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Segmenting Objects from Relational Visual Data
Xiankai Lu, Member IEEE , Wenguan Wang, Member IEEE

Jianbing Shen, Senior Member IEEE , David J. Crandall, Member IEEE , Luc Van Gool, Member IEEE

Abstract—In this article, we model a set of pixelwise object segmentation tasks — automatic video segmentation (AVS), image
co-segmentation (ICS) and few-shot semantic segmentation (FSS) — in a unified view of segmenting objects from relational visual
data. To this end, we propose an attentive graph neural network (AGNN) that addresses these tasks in a holistic fashion, by formulating
them as a process of iterative information fusion over data graphs. It builds a fully-connected graph to efficiently represent visual data
as nodes and relations between data instances as edges. The underlying relations are described by a differentiable attention
mechanism, which thoroughly examines fine-grained semantic similarities between all the possible location pairs in two data instances.
Through parametric message passing, AGNN is able to capture knowledge from the relational visual data, enabling more accurate
object discovery and segmentation. Experiments show that AGNN can automatically highlight primary foreground objects from video
sequences (i.e., automatic video segmentation), and extract common objects from noisy collections of semantically related images
(i.e., image co-segmentation). AGNN can even generalize segment new categories with little annotated data (i.e., few-shot semantic
segmentation). Taken together, our results demonstrate that AGNN provides a powerful tool that is applicable to a wide range of
pixel-wise object pattern understanding tasks with relational visual data. Our algorithm implementations have been made publicly
available at https://github.com/carrierlxk/AGNN.

Index Terms—Graph Neural Network, Automatic Video Segmentation, Image Co-Segmentation, Few-shot Semantic Segmentation.

F

1 INTRODUCTION

THE visual world is highly structured. Entities that are
semantically related have similar visual appearance:

both trucks and buses have wheels and cabins, for example.
Entities also undergo continuous variations over time, and
there is inherent visual correspondence between observa-
tions adjacent in a video clip. This structure explains in part
how humans can learn new concepts rapidly from only a
few examples. The rich structure between entities thus not
only governs how our recorded visual data are arranged,
but also helps us efficiently understand visual scenes.

In this article, we study the problem of how to model and
leverage relationships between visual data (semantically re-
lated images and correlated video frames) to better identify
and extract visual objects. This benefits many computer
vision tasks, such as Automatic Video Segmentation (AVS,
automatically segmenting primary foreground objects from
video sequences; Fig. 1a), Image Co-Segmentation (ICS,
extracting common objects from a collection of semantically
related images; Fig. 1b), and Few-shot Semantic Segmenta-
tion [2] (FSS, learning to perform segmentation from only a
few annotated examples; Fig. 1c). These tasks are essential
building blocks for many real-world applications: ICS is
useful in handling noisy Web photo collections, large-scale
data annotation, and multi-camera visual signals, AVS is
a core technique in video processing and understanding,
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Fig. 1. Our AGNN provides a powerful framework that formulates (a) Au-
tomatic Video Segmentation (AVS), (b) Image Co-Segmentation (ICS),
and (c) Few-shot Semantic Segmentation (FSS) from a unified view of
segmenting objects from relational visual data.

and FSS is valuable when supervised examples are hard to
acquire due to privacy, safety, economic, or ethical issues [3].

Deep learning with neural networks has become the
dominant solution for the above problems. Although mod-
ern neural networks have greatly advanced the develop-
ment of their specific fields, modern network architectures
often suffer from certain limitations, such as a limited ability
to explicitly model the rich relations among visual data. For
example, existing AVS methods are generally [4]–[7] built
upon two-stream or recurrent networks, and thus focus
primarily on local cues between successive frames, ignoring
(or only weakly modeling) important correlations among
distant frames. But successfully handling occlusions, scale
variations, and appearance changes (Fig. 2(a)) resort to a
more complete understanding of the video content from a
global, instead of local view. For ICS, current approaches [8],

https://github.com/carrierlxk/AGNN
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Fig. 2. Illustration of AGNN-based AVS solution. (a) Input video se-
quence, typically with object occlusion and scale variation. (b) Our
AGNN represents the input video as a graph, where nodes (blue circles)
are video frames, and edges (black arrows) are relations between corre-
sponding frame pairs, captured by a neural attention mechanism. After
several differentiable message passing iterations over the video graph,
higher-order relations can be incorporated and more optimal foreground
estimates are obtained. (c) Final segmentation results.

[9] employ Siamese networks to capture the correspondence
between pairs of related images, which means processing
a whole image collection can be quite complicated (as all
the possible image pairs in the image collection should
be considered, at least theoretically). As for FSS, popular
solutions [10], [11] largely formulate the task from a metric
learning perspective. In essence, they learn a contextual
similarity measure, according to which they propagate the
label information from support examples to target images.
However, they regard each support image independently
and thus fail to exploit knowledge from the correlations
between support images.

In stark contrast to these methods which focus on spe-
cific fields, we seek to present a unified view for these
three tasks — ICS, AVS, and FSS — from the perspective
of segmenting objects from relational visual data. This ap-
proach has several advantages, including providing insight
into the underlying mechanisms common between these
tasks, allowing some of their inherent challenges to be bet-
ter addressed. Specifically, we propose an Attentive Graph
Neural Network (AGNN) that efficiently generalizes ICS,
AVS, and FSS as an end-to-end, message passing-based
graph information fusion procedure. AGNN provides a
clean yet powerful framework that handles the limitations
of current methods head-on, by comprehensively capturing
context in relational visual data. In our approach, a fully-
connected graph is constructed in which visual data are
represented as nodes and relations between data instances
are captured as edges (Fig. 2(b)). A differentiable neural
attention mechanism is introduced to model the relations
by considering the dependencies in all the possible pairs
of positions (regions) in two nodes. By using recursive
message passing to iteratively propagate information over
the graph, with each node progressively updating its states
by assimilating the information from other nodes, AGNN
can leverage relational cues to mine object patterns in a
step-by-step and global manner. In addition, by implement-
ing the key operations in the iterative algorithm as Fully
Convolutional Networks (FCNs), AGNN preserves spatial

information, which makes it applicable to spatial prediction
problems and significantly distinguishes it from MultiLayer
Perceptron (MLP)-based Graph Neural Networks (GNNs).

Due to its recursive nature, AGNN is flexible enough
to process variable numbers of nodes during inference,
which is essential for AVS and ICS. In addition, AGNN
provides serval unique advantages for AVS. First, since
AGNN operates on multiple frames, it naturally leads to
training data augmentation, as the combination of candi-
dates is numerous. In addition, AGNN offers a powerful
tool for modeling flexible long-term relations between video
frames, thus yielding a more complete representation of
video content and omitting time-consuming optical flow
computations used in many prior AVS methods.

