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ARTICLE OPEN

Overcoming barriers to data sharing with medical image
generation: a comprehensive evaluation
August DuMont Schütte 1,2✉, Jürgen Hetzel3,4, Sergios Gatidis5, Tobias Hepp2,5, Benedikt Dietz 1, Stefan Bauer 2,6,7 and
Patrick Schwab 7

Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In
many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of
cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic
patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not
contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest
radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages.
We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the
real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our
benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We
conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our
benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable
guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would
have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real
patient-level data in the right setting.
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INTRODUCTION
Sharing sensitive data under strict privacy regulations remains a
crucial challenge in advancing medical research1. By accessing
large amounts of collected data, there have been impressive
research results in a range of medical fields such as genetics2,
radiomics3,4, neuroscience5, diagnosis6–8, patient outcome predic-
tion9,10 or drug discovery11,12. Particularly deep learning systems,
composed of millions of trainable parameters, require large
amounts of data to learn meaningful representations robustly13.
Aside from quantity, the quality of the available patient-level data
is particularly essential for medical research14. Highly diverse and
well-curated training data empowers researchers to produce
generalisable insights and reduces the risk of biased predictions
when applied in practice.
It is especially difficult to share and distribute medical data

due to privacy concerns and the potential abuse of personal
information15. To overcome these privacy concerns there has
been an impressive number of large-scale research collabora-
tions to pool and curate de-identified medical data for open-
source research purposes16–18. Nevertheless, most medical data
is still isolated and locally stored in hospitals and laboratories
due to the concerns associated with sharing patient data19. In
many countries, privacy laws inhibit medical data sharing20, and
potentially available de-identification methods lack guarantees
as de-identified data can, in some cases, be linked back to
individuals21,22.
In medical research, information is often analysed at the level of

cohorts rather than individuals. A potential solution to the medical
data sharing bottleneck, is therefore, the generation of synthetic

patient data that, in aggregate, has similar statistical properties to
those of a source dataset without revealing sensitive private
information about individuals. While synthetic data can be
generated for all kinds of data modalities, we focus on the
particularly important medical imaging domain in this work.
Recently, new generative machine-learning approaches, such as

generative adversarial networks (GANs), have demonstrated the
capability to generate realistic, high-resolution image datasets23.
In GANs, two neural networks play an adversarial game against
each other. The generator (G) tries to learn the real data
distribution while the discriminator (D) estimates the probability
of a sample belonging to the real training set, as opposed to
having been generated by G24. If training is stable, the model
converges to a point where D can no longer discriminate between
real and synthetic data25. When each neural network is composed
of a convolutional neural network (CNN), GANs have demon-
strated state-of-the-art image generation capabilities26,27.
Within the medical imaging domain, there are several works

demonstrating the generation of realistic synthetic data, among
others, retinal images28,29, skin lesions30–32, haematoxylin and
eosin (H&E) stained breast cancer tissue in digital pathology33,
X-ray mammographs34, chest radiographs35,36 and brain tumour
magnetic resonance imaging (MRI)37. In38, the authors illustrate
the benefits of synthetic images as an additional form of data
augmentation for tumour segmentation. They also analyse
synthetic data sharing capabilities, but find that without fine-
tuning a segmentation model on real data after it was trained on
synthetic data, the performance gap is significant. The above-
mentioned works develop and demonstrate GAN capabilities in
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specific domains, with dataset-dependent adaptations, without
providing a comprehensive evaluation of how changes within and
across data modalities impact different GAN model performances
for synthetic data sharing. Other works such as39 and40 are less
related to data sharing restrictions and instead focus on utilising
GANs for image-to-image translations within the medical domain.
This idea has also been extended to semi-supervised settings
where lower complexity images are synthesised first, before
translating towards the higher complexity space41.
Inspired by these domain-specific advancements we aim to

establish a benchmark on synthetic medical imaging data
generation capabilities. To the best of our knowledge, there is
currently no work focused on providing a comprehensive bench-
mark analysis for the generation of synthetic medical images
across different GAN architectures and data modalities. Our study
offers guidelines for the use of GAN models to fully synthesise
datasets as a potentially viable approach to privacy-preserving
data sharing, as illustrated in Fig. 1. We make the following
contributions:

● We develop an open benchmark to analyse the generation of
synthetic medical images when varying the number of label
combinations, the number of samples per label combination,
and the spatial resolution level present in the dataset.

● We present valuable guidelines for the effective generation of
medical image datasets by evaluating our open-source
benchmark on a reference GAN model and our newly
proposed GAN architecture for two different data modalities.

● We additionally analyse privacy considerations, assess the
feature importance of predictive models trained on the
synthetic datasets, analyse visual artefacts at higher resolu-
tions and finally conduct a large-scale reader study in which
trained radiologists discriminate between real and synthetic
medical images.

RESULTS
Overview of approach
Both datasets consist of binary multi-label classes. Each chest
X-ray image can have a combination of the following 13 labels:
enlarged cardiomediastinum, cardiomegaly, lung opacity, lung
lesion, oedema, consolidation, pneumonia, atelectasis, pneu-
mothorax, pleural effusion, pleural other, fracture, support device
or the no finding class. The brain CT scans can consist of a
combination of five different haemorrhage types: epidural,
subarachnoid, subdural, intraparenchymal and intraventricular or
the no finding class.
We randomly split each patient cohort into training, validation,

and test set within strata of radiology findings, before filtering the
available data for each benchmark setting. We developed all GAN
models on the training datasets and stopped GAN training when
the quality between real and synthetic images converged, as
measured with the Fréchet inception distance (FID) score42. Next,
we generated the synthetic datasets for the train, validation, and
test folds by conditioning on the labels present in the respective

data folds. This means that after GAN training and inference we
have a real and synthetic dataset for each benchmark setting with
equivalent sizes and label combinations in all folds. In theory, a
trained GAN can be used to generate unlimited amounts of data,
but we want the real and synthetic folds to be equivalent for a fair
comparison.
Each classifier is trained on either the real or the synthetic

training data fold, meaning that synthetic images are pre-
computed and not generated on a batch-wise basis. In all
settings, we used a pre-trained densenet-121 CNN as a predictive
model, with the mean area under the receiver operating
characteristics curve over all labels (AUC) as the evaluation metric.
For each classifier, we stopped training when the validation AUC
converged. After the real predictive model is trained on the real
dataset and the synthetic predictive model is trained on the
synthetic dataset, we evaluated both on the separate, real
data test fold to compute the difference in performance
AUCreal � AUCsyn.
We repeated all experiments multiple times with varying

random initialisation of the deep learning systems, allowing us
to perform statistical tests on whether the distribution of AUCreal �
AUCsyn scores differs at different benchmark settings. Additionally,
we compared the predictive models’ feature importance when
trained on either the real or the synthetic datasets. We addressed
privacy concerns by analysing differences between synthetic
images and the most closely matching nearest-neighbour images
from the entire training dataset. Finally, we performed a large-
scale reader study in which we asked trained radiologists to label a
mixture of real and generated images.

