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ARTICLE

Fish community assessment with eDNA metabarcoding: effects
of sampling design and bioinformatic filtering
Nathan T. Evans, Yiyuan Li, Mark A. Renshaw, Brett P. Olds, Kristy Deiner, Cameron R. Turner,
Christopher L. Jerde, David M. Lodge, Gary A. Lamberti, and Michael E. Pfrender

Abstract: Species richness is a metric of biodiversity that represents the number of species present in a community. Traditional
fisheries assessments that rely on capture of organisms often underestimate true species richness. Environmental DNA (eDNA)
metabarcoding is an alternative tool that infers species richness by collecting and sequencing DNA present in the ecosystem. Our
objective was to determine how spatial distribution of samples and “bioinformatic stringency” affected eDNA-metabarcoding
estimates of species richness compared with capture-based estimates in a 2.2 ha reservoir. When bioinformatic criteria required
species to be detected only in a single sample, eDNA metabarcoding detected all species captured with traditional methods plus
an additional 11 noncaptured species. However, when we required species to be detected with multiple markers and in multiple
samples, eDNA metabarcoding detected only seven of the captured species. Our analysis of the spatial patterns of species
detection indicated that eDNA was distributed relatively homogeneously throughout the reservoir, except near the inflowing
stream. We suggest that interpretation of eDNA metabarcoding data must consider the potential effects of water body type,
spatial resolution, and bioinformatic stringency.

Résumé : La richesse spécifique est une mesure de la biodiversité qui représente le nombre d’espèces présentes dans une
communauté. Les évaluations traditionnelles des ressources halieutiques qui reposent sur la capture d’organismes sous-
estiment souvent la richesse spécifique réelle. Les méta-codes à barres d’ADN environnemental) (ADNe) constituent un autre
outil qui permet d’inférer la richesse spécifique en recueillant et en séquençant l’ADN présent dans l’écosystème. Notre objectif
consistait à déterminer comment la répartition spatiale des échantillons et la « rigueur bioinformatique » influent sur les
estimations de la richesse spécifique reposant sur les méta-codes à barres d’ADNe par rapport aux estimations reposant sur la
capture, dans un réservoir de 2,2 ha. Quand les critères bioinformatiques exigeaient la détection d’une espèce dans un seul
échantillon, la méthode des méta-codes à barres d’ADNe a détecté toutes les espèces capturées par les méthodes traditionnelles
en plus de 11 autres espèces non capturées. Toutefois, quand il fallait que les espèces soient détectées sur la base de plus d’un
marqueur et dans plus d’un échantillon, les méta-codes à barres d’ADNe n’ont détecté que sept des espèces capturées. Notre
analyse de la répartition spatiale de la détection d’espèces indique que l’ADNe était réparti de manière assez uniforme dans tout
le réservoir, sauf près de l’embouchure du cours d’eau qui l’alimente. Nous proposons que l’interprétation des données obtenues
par la méthode des méta-codes à barres d’ADNe doit tenir compte des effets potentiels du type de plan d’eau, de la résolution
spatiale et de la rigueur bioinformatique. [Traduit par la Rédaction]

Introduction
Species richness is a biodiversity metric used in community

ecology to describe the number of species in a given area at a given
time, and has strong underpinnings in ecological theory (William
1964; MacArthur and Wilson 1967; Connell 1978; Hubbell 2001;
Holyoak et al. 2005). Further, the effectiveness of human manage-
ment efforts is commonly assessed using species richness metrics
(Bailey et al. 2004a; Hubert and Quist 2010). Traditionally, as-
sessment of fish species richness has relied on capture-based

sampling of organisms via netting, trapping, or electrofishing
(Murphy and Willis 1996; Bonar et al. 2009). However, owing to
difficulties related to underwater sampling and the mobility of
fishes, traditional capture-based sampling often limits the accu-
racy of species richness estimates (Bayley and Peterson 2001; Gu
and Swihart 2004; Mackenzie and Royle 2005).

Theoretically, a progressive increase in sampling effort should
eventually detect all of the species present in the community
(McDonald 2004). However, increased effort combined with mul-
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tiple sampling approaches may be needed to accurately measure
species richness if all species in the community are not biologi-
cally or behaviorally susceptible to a single sampling modality
(Peterson and Paukert 2009). For example, both active and passive
sample methods are often required to estimate freshwater fish
species richness, as passive gears such as fyke nets and gill nets
tend to select for mobile species (Hubert 1996), while sedentary
species are more susceptible to active gear types such as electro-
fishing and trawl nets (Hayes et al. 1996). Therefore, as a result of
practical limitations in cost and effort, traditional sampling meth-
ods in many contexts can be suboptimal in generating estimates
of species richness. A potential alternative for estimating species
richness is the use of environmental DNA (eDNA) metabarcoding
(Lodge et al. 2012).

eDNA metabarcoding infers taxa richness through the identifi-
cation of taxa-specific DNA fragments collected in relatively small
environmental samples (e.g., 250 mL of water). This bioassess-
ment technique is highly sensitive (Ficetola et al. 2008; Bohmann
et al. 2014; Rees et al. 2014) and capable of detecting multiple
species (Thomsen and Willerslev 2015). Although a relatively re-
cent technological development, eDNA metabarcoding expands
eDNA analysis beyond species-specific detection and allows for
en masse detection of assemblage-level species richness.

Previous research has shown that eDNA can be effective in de-
termining the identity of fish species in freshwater ecosystems
(Dejean et al. 2011; Jerde et al. 2011; Thomsen et al. 2012). Evans
et al. (2016) illustrated that eDNA metabarcoding could effectively
measure the complete fish and amphibian species richness in
experimental mesocosms with varying densities and relative abun-
dances. Olds et al. (2016) used eDNA metabarcoding to measure the
complete fish species richness of a natural stream ecosystem and
were able to identify DNA from an additional four species not
captured via electrofishing but likely present in the ecosystem.
Similarly, Valentini et al. (2016) detected at least as many fish as
traditional sampling methods in 89% of 23 aquatic sampling sites
that included ponds, rivers, mountain lakes, streams, and ditches.
Likewise, using eDNA metabarcoding, Hänfling et al. (2016) de-
tected 14 of 16 historically known fish species in a 1480 ha natural
lake. Lastly, using eDNA metabarcoding, Shaw et al. (2016) de-

tected all fish species captured with fyke nets in each of two
Australian river systems. To date, however, with the exception of
post hoc evaluation (Ficetola et al. 2015) and the influence of water
column depth and shoreline proximity (Hänfling et al. 2016), stud-
ies have provided little guidance on eDNA metabarcoding sam-
pling design or bioinformatic criteria necessary to infer detection.

