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ARTICLE OPEN

Establishing standardized immune phenotyping of metastatic
melanoma by digital pathology
Bettina Sobottka1✉, Marta Nowak1, Anja Laura Frei1, Martina Haberecker1, Samuel Merki1, Tumor Profiler consortium*,
Mitchell P. Levesque2, Reinhard Dummer2, Holger Moch1 and Viktor Hendrik Koelzer 1✉

© The Author(s) 2021, corrected publication 2021

CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly
infiltrated tumors, referred to as inflamed (clinically “hot”), show the most favorable response to immune checkpoint inhibitors in
contrast to tumors with a scarce immune infiltrate called immune desert or excluded (clinically “cold”). Nevertheless, quantitative
and reproducible methods examining their prevalence within tumors are lacking. We therefore established a computational
diagnostic algorithm to quantitatively measure spatial densities of tumor-infiltrating CD8+ T cells by digital pathology within the
three known tumor compartments as recommended by the International Immuno-Oncology Biomarker Working Group in 116
prospective metastatic melanomas of the Swiss Tumor Profiler cohort. Workflow robustness was confirmed in 33 samples of an
independent retrospective validation cohort. The introduction of the intratumoral tumor center compartment proved to be most
relevant for establishing an immune diagnosis in metastatic disease, independent of metastatic site. Cut-off values for reproducible
classification were defined and successfully assigned densities into the respective immune diagnostic category in the validation
cohort with high sensitivity, specificity, and precision. We provide a robust diagnostic algorithm based on intratumoral and stromal
CD8+ T-cell densities in the tumor center compartment that translates spatial densities of tumor-infiltrating CD8+ T cells into the
clinically relevant immune diagnostic categories “inflamed”, “excluded”, and “desert”. The consideration of the intratumoral tumor
center compartment allows immune phenotyping in the clinically highly relevant setting of metastatic lesions, even if the invasive
margin compartment is not captured in biopsy material.

Laboratory Investigation (2021) 101:1561–1570; https://doi.org/10.1038/s41374-021-00653-y

INTRODUCTION
Melanoma is one of the prime examples for the success of
immune checkpoint inhibition in the clinic. Survival of metastatic
melanoma patients improved from 9 months before 2011 to
currently >3 years1–3. Nevertheless, secondary resistance after a
primary response is observed in about 40% of metastatic
melanoma patients4,5 but robust predictive biomarkers to inform
clinical decision-making on immunotherapy are missing.
Clinical evidence from a variety of malignancies—including

melanoma—suggest that the success of immune checkpoint
inhibitors relies critically on preexisting tumor infiltrative CD8+
T cells6,7. Proportionally to their presence, tumors can broadly be
categorized into inflamed and non-inflamed8,9. Inflamed tumors
are characterized by high CD8+ T-cell densities and reflect
preexisting immunity, whereas non-inflamed tumors are immu-
nologically ignorant with only scarce CD8+ T cells. The functional
relevance of these categorizes was elucidated by clinical studies
examining their amount and distribution in serial on-treatment
biopsies6. Three distinct distribution patterns of CD8+ T cells were
identified: (1) high densities of intraepithelial CD8+ T cells
corresponding to inflamed tumors associated with a favorable
response to immune checkpoint inhibition; (2) a poor infiltrate
corresponding to non-inflamed/desert tumors, or (3) high

densities of CD8+ T cells at the tumor margin without tumor
infiltration, referred to as immune excluded6,10. Both non-
inflamed/desert and excluded immune phenotypes were strongly
correlated with non-response to immune checkpoint inhibitors in
the clinic. These three distribution patterns were therefore
translated into clinically relevant categories “hot” corresponding
to inflamed and “cold” showing either an immune desert or
excluded pattern11. CD8+ T cells represent the currently most
actionable target of immune checkpoint inhibitors12. Their high
baseline prevalence in the intraepithelial compartment can be
regarded as a strong predictor to immune checkpoint inhibition.
Yet, neither for melanoma nor for any other entity are tumor-
infiltrating CD8+ T cells currently assessed in routine diagnostic
practice despite their essential role to predict immunotherapy
success.
Pathologists perform tissue diagnostics for virtually all cancer