Experimental results on AVS, ICS, and FSS tasks con-
sistently demonstrate the promising performance of our
AGNN. The experiments also indicate that AGNN is able to
not only capture correlations among similar video frames or
semantically related static images, but also efficiently learn
unseen semantics from only a few examples.

This paper builds upon our conference paper [1] and
significantly extends it in several ways. First, we extend
our model, AGNN, as a general framework that formulates
diverse segmentation tasks, including AVS, ICS, and FSS.
Second, we propose to address these tasks in a unified per-
spective of extracting objects from relational data, and more
precisely state our motivations and contributions. Third, we
provide more details regarding formulation and implemen-
tation of our AGNN model. Finally, more experiments are
conducted on several representative datasets to demonstrate
the effectiveness of our model.

2 RELATED WORK

In §2.1, we first provide a brief overview of GNNs. Then, we
review representative literature the fields of in AVS (§2.2),
ICS (§2.3) and FSS (§2.4).

2.1 Graph Neural Networks (GNNs)

GNNs[12] are powerful tools for learning graph representa-
tions in an end-to-end manner, and can be divided into two
broad classes: graph convolutional networks and message pass-
ing graph networks. The former [13]–[15]generalizes the con-
volution operation over non-Euclidean data. Their simple
architecture makes them popular, but also limits their mod-
eling capability for complex structures [16]. The latter [17],
[18] parameterize all the nodes, edges, and information
fusion steps in graph learning, leading to more complicated
yet flexible architectures. GNNs have obtained wide success
in many computer vision tasks, including human behav-
ior understanding [19], [20], scene graph generation [21],
human semantic parsing [22], active perception [23], [24],
demonstrating their advantages in structured modeling.

Our AGNN falls into the latter class and enjoys sev-
eral appealing characteristics. First, AGNN is unique in its
ability to preserve spatial information, in contrast to con-
ventional MLP-based GNNs, which is crucial for per-pixel
object pattern understanding. Second, to efficiently capture
relational information, AGNN exploits a neural differen-
tiable attention mechanism, which accounts for detailed
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correspondences between all the region pairs in two data
instances, and thus produces discriminative edge features.
Third, as far as we know, there is no prior attempt to
formulate AVS, IOS, and FSS in a unified GNN framework.

2.2 Automatic Video Segmentation (AVS)

AVS is a long-studied computer vision problem which at-
tempts to segment video foreground objects without test-
time human interaction. Please refer to a recent survey [25]
for more detailed literature review. Conventional methods
typically use hand-crafted features (e.g., color, optical flow,
trajectory) [26]–[29] and certain heuristic assumptions re-
lated to the foreground (e.g., local motion differences [27],
background priors [30]). Some others explore more efficient
foreground object representations, such as point trajecto-
ries [31]–[33] or object proposals [34]–[36]. They are typi-
cally non-learning methods working in a purely unsuper-
vised fashion. Due to the limited representation ability of
hand-crafted features, they often fail due to challenging
factors such as fast motion, large appearance variation,
and occlusion, and can fail in scenarios in which their
heuristic assumptions do not work. Recent deep learning-
based approaches learn more powerful object features from
massive training data, yielding a zero-shot solution [37]–
[39] (i.e., no human interaction during testing), typically
through recurrent neural networks [7], [40], or two stream
architectures [4], [6], [41], [42], to address appearance or
motion cues in a local and sequential manner. Some of
the latest ones address learning object patterns from un-
labeled videos [43] or object hotspot tracking [44]. Some
recent efforts were made to tackle AVS in the instance level.
Instance-level AVS needs to not only separate the primary
video objects from the background, but also discriminate
different object instances. Ventura et al. [37] propose a re-
current network based model which consists of a spatial
LSTM for discovering each instance and a temporal LSTM
for associating instances across different frames. In [45],
object proposals are associated according to both local and
global cues. More recently, Dave et al. [46] address object
instance discrimination and segmentation through bottom-
up, motion-aware objectness information.

In comparison, AGNN provides a unified, end-to-end
trainable, graph model-based AVS solution. This modeling
strategy distinctively differentiates it from current popular
recurrent network-based methods: through iteratively prop-
agating messages over the graph, AGNN can capture long-
term cross-frame correlations. This provides an insightful
glimpse into the problem that addresses the value of global
context in videos, in contrast to current algorithms primarily
considering sequential information within short-term tem-
poral segments. Moreover, AGNN utilizes a differentiable
attention mechanism to capture cross-frame correlations,
avoiding time-consuming optical flow computations and
learning more foreground-related cues.

2.3 Image Co-Segmentation (ICS)

ICS [47]–[50] aims to jointly segment common objects in
a given noisy set of related images. Traditional methods
usually formulate ICS as minimizing an energy function

defined over the whole or a part of the image set and con-
sider intra- and inter-image cues [51]–[54]. So far, only a few
solutions have been proposed to specifically address ICS [8],
[9], [55]–[57] through deep learning techniques, mainly due
to the lack of a proper, end-to-end modeling strategy for
the problem. They mainly address ICS through a pairwise
comparison protocol and employ a Siamese network to
capture the similarity between two related images [8], [9],
cannot directly operate on multiple images, and require
sophisticated inference.

Our AGNN-based ICS solution offers significant advan-
tages. First, previous methods consider ICS as a pairwise
image matching problem, while we formulate ICS as an
information propagation and fusion process among multi-
ple images. This means our model leverages more informa-
tion in the image collection. Second, the Siamese network-
based systems only handle pairwise relations, while our
message passing-based iterative inference can learn higher-
order relations among multiple images. Third, our method
is based on the graph model, yielding a general and elegant
framework for ICS modeling and allowing us to process
variable numbers of nodes.

2.4 Few-Shot Segmentation (FSS)
FSS aims to learn to perform segmentation from only a few
annotated images (support set) over new images (query set)
from the same classes [2]. Earlier methods are parameter
optimization-based [2], [58], [59], sharing the spirit of con-
ditioning segmentation network parameter modulation on
the knowledge from the support. Recent approaches [11],
[60] are metric learning based, i.e., performing segmen-
tation through pixel-level matching between the support
and query images within a learnable semantic embedding
space. Thus they primarily focus on how to learn a good
embedding space that can generalize well on unseen classes;
though avoiding sensitive and expensive network parame-
ter optimization, they ignore the relations among support
samples. In this article, rather than previous FSS methods
regarding each support image independently, AGNN ar-
ranges the support set as graph-structured, over which it
performs information diffusion to better mine the context
in the support set so as to facilitate the query prediction.
Although Garcia et al. [61] also explored context in the
support set, they focused on few-shot classification and their
model is built upon conventional MLP-based GNNs.

3 METHODS

In §3.1, we first give a brief introduction to generic formu-
lations of message passing based GNN models. Then, we
elaborate on our proposed AGNN framework (§3.2). Then,
we detail how to apply our AGNN model to AVS, ICS, and
FSS tasks in §3.3, §3.4, and §3.5, respectively. Finally, in §3.6,
we provide more implementation details for above tasks.

