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S U M M A R Y
Physical properties of near-surface soil and rock layers play a fundamental role in the seismic
site effects analysis, being an essential element of seismic hazard assessment. Site-specific
mechanical properties (i.e. shear- and compressional-wave velocities and mass density) can
be inferred from surface wave dispersion and horizontal-to-vertical or ellipticity data by non-
linear inversion techniques. Nevertheless, results typically exhibit significant inherent non-
uniqueness as different models may fit the data equally well. Standard optimization inversion
techniques minimize data misfit, resulting in a single representative model, rejecting other
models providing similar misfit values. An alternative inversion technique can be formulated
in the Bayesian framework, where the posterior probability density on the model space is
inferred. This paper introduces an inversion approach of surface wave dispersion and ellipticity
data based on a novel multizonal transdimensional Bayesian formulation. In particular, we
parametrize 1-D layered velocity models by the varying number of Voronoi nuclei, allowing
us to treat the number of layers as an unknown parameter of the inverse problem. The chosen
parametrization leads to the transdimensional formulation of the model space, sampled by
a reversible jump Markov chain Monte Carlo algorithm to provide an ensemble of random
samples following the posterior probability density of model parameters. The used type of the
sampling algorithm controls a model complexity (i.e. the number of layers) self-adaptively
based on the measured data’s information content. The method novelty lies in the parsimonious
selection of sampling models and in the multizonal formulation of prior assumptions on model
parameters, the latter allows including additional site-specific constraints in the inversion.
These assumptions may be based on, e.g. stratigraphic logs, standard penetration tests, known
water table, and bedrock depth. The multizonal formulation fully preserves the validity of
the transdimensional one, as demonstrated analytically. The resultant ensemble of model
samples is a discrete approximation of the posterior probability density function of model
parameters and associated properties (e.g. VS30, quarter-wavelength average velocity profile
and theoretical SH-wave amplification function). Although the ultimate result is the posterior
probability density function, some representative models are selected according to data fit
and maximum of the posterior probability density function. We first validate our inversion
approach based on synthetic tests and then apply it to field data acquired from the active
seismic survey and single-station measurements of ambient vibrations at the SENGL seismic
station site in central Switzerland.

Key words: Inverse theory; Joint inversion; Probability distributions; Site effects; Surface
waves and free oscillations; Crustal structure.

1 I N T RO D U C T I O N

The local seismic hazard assessment is important for engineering and public safety applications. It is influenced by the structure and physical
properties of the uppermost part of the Earth crust, as these affect the local amplification of seismic waves. In this context, a site characterization
aims to retrieve shear- and compressional-wave velocities (S- and P-wave velocities, respectively) as well as mass density of near-surface
structures (i.e. elastic properties of the medium), because they determine principal local effects on ground motion. In seismic hazard codes,
the S-wave velocity is an attribute of the primary importance. It is typically expressed in terms of its average value to a depth of 30 m (vS30;
e.g. Borcherdt 1994) or in other alternative forms as the quarter-wavelength velocity profile representation (QWL; e.g. Joyner et al. 1981;
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Boore 2003; Poggi et al. 2011, 2012). The local near-surface structure can be examined directly (e.g. drilling boreholes) or, more commonly,
indirectly by inversion of geophysical data. The latter is recognized as an efficient non-invasive way to retrieve information on the subsurface.
The geophysical data can be acquired from recorded wavefield excited by active sources or ambient seismic noise. Among others, the recorded
wavefield is composed of Rayleigh and Love surface waves reflecting the dispersive properties of the vertically heterogeneous near-surface
structure (e.g. Bonnefoy-Claudet et al. 2006).

1.1 Rayleigh and Love wave data

In this paper’s context, fundamental and higher modes of surface waves are the input data of the inverse modelling. In particular, data of
interest are phase velocity dispersion curves of Rayleigh and Love waves and ellipticity curves of Rayleigh waves. These data cannot be
measured directly, but they are retrieved from the single-station and seismic array measurements of ambient vibrations or active seismic
surveys (e.g. Foti et al. 2018). As measured indirectly, we provide here a brief overview of acquisition techniques.