patients. Additional immunohistochemistry is carried out on a
routine basis and is available in every pathology institute. Visual
scoring of tumor-infiltrating T cells however suffers from inter-
observer variability and poor reproducibility13,14. Computational
scoring by digital pathology is regarded as superior, especially if
board-certified pathologists verify image segmentation and cell
detection14. We therefore established a quantitative, easy to
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implement and robust approach considering state-of-the-art
concepts14,15. Importantly, we did not only quantify CD8+
tumor-infiltrating T cells densities within the respective tumor
compartments, but translated their densities into an applicable
clinical immune diagnosis. By applying pathologist-trained deep
learning algorithms to diagnostic immunohistochemistry stains,
we were able to subdivide the tumor center compartment into
an intratumoral cellular and intratumoral stromal compartment
for accurate measurement of CD8+ T-cell spatial distribution.
We assessed the invasive margin as recommended by the
International Immuno-Oncology Biomarker Working Group14,15

but discovered it not be mandatory for our proposed immune
diagnostic algorithm in the assessment of metastatic lesions.
Based on the Swiss Tumor Profiler discovery cohort16 we
identified CD8+ T-cell density cut-offs to classify melanomas
for each immune diagnostic category. We verified our proposed
diagnostic algorithm in an independent retrospective mela-
noma validation cohort and show significant correlations
between the pathologists’ and the digital pathology based
immune diagnosis.
The combination of immunohistochemistry, image segmenta-

tion, deep learning, and quality control by pathologists
yielded high-quality results with robust and reproducible
findings in two independent cohorts of metastatic melanoma
lesions. The targeted investigation of the intratumoral cellular
compartment allowed reproducible immune phenotyping in
metastatic sites, clinically most relevant after excision of the
primary tumor but often biopsied without the invasive
margin compartment. Our study therefore provides a novel

diagnostic dimension by categorizing quantitative spatial data
on CD8+ T cells into a functional and clinically relevant immune
phenotype and may become an additional predictive immuno-
oncology tool.

MATERIALS AND METHODS
Patient cohorts: discovery and validation cohort
The Swiss Tumor Profiler is an approved, observational clinical study
(Registration IDs: 2018-02050 (KEK ZH, Switzerland), 2018-02052 (EKNZ,
Basel, Switzerland), 2019-01326 (KEK ZH, Switzerland)) with the intention to
identify novel treatment targets in prospectively collected tumor patient
samples using cutting-edge technologies16. In the past 2 years, 116
melanoma patients were enrolled in the Tumor Profiler study. Of these, an
additional longitudinal sample was available from ten patients, resulting in
a total of 126 samples (Table 1). Inclusion criteria for the present study
were the availability of a high-quality digital scan of a CD8 immunohis-
tochemistry stain, and serial section H&E for pathology review. Five
samples were excluded due to unrecoverable pre-analytical issues. In
detail, one case revealed repeatedly unspecific staining or poor nuclear
morphology, and four melanomas displayed a spindle cell morphology
only. Seven additional melanomas showed two distinct but
adjacent immune phenotypes within one metastatic location by pathology
review, which we classified as lesions with a “dual immune
phenotype”. These cases were evaluated, but are not subject of the here
presented study and will be published separately. Metastatic sites
included lymph node metastases but also distant metastases in brain,
soft tissue and different anatomical locations like pleura, lung, and
intestine summarized as “other” metastatic sites (Table 1). In the
present study, the Tumor Profiler melanoma samples were investigated
as the discovery cohort. For the validation cohort, we searched for

Table 1. Discovery cohort: clinicopathological data of the Tumor Profiler Melanoma cohort used as the discovery cohort.