Model performance
To accurately assess the potential of synthetic data, we analysed
two model architectures across two different datasets for our
benchmark. The prog-GAN model refers to the progressive GAN as
a reference model, as it is still commonly used for medical image
generation32,36. The cpD-GAN refers to our improved model that
we specifically developed for this benchmark. To assess the
generalisation capabilities, we did not fine-tune across different
benchmark settings, only when increasing the resolution, we
make the necessary changes to the network architectures.
Up to a spatial resolution of 128 × 128 pixels, the prog-GAN

achieved an average AUCreal � AUCsyn score of 0.0495 (±0.0276)
across all settings on the chest radiograph dataset and 0.1367
(±0.0324) across all brain scans’ experiments. These scores were
substantially improved with the cpD-GAN that achieved 0.0206
(±0.0100) on the chest X-ray settings and 0.0650 (±0.0198) on the
brain haemorrhage dataset experiments.
We evaluated the model performance across three benchmark

dimensions, detailed in Table 1. First, we varied the number of
unique binary label combinations (which we also refer to as
number of classes) included in the dataset. Next, we fixed the
present classes and assessed how changes in the number of
samples for each group of findings impacted performance. While
we evaluated the first two benchmark settings at a resolution of
32 × 32 pixels, we finally analysed how increasing the resolution to
64 × 64 and 128 × 128 pixels affected our scores. Due to the
substantial computational demand at high spatial resolution, we
only evaluate the cpD-GAN at 256 × 256 pixels for brain CT scans
and 256 × 256 and 512 × 512 pixels for chest X-rays. We only
performed changes across a single benchmark dimension at a
time to ensure no confounding factors could impact training.

Impact of number of classes
The classification performance on both real and synthetic data
increased when we lowered the number of unique present
classes. We reason that the complexity of the predictive task
decreases with fewer label combinations, resulting in higher

Fig. 1 Synthetic medical imaging dataset generation to overcome
data sharing barriers. We train our GAN models with real medical
imaging data, to generate the corresponding synthetic images. The
synthetic dataset ideally no longer contains private information
about individual patients while in aggregate, maintaining the real
training cohort’s statistical properties.
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AUC scores. However, as can be seen in Fig. 2a, b, the differences
in AUCreal � AUCsyn scores also decreased when lowering the
number of classes. For both datasets, the differences between the
extreme cases (20 and 2 classes for the chest X-rays and 10 and 2
classes for the brain CT scans) for the cpD-GAN were statistically
significant (p-values < 0.0001). The relative performance increase
was even more pronounced for the prog-GAN. The trend of
improvement in classifier performance when trained on synthetic

data versus the performance when trained on real data shows that
GAN models and the generated data quality disproportionately
benefited from a smaller label space, thereby confirming the
significance of the class conditioning methods. One crucial
difference between the two evaluated GAN models is the
improved label conditioning mechanism used with the cpD-
GAN. The improved label conditioning was partially responsible
for the lower overall scores and also explains why the prog-GAN

Table 1. All benchmark settings.

Type Benchmark Resolution 0/1 labels Classes Train set Test/val set Per class

Chest Classes 32 × 32 9 20 29,000 3800 1450

32 × 32 8 15 24,000 2850 1600

32 × 32 5 10 20,000 1900 2000

32 × 32 5 6 13,800 1140 2300

32 × 32 5 4 15,600 760 3900

32 × 32 4 2 12,600 380 6300

Samples 32 × 32 4 3 17,850 2250 5950

32 × 32 4 3 13,500 2250 4500

32 × 32 4 3 9000 2250 3000

32 × 32 4 3 4500 2250 1500

32 × 32 4 3 3000 2250 1000

32 × 32 4 3 1500 2250 500

32 × 32 4 3 1200 2250 400

32 × 32 4 3 600 2250 200

Resolution 32 × 32 14 138 117,168 4000 256−7586

64 × 64 14 138 117,168 4000 256−7586

128 × 128 14 138 117,168 4000 256−7586

256 × 256 14 138 117,168 4000 256−7586

512 × 512 14 138 117,168 4000 256−7586

Brain Classes 32 × 32 5 10 25,000 3000 2500

32 × 32 5 8 24,960 2400 3120

32 × 32 5 6 25,020 1800 4170

32 × 32 4 4 25,000 1200 6250

32 × 32 2 2 25,000 600 12,500

Samples 32 × 32 5 6 32,400 3000 5400

32 × 32 5 6 27,000 3000 4500

32 × 32 5 6 18,000 3000 3000

32 × 32 5 6 9000 3000 1500

32 × 32 5 6 6000 3000 1000

32 × 32 5 6 3000 3000 500

32 × 32 5 6 1800 3000 300

32 × 32 5 6 600 3000 100

Resolution 32 × 32 6 20 117,168 4000 155−85,876

64 × 64 6 20 117,168 4000 155−85,876

128 × 128 6 20 117,168 4000 155−85,876

256 × 256 6 20 117,168 4000 155−85,876

512 × 512 6 20 117,168 4000 155−85,876

Each row defines the composition of a specific benchmark setting. After GAN training, the synthetic datasets are generated by conditioning on the real label
sets, resulting in equivalent data folds. Our chest radigraph data pool consists of 117,168 (44,153) training, 15,418 (5519) validation and 14,687 (5520) test
samples (patients), respectively. Our brain computed tomography scan data pool consists of 173,271 (15,133) training, 22,095 (1892) validation and 20,500
(1892) test samples (patients), respectively. The 14 binary chest X-ray labels are enlarged cardiomediastinum, cardiomegaly, lung opacity, lung lesion, oedema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other, fracture and support device, and no finding. The six binary brain CT scan
labels are epidural, subarachnoid, subdural, intraparenchymal and intraventricular haemorrhage, and no finding. 0/1 Labels: number of binary labels. Classes:
number of classes. Note: the number of classes refers to the number of unique binary label combinations. If different binary labels co-occur, we can have fewer
classes than 0/1 labels. Train set: number of samples in training set. Test/val set: number of samples in each the test and validation set. Per class: number of
training samples per class.
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had a more significant relative performance improvement on
chest radiographs: due to its inferior conditioning, the prog-GAN
model benefited from a lower class number to a greater extent.