The ability to use eDNA metabarcoding as an ecological re-
search and conservation tool requires a clear understanding of
the data-filtering steps that occur throughout the analysis pro-
cess. Data filtering takes places at multiple steps in the eDNA
metabarcoding process. Initially, the raw sequence data are pro-
cessed to remove low-quality and nontarget reads (Schloss et al.
2011; Nguyen et al. 2015; Thomsen and Willerslev 2015). There is
little consensus, across studies, about what criteria constitute a
species detection. This lack of consensus is a result of context
dependency (influenced by total species diversity, sequencing
depth, marker specificity, etc.) and the trade-off that exists be-
tween stringency and uncertainty during the interpretation of
eDNA metabarcoding results (Fig. 1). This trade-off in stringency
versus uncertainty results from choices about how many and
what markers are used to infer detection (Fig. 1). Furthermore, the
trade-off occurs when requirements are set on the frequency with
which DNA from an organism must be observed in a sample or
across samples before it is considered detected.

A full continuum of the stringency–uncertainty trade-off is il-
lustrated in recent eDNA metabarcoding studies on freshwater
fish communities, with each study “defining” what constitutes a
species detection in a unique way (see online Supplemental Ta-
ble S11). These studies exhibit diversity in both their filtering steps
and in the types and number of markers used. The studies also
demonstrate varied ways in which the detection of species can be
inferred from postfiltered results. The lack of consensus among
these eDNA metabarcoding studies provides little guidance about
how to optimize filtering stringency to best define species detec-
tions during eDNA metabarcoding.

The overall objective of this study was to test the effectiveness
of eDNA metabarcoding to estimate the fish species richness of a
small freshwater reservoir by comparing species richness esti-
mates derived from capture-based sampling and eDNA metabar-

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2016-0306.

Fig. 1. Conceptual diagram illustrating the relationship between bioinformatic stringency and strength of certainty about the presence of
species detected with eDNA metabarcoding.
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coding. Specifically, we investigated three research questions:
(i) What species does eDNA metabarcoding detect relative to tra-
ditional capture-based sampling? (ii) What is the effect of sample
size and the spatial distribution of samples on our ability to esti-
mate species richness using eDNA metabarcoding? (iii) How does
the stringency of bioinformatic criteria applied to species detec-
tions, in terms of samples and genetic markers, influence our
ability to measure species richness via eDNA metabarcoding?

Materials and methods

Study site
Lawler Pond is a 2.2 ha surface-area reservoir contained within

the Fort Custer Training Center (FCTC) of the Michigan Army
National Guard located near Battle Creek, Michigan, USA. Lawler
Pond is a shallow impoundment (maximum depth ≈3 m) created
by a dirt levee and containing a warm-water fish assemblage. Fish
habitat within Lawler Pond is relatively homogeneous, with a
sand bottom and abundant submerged aquatic vegetation (pre-
dominantly Chara spp.) throughout the reservoir. A small first-
order stream flows into and out of Lawler Pond, which drains a
watershed area of approximately 1.4 km2. An approximately 2 m
wide × 3 m deep channel is located along the northern edge of the
reservoir beginning where the stream enters the reservoir from
the east and flows out in the northwest corner (Fig. 2). Prior to our
sampling, 26 fish species were known to inhabit aquatic ecosys-
tems at FCTC (Michele Richards, FCTC Environmental Biologist,
personal communication); however, the fish assemblage of Lawler
Pond had not previously been surveyed.

Capture-based sampling
We directly assessed fish species richness in Lawler Pond using

a combination of 17 unbaited metal minnow traps and three un-
baited modified fyke nets, a 2 m diameter cast net, and handheld
dip nets. Modified fyke nets were constructed from two rectangu-
lar 91 cm × 183 cm steel frames, four 76 cm diameter steel hoops,
and 13 mm knotless nylon bar mesh. From 2 to 6 June 2014, all
minnow traps and modified fyke nets were deployed at approxi-
mately noon (1200), emptied at approximately 1030 the following
morning, then redeployed for a total of four net-nights per net (n =
12 total net-nights) and trap (n = 68 total trap-nights). Twenty cast
net throws were conducted from a boat on the morning of 6 June
after the completion of fyke netting. Handheld dip nets were used
to target schools of small (<2 cm total length) fishes whenever
they were observed. It is important to note that we were not
permitted to electrofish in Lawler Pond owing to military regula-
tions and safety concerns (i.e., unexploded munitions). All cap-
tured fish were identified to species based on morphological
features (and knowledge of local fish fauna), measured for total
length and mass, and then returned to the center of the reservoir.

eDNA sampling
On 1 June 2014, 1 day prior to the start of our capture-based

sampling, we collected one 250 mL water sample (Evans et al.
2016; Olds et al. 2016) from each of 30 locations distributed
throughout Lawler Pond (Fig. 2). In addition, we collected one
250 mL water sample from the stream inflow into Lawler Pond
(Fig. 2). Each water sample was collected from the surface of the
reservoir by a researcher in a kayak. Prior to sampling, the kayak
was decontaminated via a 10 min exposure to 10% bleach solution
and then rinsed with reverse osmosis water as recommended by
Prince and Andrus (1992) to remove any viable DNA on the surface
of the kayak. To minimize the potential for vectoring eDNA
among sampling locations within Lawler Pond, samples were col-
lected immediately upon arriving at each sampling location from
the bow of the kayak at arm’s length (�0.5 m). Additionally, to
avoid disturbing future sampling locations, samples were col-
lected starting near the Lawler Pond outflow then proceeded
along a single zigzag pattern, ending in the southeast corner of

the reservoir. The location of each sample was recorded with a
handheld geographic positioning system (GPS) (Garmin Corp,
Lenexa, Kansas, USA). Each water sample (250 mL bottle) was
wiped with a 10% bleach solution and immediately placed in a
cooler containing ice for transport back to the laboratory.

