜈1 and 𝜈2. The Q-function with the lower value is
exploited in the policy learning step [72], which is useful in mitigating
performance degradation caused by the bias in the value estimation.

The optimization of the networks’ weights is carried out with the
Adam algorithm. The Kaiming initializer is used for the weight initial-
izations [73]. Table 1 provides a detailed overview of the hyperparam-
eters used for the experiments. Training is conducted on a 2.3 GHz
8-core Intel Core i9 CPU.

5. Power allocation case study

To further evaluate the performance of the proposed method, we
design a case study of multi-battery system applications with the goal of
prolonging their working cycles. We assume that the power allocation
can be controlled at the level of a single battery and that no cell
balancing is applied. We would like to emphasize that in this paper,
we focus on the algorithm design for the purpose of demonstrating
its potential. Implementing this algorithm in real applications would
require a dedicated circuit design, which we leave for future work.

The information most commonly used in battery health-related
analytics is the operating current and voltage measurements collected
by standard battery management systems [44,74]. In this case study, we
aim to utilize only raw measurements of current and voltage directly
measured on the batteries (before the DC-DC converter) and extend
the capability of machine learning from descriptive and predictive
6
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analytics to end-to-end prescriptive decision-making. To the best of
our knowledge, this is the first time an algorithm has been capable
of directly performing the load allocation strategy in an end-to-end
manner (without any involvement of model-based state estimation).

The objective of the desired power allocation strategy is to prolong
the working cycle of the deployed multi-battery system. To achieve this,
we formulate this problem as a Markov decision process (MDP) and
propose to solve it with Dirichlet policy reinforcement learning.

Every operation or maneuver of a multi-battery device will impose
a power demand 𝑃𝑡 on the system. The RL-based strategy will prescribe
an action 𝑎𝑡 that dynamically allocates the power demand 𝑃𝑡 based on
the observed state 𝑠𝑡. In our case, 𝑠𝑡 is represented by the real-time
operational current and voltage of all the batteries in the system and the
total power demand, resulting in 𝑠𝑡 = [𝑉𝑡, 𝐼𝑡, 𝑃𝑡]. Then, the system’s state
changes according to the allocation strategy and the system dynamics
 . To achieve the objective of prolonging the working cycle of the
battery device, we provide a reward of 𝑟𝑡 = 1 to the agent at each time
step at which all the batteries in the system are still operational or the
voltages are all higher than the end-of-discharge (EoD) state. Given a
discount factor 𝛾 ≤ 1, an optimal allocation strategy maximizes the
xpected discounted sum of future rewards, or return:

𝜏 = E[
inf
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠] (19)

here E indicates the expected value. 𝑅𝑠 characterizes the long-term
alue of the allocation strategy from an initial state 𝑠0 onwards.

Fig. 4 provides an overview of the Dirichlet power allocation frame-
ork. A: When deploying the proposed strategy on any device with
multi-battery system – such as a quadrotor, a robot, or an electric

ar – any maneuver induces a load demand. For every maneuver, the
rained strategy receives the incoming load demand with the real-time
urrent–voltage measurement. It distributes the power based only on
he received information or observation, without any online optimiza-
ion. B: The proposed strategy is represented by a neural network,
hich takes the measurements as input and outputs a weight combina-

ion on how the load should be distributed to the individual batteries.
he trained network can dynamically allocate the power in an end-
o-end way without any estimation of the degradation state. With the
nput information of current and voltage measurements, it can first
mplicitly learn the health of the batteries – such as SoC, SoH, or
UL – for decision-making. With the proposed Dirichlet policy, which

nherently satisfies the simplex constraint of the allocation tasks, it
an prescribe fine-grid allocation weights in a continuous manner and
an be trained more efficiently and effectively. C: In this paper, the
bjective is prolonging the working cycle of the deployed multi-battery
ystems, a goal which could be changed in other tasks according to
ifferent requirements.