Impact of number of samples per class
Figure 2c, d shows the benchmark findings when varying the
number of samples per class included in each dataset. The
predictive performances obtained when training on real and

synthetic data remained similar until approximately 3000 samples
per class. These results indicate that GAN model performance may
be stable when the training data consists of at least 3000 samples
per class. Between 1500 and 3000 samples, both the AUCreal and
AUCsyn scores started to decrease substantially. However, we also
observed a relative performance improvement, meaning decreas-
ing AUCreal � AUCsyn scores for the cpD-GAN, when moving
towards low numbers of samples. This effect was particularly

Fig. 2 Benchmark results. In each figure, we show the mean area under the receiver operator characteristic curve score ðAUCÞ on a held-out
test fold of real data. The AUC scores obtained after training classifiers on real data ðAUCrealÞ are indicated by the black line with the shaded
area representing the standard deviation across repeated experiments. The bar plots represent the AUC scores achieved after training
classifiers on synthetic data ðAUCsynÞ generated by the cpD-GAN (blue) and prog-GAN (red), while the error bars indicate the standard
deviation. The sub-figures show the changes in predictive performance observed when varying the number of classes (or label combinations):
a for chest radiographs, and b for brain computed tomography (CT) scans; the number of samples per class: c for chest radiographs, and d for
brain CT scans; and the image resolution: e for chest radiographs, and f for brain CT scans. In (e) and (f) only the cpD-GAN is evaluated at
resolution levels above 128 × 128 pixels. In (e) at 512 × 512 pixels we perform a single training run. Please see Table 1 for more details on the
dataset composition for each benchmark setting.
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strong for the brain CT scans, where in the extreme setting of
100 samples per class AUCreal � AUCsyn � 0. Despite the heigh-
tened variance in predictive performance, the difference in the
scores between the extrema (5950 and 200 samples per class for
the chest X-rays and 5400 and 100 samples per class for the brain
CT scans) was statistically significant (p-values < 0.001). The
observed trend in performance in the low-data regime indicates
the growing effects of label overfitting during GAN training: given
a low number of samples, the variation within real images
becomes too low, and the generative model may resort to
encoding the class information in unrealistic ways.
To further investigate our claim we analysed two more metrics

for the extrema on the number of classes (2 vs. 10) and the
number of samples per class (100 vs. 5400) benchmark for the
brain CT scans. (1) We looked at the distribution of FID scores for
10,000 real and synthetic images after GAN training convergence.
Low FID scores indicate synthetic images that are consistent and
with an equivalent visual quality when compared to reals. The FID
score is computed in a batch-wise fashion, which means that if
the number of real training images is below N= 10,000 we
repeatedly iterate through the real dataset. While the labels that
are fed into the GAN will likewise be repetitive, the generated
synthetic images will differ due to different input noises. To have
comparable FID scores, we need to keep N= 10,000 constant, as
the FID metric is biased with respect to the size of the sample
set43. (2) We analysed the difference in AUC scores when testing
on synthetic and real images for classifiers trained on the
synthetic dataset Δsyn ¼ AUCsynðXsynÞ � AUCsynðX realÞ. In the ideal
scenario where our synthetic images have captured the real data
distribution, we should observe Δsyn→ 0. If the GAN model faces
label overfitting effects by generating images that encode the
label information in unrealistic ways, the Δsyn scores should
significantly increase.
We show the box plots for the FID and Δsyn scores for the

extrema on the number of classes and number of samples per
class benchmark for brain CT scans in Fig. 3. In the number of
classes’ settings we observed the expected behaviour:
when including only 2 classes, both the distribution of FID and
Δsyn scores was significantly lower compared to 10 classes,
which is in agreement with lower AUCreal � AUCsyn scores from

our benchmark, showing the improvement in GAN training due
to a reduced label space.
However, when we compared the settings for 100 and

5400 samples per class we observed that in the low-data regime
we have significantly higher FID and Δsyn scores. We, therefore,
believe that the low AUCreal � AUCsyn scores from our benchmark
arose due to label overfitting effects. When entering the low-data
regime the variation in the GAN training data became too low
resulting in synthetic images with lower visual quality (high FID
scores). Because the GAN model was not able to generate
realistic images, it started to overfit on the class information by
unrealistic label encoding. The problem that generators are
encouraged to produce images that are particularly easy for
auxiliary classifiers to classify has been observed in the literature
for several GAN conditioning mechanisms44,45, and was one of
the motivations for the conditional projection-based discrimi-
nator of our cpD-GAN45. It is an important finding that these
effects can also occur for projection-based discriminators, when
moving towards low-data regimes. Analysing the exact way in
which label information was encoded in the synthetic images
and how this encoding is generalised to testing on real data in
our AUCreal � AUCsyn score computation, remains open and an
important direction for future work.

Impact of resolution
When increasing the resolution from 32 × 32 pixels to 128 × 128
pixels, all AUC scores improved, as shown in Fig. 2e, f. However,
in terms of relative performance we observed a different
behaviour for the two GAN models. For the prog-GAN, we
observed a slight increase in AUCreal � AUCsyn scores at a
resolution of 64 × 64 pixels, with substantially lower scores at
128 × 128 pixels. For the cpD-GAN, the predictive performance
on real data increased disproportionately more, resulting in
increased AUCreal � AUCsyn scores on both datasets. Above
128 × 128 pixels, the AUCreal � AUCsyn scores for the cpD-GAN
deteriorate further. In general, GAN model training at higher
resolutions is less stable and becomes more difficult due
to the emergence of fine-scaled details in the images. Moreover,
the significant compute demand makes it more difficult to fine-
tune the model hyper-parameters at these scales. While
we conducted a large-scale hyper-parameter search for the

Fig. 3 Label overfitting analysis of the cpD-GAN on brain CT scans for the extrema settings from our benchmark. Box plots showing the
median, the interquartile range (IQR=Q3−Q1), the minimum (Q1− 1.5 IQR), the maximum (Q3+ 1.5 IQR) and outliers for: a FID scores
between 10,000 real and synthetic images after GAN convergence for 2 and 10 classes; b Δsyn scores, the difference between testing the
predictive model on synthetic and real images after training on synthetics for 2 and 10 classes; c FID scores between 10,000 real and synthetic
images after GAN convergence for 100 and 5400 samples per class; d Δsyn scores, the difference between testing the predictive model on
synthetic and real images after training on synthetics for 100 and 5400 samples per class. Please see Table 1 for more details on the dataset
composition for the extrema settings from our benchmark.
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high-resolution settings, which accounted for another 20,480
GPU-hours on NVIDIA’s Pascal P100, we could not find training
parameters that improved from the previous settings. The
negative effect on performance can be clearly seen for the cpD-
GAN experiments at a resolution of 256 × 256 and 512 × 512
pixels on the chest X-rays. Compared to CT scans, radiographs
are analysed at a higher spatial resolution, and the resulting
lower synthetic data quality due to an increased training
complexity is accurately detected in the benchmark evaluation.
This is in accordance with the results from our reader study and
the emergence of visual artefacts for the support devices class.
Up until 128 × 128 pixels, we hypothesise that because the
prog-GAN model is better fine-tuned on a more considerable
number of resolution settings, it can achieve a relative
performance improvement, compared to the cpD-GAN. Given
an even greater amount of computational resources, it remains
open whether the cpD-GAN can be fine-tuned to also benefit
from resolutions above 256 × 256 pixels. Scaling the generation
of synthetic medical images to even higher resolutions remains
an area of active research33,36, and is an important direction for
future studies.