Single-station methods typically help to obtain a horizontal-to-vertical spectral ratio (H/V; Nogoshi & Igarashi 1971; Nakamura 1989).
The H/V ratio may be related to the Rayleigh wave ellipticity (Yamanaka et al. 1994; Fäh et al. 2001; D’Amico et al. 2008); nevertheless,
it is more complex phenomenon as ambient vibrations are made by an unpredictable brew of various wave types present in the wavefield
(e.g. Bonnefoy-Claudet et al. 2008). Therefore, a direct inversion of H/V curves is possible only when assuming an isotropic wavefield and
equipartitioning of the seismic energy among the different wave modes (Sánchez-Sesma et al. 2011). To overcome this issue, single-station
techniques to estimate Rayleigh wave ellipticity from the wavefield have been developed (e.g. RayDec method, Hobiger et al. 2009). In the
RayDec method, Love waves are suppressed by an averaging process as they are not present on the vertical component, and body waves from
distant sources are suppressed as well because they do not have a phase shift between vertical and horizontal signals. Next, the array methods
are aimed at the velocity and azimuth of Rayleigh and Love waves to identify the dispersion curves of the fundamental and higher modes
(e.g. Aki 1957; Horike 1985; Okada 2003). Recently, Poggi & Fäh (2010) proposed an array frequency–wavenumber (f–k) processing method
for joint estimation of Rayleigh wave ellipticity together with dispersion curves, and Maranò et al. (2012) draw a wavefield decomposition
method for iterative separation of contributions of different waves. Apart from these passive methods, an example of an active seismic array
method is the multichannel analysis of surface waves (MASW, Park et al. 1999).

1.2 Inverse modelling of local near-surface structures

The inversion of surface wave curves (i.e. data) to retrieve a local near-surface structure (i.e. model) is a typical non-linear inverse problem.
Primarily, dispersion curves of surface waves depend non-linearly on the vertically heterogeneous S-wave velocity structure below the
measurement site. Additionally, they depend on the P-wave velocity and the mass density of the subsurface structure. There exists a
dependence on the anelastic properties of the medium (i.e. material damping), but it has been shown to be of secondary importance (e.g.
Lunedei & Albarello 2009). Linearized inversion procedures were proposed and applied in the past (e.g. Tokimatsu et al. 1991), but several
studies have shown that linearized inversions inherently depend on an assumed initial model (e.g. Parolai et al. 2006). Next, the inversion of
the Rayleigh wave ellipticity (or alternatively H/V spectral ratio) alone leads to a non-unique solution due to trade-offs between the S-wave
velocity and layer thickness (e.g. Hobiger et al. 2013). Moreover, independent inversions of multiple individual modes of surface waves are
not a viable option, leading to multiple different solutions for one site. Therefore, all the available data should be inverted jointly using a
non-linear inversion method.