3.1 General Formulations of GNNs
To make this article self-contained, we first briefly introduce
the basic ideas and notions of GNNs. GNNs are powerful
models for collectively aggregating information from data
represented in graph domains[12], [17]. Specifically, a GNN
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Fig. 3. Our AGNN-based AVS solution during the training phase (§3.2). (a) We represent the input video I as a fully connected graph G. (b) Initial
frame features are extracted from the backbone network. (c) According to (a) and (b), the node and edge states are initialized through Eqs. 3, 4, 5,
respectively. (d,e) AGNN recursively performs gated message aggregation (Eq. 9) and node/edge state updating (Eq. 10) over G. (f) After several
message passing iterations, a readout function (Eq. 11) is used to obtain the node predictions. Zoom in for details.

model is defined according to a graph G = (V, E). Each
node vi ∈ V takes a unique value from {1, . . . , |V|}, and
is associated with an initial node representation (or node
state or node embedding) vi. Each edge ei,j ∈ E is a pair
ei,j = (vi, vj) ∈ |V|× |V|, with an edge representation ei,j .
For each node vi, we learn an updated node representation
hi by aggregating representations of its neighbors. Here hi

is used to produce an output oi, i.e., a node label. More
specifically, GNNs map graph G to the node outputs {oi}|V|i=1

through two phases. First, a parametric message passing phase
runs for K steps, which recursively propagates messages
and updates node representations. At iteration k, we update
the state of each node vi according to its received message
mk

i (i.e., summarized information from its neighbors Ni)
and its previous state hk−1i :

message aggregation: mk
i=
∑

vj∈Ni

mk
j,i

=
∑

vj∈Ni

M(hk−1
j , ek−1

i,j ),

node representation update: hk
i=U(hk−1

i ,mk
i),

(1)

where h0
i = vi, M(·) and U(·) are the message function

and state update function, respectively. After k iterations
of aggregation, hk

i captures the relations within the k-hop
neighborhood of node vi.

Second, a readout phase maps the node representation hKi
of the final K-iteration to the node output oi, through a
readout function R(·):

readout: oi = R(hK
i ). (2)

The message function M(·), update function U(·), and read-
out function R(·) are all learned differentiable functions.

Our AGNN essentially extends traditional fully con-
nected GNNs to (1) preserve spatial features; (2) capture
pairwise relations (edges) via a differentiable attention
mechanism; and (3) address AVS, ICS, and FSS in a unified
framework. Next, we use AVS as an exemplar task to detail
our AGNN framework. In §3.6, we specify how to extend
AGNN to ICS and FSS.

3.2 Attentive Graph Neural Network
We take object-level AVS as an exemplar task to introduce
the main ideas and core components of our AGNN model.
Problem Definition and Notations. For object-level AVS,
given an input video sequence I= {Ii ∈ Rw×h×3}Ni=1 with
N frames in total, the goal is to generate a corresponding

sequence of binary segment masks: S={Si∈{0, 1}w×h}Ni=1.
To achieve this, AGNN represents I as a directed graph
G = (V, E), where node vi ∈ V represents the i-th frame Ii,
and edge ei,j = (vi, vj)∈ E indicates the relation from Ii to
Ij . To comprehensively capture the underlying relationships
between video frames, we assume G is fully connected and
includes self-connections at each node (see Fig. 3(a)). For
clarity, we refer to ei,i, which connects a node vi to itself, as
a loop-edge; and ei,j , which connects two different nodes vi
and vj , as a line-edge.

The core idea of our AGNN is to perform K message
propagation iterations over G to mine the rich structures
between nodes, thus further comprehensively capturing the
context in I . This helps to better estimate the foreground
from a global view. In addition, because of the nature of
pixel prediction for such segmentation task, we maintain the
spatial dependency on each node and mine the underlying
relationship across different nodes (i.e., frames), which is
achieved by basing all the components of AGNN on convo-
lution operations. The segmentation predictions Ŝ are read
from the final node states {hKi }Ni=1. Next, we describe each
component of our model in detail.
FCN-Based Node Embedding. We use DeepLabV3 [62], a
classical FCN based semantic segmentation architecture, to
extract frame features as node representations (see Fig. 3(b)
and Fig. 4(a)). Node vi’s initial embedding h0

i can be com-
puted as:

h0
i =vi=FDeepLab(Ii) ∈RW×H×C , (3)

where h0
i is a 3D tensor feature withW×H spatial resolution

and C channels, which preserves spatial information as well
as high-level semantic information.
Intra-Attention Based Loop-Edge Embedding. A loop-edge
ei,i ∈ E is a special edge that connects a node to itself.
The loop-edge embedding eki,i is used to capture the intra
relations within node representation hki (i.e., internal frame
representation). We formulate eki,i as an intra-attention mech-
anism [63], [64], which has been proven complementary to
convolutions and helpful for modeling long-range, multi-
level dependencies across image regions [65]. In particular,
the intra-attention calculates the response at a position by
attending to all the positions within the same node embed-
ding (see Fig. 3(c) and Fig. 4(b)):

ek
i,i=Fintra-att(h

k
i) ∈ RW×H×C

=α softmax
(
(Wf ∗hk

i)(Wh∗hk
i)
>)(Wl∗hk

i)+hk
i,

(4)
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Fig. 4. Detailed illustration of our (a) node embedding (Eq. 3), (b) intra-attention based loop-edge embedding and corresponding loop-message
generation (Eq. 4), (c) inter-attention based straight-edge embedding and corresponding neighbor message generation (Eq. 5).

where ‘∗’ represents the convolution operation, W s indicate
learnable convolution kernels, and α is a learnable scale
parameter. Eq. 4 makes the output element of each position
in eki,i encode the contextual information as well as original
information, thus enhancing the representation ability.
Inter-Attention Based Line-Edge Embedding. A line-edge
ei,j ∈ E connects two different nodes vi and vj. The line-
edge embedding eki,j is used to mine the relation from node
vi to vj , in the node embedding space (see Fig. 3(b)). Here
we compute an inter-attention mechanism [66] to capture the
bi-directional relations between two nodes vi and vj (see
Fig. 3(c) and Fig. 4(c)):

ek
i,j =Finter-att(h

k
i,h

k
j)=hk

iWc hk>
j ∈ R(WH)×(WH),

ek
j,i=Finter-att(h

k
j ,h

k
i)=hk

jW
>
c hk>

i ∈ R(WH)×(WH),
(5)

where eki,j=ek>j,i . Here eki,j is the outgoing edge feature and
ekj,i the incoming one, for node vi. Wc ∈ RC×C indicates a
learnable weight matrix. hkj ∈R(WH)×C and hk

i ∈R(WH)×C

are flattened into matrix representations. Each element in eki,j
reflects the similarity between each row of hki and each col-
umn of hk>j . As a result, eki,j can be viewed as an importance
map of node vi’s embedding to vj at all the positions, and
vice versa. By attending to each node pair, eki,j explores their
joint representations in the node embedding space.
Gated Message Aggregation. In our AGNN, for the mes-
sage passed in the self-loop, we view the loop-edge embed-
ding ek−1i,j itself as a message (Fig. 4(b)), since it already con-
tains the contextual and original node information (Eq. 4):

mk
i,i= ek−1

i,i ∈R
W×H×C . (6)