Image quality and privacy
In Fig. 4, we show randomly sampled synthetic example images
from the cpD-GAN at a resolution of 512 × 512 pixels for chest
X-rays and 256 × 256 pixels for brain CT scans. Below each
synthetic image, we show the most similar real image (nearest
neighbour) out of the entire training dataset. For the brain CT
scans, there appears to be little noticeable difference in visual
quality between the real and synthetic images, which is in
agreement with a close-to-random classification accuracy of
trained radiologists in the reader study. In contrast, while the
chest X-rays also have a high visual quality, there are differences
between reals and synthetics, which become more apparent in
the form of artefacts for one particular class. The cpD-GAN failed
to realistically generate tubes and other support devices, such as
pacemakers or defibrillators, as shown in Fig. 5. These devices
deviate strongly in their visual appearance when compared to the
physiological chest outlining and were not accurately learned by
the generative model. Crucially, our benchmark successfully
captured the drops in visual quality, as indicated by higher
AUCreal � AUCsyn scores. Given the frequent presence of support
devices, the GAN should ideally also learn their data distribution.

Fig. 4 Randomly sampled synthetic images generated by the cpD-GAN and real nearest-neighbour images from the training. a Synthetic
chest radiographs at 512 × 512 pixels. b Nearest matching real images found in the chest radiograph training set. c Synthetic brain computed
tomography (CT) scans at 256 × 256 pixels. d Nearest matching real images found in the brain CT training set.
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Nonetheless, the cpD-GAN captured the distribution of the
physiological anatomic chest structure and related radiology
findings, which is more important with respect to diagnosis and
clinical practice than external objects. At a spatial resolution of
128 × 128 pixels, the visual differences are not yet apparent (see
Supplementary Fig. 3), which is in accordance with a better
benchmark performance. Even in settings where the GAN failed to
learn the data distribution of a specific class, it did not start to
copy training images: by comparing synthetics and nearest
matching neighbours we demonstrate that the cpD-GAN model
did not simply memorise training data, and is therefore likely to
preserve private, potentially sensitive information. For more high-
resolution example images from the cpD-GAN and the respective
nearest neighbours, see Supplementary Fig. 2. From a visual
inspection, the quality of the images generated by the prog-GAN
appear to be only marginally worse than those generated by the
cpD-GAN at 128 × 128 pixels, as can be seen in Supplementary
Figs. 3 and 4.

Feature importance
To gain more interpretability, we analysed the feature importance
at a resolution of 512 × 512 pixels for chest X-rays and 256 × 256
for brain CT scans from the cpD-GAN, as well as at 128 × 128 pixels
for both datasets and models. In each setting, we estimate the
feature importance by successively masking out pixel regions and
computing the increased loss46. Similar attribution maps indicate

that the pixel neighbourhoods in real and synthetic images have a
similar causal loss contribution, leading to equivalent predictive
models. This suggests that the local image neighbourhoods are
consistent in style and texture. While the datasets only allow for
classification tasks, we can extrapolate from this analysis that our
synthetic images might also perform similarly on problems such as
object detection or segmentation, which require global and local
image consistency. Figure 6 shows the real images, the
corresponding attribution maps of the predictive model trained
on reals, and the attribution maps for those trained on the
synthetic images generated by the cpD-GAN at high resolution. In
Fig. 7, the same analysis is performed at a resolution of 128 × 128
pixels for both the cpD-GAN and the prog-GAN (for more
examples see Supplementary Fig. 5). The observed results support
the hypothesis that the predictive models trained on synthetic
data from the cpD-GAN assign importance to similar image
features as those trained on real data. In accordance with our
benchmark results, the feature-maps of the cpD-GAN appear more
similar to those of real classifiers for a resolution of 128 × 128
pixels (and 256 × 256 for brain CT scans), while the differences are
greater at 512 × 512 pixels for chest X-rays. Moreover, in line with
the higher AUCreal � AUCsyn scores for the prog-GAN synthetics,
the attribution maps also appear to be visually more dissimilar
from those assigned by classifiers trained on real data. We note
that none of the feature importance maps were identical, which
we expected given that the observed difference in predictive

Fig. 5 Synthetic images with visual artefacts. a Synthetic images with visual artefacts, generated by the cpD-GAN, and b real nearest-
neighbour images from the training dataset at 512 × 512 pixels. The red circles surround unrealistic image neighbourhoods: Artefacts
resulting from the support devices class.
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performance between the classifiers trained on real and synthetic
data was greater than zero at those settings.

Reader study
We additionally conducted a reader study in which we asked
trained radiologists to label a mixed set of 100 images as real or
synthetic (generated by the cpD-GAN) at a resolution of 512 × 512
pixels for chest X-rays, 256 × 256 for brain CT scans and 128 × 128
pixels for both data modalities. In terms of results, we found that
radiologists were unable to achieve a higher accuracy than a
classifier assigning labels at random with an expected accuracy of
50% (p < 0.05 for chest radiographs, p < 0.01 for brain CT scans) in
both 128 × 128 pixel settings. This is in agreement with relatively
low AUCreal � AUCsyn scores from our benchmark evaluation.
Radiologists were able to differentiate between real and synthetic
brain CT scans at 256 × 256 pixels with an accuracy of 0.532 ±
0.126, which is still close to random, indicating a consistent visual
quality and the absence of visual artefacts. In line with higher
AUCreal � AUCsyn scores and the emergence of visual artefacts,
radiologists achieved an accuracy of 0.710 ± 0.148 when classify-
ing the chest X-rays at 512 × 512 pixels. The presented results
indicate that at lower spatial resolution, trained clinicians cannot
discriminate between real and synthetic images, which further
substantiates that both the general quality and label information
in the synthetic images are realistic. In agreement with our other
results, the classification accuracy of radiologists improves with an
increasing spatial resolution due to fine-scaled image details and
the emergence of visual artefacts, especially for the X-rays.

DISCUSSION
In this study, we benchmarked the generation of synthetic
medical image data to closely mimic the distribution-level
statistical properties of a real source dataset. To do so, we
evaluated two state-of-the-art GAN models, prog-GAN and cpD-
GAN, on two real-world medical image corpora consisting of chest
radiographs and brain CTs, respectively. We compared the
difference in performance on real test data between a predictive
model trained only on real and only on synthetic images. As part
of the conducted benchmark evaluation, we analysed the effects
of changes in the number of label combinations, samples per
class, and resolution. The presented results offer valuable guide-
lines for synthesising medical imaging datasets in practice. In
addition, we analysed the difference in causal contributions of
predictive models when trained on either the real or the synthetic
dataset and investigated the privacy-preservation in our gener-
ated medical images by comparing them to the most closely
matching real training images. We found that synthetic medical
images generated by the cpD-GAN-enabled training of classifiers
that closely matched the performance of classifiers trained on real
data. Finally, we conducted a large-scale reader study in which we
found that trained radiologists could not discriminate better than
random between real and synthetic images, generated by the
cpD-GAN, for both datasets at a resolution of 128 × 128 pixels. Our
benchmark evaluation and detailed analysis of the synthetic
images also shows limitations to medical data generation: due to
an increasing training complexity at higher spatial resolution
levels, the GAN models fail to accurately learn the data distribution
for the support devices class on chest X-rays. This leads to a