For instance, Scherbaum et al. (2003) proposed a joint inversion of dispersion curves and H/V spectral ratios to retrieve S-wave velocity.
The inversion was constrained by a simple model consisting of a single sedimentary layer over an elastic half-space. Another non-linear
inversion of H/V spectral ratios based on a genetic algorithm technique has been proposed by Fäh et al. (2003), where the authors assumed the
thickness of sediments to be known. In Arai & Tokimatsu (2004), the inversion was constrained by fixing either thickness or S-wave velocity
of layers, and it is solved by the iterative singular value decomposition. This iterative procedure has been subsequently enhanced into the joint
inversion of H/V and dispersion curves (Arai & Tokimatsu 2005). Wathelet et al. (2004) proposed the inversion of dispersion curves based
on the neighbourhood algorithm (Sambridge 1999) to retrieve both P- and S-wave velocities. However, Wathelet (2008) emphasized that their
model parametrization in terms of P-wave velocity and S/P-wave velocity ratio leads to non-uniform and biased intrinsic prior of the S-wave
velocity (i.e. the parameter of the primary importance). Hence, Wathelet (2008) proposed a model parametrization based on separated S- and
P-wave velocities. The importance of the non-uniqueness and solution uncertainty was tackled by Foti et al. (2009). To this end, the solution
uncertainty originates from data and modelling errors that can be treated using a Bayesian (probabilistic) inversion method. For instance,
Maraschini & Foti (2010) proposed a probabilistic inversion of multimodal Rayleigh and Love wave dispersion curves to retrieve separated S-
and P-wave velocities as well as the mass density. They constrained the inversion by a weekly informative prior, and they explore the model
space by a Monte Carlo algorithm. The Bayesian inversion of the fundamental Rayleigh wave dispersion curve by Molnar et al. (2010) is
based on the Monte Carlo algorithm and it uses a Toeplitz data covariance matrix to account for data errors. Dettmer et al. (2012) proposed
a transdimensional Bayesian inversion of the fundamental Rayleigh wave dispersion curve with autoregressive data errors in order to infer
the number of layers, S-wave velocity, P/S-wave velocity ratio and mass density. Li et al. (2012) demonstrated advantages of using a joint
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multimodal inversion by a Bayesian inversion of multimodal Scholte wave dispersion curves in the North Sea. More recently, Cipta et al.
(2018) applied a transdimensional Bayesian inversion of the H/V spectral ratio in the Jakarta Basin.

In this work, we propose a joint Bayesian inversion of multimodal Rayleigh and Love wave dispersion curves and Rayleigh wave
ellipticity curve (or ellipticity angle). We parametrize the layered model by separated S- and P-wave velocities and mass density. Thicknesses
of horizontal isotropic layers are parametrized in logarithmic depth, reflecting the reduction of the information contained in the observed data
with depth. We define the model space in the Bayesian probabilistic framework (Tarantola 2005) and explore it by the reversible jump Markov
chain Monte Carlo algorithm (rjMCMC, Green 1995) coupled with the Parallel Tempering technique (Dettmer & Dosso 2012; Sambridge
2014). The utilized parametrization allows us to treat the number of layers as an unknown parameter of the inverse problem (Bodin et al.
2012). In particular, we treat the number of layers as a measure of complexity of the model space using an explicit Occam’s razor following
approach by Hallo & Gallovič (2020). Moreover, the Bayesian formulation (e.g. Jaynes 2003) allow us to include additional prior assumptions
on the model space using a prior probability. To this end, we utilize a novel multizonal formulation of the prior probability density function
(prior PDF) of model parameters (i.e. S- and P-wave velocities, mass density, and additionally Poisson’s ratio). The multizonal formulation
defines multiple horizontal subsurface zones with specific, yet efficiently homogeneous, prior PDF of model parameters. Such a formulation
allows us to consider site-specific assumptions on the model space coming from, for example stratigraphic logs, standard penetration tests,
known groundwater level and bedrock depth, and improve the efficiency of the model space exploration. Finally, our inversion approach is
validated based on synthetic tests and applied to real surface wave data.

2 M E T H O D

Here we describe the Multizonal Transdimensional Inversion (MTI) approach. It consists of four main keystones: (1) appropriate model
parametrization, (2) joint data misfit in standardized units, (3) multizonal yet efficiently homogeneous prior and (4) self-adapting exploration
of the transdimensional model space.

2.1 Model parametrization

We assume a subsurface model composed of horizontal and isotropic layers defined by S- and P-wave velocities (vS and vP, respectively) and
mass density (ρ). This model is parametrized following Bodin et al. (2012) using multiple Voronoi nuclei (VNi), where inter-layer boundaries
(i.e. interfaces) are defined as equidistant between two adjacent nuclei at depth. Hence, an interface is parametrized by the depth of two
adjacent nuclei. As the absolute resolving power of the surface wave data decreases with depth, we parametrize positions of VNi along the
profile by taking their natural logarithm, thus providing higher resolution on the shallower part. The logarithmic depth (ln-depth, h) is limited
by a minimum threshold value (i.e. hmin = ln(depth[m] > 0)), representing the uppermost considered depth of the model space. The total
number of VNi (N ) is allowed to be variable, as well as their position in the ln-depth domain. Note that we do not constrain the layer thickness
by any minimum value. Model parameters (i.e. h, vS, vP and ρ) assigned to VNi are stored along the rows of matrix �, whose size is N × 4.
To comply with the multizonal prior on model space, we formally divide the matrix � into Z submatrices �i (i ∈ {1, . . . , Z}) representing
horizontal zones as