Sample processing and extraction
In the laboratory on that same day, water samples were vacuum-

filtered onto 47 mm, 1.2 �m pore size polycarbonate membrane
filters (EMD Millipore, Billerica, Massachusetts, USA). Filters con-
taining sample retentate were placed in 2.0 mL microcentrifuge
tubes containing 700 �L of CTAB and stored at –20 °C until extrac-
tion. DNA was isolated following a modified chloroform – isoamyl
alcohol (24:1; Amresco) extraction and an isopropanol precipita-
tion. (Renshaw et al. 2015; see full details in the Supplementary
material, Appendix S11). To remove potential inhibitors, resus-
pended DNA was treated with the OneStepPCR Inhibitor Removal
Kit (Zymo Research, Irvine, California, USA).

PCR-based Illumina library preparation and sequencing
We amplified three mitochondrial gene fragments: the cyto-

chrome B gene (CytB; primer set: L14735/H15149c), 12S rRNA
(primer set: Am12S), and 16S rRNA (primer set: Ac16S) as described
in Evans et al. (2016). Amplified gene fragments were prepped for
Illumina sequencing following a two-step PCR-based approach as
outlined in the Illumina 16S Metagenomic Sequencing Library
preparation guidelines (Illumina, Inc., San Diego, California, USA).

PCR products were electrophoresed through a 2% agarose gel,
stained with ethidium bromide, then visualized on a ultraviolet
light platform. Each amplified product was manually excised
from the gels using single-use razor blades, cleaned with the
QIAquick Gel Extraction Kit (Qiagen, Venlo, Netherlands), and
eluted from spin columns with 30 �L of buffer EB. We excised a

Fig. 2. Aerial photograph of Lawler Pond (Michigan, USA)
illustrating the collection location of each eDNA water sample taken
from the impoundment and the inflowing stream (US) as well as the
location of the deeper channel (shaded). The 15 samples included in
each of the four spatial subsampling designs are indicated by the
following symbols: circle (upper samples), asterisk (periphery
samples), triangle (lower samples), square (interior samples). Each
sample was included in two spatial sampling designs as indicated by
the two symbols per sample.
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band from the agarose gel at the expected amplicon size for the
extraction and PCR negative controls and, regardless of visual
confirmation of amplification, carried each through the remain-
ing library prep for subsequent Illumina sequencing per the rec-
ommendation of Nguyen et al. (2015). DNA concentration of each
elution was quantified via Qubit dsDNA HS Assay (Life Technolo-
gies, Carlsbad, California, USA). Libraries were pooled in equal
molar concentrations along with 25% PhiX (v3, Illumina), then
paired-end sequenced on an Illumina MiSeq in a single MiSeq flow
cell by the University of Notre Dame’s Genomics and Bioinformat-
ics Core Facility (http://genomics.nd.edu/) using a MiSeq Reagent
Kit v3 (600 cycles; Illumina). To ensure sufficient read depth,
libraries were sequenced via two MiSeq runs with 17 libraries per
run.

Positive and negative controls
Three types of controls were used to monitor potential contam-

ination during the filtration and laboratory analysis of samples.
First, a single mock community sample was constructed (Schloss
et al. 2011) and run in parallel with the DNA extraction step. The
mock community sample was composed of equal amounts of
tissue-derived DNA (measured with Qubit dsDNA HS assay) from
six Indo-Pacific marine fishes: ocellaris clownfish (Amphiprion
ocellaris), jewelled blenny (Salarias fasciatus), bicolor blenny (Ecsenius
bicolor), twospined angelfish (Centropyge bispinosa), dispar anthias
(Pseudanthias dispar), and black leopard wrasse (Macropharyngodon
negrosensis). Second, a single extraction blank was constructed by
using only extraction reagents without a filter, and the blank was
subsequently processed alongside the 31 eDNA samples for all
laboratory steps. Lastly, a PCR no-template control (NTC) was used
for each of the three gene regions amplified and pooled as de-
scribed above during library preparation. The NTC consisted of
sterile water that was added as template during the first round of
PCR amplification. A band was then excised from the agarose gel
at the anticipated amplicon size, cleaned, and used as template
for the second round of PCR amplification, which included the
addition of a unique barcode.

Bioinformatics analysis
Raw sequence reads were filtered based on their quality (Q20),

merged (Q0.5), and clustered (97%) to species information follow-
ing the procedure and parameters detailed in Olds et al. (2016). In
brief, to detect nontarget (non-vertebrate) operational taxonomic
units (OTUs), usually of bacterial origin, we filtered with HMMER
(Wheeler and Eddy 2013) using the same parameter values as
those used by Olds et al. (2016). Centroid sequences from each OTU
were assigned to species with two different approaches. First, we
used SAP version 1.9.3 (Munch et al. 2008) to assign species using
the NCBI NR database (95% match to reference). Second, we used
USEARCH version 8.0.1623 (Edgar 2010) to confirm species as-
signments using an in-house reference database (Supplemental
Table S21) of regional species (97% match to reference). Our in-house
database included sequences for additional species, previously
identified as present on Fort Custer, not available on GenBank.
Sequences for the in-house database were obtained via in-house
Sanger sequencing of tissue samples and have since been up-
loaded to GenBank (accession numbers provided in Supplemental
Table S21). We manually checked all OTUs that had a closely related
OTU (90%–96.9% similarity) against those in the NCBI GenBank.

Following species assignment, we assessed potential cross-
sample contamination, on a per-marker basis, by screening for
the presence of any species detected in the 31 Lawler Pond sam-
ples in the mock community, extraction blank, and NTC sample
libraries. If sequence reads from any species were detected in
the three control libraries, we applied a threshold correction
(Hänfling et al. 2016; Valentini et al. 2016). For the correction, the
cumulative relative frequency of contaminant reads for the de-
tected species in the control libraries functioned as a minimum

detection threshold. For the Lawler Pond samples, any species
with a frequency of occurrence (relative proportion of reads) less
than that of the detection threshold were discarded (Supplemen-
tal Table S31). This correction is similar to the procedure per-
formed by Hänfling et al. (2016), but is based on the false positive
reads found in the negative control samples rather than the false
positive reads found in their mock community species being de-
tected in field samples.