Fig. 6 Feature importance of predictive models trained on cpD-GAN synthetics Deeper red colour indicates regions that have a larger
causal contribution to the label prediction. a Nearest neighbours from Fig. 4 and Supplementary Fig. 2, (512 × 512 pixels for chest X-rays,
256 × 256 pixels for brain CT scans). From left to right: (1) Chest X-ray with no finding. (2) Chest X-ray with cardiomegaly, atelectasis and
support device. (3) Brain scan with no finding. (4) Brain scan with intraventricular haemorrhage. b Feature importance of predictive model
trained on real data. c Feature importance of predictive model trained on synthetic data generated by the cpD-GAN.
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decreased benchmark performance and synthetic images with a
lower visual quality when compared to the real data.
We determined that both GAN models are stable across all

benchmark dimensions up to 128 × 128 pixels, meaning that we
did not observe anomalous AUCreal � AUCsyn scores. While
some GAN models that we trained were not robust across the
experiments (see section ‘Methods’), the prog-GAN and cpD-GAN
did not collapse at any setting or choice of random initialisation.
There were no hyper-parameter changes for the varying experi-
ments or across the two datasets. Only when increasing the spatial
resolution, we added the necessary convolutional blocks to both
models. While the AUCreal � AUCsyn scores above 128 × 128 pixels
further increased, there was no training collapse. The visual quality
of brain CT scans remained high at 256 × 256 pixels. For the X-rays,
we observed that at a resolution of 512 × 512 pixels, generated
objects from the support devices class suffered from a lower visual
quality, resulting in an improved radiologist classification.
Crucially, the reduced performance in our benchmark findings
supported our detailed analysis of the synthetic images. Also,
the cpD-GAN did not fail to capture the distribution of
the physiological anatomic structure of the chest, which might
be more important for clinical practice. The observed results

indicate that the presented GAN pipeline is robust to changes in
the dataset and data modality, and that it may generate high-
quality synthetic medical images across various conditions with
the desired statistical similarity compared to the training cohort.
For synthetic data generation to work reliably in practice,
the convergence of the generative models and the quality of
the generated images must be robust across different cohorts
where the number of available samples or classes might deviate.
While we focused on two datasets, our generative methods and
evaluation protocols can be easily extended to different settings
and are not limited to the chest radiographs and brain CT scans.
We believe that our findings show that sharing synthetic medical
imaging datasets may be an attractive and privacy-preserving
alternative to sharing real patient-level data in certain settings,
thereby providing a technical solution to the pervasive issue of
data sharing in medicine1.
The predictive performance obtained when training on

synthetic data improved when reducing the number of classes
present in the dataset. The impact of a reduced label spaces
suggests that researchers should, in practice, choose datasets for
GAN model development that have a manageable number of
unique label combinations. Even though rare findings may be

Fig. 7 Feature importance of predictive models trained on cpD-GAN and prog-GAN synthetics. Deeper red colour indicates regions that
have a larger causal contribution to the label prediction. a Nearest neighbours from Supplementary Figs. 3 and 4 at 128 × 128 resolution. From
left to right: (1) Chest X-ray with support device, lung opacity, pneumonia and atelectasis. (2) Chest X-ray with cardiomegaly and oedema. (3)
Brain scan with subarachnoid haemorrhage. (4) Brain scan with subdural haemorrhage. b Feature importance of predictive model trained on
real data. c Feature importance of predictive model trained on synthetic data generated by the cpD-GAN. d Feature importance of predictive
model trained on synthetic data generated by the prog-GAN.
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particularly interesting from a clinical perspective, they should be
excluded from training when maximum performance is required,
since it is currently impossible to give any guarantees for
consistent quality in low sample numbers containing rare findings.
Moreover, the samples per class benchmark indicates that the
GAN models might overfit on rare classes by encoding label
information in unrealistic ways within the synthetic images. This
can be very problematic as it can lead to predictions that are
based on features not present in the real data distribution when
trained on synthetics. The most critical performance improvement
between the prog-GAN and cpD-GAN resulted from a revised label
conditioning mechanism, rooted in a probabilistic framework45.
Therefore, the impact of the class conditioning mechanism on the
predictive performance of derived classifiers suggests that
research on the conditioning mechanism of GAN models may
lead to further improvements in image quality. In the chest
radiograph benchmark, we found that the total number of
samples in the training dataset can be lowered significantly (to
approximately 9000), at a number of samples per class of around
3000 without any relative performance drop. However, if low-
frequency classes are included and the total number of samples is
reduced too much, GAN label overfitting is likely to occur.
In terms of predictive performance in relation to different image

resolutions, we found that AUCsyn scores for both models
improved when moving up to 128 × 128 pixels. However, we also
observed different behaviours in the different GAN models in
terms of relative performance compared to real data when
adjusting the image resolution. For the prog-GAN, relative
predictive performance increased at a resolution of 128 × 128
pixels compared to lower levels, which indicates that, once a GAN
model has been fine-tuned, it can benefit from the emergence of
details at a higher spatial resolution. We note that the prog-GAN
hyper-parameter settings were taken from the official implemen-
tation23, which has been well adjusted to a number of datasets.
While our cpD-GAN model outperformed the prog-GAN at all
evaluated resolutions, its own AUCreal � AUCsyn scores increased
when moving up from 32 × 32 pixels. The dominance of training
instabilities increased further when moving towards 256 × 256
and 512 × 512 pixels for chest X-rays. This behaviour is not
unexpected as stable training becomes more difficult when the
discriminator has access to a richer set of features to distinguish
real and synthetic data. In line with our benchmark performance
decrease and reader study results, we observed that at 512 × 512
pixels, unstable training resulted in cpD-GAN models that did not
capture the real data distribution for the support devices class of
chest X-rays. The cpD-GAN was not able to generate consistent
and high-quality objects that are not part of the physiological
chest outlining, such as tubes, pacemakers, or defibrillators. While
it is more important to accurately capture the data distribution of
the physiological anatomic chest structure and related radiology
findings, the GAN may ideally also generate visually appealing
external objects. It remains open whether more hyper-parameter
fine-tuning, a refined model architecture, or different training
strategies, could improve inconsistencies in the synthetic images.
In practice, researcher need to carefully consider at what spatial
resolution fine-scaled details emerge that differ significantly from
other image parts. Importantly, our benchmark evaluation
captured these inconsistencies and robustly detected visual
artefacts. For the brain CT scans, we did not observe a lower
image quality at a resolution of 256 × 256 pixels. Accordingly,
trained radiologists performed only marginally better than
random at differentiating between reals and synthetics. In the
presented reader study, we found that at 128 × 128 pixels, the
accuracy distribution derived from the real and synthetic labels set
by radiologists was not better than that of a random classifier with
a mean accuracy (acc) of 50%, to a statistically significant extent.
The fact that trained clinicians were unable to discriminate
between real and synthetic medical imaging datasets indicates