� =

⎡
⎢⎢⎣

�1

...
�Z

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

�soil

...
�bedrock

⎤
⎥⎥⎦ . (1)

To each submatrix �i is assigned a specific (but variable) number of VNi λi , with a minimum of one nucleus per zone. Then, the
submatrix �i of zone i consists of four single-column vectors (hi , vSi , vPi , and ρi ) as follows:

�i =

⎡
⎢⎢⎣

h(1)
i v

(1)
Si

...
...

h(λi )
i v

(λi )
Si

v
(1)
Pi ρ

(1)
i

...
...

v
(λi )
Pi ρ

(λi )
i

⎤
⎥⎥⎦ , (2)

where the total number of VNi in matrix � is N =
Z∑

i=1
λi . Logically, we enforce that VNi in the lower zones must be deeper than VNi in the

upper zones, that is ∀i ∈ {1, . . . , Z − 1}, max(hi ) < min(hi+1). The 1-D layered model of the subsurface is then fully parametrized by the
matrix �.

Note that zone and layer thicknesses are not related; hence, an interzone boundary (z-interface) must not be interpreted as an interface
of the layered velocity model. To comply with the model space definition, the model given in eq. (1) is expressed as a vector

wN = vec (�) , (3)

where vec(·) denotes vectorization of a matrix, and index N is proportional to the resultant vector length.
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2.2 The forward problem

Exploring the model space requires solving the forward problem multiple times, and hence, it should be fast and efficient. In this paper, we
use the Geopsy software package (Wathelet et al. 2020) for the forward modelling, which relies on the Thomson–Haskell matrix method
(Thomson 1950; Haskell 1953) modified by Dunkin (1965). This numerical package can compute dispersion curves associated with the
fundamental and higher modes of Rayleigh and Love waves and the ellipticity curve of the fundamental mode of Rayleigh waves in a given
layered medium. Alternatively, Geopsy can also produce the signed Rayleigh wave ellipticity, which can be used to compute the ellipticity
angle (Maranò et al. 2017). The solution of the forward problem for the model vector wN in eq. (3) can be expressed using a forward operator
g(·) as

d = g (wN ) , (4)

where vector d contains all the modelled data (i.e. modelled dispersion curves and ellipticity or ellipticity angle). We would like to emphasize
that our method is not bounded to this particular forward solver, and in principle, any other suitable algorithm can be used. The described
procedure can also be applied to the inversion of Stoneley or Scholte waves (Shynkarenko et al. 2021).

2.3 Transdimensional Bayesian inference

Following Tarantola (2005), we introduce an abstract n-dimensional vector space Rn , where each vector w (w ∈ Rn) represents a model of the
system. In our case, the length of the model vector w (and the dimension n of the model space) varies, as we use a varying number of Voronoi
nuclei N . It leads to the transdimensional formulation of Green (1995, 2003). We aim to explore transdimensional models m = (k, wk), where
k is indexing the state of the model space (in our case k ≡ N and n = 4N ). Following Green (2003), the solution of the transdimensional
Bayesian inversion of the observed data dobs is given by the posterior conditional PDF on mode space, that is p(m|dobs), as

p (m|dobs) = 1

c
p (k) p (wk |k) p (dobs|k, wk) , (5)

where c is a normalization constant, p(k) is a prior probability of the model state k (i.e. the expected total number of VNi) and p(wk |k) is
a prior conditional PDF of model parameters given state k. The term p(dobs|k, wk) is the conditional PDF of data given model (k, wk), that
is p(dobs|k, wk) = p(dobs|m), which is the so-called likelihood function. For details on the transdimensional inference (see, e.g. Malinverno
2002; Sambridge et al. 2006; Bodin & Sambridge 2009; Gallagher et al. 2009; Dettmer et al. 2010; Hallo & Gallovič 2020).