For the messagemj,i passed from vj to vi (Fig.4(c)), we have:

mk
j,i=M(hk−1

j , ek−1
i,j )=softmax(ek−1

i,j )hk−1
j ∈R(WH)×C , (7)

where softmax(·) normalizes each row of the input. Thus,
each row (position) of mk

j,i is a weighted combination of
each row (position) of hk−1j , where the weights come from
the corresponding column of ek−1i,j . In this way, the mes-
sage function M(·) assigns its edge-weighted feature (i.e.,
message) to the neighbor nodes [18]. Then, mk

j,i is reshaped
back to a 3D tensor with a size of W×H×C .

In addition, because some nodes are noisy due to camera
shift or out-of-view, their messages may be useless or even
harmful. We apply a learnable gate G(·) to measure the
confidence of a message mj,i (mi,i):

gk
j,i=G(mk

j,i)=σ
(
FGAP(Wg∗mk

j,i+bg)
)
∈ [0, 1]C ,

gk
i,i=G(mk

i,i)=σ
(
FGAP(Wg∗mk

i,i+bg)
)
∈ [0, 1]C ,

(8)

where FGAP(·) indicates the use of global average pooling
to generate channel-wise responses, σ is the logistic sigmoid

function, and Wg and bg are the trainable convolution kernel
and bias, respectively.

Following Eq. 1, we collect the messages from the neigh-
bors and self-loop via gated summarization (see Fig. 3(d)):

mk
i =
∑

vj∈V
gk
j,i ?m

k
j,i ∈ RW×H×C , (9)

where ‘?’ denotes the channel-wise Hadamard product.
Here, the gate mechanism is used to filter out irrelevant
information from noisy frames.
ConvGRU based Node-State Update. In step k, after aggre-
gating all the information from the neighbor nodes and itself
(Eq. 9), vi gets a new state hk

i by taking into account its prior
state hk−1

i and its received message mk
i . To preserve the

spatial information conveyed in hk−1
i and mk

i , we leverage
ConvGRU[67] to update the node state (Fig. 3(e)):

hk
i = UConvGRU(h

k−1
i ,mk

i )∈RW×H×C . (10)

ConvGRU is proposed as a convolutional counterpart to
previous MLP based GRU [68], and introduces convolution
operation into input-to-state and state-to-state transitions.
Readout Function. After K message passing iterations,
we obtain the final state hKi for each node vi. Finally, in
the readout phase, we get a segmentation prediction map
Ŝ∈ [0, 1]W×H from hKi through a readout function R(·) (see
Fig. 3(f)). Slightly different from Eq. 2, we concatenate the
final node state hKi and the original node feature vi (i.e., h0

i )
together and feed the combined feature into R(·):

Ŝi = RFCN([hK
i ,vi])∈ [0, 1]W×H . (11)

Again, to preserve spatial information, the readout function
is implemented as a small FCN.

As a message passing-based GNN model, these func-
tions share weights among all the nodes. Moreover, our
whole model is end-to-end trainable, as all the functions
in AGNN are parameterized by neural networks.

3.3 AGNN for AVS
Network Configuration. We use the first five convolution
blocks of DeepLabV3 [62] as our backbone for feature
extraction. For an input video I , each frame Ii (with a
resolution of 473×473) is represented as a node vi in the
video graph G and associated with an initial node state
vi=h0

i ∈R60×60×256. Then, after a total of K(= 3) message
passing iterations, for each node vi, we use the readout
function in Eq. 11 to obtain a corresponding segmentation
prediction map Ŝ ∈ [0, 1]60×60. The convolution operations
in the intra-attention (Eq.4) and update function (Eq.10) are
realized with 1×1 convolution layers. The readout function
(Eq.11) consists of two 3×3 convolution layers cascaded by
a 1×1 convolution layer with the sigmoid activation function.
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Training Phase. As we operate on batches of a certain
size (which is allowed to vary, depending on the GPU
memory size), we leverage a random sampling strategy to
train AGNN. Specifically, we split each training video I
with a total of N frames into N ′ segments (N ′ ≤ N ) and
randomly select one frame from each segment. Then we
feed the N ′ sampled frames into a batch and train AGNN.
Thus the relationships among all the N ′ sampling frames
in each batch are represented using an N ′-node graph.
Such a sampling strategy provides robustness to variations
and enables the network to fully exploit all frames. The
diversity among the samples enables our model to better
capture the underlying relationships and improve its gen-
eralizability. Let us denote the ground-truth segmentation
mask and predicted foreground map for a training frame Ii
as S ∈{0, 1}60×60 and Ŝ ∈ [0, 1]60×60. Our model is trained
through the weighted binary cross entropy loss (see Fig. 3):

L(S, Ŝ)=−
∑W×H

x
(1−η)Sxlog(Ŝx)+η(1−Sx) log(1−Ŝx), (12)

where η indicates the ratio of foreground-background pixel
number in S. Note that since AGNN handles multiple
frames at the same time, it leads to a remarkably efficient
training data augmentation strategy, as the combination of
candidates are numerous.
Testing Phase. After training, we can apply the learned
AGNN to perform per-pixel object prediction over unseen
videos. For an input test video I with N frames (with 473×
473 resolution), we split I into T subsets: {I1, I2, . . . , IT },
where T =N/N ′. Each subset contains N ′ frames with an
interval of T frames: It = {It, It+T , . . . , IN−T+t}. Then we
feed each subset into AGNN to obtain the segmentation
maps of all the frames in the subset. In practice, we set
N ′=5 during testing. We quantitatively study this setting in
§4.4. As our AGNN does not require time-consuming optical
flow computation and processes N ′ frames in one feed-
forward propagation, it achieves a fast speed of 0.28s per
frame. Following the widely used protocol[5], [7], [40], [69],
we apply CRF [70] as a post-processing step with defaults
parameter setting in [40], [69]. We show how to apply our
trained AGNN model for handling instance-level AVS in the
supplementary material.

3.4 AGNN for ICS

For ICS, AGNN is applied over a noisy collection of se-
mantically related images I={Ii}Ni=1, and generates corre-
sponding binary segment masks: S={Si}Ni=1. The network
architecture and training protocol are similar to the ones in
the object-level AVS setting §3.3.