that the generated images had a realistic visual appearance and
label information was included in a qualitatively reasonable
manner. The results of the presented reader study further support
the findings presented in the conducted experimental benchmark
evaluation and show that the cohort-level information of medical
imaging data can be shared without relying on patient-level data.
We have shown that, under the right conditions, sharing

synthetic medical imaging datasets may be a viable alternative to
real data sharing. However, the presented results also show that
there is a measurable gap in the quality and predictive
performance between synthetic and real medical imaging data,
especially when moving to high-resolution. Across all benchmark
settings, we observed that only in the extreme label overfitting
case AUCreal � AUCsyn � 0, meaning that in all other experiments,
there was a reduced performance when training on the generated
images. While this difference was relatively small for the cpD-GAN
across the chest radiographs, it was more pronounced on the
brain CT scans. From our causal contribution investigation in
Figs. 6 and 7, we found that while the real and cpD-GAN predictive
models attributed similar regions with high feature importance,
they were not identical. In line with our other findings the
differences appeared to increase when moving towards high
resolutions. In the ideal case, both assigned feature importance
and predictive performance would be identical when replacing
real data with synthetic data. Even so, our benchmark results
demonstrate that the goal of learning the real data distribution for
medical images is realistic and feasible.
In this study, we analysed synthetic chest radiographs at an

overall low resolution compared to clinical practice. Even at 512 ×
512 pixels, the images might lack important details for an accurate
clinical diagnosis. A comparison of low-resolution images is more
acceptable for evaluating the predictive models as most deep
learning systems downsample medical images to reduce the
computational requirements. Since training generative models is
even more computationally demanding, the lack of unlimited
resources represents a major bottleneck for further up-scaling.
However, our benchmark results indicate that state-of-the-art GAN
models already have difficulties in accurately modelling the
support devices class at the analysed spatial resolution. While GAN
models such as26,27 and other generative approaches such as47,48

work at high-resolution levels, our observed drop in performance
indicates that within the medical imaging domain, more model
and training improvements are necessary to ensure that the full
data distribution is learned in these regimes. Therefore, future
work should focus on the current limitations shown in our
benchmark evaluation, before scaling GAN training further.
The resolution at which we generate brain CT scans is only

marginally smaller than the maximum resolution of the dataset
and generally more acceptable when compared to medical
practice. However, clinicians analyse 3D CT scans at different
intensity windows. Here, we were limited by the RSNA Intracranial
Hemorrhage dataset, which consists of pre-sliced scans with only
the soft-tissue window. To analyse a variety of different bench-
mark settings, we required a certain number of samples that rarely
exist in open-source medical imaging datasets. Moreover, reliable
synthetic medical data generation is currently limited to 2D
settings as it becomes substantially more complex, both in terms
of required computational resources and algorithmic challenges,
to model 3D structures.
Similarly, the lack of large-scale medical imaging corpora for

object detection or segmentation, limited our ability to conduct
experiments with downstream tasks, other than classification. Our
results from the feature importance analysis and reader study
suggest both local and global image consistency up to intermediate
resolution levels. This indicates that our benchmark results may also
hold for segmentation or detection performance. Nevertheless, it is
an important direction for future work, once newly published
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medical imaging datasets allow for a similar large-scale benchmark
evaluation on the aforementioned tasks.
Finally, the presented study does not provide any mathematical

guarantees for the privacy of the synthetic data. We found
settings in which privacy would likely be breached in practice,
which can be an important guideline, but a more formal analysis
in terms of differential privacy may in the future further elucidate
the degree to which generative modelling preserves individual
patient-level information49. In Fig. 4, we demonstrate that there
were considerable differences between the generated images and
the most closely matching nearest-neighbour images from the
training data, which may indicate that the GAN models learn the
actual data distribution and do not merely memorise the training
set. However, a retrospective analysis may not always be feasible,
and more formal privacy guarantees regarding the model and
training may be needed in some real-world use cases. Through
the use of stochastic gradient descent, all of our GAN models have
some level of intrinsic privacy50, but it remains an area of active
research to quantify how strong these privacy guarantees are.
While there remain open questions for further research, our
results indicate that synthetic data sharing may in the future
become an attractive and privacy-preserving alternative to
sharing real patient-level data in the right settings.

METHODS
Datasets and pre-processing
The CheXpert dataset consists of 224,316 chest radiographs of 65,240
patients, collected from radiographic examinations of the chest at the
Stanford Hospital, between October 2002 and July 201751. In the dataset
study, an automatic labelling tool was used to identify and classify the
certainty of the presence of 14 observations from the radiology report. We
turned uncertain labels into positives, to make use of all data, resulting in a
binary multi-label dataset, where a large number of label combinations can
co-occur.
The RSNA Intracranial Hemorrhage Dataset is composed of CT studies

supplied by four research institutions and labelled with the help of The
American Society of Neuroradiology52. It consists of 752,803 CT scan slices
of the head from 18,938 unique patients and the corresponding
probabilities for the presence of five different haemorrhage types and
the no finding label. For consistency, we turned any probability pyi > 0 into
a positive label yi= 1 and else yi= 0, also resulting in a binary multi-label
dataset. Since 644,874(85.7%) of CT scans are without any intracranial
haemorrhage, we undersampled the no-finding class, resulting in a
balanced dataset where at least 50% of images show some form of
haemorrhage.
We randomly split the entire patient cohort into training (80%),

validation (10%), and test folds (10%) within strata of radiology findings
for each dataset. We excluded chest X-rays of classes with fewer than
256 samples, resulting in 117,168 train images (44,153 patients), 15,318
validation images (5519 patients) and 14,687 test images (5520
patients). For the haemorrhage dataset, we removed label combinations
below a frequency of 100, resulting in 173,271 train images (15,133
patients), 22,095 validation images (1892 patients), and 20,500 test
images (1892 patients).
We developed the resolution benchmark for both datasets on the

aforementioned setting. For the class benchmarking, we gradually reduced
the number of clinical finding combinations present in the dataset, while
keeping the total number of training images constant via over-sampling.
When benchmarking the effect of samples per clinical finding, we fixed the
number of classes and gradually decreased each class’s frequency. Table 1
gives a complete summary of all dataset settings, the entire set of labels,
the size of training, validation and test sets, and information on remaining
labels and samples per class. Each summary refers to the real training,
validation and testing dataset. The exact labels from the real settings
(combined with random normal noise for variation) are used to generate
equivalent synthetic training, validation and testing datasets, before
developing and comparing the predictive models.