2.4 The likelihood function

The likelihood function p(dobs|m) in eq. (5) quantifies how well model m (where m = (k, wk) ) fits the observed data dobs based on modelled
data from eq. (4). When assuming Gaussian data errors, this function can be recast in a matrix form (e.g. Tarantola 2005, pp. 62–64) given
by the proportionality

p (dobs|m) ∝ exp

(
−1

2
(Rdobs − Rg (m))T (Rdobs − Rg (m))

)
,

(6)

where Rdobs and Rg(m) are so-called standardized observed and modelled data, respectively. R is an upper triangular matrix resulting from
the Cholesky decomposition of the inverse data covariance matrix C, that is C−1 = RT R. Matrix C characterizes errors of both observed
data (the uncertainty of measured dispersion and ellipticity curves) and modelled data (the uncertainty due to approximating the Earth’s crust
as a 1-D layered model). Note that the likelihood function in eq. (6) evaluates the misfit of residuals in joint standardized units of data (i.e.
the data weighted by the inverse of the square root of their covariance). Then, the term joint inversion indicates the use of mixed physical
quantities in the data space (subvectors of dobs).

The full covariance matrix C of dispersion and ellipticity curves is generally unknown, although there has been growing interest in their
estimation recently (e.g. Lai et al. 2005). As an alternative, we may use either an unknown scaling factor of these matrices (i.e. hierarchical
Bayes; Bodin et al. 2012) or an assumed data variance instead of full covariance matrices. We opt for the second option: approximate the
data covariance matrix as its diagonal, that is C = σ 2 I, where I is the identity matrix, and σ is a vector of standard deviation of data errors
(having Gaussian distribution). Then R = σ−1 I, and the likelihood function in eq. (6) further simplifies to (e.g. Dettmer et al. 2007)

p (dobs|m) ∝ exp

(
−1

2

L∑
l=1

(
dobsl

σl
− gl (m)

σl

)2
)

, (7)

where L is the total number of observed data discrete samples (indexed by l). Eq. (7) is the likelihood function implemented in our approach;
nevertheless, if the covariance matrix is known, the method may be enhanced using eq. (6).

The data misfit within the likelihood function has merely a statistical meaning, as it expresses the sum-of-squares of residuals of
standardized data (i.e. the sum of squared residuals divided by the data variance). We can therefore define the goodness of the fit of the model
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(a) (b)

Figure 1. Layered model parametrization by variable number of Voronoi nuclei with (a) single-zone (b) multizonal prior PDF of model parameters. Layered
models (solid and dashed blue lines) are explored using random moves in the model space (red and green signs).

m in terms of data variance reduction φVR as follows:

φVR(m)def

(
1 − 1

L

L∑
l=1

(dobsl − gl (m))2

σ 2
l

)
× 100 per cent. (8)

Note that this definition of the data variance reduction differs from other common definitions in seismic waveform inversions (e.g. Ford
et al. 2009; Sokos & Zahradnı́k 2013; Hallo et al. 2017) and from the classic variance reduction of Monte Carlo methods. The data variance
reduction in eq. (8) reaches a maximum value of 100 per cent for a perfect data fit with zero residuals, 0 per cent for residuals of σl and –300
per cent for 2σl of data errors on average. We qualitatively define the data fit as ‘perfect’, ‘good’ and ‘fair’ for residuals < 0.25σl , < 0.5σl

and < 0.75σl of data errors on average, respectively.

2.5 The multizonal prior

The Bayesian logic (Bayes 1763) allows us to include additional prior assumptions on the model space by using the prior probability of model
parameters (e.g. Jaynes 2003). At the same time, we would like to be conservative and avoid biased solutions caused by too complicated priors
(which may occur even in non-Bayesian inversions through an inappropriate parametrization). We therefore use a multizonal formulation of
the prior PDF of model parameters (see Fig. 1).