When processing a test image, ICS should make use of
the whole related image group (instead of only sampling a
few images during training). To this end, for each image Ii
to be segmented, we uniformly split the other N−1 images
into T groups and each group contains N ′−1 images (i.e.,
T = (N−1)/(N ′−1)). Then we feed the first image group
and Ii to a batch of size N ′, and store the node state for Ii.
After that, we feed the next group and the store node state
of Ii to get a new state of Ii. After T steps, the final state
of Ii contains its relations to all other images and is used to
produce its final co-segmentation result.

3.5 AGNN for FSS
For FSS, we denote the support images as I = {Ii}Ni=1,
referring to a N -shot segmentation setting. The goal is to
leverage the annotated support set to extract corresponding
semantics in query images.

Following conventions [2], [11], we employ the first three
blocks of VGG16 [78] as the backbone network to extract
support and query features prototypes. We construct a N -
node support graph G from I . The core idea is to let AGNN
mine the context in the support set and get updated node
embeddings, from which more discriminative semantic rep-
resentations can be derived. Then we calculate the distance
between the query feature maps at each spatial location with
the semantic representations, viewing the segmentation as
classification at each spatial location. Specifically, with the
annotations of the support set, we apply masked average
pooling [10] over the support visual features to better ex-
tract class-specific information (including the background).
Resulting vectors are used to initialize the node embeddings
{hKi }Ni=1. Through several massage propagation iterations,
the final node embeddings {h0

i }Ni=1 are more powerful than
before as they fully exploit knowledge from the support. As
the node embeddings are vectorized, we use a vanilla MLP
based GRU [68] to achieve iterative node state updating
(Eq. 10). Then, for each query image, the segmentation is
achieved via computing the cosine distance between the
outputs of AGNN and query features at each spatial loca-
tion [11]. Finally, we apply a softmax over the distances to
produce a probability map over semantic classes.

3.6 Implementation Details
We implement our full algorithm by Pytorch. All experi-
ments are conducted on a Nvidia TITAN Xp GPU.
AGNN for AVS. Following [40], [79], both static data from
image salient object segmentation datasets, MSRA10K [80],
DUT [81], and video data from the training set of DAVIS16

are iteratively used to train our model. In a ‘static-image’
iteration, we randomly sample 6 images from the static
training data to train our backbone network (DeepLabV3)
to extract more discriminative foreground features. To train
the backbone network, a 1×1 convolution layer with sigmoid
activation functions is appended as an intermediate output
layer, which can access the static image supervision signal.
This is followed by a ‘dynamic-video’ iteration, in which
we use the sampling strategy described in §3.3 to sample 6
video frames to train our whole AGNN model. The ‘static-
image’ and ‘dynamic-video’ iterations are executed alter-
nately. We randomly select 2 videos from the training set
and sample 3 frames (N ′ = 3) per video, due to compu-
tation limitations. In addition, we set the total number of
iterations as K = 3. The entire network is trained using
the SGD optimizer with a ’ploy’ learning rate schedule [62]:
lr= init lr× (1− iters

total iters )
power, in which power=0.9 and

the initial learning rate: init lr=2.5×10−4. The total iters is
epochs×batch size. During training, the batch size and total
epochs are set to 8 and 50. Data augmentation (e.g., flipping,
scaling and cropping) is also adopted for both static images
and video data. The overall training time is about 20 hours.
The input image size is 378×378 during training to save
GPU memory and is enlarged to 473×473 to maintain a
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TABLE 1
Quantitative object-level AVS results on the val set of DAVIS16 [71] (§4.1) with IoU J , boundary accuracy F , and time stability T . We also report

the recall and the decay performance over time for both J and F . The speed is also reported. The best two entries in each row are marked in
gray. (* indicates deep learning based methods. The best scores are marked in bold. These notes also apply to the other tables.)

MSG NLC CUT FST *SFL *LMP *FSEG *LVO *ARP *PDB *MOT *LSMO *AGS *COSNet *Epo+Method [31] [28] [72] [27] [4] [5] [6] [7] [35] [40] [73] [74] [41] [69] [75] *AGNN

J
Mean ↑ 53.3 55.1 55.2 55.8 67.4 70.0 70.7 75.9 76.2 77.2 77.2 78.2 79.7 80.5 80.6 81.3
Recall ↑ 61.6 55.8 57.5 64.9 81.4 85.0 83.0 89.1 91.1 93.1 87.8 91.1 89.1 93.1 95.2 93.1
Decay ↓ 2.4 12.6 2.2 0.0 6.2 1.3 1.5 0.0 7.0 0.9 5.0 4.1 1.9 4.4 2.2 4.4

F
Mean ↑ 50.8 52.3 55.2 51.1 66.7 65.9 65.3 72.1 70.6 74.5 77.4 75.9 77.4 79.4 75.5 79.7
Recall ↑ 60.0 61.0 51.9 51.6 77.1 79.2 73.8 83.4 83.5 84.4 84.4 84.7 85.8 89.5 87.9 88.5
Decay ↓ 5.1 11.4 3.4 2.9 5.1 2.5 1.8 1.3 7.9 -0.2 3.3 3.5 0.0 5.0 2.4 5.1

T Mean ↓ 30.2 42.5 27.7 36.6 28.2 57.2 32.8 26.5 39.3 29.1 27.9 21.2 26.7 18.4 19.3 33.7
Time (s) ↓ 169.0 12.0 35.0 51.4 7.9 18.3 7.2 13.5 124.7 0.7 1.0 >2.5 0.6 0.48 3.0 0.6

TABLE 2
Quantitative object-level AVS performance of each category on Youtube-Objects [76] (§4.1) with IoU J . We show the performance for each of the

10 categories from the dataset. The final row shows an average over all the videos.

Method LTV [32] FST [27] COSEG [77] *ARP [35] *LVO [7] *PDB [40] *FSEG [6] *SFL [4] *MOT [73] *LSMO [74] *AGS [41] *COSNet [69] *JHT [44] *AGNN
Airplane (6) 13.7 70.9 69.3 73.6 86.2 78.0 81.7 65.6 77.2 60.5 87.7 81.1 81.8 86.0

Bird (6) 12.2 70.6 76.0 56.1 81.0 80.0 63.8 65.4 42.2 59.3 76.7 75.7 81.2 75.7
Boat (15) 10.8 42.5 53.5 57.8 68.5 58.9 72.3 59.9 49.3 62.1 72.2 71.3 67.6 68.7
Car (7) 23.7 65.2 70.4 33.9 69.3 76.5 74.9 64.0 68.6 72.3 78.6 77.6 79.5 82.4
Cat (16) 18.6 52.1 66.8 30.5 58.8 63.0 68.4 58.9 46.3 66.3 69.2 66.5 65.8 65.9