Clinicopathological parameters patients (n= 116) Site of metastasis (n= 126)

Brain (n= 15) Soft tissue
(n= 59)

LN (n= 37) Other (n= 15)

No. % No. % No. % No. %

Gender

F 7 46.7 28 47.5 12 32.4 5 33.3

M 8 53.3 31 52.5 25 67.6 10 66.7

Age (years)

<40 2 13.3 3 5.1 2 5.4 2 13.3

40–49 3 20.0 2 3.4 2 5.4 5 33.3

50–59 6 40.0 16 27.1 13 35.1 1 6.7

60–69 1 6.7 16 27.1 8 21.6 2 13.3

70–79 2 13.3 19 32.2 8 21.6 5 33.3

≥80 1 6.7 3 5.1 4 10.8 0 0

Histological subtype

Cutaneous 12 80.0 43 72.9 31 83.8 10 66.7

Mucosal 0 0.0 3 5.1 1 2.7 3 20.0

Ocular 1 6.7 8 13.6 0 0.0 2 13.3

Unknown primary 2 13.3 5 8.5 5 13.5 0 0.0

Stage

III 0 0.0 13 22.0 19 51.4 1 6.7

IV 15 100.0 46 78.0 18 48.6 14 93.3

Immune diagnosis

Desert 7 46.7 19 32.2 8 21.6 2 13.3

Excluded 5 33.3 26 44.1 21 56.8 10 66.7

Inflamed 2 13.3 10 16.9 6 16.2 3 20.0

Dual phenotype 1 6.7 4 6.8 2 5.4 0 0.0

126 samples from different anatomical metastatic sites were collected from 116 patients.
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melanoma metastases in lymph node, brain, and soft tissue in the
archives of the Department of Pathology and Molecular Pathology,
University Hospital Zurich between 2013 and 2018. The validation cohort
(BASEC: 2018-02282) comprised in total 33 samples of 28 patients
(Supplementary Table 1).

Tissue selection, immunohistochemistry, and digitalization
After tissue sampling according to the Tumor Profiler guidelines,
melanoma metastases were formalin-fixed and paraffin-embedded for
routine pathology assessment. Whole slide sections were cut at 2 μm and
stained by immunohistochemistry on an automated immunostainer

Fig. 1 Illustration of CD8+ T cells in relation to their immune phenotypes. (A) Absence of T cells in immune desert tumors, accumulation of
T cells at the invasive margin or in the intratumoral stroma without effective invasion in immune excluded tumors and infiltration of T cellsinto
the tumor parenchyma in inflamed tumors. Correlation analysis of pathologists’ first and second semi-quantitative evaluation of the intratumoral
CD8+ (iCD8+) T-cell (B) and stromal CD8+ (sCD8+) T-cell (B′) percentages; solid lines = best fit, dotted lines = error bars. Pathologist guided
annotation (C) of the tumor border with 1 mm invasive margin (C, left) with exclusion of artefacts according to the recommendations by the
working group. AI-based segmentation (C, middle) of melanoma metastases into tumor (red), inflamed stroma (purple), and desmoplastic stroma
(green); exclusion of glass background, melanin pigment, hemorrhage, and necrosis. Cell segmentation andscoring at single cell resolution
(C, right) evaluating CD8+ infiltration per μm2 Q9 in each compartment and tissue type (Color figure online).
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(Ventana Medical Systems, Tucson, AZ, USA) utilizing the monoclonal
rabbit-anti-human CD8 (Ventana Medical Systems, clone SP57, dilution
1:100) with pretreatments according to the manufactures’ instructions.
Antibody detection was performed using the ultraView Universal Alkaline
Phosphatase Red Detection Kit (Ventana Medical Systems). Stained slides
were digitalized at ×40 magnification and a resolution of 0.25 µm/pixel
using the Ventana DP200 slide scanner (Ventana Medical Systems).
Accuracy of tissue sections, immunohistochemistry stains and scans was
independently controlled by two pathologists (B.S. and V.H.K.) and a digital
imaging expert (M.N.).