The multizonal formulation (see eqs 1 and 2) defines a countable number Z of independent horizontal zones. These do not overlap and
are contiguous without gaps at depth (Fig. 1b). Each ith zone has assigned a variable number of Voronoi nuclei λi with model parameters
stored in vectors hi , vSi , vPi and ρi . The VNi count (i.e. the length of these vectors) is variable as VNi are allowed to change zone as well as
we use the transdimensional formulation (i.e. a variable number of VNi in total). The prior PDF from eq. (5) is then expressed as

p (k) p (wk |k) = p (k)
Z∏

i=1

(p (hi ) p (vSi , vPi , ρi |i)) , (9)

where p(vSi , vPi , ρi |i) is a conditional prior PDF of model parameters given zone i, and p(hi ) is prior PDF of ln-depths of λi VNi for the ith
zone (the prior PDF of ln-depth is zone-independent). The conditional prior PDF in eq. (9) can be separated into three prior PDFs for each
specific model parameter (assumed independent from each other) as follows:

p (vSi , vPi , ρi |i) = p (vSi |i) p (vPi |i) p (ρi |i) . (10)

The three terms in the right-hand side of eq. (10) are conditional prior PDFs of vS, vP and ρ given zone i. In other words, zone-specific
prior PDFs can be set to these three properties. In our approach, the prior PDF of a single parameter a (the substitution a ∈ {vS, vP, ρ} applies)
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is a constant defined on an interval of plausible values Ai = {ai ∈ R | amin
i ≤ ai ≤ amax

i } for each zone i:

p (ai |i) =
⎧⎨
⎩

1

amax
i − amin

i

if ai ∈ Ai

0 otherwise.
(11)

The zone-specific prior PDF is then efficiently homogeneous (i.e. weakly informative prior), or, in other words, uniform within the
interval of plausible values Ai (e.g. Bodin et al. 2012; Hallo & Gallovič 2020). For the prior PDF of the ln-depth of single VN, that is p(h),
we assume a constant value on the whole interval B = {h ∈ R | hmin ≤ h ≤ hmax} leading, also in this case, to an efficiently homogeneous
prior PDF.

To summarize, eq. (9) defines the multizonal conditional prior PDF, and eq. (11) shows the efficiently homogeneous prior PDF of model
parameters vS, vP and ρ. It allows us to use zone-specific minimum and maximum plausible values vmin

Si , vmax
Si , vmin

Pi , vmax
Pi , ρmin

i and ρmax
i , where

i ∈ {1, . . . , Z}. Note that this formulation does not bound the prior PDF to a particular layer (i.e. VN), yet it makes it dependent on the profile
depth (as suggested by index i).

2.6 Exploration of the transdimensional model space

The posterior PDF of model parameters p(m|dobs) in eq. (5) is the target of the inverse problem. Since it cannot be evaluated analytically
due to non-linearity, it must be explored by a sampling algorithm (e.g. Gelman et al. 2013; Supplement S1). For this purpose, we utilize
the reversible jump Markov chain Monte Carlo algorithm (rjMCMC, Green 1995). The rjMCMC is based on the Metropolis–Hastings
algorithm (M–H algorithm; Metropolis et al. 1953; Hastings 1970), which samples the posterior PDF by a series of random steps, that is

m0
α(m′ |m0)→ m1

α(m′ |m1)→ m2 → . . .. For details on the transdimensional model space sampling (i.e. the across-model simulations within the union
state space) based on rjMCMC (see, e.g. Green 1995, 2003; Sambridge et al. 2006; Dettmer et al. 2010; Hallo & Gallovič 2020).

The workflow of the rjMCMC algorithm utilized in our MTI approach is summarized as follows (points I–VIII):
(I) Create an initial model m0. This model is drawn randomly from the prior PDF.
(II) Randomly selects the move type. There are three types of random moves in the rjMCMC: ‘perturb move’ (randomly perturb the

existing model), ‘birth move’ (add one arbitrarily VN) and ‘death move’ (remove one arbitrarily VN). We use an equal probability of the birth
and death move proposals (not to be confused with the prior probability).