Cow (20) 16.3 44.5 49.0 41.8 68.5 64.1 68.0 51.1 64.2 67.9 64.6 69.8 66.2 70.5
Dog (27) 18.2 65.3 47.5 36.8 61.7 70.1 69.4 54.1 66.1 70.0 73.3 76.8 73.4 77.1

Horse (14) 11.5 53.5 55.7 44.3 53.9 67.6 60.4 64.8 64.8 65.4 64.4 67.4 69.5 72.2
Motorbike (10) 10.6 44.2 39.5 48.9 60.8 58.3 62.7 52.6 44.6 55.5 62.1 67.7 69.3 63.8

Train (5) 19.6 29.6 53.4 39.2 66.3 35.2 62.2 34.0 42.3 38.0 48.2 46.8 49.7 47.8
Mean J↑ 15.5 53.8 58.1 46.2 67.5 65.4 68.4 57.0 58.1 64.3 69.7 70.5 70.9 71.4
Time (s) ↓ 1.0 51.4 >10.0 124.7 13.5 0.7 7.2 7.9 1.0 >2.5 0.6 0.48 0.3 0.6

higher spatial resolution during testing. For the inference
speed, a forward pass with one image (batch) takes around
0.3 s, while CRF-based post-processing takes about 0.3 s.
AGNN for ICS. Following [8], [9], we use the training data
of PASCAL VOC to train AGNN. In each iteration, we
randomly select two semantic classes and sample a group
of three images per class. All other parameter settings are
the same as object-level AVS.
AGNN for FSS. As is standard, AGNN is trained on three
splits of PASCAL-5i [2] and evaluated on the remaining
one in a cross-validation fashion. During training, we build
several episodes from the training splits. To instantiate the
1-way 5-shot segmentation setting, each episode consists
of five support images (from a same class) and one query
image. The whole model is trained by the cross entropy
loss and optimized by SGD with the momentum of 0.9. The
initialized learning rate is set to 1e−3 and decreased by 0.1
every 10000 iterations. During testing, as in [11], we sample
1000 episodes for evaluation and average the results from 5
runs with different random seeds to obtain stable results.

4 EXPERIMENTS

In this section, we comprehensively examine the perfor-
mance of AGNN on three tasks, i.e., AVS (§4.1), ICS (§4.2),
and FSS (§4.3). Finally, in §4.4, we conduct an ablation study
to evaluate essential components of AGNN.

4.1 Performance on AVS
4.1.1 Experimental Setup
Datasets and Metrics: We use two well-known datasets:
• DAVIS16 [71] consists of 50 videos total (30 for training

and 20 for testing) with pixel-wise annotations for every
frame. Following the standard protocol, three evaluation

criteria are used: Intersection-over-Union (IoU) J , bound-
ary accuracy F , and time stability T .

• Youtube-Objects [76] consists of 126 video sequences
belonging to 10 object categories and contains more than
20000 frames in total. We test our method on the whole
dataset. We follow convention and use J to measure the
segmentation performance.

4.1.2 Quantitative Performance

Val-set of DAVIS16. We compare the proposed AGNN
with 15 famous AVS methods on DAVIS16 benchmark. The
results are summarized in Table 1. We can see that our
AGNN outperforms the second best results (i.e., Epo+ [75])
on DAVIS16 benchmark in terms of the two most important
indicators: mean J (81.3% vs 80.6%) andF (79.7% vs 75.5%).
The performance gain proves the advantage of our AGNN,
which considers the rich relations among a set of video
frames, instead of pairwise relation in COSNet or local
motion cues in Epo+. Despite that MOT and LSMO take
both RGB image and optical flow as input, the performances
are inferior to AGNN (-4.1%/-3.1% in Mean J and -2.3%/-
3.8% in Mean F ). Compared to PDB, which uses the same
training protocol and training datasets, our AGNN yields
significant performance improvements of 4.1% and 5.2% in
terms of mean J and mean F , respectively.
Youtube-Objects. Table 2 illustrates the results of all com-
pared methods for different categories. Our approach again
outperforms all the compared methods by a large margin.
By means of considering the local sequential relationship
among different frames, AGS [41] gains much better perfor-
mance than other competitors (69.7% in mean J ). However,
our AGNN achieves superior performance (71.4% vs 69.7%)
to AGS over 10 categories. We attribute the performance
gain to that our AGNN can make full use of long-term video
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TABLE 3
Attribute-based object-level AVS performance on the DAVIS16 dataset [71]. For each method, the corresponding column indicates the mean (J ↑)

over all videos with that specific attribute (e.g., LR).

Attr MSG NLC CUT FST *SFL *LMP *FSEG *LVO *ARP *PDB *MOT *LSMO *AGS *COSNet *Epo+
[31] [28] [72] [27] [4] [5] [6] [7] [35] [40] [73] [74] [41] [69] [75] *AGNN

AC 56.9 60.8 58.0 56.4 59.9 71.5 70.0 74.0 78.1 77.0 77.3 76.5 79.9 82.9 83.0 83.1
BC 60.8 34.4 52.1 56.0 76.3 72.8 76.7 78.2 70.7 76.9 77.1 76.1 80.7 79.6 78.1 80.8
CS 53.6 50.0 67.1 56.2 73.3 71.8 76.7 80.7 76.0 78.4 81.8 80.5 82.4 82.3 82.0 83.6
DB 47.1 48.3 35.4 46.9 27.0 58.3 50.0 55.2 71.7 62.4 55.3 60.6 66.5 68.7 72.0 67.3

DEF 48.4 58.3 55.9 52.1 66.6 70.7 69.5 75.2 76.6 76.3 78.7 76.2 77.7 78.5 81.0 79.8
EA 51.4 45.6 49.3 55.3 67.5 67.4 69.0 73.7 71.1 75.9 75.4 78.0 77.6 76.7 76.0 78.2
FM 44.1 56.5 52.3 56.2 61.6 65.5 69.9 70.5 75.3 76.4 75.7 76.4 79.1 77.2 78.0 78.4
HO 48.8 55.2 51.2 52.2 61.2 66.7 65.2 71.9 75.2 73.9 74.9 73.9 76.2 76.2 78.0 77.4
IO 56.1 55.0 59.6 51.0 66.5 67.7 66.9 75.1 76.7 74.6 77.0 74.0 77.4 76.9 78.0 78.0
LR 53.7 57.2 54.1 57.0 66.8 67.2 71.8 75.0 74.3 77.7 78.7 81.4 81.4 77.9 75.0 80.4
MB 39.8 53.6 51.0 50.1 65.6 63.4 65.4 71.1 72.9 74.0 74.6 73.5 76.2 76.0 75.9 76.6

OCC 43.0 68.5 40.8 50.3 67.9 66.6 64.3 73.6 74.3 77.9 76.8 80.4 78.3 73.9 75.0 77.4
OV 46.4 52.4 58.0 58.7 65.4 60.9 72.3 71.5 79.6 77.6 77.3 74.3 81.2 80.5 83.0 78.8
SC 42.7 52.9 46.8 47.9 63.8 62.3 61.5 70.5 71.1 72.2 73.3 74.3 73.6 69.5 72.0 71.6
SV 51.4 47.6 48.1 50.3 63.8 65.9 65.5 72.9 74.7 74.4 75.1 75.1 77.6 77.2 76.0 78.6

Avg. 53.3 55.1 55.2 55.8 67.4 70.0 70.7 75.9 76.2 77.2 78.2 77.2 79.7 80.5 80.6 81.3

Fig. 5. Qualitative object-level AVS results on DAVIS16 [71] (from top to bottom: parkour and bmx-tree). It can be observed that the proposed
algorithm is applicable to the primary target with shape deformation, similar target distraction, and fast motion scenarios.