GAN model development
We used the prog-GAN model as originally proposed in23, as it is still
regularly used for generating medical images32,36. The input of the
generator is a concatenation of the 512-dimensional random normal noise
vector z and the label information y. Each resolution block is composed of
two 3 × 3 convolutional layers followed by Leaky-ReLU activation functions
and pixel-wise feature vector normalisation. For networks operating at up
to 32 × 32 pixels, the generator operates at constant 512 feature channels.
At a higher resolution, the number of feature channels is halved with the
final convolution layers of the 64 × 64 and 128 × 128 block. The
discriminator consists of the same resolution blocks in the opposite order
and without pixel-wise feature vector normalisation. When operating
above 32 × 32 spatial resolution, the first convolutional layer in each block
doubles the number of feature channels. In the final layer of the
discriminator, the mini-batch standard deviation across all channels is
added as an additional feature channel to increase variation. Between
resolution blocks, nearest-neighbour upsampling doubles the generator’s
resolution, and downsampling by average pooling halves it inside the
discriminator. At each operating resolution, 1 × 1 convolutional layers
project the number of feature channels to and from the image space,
which allows to smoothly interpolate between consecutive levels of detail
during progressive growth. All weights in the network are dynamically
scaled with a variant of He’s initialiser53 at each optimisation step to
stabilise training. The Wasserstein GAN with gradient penalty loss function
is used54. An additional auxiliary classifier loss term is added to both the
generator and discriminator44 for conditioning. The discriminator is not
only trained to classify whether input images are real or fake, but also to
additionally predict the label. The softmax cross-entropy loss between true
and predicted labels for both real and fake images is added to the
discriminator loss function, while the same loss but only for fake images is
added to the generator loss. We analysed several hyper-parameter
settings, mainly different batch sizes, learning rates, number of feature
channels and optimiser settings, but we determined that the original
parameters proposed in23 performed best. We began training at a spatial
resolution of 8 × 8 pixels, which we determined to be the lowest resolution
at which meaningful information is still visually apparent in downsampled
images. Each transition and stabilisation phase at a resolution of 32 × 32
pixels lasted until the discriminator had seen 1.4M real images, which
corresponded to 1.4M fake images as the number of discriminator updates
per generator step is ncritic= 1. At a resolution of 64 × 64 and 128 × 128
pixels, we reduced the number of real images per phase to 1M.
We developed the cpD-GAN based on the prog-GAN with several

important improvements that we highlight below. Please see above or23

for details on the architecture and methods if not explicitly stated. Inspired
by Style-GAN26,55, we dropped progressive growth as we observed that it
was not necessary for stable training. This allowed us to experiment with
new architectures, where output skip connections within the image feature
space of the generator and standard residual connections in the
discriminator improved the performance the most. We achieved sig-
nificantly lower AUCreal � AUCsyn scores when replacing the auxiliary
classifier conditioning with a projection-based discriminator: in the last
discriminator layer, the inner product between the label vector y and the
feature vector is computed as the final output, resulting in a conditioning
mechanism that respects the role of the conditional information in the
underlining probabilistic model45. Inspired by conditional batch normal-
isation56, we modified the pixel-wise feature vector normalisation after
each generator convolution by conditioning it on a label- and noise-
dependent scaling and bias parameter:

bix;y ¼
aix;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=N
PN�1

j¼0 ðajx;yÞ2 þ ϵ
q � γi þ βi (1)

where aix;y and bix;y are the original and normalised feature of channel i in
pixel (x, y) and ϵ= 10−8. The scaling parameter is defined as γ=W1[z;y]+
b1 and the bias parameter as β=W2[z;y]+ b2, whereWi and bi are trainable
weight matrices and vectors, while [z;y] refers to the vector concatenation
of the random normal input noise z and label y. Supplementary Fig. 1
shows the overall model structure and a detailed description of a
generator resolution block.
The third model that we analysed in detail is largely based on the

normal BIGGAN implementation27, with some elements of the self-
attention GAN57. However, the implementation did not generalise across
different benchmark settings, which is why we excluded it from the
sections ‘Results’ and ‘Discussion’. In the generator, each block has residual
connections and is made up of two 3 × 3 convolutional layers (the first
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halves the number of feature channels), with ReLU non-linearities followed
by conditional batch normalisation and nearest-neighbour upsampling
layers in between. The 120-dimensional random normal noise vector z is
split, concatenated with the label vector y, and fed as input to the initial
fully connected generator layer and every residual block. The output layer
of the generator consists of batch normalisation, a 3 × 3 convolutional layer
and tan h non-linearity. In the conditional projection-based discriminator,
residual blocks are built in the opposite way, without batch normalisation
and with average pooling for downsampling. In both the generator and
discriminator a self-attention layer replaces the residual block at the
second highest spatial resolution. To stabilise training spectral normal-
isation, along with orthogonal weight regularisation is applied to all
weights58. Prior to the label projection embedding in the discriminator,
global sum pooling is performed. We investigated a large amount of
different loss functions, feature channel numbers, batch sizes, learning
rates and discriminator updates per generator update. Even after
performing extensive experiments we could not find a model that
generalised across the different dimensions of the benchmark settings,
often resulting in training collapse, high FID scores or large AUCreal �
AUCsyn scores. In our only stable training setting for the resolution at 32 ×
32 pixels, we used a combination of the hinge loss for the discriminator
and Wasserstein loss for the generator, a batch size of 256 with a
maximum of 256 feature channels, learning rates for the generator and
discriminator of 0.01 and 0.04, and two discriminator updates per
generator update ncritic= 2.

GAN training
We used the Adam optimiser for all GAN models and the hyper-
parameters as proposed in23,27, except for the learning rates that we
specifically fine-tuned. We stopped training in all settings when the FID
between 10,000 real and synthetic images converged. The FID score is a
commonly used metric to compare the visual quality between images
synthesised by generative models and the real training data and tracking
it allows for an unbiased GAN training evaluation42. A low FID score means
that the visual quality of the synthetic images is close, compared to the
set of real images. More precisely, for both sets of images the coding layer
representations of a pre-trained Inception model (v3) are extracted to
obtain vision-relevant features. The sets of features are summarised as a
multivariate Gaussian by calculating the mean (m) and covariance (C), and
the FID score is computed as

d2ððm;CÞ; ðmw ;CwÞÞ ¼ jjm�mw jj22 þ Tr ðCþ Cw � 2ðCCwÞ1=2Þ (2)

where (mw, Cw) are the mean and covariance of real image feature
representations, while (m, C) refers to the statistics for synthetic images
and Tr refers to the trace, the sum of the diagonal elements of the matrix.
We ran all models for a minimum number of steps, until the discriminator
had seen as many real images as the prog-GAN discriminator after the
final stabilisation phase. At a resolution of 32 × 32 pixels, each progressive
phase lasted until the discriminator had seen 1.4M real images, resulting
in a minimum number of 7M real images for the other models. For 64 × 64
and 128 × 128 pixels, we lowered the number of images per phase to 1M,
resulting in a minimum number of images of 7M and 9M, respectively. At
this point, we computed the FID score after every 400T real images, and if
there was no improvement for two consecutive evaluations, we stopped
training. We stopped all repetitions for each experiment at the same step
as the first model to get comparable results. For the number of classes’
benchmark, the convergence point for all experiments on both datasets
was between 7.0M and 9.6M real images. For the number of samples per
class benchmark, the FID convergence occurred between 7.2M and 10.8M
real images for sample numbers above 1500. Below that it took between
14M and 16M real images, likely due to the small amount of training data
and label overfitting effects. At a resolution of 64 × 64 and 128 × 128
pixels, the GAN models converged between 9M and 11M, and between
12M and 14M, respectively. At a resolution of 256 × 256 pixels for brain
scans and X-rays and at 512 × 512 pixels for X-rays, the GAN models
converged at around 7.5M and 8.6M, respectively.