To determine the effect of bioinformatic decisions on our abil-
ity to infer the presence of fishes in Lawler Pond, we then evalu-
ated the effect of three stringency scenarios representing low,
moderate, and high stringency (Fig. 1). For the low-stringency sce-
nario, a species was considered detected if its eDNA was found in
at least one sample using at least one marker. For the moderate-
stringency scenario, species detection required the presence of
sequences in at least two samples or by at least two markers from
a single sample. For the high-stringency scenario, a species detec-
tion required the presence of sequences in both a minimum of
two samples and by a minimum of two markers (species were not
required to be detected by the same two markers among samples).

Species accumulation and richness estimation
We estimated species richness based on the Chao II bias-

corrected estimator (Chao 2005; Colwell 2013). We calculated all
species richness estimates and 95% confidence intervals using
EstimateS version 9 (Colwell 2013). The number of samples neces-
sary to measure both the total observed (Sobs; detected) and the
estimated (Chao II) species richness were calculated via rarefac-
tion analysis with 1000 sample-order randomizations for each of
the three bioinformatic criteria scenarios. Sample-based species
accumulation curves and 95% confidence intervals were analyti-
cally derived using the Sest “Mao Tau” estimator in EstimateS ver-
sion 9 (Colwell 2013). The motivation for including both directly
observed species richness (Sobs) and an estimator, such as the
Chao II bias-corrected, is to evaluate the effects that variable com-
munity composition, sampling size, spatial sampling effort, and
bioinformatics criteria have on the measured uncertainty in our
estimation of species richness, including those not directly ob-
served in the sampling effort.

Sample similarity and spatial analysis
Similarity in the detected species richness of each of the

31 Lawler Pond samples was calculated via the Sørensen coefficient
(Ss; Cao et al. 1997). Sørensen dissimilarity (Ds) is calculated as
1 – Ss. We express both Ss and Ds as percentages by multiplying the
index scores by 100. We calculated the Euclidean distance be-
tween each of the samples based on GPS coordinates for each of
the samples. The effect of spatial separation on species richness
similarity was evaluated via a Mantel test of correlation between
Euclidean distance and sample similarity using the three bioin-
formatic stringency criteria used to determine species richness in
a sample.

The effect of sample spatial distribution on our ability to esti-
mate species richness was evaluated by subsampling 15 of the
30 available (stream sample omitted) Lawler Pond eDNA samples
using four spatial sampling designs: (i) subsampling the samples
from the periphery of the reservoir, (ii) subsampling the samples from
the interior of the reservoir, (iii) subsampling the upper (north; N) half
of the reservoir relative to the inflow, and (iv) subsampling the
lower (south; S) half of the reservoir relative to the inflow (Fig. 2).
The stream sample was excluded from the subsampling as it was
located outside of the analysis’ scope of inference (Lawler Pond).
Chao II species richness estimates were calculated via rarefaction
analysis of 1000 sample-order randomizations for each sampling
design. The resulting species richness estimates and rarefaction
curves were then compared across the four sampling designs and
using the three bioinformatic stringency criteria used to deter-
mine species richness in a sample.
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Results

Traditional capture-based sampling
In total, we captured nine species of fishes from Lawler Pond

(Fig. 3) in at least one of the four deployed gear types. The majority
of the species were captured in the modified fyke nets and min-
now traps, with most individuals being captured in the modified
fyke nets. In addition to the nine captured species, we visually
observed common carp (Cyprinus carpio) roaming throughout
Lawler Pond but were unable to capture any of the individuals.
Because multiple capture-based sampling gears, with differing
sampling efficiencies, were deployed over a four-night temporal
sampling regime, we were unable to estimate species richness via
the Chao II estimator in an equivalent fashion to the estimates
derived from the spatially collected eDNA samples.

High-throughput sequencing statistics and effect on species
detection

We generated 30.3 million paired-end reads from two Illumina
MiSeq runs. After primer demultiplexing, 19.8 million paired-end
reads were retained (Supplemental Table S41). The demultiplexing
rate was 71.4% for the Lawler Pond samples and 27.5% for the
control samples owing to a large proportion of nonspecific ampli-
cons in the PCR negative controls and extraction blanks. In total,
41.3% of the raw reads passed the stringent filtering criteria.
USEARCH analysis for OTUs on the combined pools of amplicon-
specific sequences and subsequent HMMER modeling (to remove
non-vertebrate OTUs) for each of the three markers resulted in
detection of 32 OTUs from the 16S fragment, 42 OTUs from the 12S
fragment, and 29 OTUs from the CytB fragment (Supplemental
Table S41). Several OTUs occurred in low abundance (≤1% of the
total number of reads) and matched a reference sequence with
only 90%–96% similarity. When manually checked, none of the
low-abundance, low-similarity OTUs matched a more similar ref-
erence in NCBI GenBank. Therefore, these low-similarity OTUs
were excluded from further analysis. Species assignment (see
below) further reduced the number of OTUs included in the bioin-

formatic stringency analysis. Prior to subtracting potential cross-
library contamination and removing species with only one read
per sample, a total of 28 fish species, two turtle species, and hu-
mans (all non-fish species were excluded from further analysis)
were detected in at least one of the 31 Lawler Pond samples with at
least one marker (Table 1).