Fig. 6. Qualitative object-level AVS results on Youtube-Objects [76] (from top to bottom: car0001 and motorbike0002). It can be observed that the
proposed algorithm is applicable to handle various challenging factors, such as view changes, background clutter, and large shape deformation.

context by recursive message passing. It is worth noting
that LSMO [74] and MOT [73] show large performance
drop on Youtube-objects dataset (rank sixth and seventh),
compared with their behaviors on DAVIS16. In contrast,
our method consistently achieves state-of-the-art over these
two datasets without online learning [73] or complex object
proposals [35], which demonstrates the strong generaliza-
tion capability of AGNN. To further verify the computation
efficiency of the proposed AGNN, we conduct running time
comparisons on both DAVIS16 and Youtube-objects. We can
see that our AGNN runs faster than most of its counterparts.
This is because AGNN does not need to compute optical
flow [4]–[6], [27], [28], [30], [73], [74], perform online learn-
ing [73], or incorporate object proposal generation [28], [35].
In particular, AGNN achieves comparable processing speed
to AGS [41] (0.6 s per frame) and PDB [40] (0.7 s per frame)
with better performance.

4.1.3 Qualitative Performance
Fig. 5 and Fig. 6 depict our segmentation results on several
challenging video sequences parkour, bmx-tree, car0001, and
motorbike0002 of DAVIS16 and Youtube-Objects, respectively.
The primary objects undergo significant scale variation (e.g.,
car0001), deformation (e.g., parkour) and view changes (e.g.,
car0001 and motorbike0002), but our AGNN still generates
high-quality results. Furthermore, for bmx-tree, our AGNN
can segment the objects under occlusion by taking advan-
tage of global information.

4.1.4 Attribute-Based Study
Next we provide an attribute-based study on DAVIS16,
enabling a more in-depth analysis. From Table 3 we can find
AGNN outperforms other competitors across most attribute
categories, such as appearance changes (AC), background
clutter (BC), camera-shake (CS), dynamic background (DB),
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TABLE 4
Quantitative ICS performance on PASCAL VOC[82] (§4.2) with mean IoU J .

Method CSC [83] MRW [84] GO-FMR [85] ICSC [86] OCC [87] *FCNs [88] *CA [8] *FCA [8] *CSA [8] *DOCS [9] *COA [55] *AGNN
Mean J ↑ 46.0 33.0 52.0 45.0 40.0 55.2 59.2 59.4 59.8 57.8 60.0 60.8
Time (s) ↓ 251.5 - - 73.0 - 3.7 0.2 0.3 1.7 14.5 15.6 0.8

TABLE 5
Quantitative ICS performance on Internet [89] (§4.2) with mean IoU J . We show the per-class performance and overall average.

Method DC [90] Internet [89] TDK [91] GO-FMR [85] SGC3 [92] ICSC [86] *DDCRF [93] *CA [8] *FCA [8] *CSA [8] *DOCS [9] *COA [55] *AGNN
Car 37.1 64.4 64.9 66.8 66.4 71.0 72.0 80.0 76.9 79.9 82.7 82.0 84.0

Horse 30.1 51.6 33.4 58.1 55.3 60.0 65.0 67.3 69.1 71.4 64.6 61.0 72.6
Airplane 15.3 57.3 46.2 60.4 42.8 61.0 67.7 72.8 70.6 73.1 70.3 67.0 76.1

Avg. 27.5 57.3 46.2 54.8 60.4 64.0 67.7 70.3 72.8 70.6 73.1 67.7 77.6
T ime(s) - 7.0 - - 10.9 73.0 - 0.2 0.3 1.7 14.5 15.6 0.8

130

Fig. 7. Qualitative ICS results (§4.2) on PASCAL VOC[82] (top: cat and person image collections) and Internet[89] (bottom: car and airplane image
collections). Noisy samples are labeled in red rectangles.

deformation (DEF), edge ambiguity (EA), fast motion (FM),
heterogeneus object (HO), interacting objects (IO), low res-
olution (LR), motion blur (MB), shape complexity (SC) and
scale variation (SV). Especially for the videos in which the
primary objects undergo noticeable appearance variation,
camera shake, and complex boundaries, AGNN achieves
average J of 83.1%, 83.6% and 78.6%, which are much better
than all compared methods.

4.2 Performance on ICS

4.2.1 Experimental Setup
Datasets and Metrics: We perform experiments on two well-
known ICS datasets:
• PASCAL VOC[82] contains 1464 training images and 1449

validation images. Following [9], we split the validation
set into 724 validation and 725 test images, and use mean
IoU J as the performance measure.

• Internet [89] has 1306 car, 879 horse, and 561 airplane
images. As in [8], [85], the performance is reported on a
subset of Internet (100 images per class) with mean J .

4.2.2 Quantitative Performance
It is challenging to segment the objects in PASCAL VOC
as they vary greatly in scale and appearance. Moreover,
some images have multiple objects belonging to different
categories. Table 4 shows quantitative results on PASCAL
VOC. FCNs [88] segment each image individually (without
considering other related images) and thus give poor per-
formance. Both [8] and [9] consider relations within image
pairs and gain better results. AGNN achieves the best per-
formance (60.8%) as it better utilizes relational information

from multiple images, enabling it to better identify common
object patterns. On the Internet dataset, the quantitative
results in Table 5 show that AGNN sets a new state-of-
the-art on each class and on average. Moreover, we can see
most end-to-end deep learning-based ICS methods achieve
faster inference speed than traditional clustering-based ICS
methods and our method is among the fastest ones.

4.2.3 Qualitative Performance
Fig. 7 visualizes some representative co-segmentation re-
sults. Specifically, the first four images in the top row belong
to the Cat category, while the last four images all contain
the Person semantics. For the two groups, the corresponding
common semantics are successfully extracted; even for a
single image, the predictions are different when considering
different related images (highlighted in green and yellow
circles of the first row). For the second row, AGNN also
performs well in cases with significant intra-class appear-
ance change (Car). For some samples (red boxes) that do
not contain the common objects among the category, our
AGNN can filter out these noisy samples successfully (due
to the gate mechanism).