.1. Simulation environment

We train the allocation strategy in a simulation environment. The
imulation environment is a multiple Li-I battery system computational
odel from the NASA prognostic model library [75,76]. It captures the

elevant electrochemical processes of the discharge. For an individual
attery, the state changes over time as a function of input load and
urrent system states are given by:

𝑥(𝑘 + 1) = 𝑓 (𝑘, 𝑥(𝑘), 𝜃(𝑘), 𝑢(𝑘)),

(𝑘 + 1) = 𝑔(𝐱𝑡+1, 𝜃(𝑘), 𝑢(𝑘), 𝑛(𝑘)),
(20)

here 𝑘 is a discrete time variable, 𝑥(𝑘) ∈ R𝑛𝑥 is a state vector,
(𝑘) ∈ R𝑛𝜃 is an unknown parameter vector, 𝑢(𝑘) ∈ R𝑛𝑢 is the input
ector, 𝑓 is the state equation, 𝑦(𝑘) ∈ R𝑛𝑦 is the output vector, and ℎ
s the output equation. For more details on the battery model, we refer

nterested readers to the original paper [75].
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Fig. 4. Overview of the power allocation for multi-battery systems.
Fig. 5. Discharge trajectories of a randomly selected test case: The 𝑦-axis represents
the observed operational voltage of the corresponding batteries. The 𝑥-axis represents
the decision-making steps.

During the discharge process, the load is allocated at the level of
a single battery cell and no load balancing is performed. This compu-
tational model serves as a reliable proxy for actual battery dynamics
and allows for fast iterations over the controller design. It is worth
mentioning that batteries generally have relatively complex working
dynamics, which is also a challenging case study by which to evaluate
the general performance of a power allocation strategy.

For training, we randomly sample battery states during operation as
initial states 𝑠0 for any new episode. The episode will be re-initialized
when any of the batteries reaches the EoD state.

5.2. Results

The proposed framework is evaluated with respect to three per-
formance aspects: (1) Performance is assessed on a battery system
consisting of four Li-I cells. (2) Scalability is evaluated on a battery
system consisting of eight Li-I cells. (3) Transferablity is evaluated on
a battery system consisting of four second-life Li-I cells, where each of
the batteries exhibits different degradation dynamics. (4) We compare
the learning performance to other state-of-the-art reinforcement learn-
ing methods, (5) and also to heuristic strategies. We summarize the
average improvement total steps(ours)-total steps(baseline) over the baseline;
7

total steps(baseline)
Table 2
Average improvement.
Experiments Average improvement of the working cycle

Four-battery system 15.2%
Eight-battery system 31.9%
Four-second-life-battery system 151.0%

see Table 2. All the performance metrics are averaged among 5000
different random initializations with random load profiles.

(1) Performance evaluation on a four-Li-I-battery system. The trained
strategy is tested on 5000 different random initializations with random
load profiles. Compared to the baseline strategy (distributing the power
equally between all batteries), the proposed framework prolongs the
working cycle by 15.2% on average. We can observe that the single
batteries were controlled by the RL algorithm in such a way that
they tended to reach the EoD state at approximately the same time
(Fig. 5). This is an indication of near-optimal performance. The pro-
posed strategy also demonstrates a relatively smooth allocation profile
(Fig. 5).

(2) Scalability evaluation on an eight-Li-I battery system. Scalability
is an essential requirement for power allocation approaches since dif-
ferent assets will have different numbers of configurations. Previous
RL approaches discretize the action and state spaces, defining different
weight combinations [19,21], which needs to redesign the action space
when scaling up the system size. We present the proposed approach
on an eight-battery system, following the same setup as for the system
with four batteries, and show good scalability. Since more batteries
provide more flexibility, the proposed RL framework again displays
superior performance as compared to the baseline. The performance
improvement is significantly higher when compared to the four-battery
case study: Over all the test cases, the lifetime can be extended by
31.9% on average in comparison to the baseline. Similar properties
can be observed as in the four-battery case: The batteries can reach
the EoD state nearly simultaneously (Fig. 6), indicating a near-optimal
allocation performance. The discharge curves are partly influenced by
the allocation strategy. The oscillation represents the changing weights
for the load allocated to each of the batteries. We observed on the
performed experiments that the RL policy appears to prefer frequently
changing the weights between the different batteries to prolong the
working cycle. The investigation of this behavior and the improvement
of the interpretability will inform our future work.
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Fig. 6. Eight-battery system case result. A randomly selected set of discharge trajectories from the test cases. The 𝑦-axis represents the observed operational voltage of the
corresponding batteries, while the 𝑥-axis represents the decision-making steps.
Fig. 7. Second-life battery system case result. The 𝑦-axis represents the observed operational voltage of the corresponding batteries, while the 𝑥-axis represents the decision-making
steps.
Fig. 8. Learning performance and reproducibility, where the shaded areas show the
standard deviation confidence intervals over three random seeds. The 𝑥-axis indicates
the total time steps. The 𝑦-axis indicates the test return.