Comparison of genetic marker species assignments
Based on both the initial species assignment to NCBI NR using

SAP and the secondary species assignment to our in-house refer-
ence database using USEARCH, we matched 22 OTUs with species-
level assignments to the 16S marker (including four mock
community species), 19 OTUs with species-level assignments to
the 12S marker (including six mock community and human), and
24 OTUs with species-level assignments to the CytB marker (in-
cluding five mock community, human, and two turtle species)
(Table 1). For the 16S and 12S markers, one OTU was assigned to
eastern mudminnow (Umbra pygmaea), a species that is not be-
lieved to occur in Michigan (Bailey et al. 2004b). However, the
genetic distance of central mudminnow (Umbra limi) and eastern
mudminnow is less than 3%. Therefore, we were unable to distin-
guish between the two species using the three markers employed
in this study. We consider all Umbra spp. detections to be central
mudminnow, a species that is known to occur at Fort Custer.
Another species, chain pickerel (Esox niger), was detected in mul-
tiple samples by both the 16S and 12S markers; however, for these
two markers, no reference exists for American pickerel (Esox
americanus), which was captured via traditional sampling at the
time of our sampling. In fact, in 15 of 16 samples where American
pickerel were detected via the CytB marker, chain pickerel was
detected in the same sample with the 16S or 12S markers. Because
chain pickerel is not known to occur in inland Michigan (Bailey
et al. 2004b), it is likely that these detections were a misidentifi-
cation of American pickerel due to a lack of NCBI reference data.
We did not consider chain pickerel detections to be accurate iden-

Fig. 3. Proportional catch of the nine species captured from Lawler Pond, Fort Custer Training Center, Michigan. Number of fishes captured
by each method is indicated above each bar. Sampling effort consisted of 12 modified fyke net-nights, 76 minnow trap-nights, 20 cast net
throws, and three targeted dip-net dips. Sampling was conducted 3–6 June 2014. In addition to nine species physically captured, common carp
were visually observed. [Colour online.]
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tifications and considered all chain pickerel identifications to be
American pickerel detections.

The number of species detected varied among the three genetic
markers. No single marker discovered all 21 of the eDNA-detected
species under our low-stringency scenario. The highest number of
species detected by a single marker was 16 species detected by the
16S marker. Similarly effective was the CytB marker that detected
15 species. The 12S marker was the least effective, detecting just
10 species (Table 1). Of the 16 species detected by the 16S marker,
five species were unique to the gene region and not identified by
either of the other two markers. Of the 15 species detected by the
CytB marker, five species were unique to that gene region and not
identified by either of the other two markers. In total, nine species
were identified by all three markers, three species were identified
by just two markers, and nine species were identified by a single
marker (Table 1). Overall, all 21 species could be detected with just
the 16S and CytB markers. All species detected with the 12S
marker were identified by at least one of the other two markers.

Effects of bioinformatic stringency on species detections
and richness estimation

In our low-stringency scenario, eDNA metabarcoding detected
21 species of fishes, including the 10 species observed using tradi-
tional sampling (Table 2). eDNA metabarcoding at this stringency
level detected an additional 11 fish species. The moderate bioin-
formatic stringency scenario resulted in the detection of 15 fish
species, including the 10 species directly observed. Our high bioin-
formatic stringency scenario resulted in the detection of eight fish
species, including only seven of the 10 species directly observed.

In the low- and moderate-stringency scenarios, sample-specific
richness ranged from three to 11 species (Supplemental Figs. S1,
S21). Under the high-stringency scenario, sample-specific richness
ranged from two to seven species (Supplemental Fig. S31). In the
low-stringency scenario, six “singleton” species were detected in
only one sample (Supplemental Table S51): brook trout (Salvelinus
fontinalis), brown trout (Salmo trutta), channel catfish (Ictalurus
punctatus), johnny darter (Etheostoma nigrum), mottled sculpin
(Cottus bairdii), and white sucker (Catostomus commersonii). All sin-
gleton species were excluded by the high- and moderate-stringency
scenarios, as each of the six singleton species were detected by a
single marker (three species by 16S and three species by CytB).
Moreover, two “doubleton” species, green sunfish (Lepomis cyanellus)
and creek chub (Semotilus atromaculatus), were detected in only
two samples (Supplemental Table S51). Despite only being de-
tected in two samples, both green sunfish and creek chub were
detected in the moderate-stringency scenario (Supplemental Ta-
ble S61). However, neither green sunfish, creek chub, lake chub-
sucker (Erimyzon sucetta), bluntnose minnow (Pimephales notatus),
yellow bullhead (Ameiurus natalis), blackchin shiner (Notropis
heterodon), or least darter (Etheostoma microperca) were detected in
the high-stringency scenario (Supplemental Table S71).

For the low-stringency scenario, the mean Chao II species rich-
ness estimate using all 31 Lawler Pond samples (including the one
upstream sample) was 25.8 species present with a 95% confidence
interval of 21.8–49.1 species compared with 10 species captured
via traditional sampling (Fig. 4a). For the moderate-stringency sce-
nario, the mean Chao II species richness estimate for the metabar-

Table 1. Species identified with operational taxonomic unit species assignment for each marker under the low
bioinformatic stringency scenario.

Species Primary habitat 16S 12S CytB

Fish
American pickerel Lentic and lotic (warm water) × × ×
Blackchin shiner Lentic and lotic (warm water) × ×
Bluegill Lentic and lotic (warm water) × × ×
Bluntnose minnow Lentic and lotic (warm water) ×
Brook trout Lentic and lotic (cold water) ×
Brown trout Lentic and lotic (cold water) ×
Central mudminnow Lentic and lotic (warm water) × × ×
Channel catfish Lentic and lotic (warm water) ×
Common carp Lentic and lotic (warm water) × × ×
Creek chub Lotic (warm water) ×
Green sunfish Lentic and lotic (warm water) × ×
Iowa darter Lentic and lotic (warm water) × × ×
Johnny darter Lotic (cool water) ×
Lake chubsucker Lentic (warm water) × × ×
Largemouth bass Lentic and lotic (warm water) × × ×
Least darter Lentic and lotic (cool water) ×
Mottled sculpin Lotic (cool water) ×
Pumpkinseed Lentic and lotic (warm water) × × ×
Warmouth Lentic and lotic (warm water) × × ×
White sucker Lentic and lotic (cool water) ×
Yellow bullhead Lentic and lotic (warm water) × ×

Mock community species
Ocellaris clownfish (Amphiprion ocellaris) Marine × × ×
Twospined angelfish (Centropyge bispinosa) Marine × ×
Bicolor blenny (Ecsenius bicolor) Marine × ×
Black leopard wrasse (Macropharyngodon negrosensis) Marine × ×
Dispar anthias (Pseudanthias dispar) Marine × × ×
Jewelled blenny (Salarias fasciatus) Marine × × ×

Non-fish vertebrate species
Human (Homo sapien) Terrestrial ×
Common snapping turtle (Chelydra serpentina) Lentic and lotic (warm water) ×
Spiny softshell turtle (Apalone spinifera) Lentic and lotic (warm water) ×

Note: Primary habitats for each species were identified based on information available at www.natureserve.org. Refer to Table 2 for
scientific names of fishes.
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coding approach was 15 species present with a 95% confidence
interval of 15.0–16.2 species (Fig. 4b). For the high-stringency sce-
nario, the mean Chao II species richness estimate for the metabar-
coding approach was eight species present with a 95% confidence
interval of 8.0–8.3 species (Fig. 4c).