(III) Propose a new model m′ from the current model m by using the selected move type (IIIa–IIId):
(IIIa) Perturb move – All parameters of the current model m are perturbed using Gaussian proposal distribution independently from

each other. The proposal distribution is recentred at each step of the Markov chain to the current value (i.e. the Gaussian random walk,
see Supplement S2). To preserve both the homogeneous prior and the efficiency of the algorithm, we utilize the first-order mirroring of the
proposal distribution at the boundaries amin

i and amax
i following the approach of Hallo & Gallovič (2020).

(IIIb) Interzonal move – This move (sub-type of perturb move) can only be triggered by the performed perturb move if any of the VNi
within the proposed model m′ crosses a z-interface (through perturbation of h by Gaussian random walker at ln-depth). If this occurs, check
if the move is possible and transfer the VN between submatrices �i and �i+1, (see eq. 2).

(IIIc) Birth move – The proposed model m′ is obtained by adding one VN to the current model m. Four model parameters for the new
VN (i.e. h, vS, vP and ρ) are drawn randomly from the prior PDF (i.e. so-called birth from prior). Note that the proposed model vector m′

expands vector m with four new dimensions.
(IIId) Death move – Removing one arbitrary VN from model m produces a new proposed model m′, resulting in a collapse of four

dimensions.
(IV) Compute the forward problem in eq. (4) and evaluate the likelihood function p(dobs|m) defined in eq. (7) on both current m and

proposed m′.
(V) The M–H algorithm rejects or accepts the proposed model m′ based on the acceptance probability α(m′|m) (Metropolis et al.

1953; Hastings 1970). Following Hallo & Gallovič (2020), we use M–H acceptance probabilities with prescribed reciprocal distribution
p(k) ∝ k−1 for the prior probability of the model states p(k); for details about the rjMCMC with the reciprocal prior see Supplement S3.
Such prior works as an explicit Occam’s razor, where a better data fit is required to increase the number of VNi in the accepted models in the
long-term average (i.e. the self-adapting complexity of models). This is a law of parsimony where the layered profile samples are as simple as
possible but not simpler than required by the observed data (see Appendix B). To increase the efficiency of the rjMCMC, we apply the Parallel
Tempering technique following approach by Sambridge (2014), where the sampling is performed by multiple Markov chains (cold sampling
chains and hot exploration chains) that may swap their assigned models. Following Hallo & Gallovič (2020) and as shown in Appendix A,
the M–H acceptance probabilities for perturb αP, birth αB, and death αD moves are as follows:

αP

(
m′|m, γ

) = min

⎛
⎝1,

(
p (dobs|m′)
p (dobs|m)

)1/γ
⎞
⎠ , (12)
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αB

(
m′|m, γ

) = min

⎛
⎝1,

k

k + 1

(
p (dobs|m′)
p (dobs|m)

)1/γ
⎞
⎠ , (13)

αD

(
m′|m, γ

) = min

⎛
⎝1,

k

k − 1

(
p (dobs|m′)
p (dobs|m)

)1/γ
⎞
⎠ , (14)

where γ ≥ 1 is an additional parameter of the Parallel Tempering called temperature (Geyer 1991; Sambridge 2014). Note that terms
k/(k + 1) and k/(k − 1) in eqs (13) and (14) originate from the explicit prior probability of the model space states p(k). Also note that a
comparison with an inversion without these additional terms is shown in Appendix B. The M–H acceptance probability for the interzonal
move αZ is given by (see Appendix A)

αZ

(
m′|m, j, j ′, γ

) = min

⎛
⎝1,

p
(
vS j | j ′) p

(
vP j | j ′) p

(
ρ j | j ′)

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) (
p (dobs|m′)
p (dobs|m)

)1/γ
⎞
⎠ . (15)

In the interzonal move, one VN is transferred from the source zone j to the target zone j ′ ({ j, j ′} ⊆ {1, . . . , Z}) while its properties
vS j , vP j and ρ j remain unchanged. The conditional prior PDFs in eq. (15) can be evaluated for a given pair of zones by means of eq. (11).
Finally, the M-H algorithm rejects or accepts the proposed model based on the acceptance probabilities defined in eqs (12)–(15). An analytical
derivation of the M–H acceptance probabilities for the transdimensional model space with the multizonal prior is shown in Appendix A.