Visual scoring and tumor compartments
Two pathologists (B.S. and V.H.K.) semi-quantitatively evaluated CD8+
tumor-infiltrating T cells according to the state-of-the-art recommenda-
tions by the International Immuno-Oncology Biomarker Working Group
including the tumor compartments tumor center and invasive margin14,15.
In addition, the “tumor center” compartment was refined into an
intratumoral and stromal compartment as previously suggested17. The
(1) intratumoral tumor center compartment was defined as the
intratumoral cellular compartment of the tumor consisting of tumor cells
without intervening intratumoral stroma; the (2) stromal tumor center

Fig. 2 Discovery cohort. Densities of CD8+ T cells/μm2 in the discovery cohort independent of the tumor compartment (A). Total densities of
CD8+ T cells differed significantly between immune desert, excluded, and inflamed tumors (A). Densities of CD8+ T cells/μm2 depicted
according to their spatial distribution among the tumor compartments intratumoral (iCD8+ T cells; left; dark gray columns), stroma (sCD8+
T cells; middle; light gray columns), and invasive margin (imCD8+ T cells; right; white columns) in relation to the immune diagnosis and site of
metastasis (B–F); line at 0.06 CD8+ T cells/μm2.
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compartment was defined as intratumoral stroma without tumor cells. In
lymph nodes, preexisting lymphatic tissue was excluded from analysis. For
all cases, whole slides were evaluated to capture CD8+ T-cell hetero-
geneity and accurately assess T-cell infiltrates in the intratumoral/tumor
melanocytic compartment15.

CD8+ T-cell immune phenotypes
To translate the spatial distribution pattern of tumor-infiltrating CD8+
T cells into an immune phenotype, tumors were defined as (1) immune
desert if only very rare and isolated CD8+ T cells could be detected in any
of the assessed tumor compartments, (2) immune excluded if CD8+ T cells
had arrived at the tumor environment but could only be found at the
invasive margin or within the stroma and only rare and isolated T cells
were present in the intratumoral compartment, and (3) inflamed if CD8+
T cells could be detected in the stromal compartment but, importantly,
infiltrated the tumor parenchyma and displayed direct contact with tumor
cells as previously suggested17. Immune phenotypes were re-assessed by
two pathologists (B.S., V.H.K.) after a wash-out period of >4 weeks.

Digital pathology
For digital immune phenotyping, we developed an end-to-end image
analysis pipeline in the HALOAI platform consisting of (1) expert
pathologist review and annotation of tumor center and invasive border
according to the recommendations of the International Immuno-Oncology
Biomarker Working Group, followed by automated (2) deep learning-based
tissue classification with (3) cell segmentation, and (4) spatially resolved
detection and scoring of CD8+ T-cell infiltrates as visualized by
immunohistochemistry stains to achieve highly accurate and automated
differentiation of immune cell infiltrates in each case. At baseline, we
utilized pathologist-defined annotations of cancer tissue (n= 333 separate
regions, 146.16mm2), desmoplastic stroma (n= 77; 4.88 mm2), immune-
infiltrated stroma (n= 147; 8.45mm2), glass background (n= 37; 0.73
mm2), pigment deposition (n= 87; 8.73 mm2), and areas of hemorrhage
and necrosis (n= 52; 2.45mm2) for a total of n= 733 separate tissue
regions with a total area of 171.4 mm2 as ground truth dataset for training
a deep neural network (Densenet18, patch size: 256 × 256 pixels) for tissue
segmentation. Classification outputs were visualized as mark-up images
(Supplementary Fig. 2) and provided to expert pathologists for corrections
in an active learning process. Performance was cross-validated against
ground truth annotations on the unseen dataset of the validation cohort.
For cell-level analysis, nuclei were segmented using a seeded watershed
on the hematoxylin counterstain followed by cell/nuclear boundary
detection and post processing according to pathologist-controlled cellular
parameters, such as nuclear size, roundness, and optical density. Marker
positivity (Alkaline Phosphatase staining) was detected and analyzed

according to pathologist-set positivity thresholds. CD8+ T cells were
quantified separately in each tumor region and tissue compartment and
normalized by area (Supplementary Fig. 1) to obtain CD8+ T-cell densities
per tumor compartment.