Effects of sample size on estimated species richness
For all three bioinformatic stringency scenarios (low, moderate,

and high), the accumulated number of species and the Chao II
estimate of species richness varied depending on the number of
250 mL samples included in the analysis. For the low-stringency
scenario, the species accumulation curve illustrated that the ob-
served species richness accumulated steadily all the way through
inclusion of all 31 eDNA samples (Fig. 4a). The width of the 95%
confidence interval was relatively consistent along the length of
the rarefaction curve. The mean Chao II estimated richness in-
creased steadily with the addition of samples up through the in-
clusion of 27 samples. Inclusion of the final four samples (samples
28–31) resulted in a 0.0%–0.6% relative decrease in the mean
Chao II estimate. Corresponding to these changes in the mean
Chao II estimate were changes in the 95% confidence interval. The
95% confidence interval generally increased in range with the
addition of each sample through the inclusion of 26 samples.
The range of the 95% confidence interval narrowed with the addi-
tion of each sample following the inclusion of 27 samples.

For the moderate-stringency scenario, the species accumulation
curve illustrated that observed species richness accumulated rap-
idly (>2% relative increase in the estimate) up through the inclu-
sion of eight samples (Fig. 4b). The rarefaction curve stabilized
after the inclusion of nine samples and reached an asymptote of 15.0
species with the inclusion of 29 samples. Correspondingly, the
95% confidence intervals narrowed following inclusion of just
three samples, with the upper and lower confidence bounds con-
verging after the inclusion of 30 samples. The mean Chao II esti-
mate increased rapidly through the inclusion of eight samples.
Increasing the number of samples in the analysis to include be-

tween nine and 26 samples yielded a mean Chao II estimate that
increased slowly from 14.0 to 15.0 species. Addition of the final five
samples resulted in the mean Chao II estimate remaining steady
at 15.0 species. Corresponding to these changes in the mean
Chao II estimate, the range of the 95% confidence intervals began
to narrow with the inclusion of six samples.

For the high-stringency scenario, the species accumulation
curve illustrated that observed species richness accumulated
steadily up through the inclusion of nine samples (Fig. 4c). Accu-
mulated species richness increased slightly from 7.9 to an asymp-
tote of 8.0 with the inclusion of 17–22 samples. Correspondingly,
the 95% confidence intervals began to narrow following inclusion
of just two samples, with the upper and lower confidence bounds
converging after the inclusion of 22 samples. The mean Chao II
estimate increased through the inclusion of 19 samples. Increas-
ing the number of samples in the analysis beyond 19 samples
resulted in the same asymptotic species richness estimate of 8.0
species. Corresponding to these changes in the mean Chao II esti-
mate, the range of the 95% confidence intervals began to narrow
with the inclusion of only seven samples.

Spatial similarity of eDNA-inferred species richness and the
effect of sampling design on estimated species richness

Under the low-stringency scenario, Sørensen coefficients for
the 435 pairwise comparisons between each of the 30 Lawler Pond
eDNA samples ranged from 27% to 91%, with an overall mean simi-
larity of 61%. Under the moderate-stringency scenario, Sørensen
coefficients for the 435 pairwise comparisons between each of the
30 Lawler Pond eDNA samples (excluding the upstream sample)
ranged from 33% to 94%, with an overall mean similarity of 64%.
Under the high-stringency scenario, Sørensen coefficients for the
435 pairwise comparisons between each of the 30 Lawler Pond
eDNA samples ranged from 0% to 100%, with an overall mean
similarity of 69%. Euclidean distance between each of the eDNA
water samples ranged from 4 to 192 m. We found no relationship
between sample dissimilarity (Ds) and distance between the

Table 2. Species observed (capture-based) and detected (eDNA) in Lawler Pond, Fort
Custer Training Center, Michigan, under each of the three bioinformatic stringency
scenarios: low stringency (low), moderate stringency (moderate), and high strin-
gency (high).

Species Capture-based Low Moderate High

American pickerel (Esox americanus) × × × ×
Blackchin shiner (Notropis heterodon) × × × FN
Bluegill sunfish (Lepomis macrochirus) × × × ×
Bluntnose minnow (Pimephales notatus) × ×
Brook trout (Salvelinus fontinalis) ×
Brown trout (Salmo trutta) ×
Central mudminnow (Umbra limi) × × × ×
Channel catfish (Ictalurus punctatus) ×
Common carp (Cyprinus carpio) × × × ×
Creek chub (Semotilus atromaculatus) × ×
Green sunfish (Lepomis cyanellus) × × × FN
Iowa darter (Etheostoma exile) × × ×
Johnny darter (Etheostoma nigrum) ×
Lake chubsucker (Erimyzon sucetta) × ×
Largemouth bass (Micropterus salmoides) × × × ×
Least darter (Etheostoma microperca) × ×
Mottled sculpin (Cottus bairdii) ×
Pumpkinseed sunfish (Lepomis gibbosus) × × × ×
Warmouth sunfish (Lepomis gulosus) × × × ×
White sucker (Catostomus commersonii) ×
Yellow bullhead (Ameiurus natalis) × × × FN

Cumulative species richness 10 21 15 8

Note: An “×” indicates species that were detected via traditional sampling and (or) environ-
mental DNA (eDNA) metabarcoding. “FN” indicates eDNA metabarcoding false negative detec-
tions (i.e., species captured via traditional sampling but not detected with eDNA). Blank cells
indicate species not detected with either traditional sampling or eDNA metabarcoding.
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Fig. 4. Mean species accumulation curve (eDNA detected; grey circles) and mean Chao II species richness estimator curve (Chao estimated;
black diamonds) derived from rarefaction analysis of the 31 Lawler Pond eDNA samples libraries under the (a) low-stringency scenario,
(b) moderate-stringency scenario, and (c) high-stringency scenario. Error bars represent 95% confidence intervals. [Colour online.]
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samples under the low-stringency scenario (Mantel’s r = –0.06, P = 0.79;
Fig. 5), moderate-stringency scenario (Mantel’s r = –0.01, P = 0.5), or high-
stringency scenario (Mantel’s r = –0.64, P = 0.98).