4.3 Performance on FSS

4.3.1 Experimental Setup
We perform experiments on PASCAL-5i [2], a gold-standard
dataset for FSS. In PASCAL-5i, 20 categories are evenly
divided into 4 folds (splits): {aeroplane, bicycle, bird,
boat, bottle}, {bus, car, cat, chair, cow}, {diningtable, dog,
horse, motorbike, person}, {potted plant, sheep, sofa, train,
tv/monitor}, within three folds as the training classes and
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Fig. 8. Qualitative FSS results on PASCAL-5i [2] (§4.3). The first five columns are annotated support images and the last two columns are query
predictions w/o. and w. AGNN.

TABLE 6
Quantitative FSS performance on PASCAL-5i [2] (§4.3) the with 1-way

5-shot segmentation setting in terms of mean IoU J .

Method split-1 split-2 split-3 split-4 MeanJ ↑ Time (s) ↓
*OSLSM[2] 35.9 58.1 42.7 39.1 43.9 0.21

*co-FCN[94] 37.5 50.0 44.1 33.9 41.4 -
*SG-One[10] 41.9 58.6 48.6 39.4 47.1 0.35

*AMP[58] 41.8 55.5 50.3 39.9 46.9 0.19
*FWB[59] 50.9 62.8 56.5 50.1 55.1 0.39

*PANet[11] 51.8 64.6 59.8 46.5 55.7 0.27
*AGNN 53.2 64.3 58.4 49.2 56.3 0.28

one fold as the testing class. We report the average perfor-
mance, in terms of IoU J , over 4 testing folds and overall
mean values.

4.3.2 Quantitative Performance
Table 6 reports quantitative comparison results on PASCAL-
5i with the 1-way 5-shot setting. Our model achieves an
IoU score of 56.3%, surpassing the state-of-the-art method,
PANet[11], by 0.6%. This implies the importance of compre-
hensively exploring the context in the support set for FSS.
We also provide the FSS inference time for all compared
methods. We can see that the inference speed of our AGNN
is on par with current arts.

4.3.3 Qualitative Performance
As shown in Fig. 8, our model gives reasonable results on
new classes with only five annotated support images. In
addition, comparing the last two columns, we see that the
segmentation results become more precise after applying
AGNN. Taken together, these results demonstrate AGNN
can successfully learn new concepts and generalize to un-
seen classes, making full use of the context from only a few
labeled examples.

4.4 Ablation Study
We perform an ablation study on the object-level AVS task
to investigate the effect of each component of AGNN.
Effectiveness of Our AGNN: To quantify the efficacy of our
AGNN, we derive a baseline w/o AGNN, which indicates the
results from our backbone model, DeepLabV3. As shown
in Table 7, AGNN indeed brings significant performance
improvements (72.2%→81.3% in term of mean J ). More-
over, we investigate the importance of intra-attention and
inter-attention modules. We can see that removing either the

TABLE 7
Ablation study on the test set of DAVIS16 [71] (§4.4) with different graph

structures, message passing steps, and input images numbers.

Components Module DAVIS16
mean J ∆J

Reference Full model (3 Iterations, N’= 5) 81.3 -

Graph
Structure

w/o. AGNN 72.2 -9.1
w/o. Intra-Attention Loop-Edge 79.1 -2.2
w/o. Inter-Attention Line-Edge 73.8 -7.5

w/o. Gated Message (Eq. 9) 80.1 -1.2
Intra-Attention→ Dilation Conv 79.3 -1.0

Inter-Attention→ convLSTM 77.2 -4.1

Message
Passing

1 iteration 79.3 -2.0
2 iterations 80.6 -0.7
4 iterations 81.3 0.0

Input
Frames

N’= 3 80.0 -1.3
N’= 6 81.3 0.0
N’= 7 81.3 0.0

Post-process w/o. CRF 80.2 -1.1

intra-attention or inter-attention module hurts performance
(-2.2%/-7.5% in Mean J ). To further show the advantages
of intra-attention and inter-attention modules in long-term
temporal correlation modeling and spatial context captur-
ing, we substitute these two modules with convLSTM and
dilation convolution, respectively. From Table 7 we see that
performance of convLSTM and dilation convolution-based
variants are inferior to the full AGNN model (77.2% vs
81.3%, 79.3% vs 81.3%).
Gated Message Aggregation Strategy: In Eq. 9, we equip
the message passing with a channel-wise gated mechanism
to decrease the negative influence of irrelevant frames. To
evaluate this design, we offer a baseline w/o Gated Mes-
sage, which aggregates messages directly. A performance
degradation is observed after excluding the gates. To further
intuitively show the strong learning ability our framework,
following the experimental protocol in slow feature analy-
sis [95], we visualize how foreground feature embeddings
change over time in Fig. 9. We see that the embeddings
learned by our AGNN are significantly more stable than
the baseline methods. In particular, disabling gated message
passing (green line) makes the network behave similar
to original DeepLabv3 (blue line). This suggests that our
AGNN is capable of capturing stable global invariance
information[96] with recursive message passing.
Number of Message Passing Iterations K : To investigate
the effect of the number of message passing iterations K ,
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Fig. 9. Consistency of feature embedding over time, reported on the test
set of DAVIS16 [71] (§4.4).

we report the performance as a function of K . We find that
more iterations (1 → 3) achieves better results, while the
performance seems to converges at K=3.
Number of Nodes N ′ During Inference: We also report
performance with different values of the number of nodes
N ′. We observe that the performance increases with more
input frames up to about 5, while from 5 to 7, the final
performance does not change significantly (probably due
to temporal redundancy in video clips).

5 CONCLUSION

Large-scale deep learning techniques have achieved great
advances in different object segmentation related tasks,
which were unimaginable just several years ago. This leads
to a question: What is the next? Rather than current popular
solutions striving for designing specific network architec-
tures to best fit their specific tasks, we make a further step
towards a generic deep learning framework, AGNN, that
formulates diverse segmentation tasks, including AVS, ICS,
and FSS, from a unified view of segmenting objects from
relational visual data. This not only provides insight into
the underlying natures of these tasks, but also pushes their
research boundaries. Specifically, AGNN achieved AVS,
ICS, and FSS through an iterative neural graph algorithm,
efficiently addressing the limitations of current solutions
by comprehensive relation modeling. In essence, AGNN
leverages a neural attention mechanism to fully capture
the relations between data instances and performs recursive
message passing to progressively mine context information.
Through extensive experiments on several representative
AVS, ICS, and FSS datasets, we have demonstrated that
AGNN is a generic framework that is able to generate
promising results over dynamic video data or a group of
semantically related images, and even generalizes to unseen
classes with only a few annotated examples.
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