Diagnostic accuracy and statistics
Diagnostic accuracy of cut-off values was evaluated according to
established standards19. Assessment of differences between CD8+ T-cell
densities among tumor compartments and among immune diagnoses was
performed by multiple comparisons for two-way ANOVA using the Holm–
Šídák posttest. All statistical analyses including correlation analysis and
linear regression were conducted using GraphPad Prism (version 8.0).

RESULTS
One hundred sixteen melanoma patients were enrolled in the
Swiss Tumor Profiler study16 between 2019 and 2020. An
additional longitudinal sample was available for ten patients,
resulting in a total of 126 tissue samples from lymph node, brain,
soft tissue, and different anatomical locations such as pleura, lung,
intestine summarized as “other” metastatic sites (Table 1). A total
of 114 metastatic samples met the inclusion criteria for the current
study and were examined. CD8 immunohistochemistry of whole
tissue sections revealed the spatial distribution of CD8+ tumor-
infiltrating T cells (Fig. 1A) depicted according to the previously
suggested immune phenotypes10. Inter- and intraobserver varia-
bility of the intratumoral CD8+ (iCD8+) T-cell- (Fig. 1B) and
stromal CD8+ (sCD8+) T-cell- (Fig. 1B′) related immune pheno-
types between pathologists was lower than expected and
improved upon re-assessment13,20. For computational CD8+
T-cell assessment, the invasive margin and tumor center region
were annotated on digital whole slide images and areas with
relevant artefacts were excluded (Fig. 1C and Supplementary
Fig. 2). An average tissue area of 73 mm2 (range: 32 mm2 (average
area brain samples)–100mm2 (average area lymph node samples))
was analyzed per case and an average of 3.3 × 104 CD8+ T cells
(range: 6.8 × 103 (average CD8+ cells brain samples)–6.5 × 104

(average CD8+ cells lymph node samples)) were detected and
classified for immune phenotyping (Supplementary Fig. 1). Tertiary
lymphoid structures, which are regarded as confounders in the
assessment of tumor-infiltrating T cells, were excluded according
to established guidelines by the International Immuno-Oncology

Table 2. Discovery cohort: means of CD8+ T-cell densities according to their spatial distribution and immune phenotype within the discovery
cohort (A) and the corresponding p values using the Holm–Šídák method for multiple comparisons (B).

A

Mean CD8+ T cells/μm2 Immune phenotypes

Desert (n= 34) Excluded (n= 62) Inflamed (n= 18)

Tumor compartments

iCD8+ 0.00002 0.0002 0.0006

sCD8+ 0.0002 0.002 0.005

imCD8+ 0.0006 0.002 0.003

B

p values Immune phenotypes

Desert vs.
excluded

Desert vs.
inflamed

Excluded vs.
inflamed

Tumor compartments

iCD8+ ns <0.05 ns

sCD8+ <0.0001 <0.0001 <0.01

imCD8+ <0.0001 <0.0001 ns

Invasive margin (im) CD8+ for desert n= 24, excluded n= 54, and inflamed n= 13.
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Biomarker Working Group14. Detection of CD8+ T cells within the
regions of interest was performed using digital image analysis as
described in “Methods” (Fig. 1C and Supplementary Fig. 2) and
CD8+ T-cell infiltration densities per μm2 tissue area were derived
for each tumor compartment.
Overall, CD8+ T-cell densities were significantly lower in tumors

classified as immune desert than as excluded or inflamed by
expert pathologist review (Fig. 2A) endorsing the semi-
quantitative and categorical evaluation by light microscopy.
Further sub-classification of CD8+ T-cell densities per tumor
compartment confirmed their differential spatial distribution
among immune phenotypes in all assessed samples (Fig. 2B)
and irrespective of the anatomical site of metastasis (Fig. 2C–F).
According to the observed means (Table 2A) and significances
(Table 2B) in the discovery cohort, a diagnostic algorithm emerged
using a combination of intratumoral (iCD8) and stromal (sCD8)
T-cell densities as cut-offs values to categorize the measured
findings into the correct immune diagnostic category (Fig. 3). All
tumors were successfully categorized into the category (1) desert
if either iCD8+ and/or sCD8+ fulfilled the cut-off values, (2)
excluded, or (3) inflamed if the respective iCD8+ and sCD8+ cut-
off values were fulfilled.
The assessment of the invasive margin was found not to be

essential for establishing a digital immune diagnosis and was
therefore omitted. This allowed the evaluation of metastatic
biopsy material, which often lacks a sample of the invasive margin
as we also observed in 23 cases of the discovery cohort (Fig. 2). To