Predictive model development and training
In all settings, we used a pre-trained densenet-121 CNN as the predictive
model59. In dense CNNs, for each layer in every dense block, a
concatenation of the feature-maps of all preceding layers are used as
inputs, and its own feature-maps are used as inputs into all subsequent
layers. Each block in the network consists of a number of bottleneck and

composition layers, which both have batch normalisation and ReLU non-
linearities. In each bottleneck layer the number of feature channels is
reduced with a 1 × 1 convolution, before performing a 3 × 3 convolution in
each composition layer. Between the dense blocks, the model consists of
transition layers with 1 × 1 convolutions and average pooling operations.
The dense structure allows for significantly deeper architectures without
experiencing vanishing gradients, or an exploding number of weights.
After the final global average pooling layer, we added a randomly
initialised fully connected layer with sigmoid activation for classification
with the binary cross-entropy loss. The densnet-121 architecture amounts
to 117 convolution, 3 transition and 1 classification layers. We resized the
input images to match the densenet-121 spatial input resolution of 224 ×
224 pixels. To make training as similar as possible across different
benchmark settings, we used a maximum number of 5000 images per
epoch with a batch size of 48. In settings where the total number of
samples is below 5000, the number of images per epoch is accordingly
lower. After each epoch, we computed the area under the receiver
operating characteristic curve (AUROC) for each label in all validation data
samples. We reduce the initial learning rate of 0.0001 by a factor of 10 if
the mean validation AUROC (AUCval) across all labels does not improve
after two consecutive epochs (patience of 2). If the AUCval does not
improve for a patience of 3 epochs, we stopped training. To compute delta
scores, we tested all models on the held-out, real data test set.

Statistical tests
We repeated every experiment of our benchmark with at least four
different random initialisation of the entire training and evaluation
pipeline, allowing us to compute the standard deviation for each setting
across repetitions. This is necessary as different parameter initialisation
resulting from different random seeds can substantially impact the
training of deep learning systems. For the number of classes’ benchmark,
we repeated the cpD-GAN training and subsequent synthetic classifica-
tion as well as the real data classification for 10 different random
initialisation for both datasets at the extrema: for 20 and 2 classes for
the chest X-rays and 10 and 2 classes for brain CT scans. Subsequently,
we performed the one-sided, parametric-free, Mann-Whitney U test on
the AUCreal � AUCsyn scores between the extrema to determine whether
there is a statistically significant difference. We followed the same
approach for the samples per class benchmark with 20 repetitions at
different random initialisation: for 5950 and 200 samples per class for the
chest X-rays, and 5400 and 100 samples per class for brain CT scans. We
once again performed the one-sided, parametric-free, Mann-Whitney
U test on the AUCreal � AUCsyn scores between the extreme settings to
determine the statistical significance.

Nearest neighbours
To analyse the differences between our generated medical images when
compared to the training data, we computed the nearest neighbours for a
set of randomly sampled synthetics. For both datasets, we used the
synthetic images generated by the cpD or prog-GAN model at a resolution
of 128 × 128 pixels with the lowest AUCreal � AUCsyn scores. We used the
predictive model trained on real data at the same resolution level to find
the final dense layer representation for each synthetic image; a 1024-
dimensional vector. We compute the same representation for all real
training images and determine the pair of synthetic and real images for
which the cosine distance between the final densenet representations is
minimal. Using a measure of similarity in the predictive model’s feature
space results in a more reliable determination of nearest neighbours that
exploits invariances to shifts and rotations within the image space of the
chest radiographs or brain scans.

Feature importance
We computed the causal contribution of image neighbourhoods towards
the label prediction with the method of Schwab and Karlen46. More
precisely, we successively zero masked regions of 2 × 2 pixels in the input
image and computed the new, increased predictive model loss. If the
masking of a particular neighbourhood resulted in a significant loss
increase, the region had accordingly higher importance. Importantly, there
is no learning involved, as we have access to the ground truth labels for all
test images. After 12,544 repetitions, all regions of the 224 × 224 pixel
input images were successfully masked. To determine the feature
importance, we subtracted the original model loss and normalised the
attribution map. Similar causal contribution maps indicate a similar quality
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and structure of image neighbourhoods for real and synthetic images,
leading to predictive models that attribute the same regions with high
feature importance.

Reader study
We conducted the reader study by asking trained radiologists to label a
set of 100 images for both data modalities at different resolution levels as
real or synthetic with a web-based labelling tool60. Each set consisted of
50 randomly sampled real and synthetic images, generated by the best-
performing cpD-GAN. Participants were told that each individual image
was sampled at random to avoid any bias during evaluation, without
knowledge about the total number of reals and synthetics. For the chest
X-rays at 128 × 128 pixels, 11 radiologists participated, while 9
radiologists labelled the brain CT sets of 128 × 128 pixels. For each
higher-resolution setting (512 × 512 pixels on chest X-rays and 256 × 256
pixels on brain CT scans), 5 radiologists participated in the reader study.
From each labelled set we computed the values for true reals (TR), false
reals (FR), true synthetics (TS) and false synthetics (FS), to determine the
classification accuracy acc ¼ TRþTS

TRþTSþFRþFS. For the lower-resolution set-
tings, we performed the one-sided, non-parametric Wilcoxon signed-
rank test to assess whether the distribution of accuracies is equal or less
than the mean accuracy of a fully random classifier with acc ¼ 0:5 (50%).
Due to a smaller number of participants, we do not perform statistical
tests for the experiments at 256 × 256 and 512 × 512 pixels. Instead we
only report the accuracy and standard deviation. Please see Supplemen-
tary Tables 1 and 2 for details on the 128 × 128 pixel settings and
Supplementary Tables 3 and 4 for details on the 256 × 256 pixel and
512 × 512 pixel settings.

Computational cost
The computational cost of our medical imaging benchmark amounts to
approximately 31,100 GPU-hours (1338 GPU-days) on NVIDIA’s Pascal
P100 GPU.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Both datasets used in our study are publicly available and free to download for any
registered user. The CheXpert chest radiograph dataset51 can be accessed at https://
stanfordmlgroup.github.io/competitions/chexpert/ and the RSNA Intracranial Hemor-
rhage dataset52 is available at https://www.kaggle.com/c/rsna-intracranial-hemorrhage-
detection.

CODE AVAILABILITY
To reproduce our benchmark results, please see our code repository under https://
github.com/AugustDS/synthetic-medical-benchmark (MIT license).
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