(3) Transferablity evaluation based on a four-second-life Li-I battery
system. In this research, to evaluate the transferability of the proposed
approach to systems with different degradation dynamics [77], we
consider batteries in second-life applications [42,78,79]. Even under
the same state initialization and same load profile, second-life batteries
with dissimilar degradation dynamics will reach the EoD state much
earlier. In Fig. 7, A presents the voltage trajectories of four batteries.
From battery 1 to 4, the degradation becomes more notable. Even
under the same initialization and same load profile, the discharge
curve changes significantly. B is a randomly chosen trajectory. The
policy could significantly prolong the working cycle of the deployed
second-life battery cases.

For this evaluation, we keep all settings similar to those from the
previous two experiments. On average, the proposed approach achieves
a 151.0% improvement as compared to the equal load distribution.
8

The proposed approach demonstrates even more potential in sys-
tems with different power source dynamics or degraded assets.

(4) Learning performance compared to the state of the art (SOTA).
To further evaluate the performance and reproducibility of the results
of the proposed Dirichlet policy, we compare it to two alternative RL
algorithms: the original SAC [24], one of the state-of-the art reinforce-
ment learning algorithms, and the deep deterministic policy gradient
(DDPG) [25]. We train all the agents over three different seeds on
the four-battery case study. As shown in Fig. 8, we observe that the
proposed Dirichlet-SAC (DSAC) exhibits considerable reproducibility
along with superior performance and convergence speed compared to
the original SAC and the DDPG.

(5) Comparison to heuristic strategies To the best of our knowledge,
there are no optimization-based approaches allowing solely on voltage–
current measurements. We perform this comparison for the sake of
completeness of the evaluations. We would also like to emphasize that
this is not a fair comparison. Since we would like to prolong the
time to the EoD state, we define four heuristic strategies based on
the operation voltage. We compare the average relative performance

working cycle
baseline working cycle to the baseline among 5000 different random initial-
izations with random load profiles. However, these strategies actually
yield inferior performance as compared to the baseline, see Table 3.

The weights in the Table 3 means to distribute the weighted load
to the batteries with voltages from low to high, respectively.

6. Conclusion

In this work, a novel prescriptive Dirichlet policy reinforcement
learning framework is proposed for continuous allocation tasks. The
proposed method overcomes the bias estimation and large variance
problems in policy gradient and can be applied to any general real-
world allocation task. It is also compatible with all other continuous
control reinforcement learning algorithms with stochastic policies. In
addition, for a specific real-world prescriptive operation task, the power
allocation task, we introduce the Dirichlet power allocation policy,
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Table 3
Performance comparison to heuristic rules.

Approaches Weights Relative performance

Rule I [0.15, 0.25, 0.25, 0.35] 0.758
Rule II [0.1, 0.2, 0.3, 0.4] 0.279
Rule III [0.1, 0.2, 0.2, 0.5] 0.076
Rule IV [0.05, 0.2, 0.35, 0.45] 0.120
Proposed method Learned 1.152

which presents an effective and data-based prescriptive framework that
is fully autonomous, flexible, transferable, and scalable. The developed
framework has the potential to improve the efficiency and sustainabil-
ity of multi-power source systems. To the best of our knowledge, it
is also the first framework that enables distribution of the load in an
end-to-end learning setup, without any additional inputs of, e.g., SoC
estimation. In future work, we aim to apply and deploy the proposed
framework to more challenging and extensive real-world power allo-
cation tasks and extend it for larger problems in order to evaluate its
limitations.
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