Fig. 3 Diagnostic algorithm. Proposed diagnostic algorithm using a
highly standardized and reproducible approach to define an
immune diagnosis based on densities of tumor-infiltrating CD8+
T cells/μm2/ tumor compartment.

Fig. 4 Validation cohort. Linear regression and correlation analysis between the digitally assessed and classified immune diagnoses and the
pathologists’ diagnoses in the validation cohort (A). While all cases from the diagnoses “desert” and “inflamed” grouped to their appropriate
category, three cases from the diagnoses “excluded” clustered to “inflamed” (red arrow) when applying the suggested algorithm. The black
line shows the measured linear regression line with the 95% confidence interval, the green line depicts the perfect fit (A). Densities of CD8+
T cells in the validation cohort according to their spatial distribution among the tumor compartments intratumoral (iCD8+ T cells; left; dark
gray columns), stroma (sCD8+ T cells; middle; light gray columns), and invasive margin (imCD8+ T cells; right; white columns) in relation to
the digital-based immune diagnosis and site of metastasis (B–D); line at 0.06 CD8+ T cells/μm2 (Color figure online).
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validate our proposed classification algorithm, we established a
retrospective cohort of melanoma metastases from lymph node,
brain, and soft tissue sites (Supplementary Table 1). Tumor tissue
was treated in the same pre-analytical and analytical fashion
including scoring by pathologists. Clustering of measured CD8+
T-cell densities into one of the three immune diagnoses according
to the proposed diagnostic algorithm (Fig. 3) correlated signifi-
cantly with the pathologists’ judgment (Fig. 4A). To assess the
diagnostic performance of our suggested algorithm, we calculated
a confusion matrix using the pathologists immune diagnostic
category as “gold standard” or “ground truth” indicated as
“pathologist diagnosis” (Table 3). A precision of sensitivity of
100% was reached for classification of tumors in the desert
category with a few excluded tumors (sensitivity 83%, specificity
100%) assigned to the inflamed immune diagnostic category
(sensitivity 100%, specificity 62.5%) (Table 3). In-depth analysis of
the T-cell infiltration patterns revealed a similar spatial distribution
and comparable densities of CD8+ T cells as in the development
cohort (Fig. 4B–D and Table 4). All tumors were successfully
classified according to the established criteria (Supplementary
Table 2). Taken together, both the pre-analytical and analytical
workflows could be robustly confirmed in an independent
validation cohort endorsing the here proposed diagnostic
algorithm to establish an immune diagnosis by digital pathology.

DISCUSSION
We here report one the first and most comprehensive computa-
tional assessments of CD8+ tumor-infiltrating T cells in clinical
samples of metastatic melanoma. The intention is to provide a
practical and robust diagnostic algorithm that can be implemen-
ted into a routine pathology workflow with direct clinical
relevance. The focus on CD8+ T cells is in line with the notion
that CD8+ T cells represent currently one of the most actionable
targets of immune checkpoint inhibitors as also observed in anti-
PD1 treated metastatic melanoma patients21.
As described for melanoma and other malignancies22,23,

evaluation of the spatial distribution of CD8+ T cells proved to
be an essential diagnostic criterion rather than assessment of the
mere absolute counts or densities. Indeed, digital image-based
approaches using immunohistochemistry24,25 or multispectral26