Chao II species richness estimates varied among the three bioin-
formatic stringency scenarios and the four spatial sampling de-
signs (Fig. 6). Three of the six singleton species (white sucker,
channel catfish, and mottled sculpin) were detected in samples
collected within the reservoir channel. Additionally, two species
(brook trout and brown trout) were not included in the subsam-
pling because they were only detected in the sample collected
from the stream flowing into Lawler Pond.

For the low-stringency scenario, the mean species richness es-
timates for each of the sampling designs ranged from 14.0 to 20.8
compared with a mean estimate of 15.9 species derived from a
randomly selected subsample of 15 samples from throughout
Lawler Pond (Fig. 6a). The mean estimates of species richness for
the upper, periphery, and lower reservoir sampling designs fell
within the 95% confidence interval for the random-subsample
estimate. The mean estimate for the interior reservoir sampling
design was less than the lower 95% confidence bound of the
random-subsample estimate.

The range in the mean estimates was smaller for the moderate-
stringency scenario, where the mean species richness estimates
for each of the sampling designs fell between 13.0 and 15.0 com-
pared with the randomly selected subsample mean richness esti-
mate of 15.9 species (Fig. 6b). Only the mean species richness
estimates from the periphery and lower reservoir sampling
designs fell within the 95% confidence interval for the random-
subsample estimate. The mean estimates for the upper and
interior reservoir sampling designs were below the lower 95%
confidence bound of the random-subsample estimate.

For the high-stringency scenario, the mean species richness es-
timates for each of the sampling designs ranged from 6.0 to 7.0
relative to the randomly selected subsample mean species rich-
ness estimate of 8.0 (Fig. 6c). The mean species richness estimates
from the periphery and lower reservoir sampling designs were
both equal to the random-subsample estimate. The mean esti-
mate for the upper and interior reservoir sampling designs were
below the lower 95% confidence bound of the random-subsample
estimate. Under all three bioinformatic stringency scenarios, the
95% confidence intervals for all the mean estimates overlapped
among the spatial sampling designs.

Discussion

The effectiveness of eDNA metabarcoding relative to
capture-based sampling

The eDNA-metabarcoding approach employed in this study was
able to detect all the species captured via traditional sampling. In
addition, under the low-stringency scenario, eDNA metabarcod-
ing detected 11 fish species that were not detected by traditional
sampling. The detection of cold-water species and species with
lotic life histories (Table 1) may indicate that we detected species
that inhabit areas upstream of Lawler Pond and that eDNA from
upstream species is transported downstream where it can be de-
tected in the reservoir. Previous studies have illustrated that
eDNA can be transported relatively long distances downstream
(Deiner and Altermatt 2014; Jane et al. 2015). For example, Jane
et al. (2015) detected the eDNA of brook trout at 239 m (the far-
thest distance they measured) downstream of experimentally
caged brook trout. We did not sample the inflowing stream using
traditional sampling and are therefore unable to confirm the up-
stream presence of the additional species. However, our results
indicate that five of the six singleton species (all of which exhibit
some degree of lotic life histories) were only detected in samples
collected from within the channelized portion (the primary flow
pathway) of Lawler Pond and thus may be the result of down-
stream transport of viable eDNA into the reservoir. Increasing the

bioinformatic stringency resulted in the lotic species not being
detected. In hindsight, having additional upstream eDNA samples
to more fully characterize the species identity of the inflowing
eDNA would have been ideal. This highlights an eDNA transport
phenomenon that needs to be accounted for adequately in eDNA
sampling schemes.

Effect of bioinformatic stringency on species detection
As expected, increasing the stringency of our eDNA bioinfor-

matic criteria resulted in a decrease in the number of species
detected. Our use of three markers to determine taxa presence
improved our assessment and the reliability of our conclusions
about species richness. Similarly, confidence in our species rich-
ness estimates increased with increasing bioinformatic strin-
gency (Fig. 4). However, under the high-stringency scenario, our
failure to detect three species that were captured by traditional
sampling suggests that it is possible to underestimate species (via
species elimination) when bioinformatic criteria are too strin-
gent. The magnitude of this effect likely depends on the detection
probabilities of the individual markers, the number of markers
used, and the quality of the reference database used for species
identifications. For example, when only a small number of mark-
ers are used, the relative effects of any differences in PCR dynam-
ics and primer binding affinity on species detection are likely to
be greater. This would be especially true if one of the markers has
particularly good or poor species detection efficiency. Although
our three markers (targeting the 16S, 12S, and CytB gene regions)
performed similarly, with each detecting 10–15 fish species, eight
species were detected by only a single marker, including the six
singleton species that were each only detected in a single sample.
These eight species were responsible for the decrease in the num-
ber of detected species when bioinformatic stringency was in-
creased.

Effect of sample distribution and sample size on species
richness estimation

Overall, we observed relatively low spatial heterogeneity in spe-
cies richness among the 30 Lawler Pond eDNA samples. The low
heterogeneity in species richness among the samples and the lack
of a relationship between Euclidean distance and Ds suggest that
eDNA is distributed relatively homogeneously in Lawler Pond. If
eDNA were heterogeneously distributed throughout the pond, we
would expect to find a positive relationship between sample
dissimilarity and distance, with spatially near samples being more
similar and distant samples being less similar. This observed low
spatial heterogeneity in eDNA distribution within Lawler Pond
suggests that the accumulation of water samples was more impor-
tant than sample location when attempting to estimate species
richness in Lawler Pond.