analysis recently demonstrated the clinical significance of spatial
CD8+ T-cell evaluation in metastatic melanoma predicting
response to BRAF or MAPK inhibition and correlating with
improved response to immunotherapy. The introduction of the
intratumoral tumor center compartment into our analysis was
identified as a crucial factor to establish an immune diagnosis in
metastatic disease. While this compartment is often omitted
mostly due to technical reasons by not utilizing immunohisto-
chemistry for tumor-infiltrating lymphocyte detection14,15, intra-
tumoral CD8+ T cells were described to be prognostic in
melanoma27 providing a clear rationale for their assessment. The
combined evaluation of intratumoral and stromal CD8+ T cells
within the tumor center compartment correlated well with the
immune diagnoses rendered by expert pathologists using light
microscopy. Additionally, densities of intratumoral CD8+ T cells
emerged to be more relevant than invasive margin CD8+ T cells
to render an immune diagnosis, thereby providing the proof of
principle for a reproducible assessment method of metastatic
biopsy material that often lacks tissue from the invasive margin.
Our approach respects all concerns of the current state-of-the-

art recommendations14 and avoids methods requiring immuno-
fluorescence that are less robust and less frequently established in
diagnostic pathology labs21. The here proposed diagnostic
algorithm is based on a robust pre-analytical workflow and
exclusively uses highly standardized devices in an approved
diagnostic environment. The algorithmically derived immune
diagnoses rely on absolute density measurements of intratumoralTa
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and stromal CD8+ T cells within the tumor center compartment.
Image-based analytic approaches can help to overcome sub-
jectivity in the assessment of slide-based prognostic and
predictive indicators and have potential to replace the currently
employed light-microscopic methods in the clinic28,29.
Despite these advantages, our approach still shows limitations.

Quality control of pre-analytical and analytical workflows by
board-certified pathologists was essential and remains indispen-
sable. While a complete hands-off end-to-end pipeline for
immune phenotyping can be envisaged, this is not supported
by current medical regulations. Expert review is expected to
remain a key component of digital image analysis algorithms,
which will progressively simplify and enhance the pathologist
interpretation of key prognostic and predictive biomarkers. Key
areas for development are underlined by some of the challenges
seen in the present cohort. In particular, lymph node metastases
represent the most challenging anatomical location due to the
difficulty to clearly distinguish between preexisting lymphoid
stroma and true tumor-associated stroma, which is true for both
visual and digital scoring. Also, unusual morphologies like
melanoma with spindle cell features will require further expansion
of the training cohort using additionally collected rare morphol-
ogies to achieve generalizability of the proposed algorithm to
these rare cases. Last, the here proposed cut-off values were
empirically defined and lack clinical validation. Nevertheless, the
classification accuracy of our proposed diagnostic algorithm was
promising, and calls for validation in a larger, well-characterized
prospective cohort according to the state-of-the-art recommenda-
tions19 ideally in consideration of its clinical utility and preferably
in various tumor entities investigating treatment-naïve samples
with appropriate follow-up.
While in-depth immune phenotyping by highly multiplexed

visualization methods or expression profiling of the tumor
immune microenvironment certainly represent key methods to
understanding entire immune landscapes, they require challen-
ging pre-analytics, are still exploratory, costly and currently
restricted to a few centers due to technical limitations. Currently
established immune-oncology biomarkers like the tumor muta-
tional burden or PDL1 expression30 may give insight into neo-
antigenicity or a preexisting immune response but are expensive
and remain uninformative regarding the quantity and spatial
distribution of tumor-infiltrating CD8+ T cells, one of the key
prerequisites for successful response to immunotherapy.
In conclusion, our study underscores the importance of a spatial

assessment of tumor-infiltrating CD8+ T cells. This information
can only be derived from tissue sections and is currently
impossible to reliably evaluate by bulk methods. Our study hereby
provides an additional diagnostic possibility for immunotherapy
biomarkers in precision medicine by categorizing quantitative
spatial data on CD8+ T cells into a functional and clinically
relevant immune phenotype and may become an additional
predictive immuno-oncology tool, alone or in combination with
established biomarkers.

DATA AVAILABILITY
There is an embargo on the data until the final study results are published. Once this
is done, the data will be publicly available.
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