The homogeneous distribution of eDNA in Lawler Pond may be
the result of water column mixing in this shallow reservoir. Pre-
vious research has illustrated that surface water in small shallow
lakes can mix rapidly due to wind-induced circulation (George
and Edwards 1976; Hilton 1985; Spigel and Imberger 1987). An-
other potential explanation for the homogeneous distribution of
eDNA in Lawler Pond is that fishes are dispersed throughout the
reservoir consistent with the relatively homogeneous habitat.
Lastly, the homogeneous distribution of eDNA in Lawler Pond
could be an artifact of the vectoring of eDNA between sampling
locations during sample collection. However, our sampling design
minimized the likelihood of such vectoring by collecting sam-
pling away from the kayak immediately upon arriving at each
sampling location.

Despite our overall finding that eDNA is relatively homoge-
neously distributed within Lawler Pond, the spatial heterogeneity
that was observed appears to be related to the distribution of
where the singleton and doubleton species were detected among

1370 Can. J. Fish. Aquat. Sci. Vol. 74, 2017

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

E
T

H
 Z

ur
ic

h 
on

 0
8/

26
/2

1
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



Fig. 5. Euclidean distance (m) between eDNA water samples versus Sørensen dissimilarity (Ds). Each point represents one of the 435 pairwise
comparisons between all 30 Lawler Pond samples (upstream sample excluded) under the low-stringency scenario. The dashed line in each plot
illustrates the generally expected negative relationship (slope < 0) if sample dissimilarity were predicted by distance; however, no significant
relationship was found between Euclidean distance and Ds (Mantel’s r = –0.06, P = 0.79).
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the 30 Lawler Pond samples and the one upstream sample. The
concentration of the singleton and doubleton species detections
in the reservoir channel explains the observed performance dif-
ferences among the four sampling zones (i.e., periphery, interior,

upper, and lower reservoir). The unbalanced distribution of the
singletons and doubletons in the periphery (the location of the
reservoir channel) relative to the interior of the reservoir resulted
in the underestimation of species richness by the interior reser-

Fig. 6. Mean Chao II species richness estimator curves derived from rarefaction analysis of the eDNA samples selected via each of the four
15-sample spatial designs (upper, lower, periphery, interior) and from a randomly selected subset of all 30 available samples (random) under
the (a) low-stringency scenario, (b) moderate-stringency scenario, and (c) high-stringency scenario. Error bars represent 95% confidence
intervals of the randomly selected samples.
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voir samples. This result is similar to the findings of Hänfling et al.
(2016), who detected the greater fish species richness in samples
collected closest to the shoreline of a 1480 ha natural lake than in
samples collected nearer the center of the lake.

Effect of sample size
Our evaluation of the effect of sample size on our ability to

estimate asymptotic species richness in Lawler Pond, under the
lowest bioinformatic stringency, suggests that at least 26 water
samples must be sequenced with eDNA metabarcoding before
species richness can be estimated with accuracy and precision, as
indicated by the flattening of the curve and decreasing confidence
intervals. The number of water samples decreases under the
moderate-stringency (19 samples) and high-stringency (14 sam-
ples) scenarios. These estimates of necessary samples apply to
Lawler Pond only and may differ from the number of samples
needed to estimate species richness in larger and more heteroge-
neous ecosystems. As noted above, Lawler Pond is a small, rela-
tively homogeneous body of water, making it likely that eDNA
would be evenly distributed. In larger bodies of water with
distinct spatial structuring, eDNA may be heterogeneously dis-
tributed (Hänfling et al. 2016) and an increased numbers of
independent samples may be required to capture the maxi-
mum eDNA signal. This outcome is consistent with previous
research illustrating that diversity and similarity indices tend
to underestimate community similarity when calculated with
sample sizes that fail to subsample a relatively large proportion
of the community (Lande 1996; Cao et al. 1997). The actual
sample size needed to accurately and precisely estimate asymp-
totic species richness also varies according to the diversity of
the species assemblage (Chao et al. 2009). It is likely that had we
collected additional samples beyond 31, we would have ob-
served greater precision in our species richness estimate. The
decrease in the 95% confidence intervals with inclusion of ad-
ditional samples (e.g., samples 26–31 under the low-stringency
scenario) suggests that additional samples would likely con-
tinue to increase the precision of the estimate.

Our study illustrates that eDNA metabarcoding can be an effec-
tive means of determining species richness in areas that may be
difficult to sample via traditional fish-capture methods. These
challenging areas can include military installations, remote wil-
derness areas, and sensitive sites where traditional sampling ap-
proaches such as electrofishing may not be feasible or permitted.
Our results demonstrate that eDNA metabarcoding can, relative
to capture-based sampling, accurately measure and estimate spe-
cies richness in a small reservoir. Further, eDNA was relatively
homogeneously distributed at the spatial scale of Lawler Pond
(i.e., 2.2 ha), suggesting that the number of accumulated samples
may be more important than the spatial distribution of samples
when attempting to quantify species richness via eDNA metabar-
coding in small systems. Moreover, the detection of stream-
dwelling species in the impoundment suggests that eDNA can also
detect species from water transported into the reservoir via
streamflow. Further research on the dynamics of eDNA transport
is needed to better understand how downstream transport may
affect species richness estimation in impoundments and other
downstream habitats.

Our results illustrate that the stringency of bioinformatic crite-
ria can have substantial effects on the conclusions about the in-
ferred species richness of the study system. Future research
should focus on determining how to optimize the number of
markers for estimating species richness via eDNA metabarcoding
in diverse ecosystems of varying complexity and size. An im-
proved knowledge of the necessary sample replication would en-
able the design of more effective and efficient sampling protocols
for fish management and conservation. Lastly, while our results
illustrate that eDNA metabarcoding can be used to provide robust
estimates of species richness, eDNA cannot provide the same

types of population structure data that is readily obtained with
capture-based methods where fish can be handled and measured.
Therefore, eDNA metabarcoding should be viewed as an addi-
tional tool in the fisheries professional’s sampling toolbox that
can provide improved sensitivity for determining species richness
rather than a replacement for demographic sampling via capture-
based sampling. However, rapidly advancing genetic and genomic
technology provides the promise for even greater utility and in-
terpretive power of eDNA data in the future.
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