(VI) The current Markov chain tries to exchange the temperature γ with another chain (see, e.g. Sambridge 2014; Valentová et al.
2017).

(VII) The model of the Markov chain with γ = 1 (sampling chain) is saved into the ensemble of solutions. This action only occurs
if the chain performed a sufficient (user-defined) number of burn-in steps, after which the random walk is assumed to be stationary. The
convergence to this state is estimated by continuously monitoring the rate of change of the data variance reduction (see Supplement S1).

(VIII) The whole procedure is repeated from point II to VII until (a) the maximum (user-defined) number of Markov chain steps is
reached or (b) terminated by the user. Both options are viable as the model samples are saved continuously on the hard drive.

3 I M P L E M E N TAT I O N D E TA I L S

The developed MTI algorithm was implemented in a numerical package written in Fortran90. The code utilizes the Parallel Tempering library
of Sambridge (2014) and some routines from the Parametric Slip Inversion numerical package of Hallo & Gallovič (2020). The observed data
vector (dobs) consists of discrete values of dispersion curves in slowness units [sm−1], common logarithm of the Rayleigh wave ellipticity
[log10(abs(dell))], or the ellipticity angle [tan−1(dell)]. These data are supplemented with uncertainties by means of assumed 1σ of data errors
having Gaussian distribution. The output of numerical routines is an ensemble of layered velocity models saved on the hard drive. Such an
ensemble of models is used for evaluating marginal histograms of subsurface properties of interest.

3.1 The apparent effective prior

Model parameters vS, vP and ρ are treated as independent from each other in eq. (10). Nevertheless, additional physics-based conditions
on interparameter combinations can be imposed within a computational code when inverting for the Earth’s subsurface. These conditions
apparently influence the prescribed prior PDFs of model parameters, giving origin to the so-called effective prior (not to be confused with the
efficiently homogeneous prior nor the prior PDF). This effective prior is influenced by the prior PDF, behaviour of the deployed random walk
algorithm, and additional conditions in the computational code. The prior PDF is expressed analytically, the behaviour of the random walk
algorithm is investigated in Supplements S2 and S3, and hence the last remaining is the effect of additional physics-based conditions.

To the first possible additional condition, the dependency of doublets vSi and vPi within each VN can be expressed in terms of plausible
values of Poisson’s ratio (η) for rock and soil materials. It is preferable to preserve the prior of S-wave velocity (which is the main parameter)
and assume eq. (10) in the form of

p (vSi , vPi , ρi |i) = p (vSi |i) p (vPi |vSi , i) p (ρi |i) , (16)

where p(vPi |vSi , i) is prior PDF of P-wave velocities conditioned by S-wave velocities and implicitly also by minimum/maximum plausible
values of the Poisson’s ratio given zone i . Eq. (16) shows that we can include a condition on the Poisson’s ratio within a computational code
that does not interfere with the prior PDF of S-wave velocity. In particular, the condition rejecting proposed models outside the interval of
plausible Poisson’s ratios [ηmin

i , ηmax
i ] take an effect when perturbing P-wave velocity.

As the second additional condition, we may impose a requirement on the presence of a positive velocity gradient. Velocities of all VNi
(i.e. elements of vectors vSi and vPi ) are treated as independent from each other in eq. (11). It means that low-velocity zones are permitted to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The apparent effective prior in the test with allowed low-velocity zones (default code settings). Upper panels show the effective prior in the single-zone
model space; bottom panels show the effective prior in the multizonal model space. Panels (a) and (e) show histograms for effective prior probability of the
number of layers. The effective marginal prior PDFs of S-wave velocity in panels (b) and (f), P-wave velocity in panels (c) and (g) and mass density in panels
(d) and (h) are shown by colourscale.

occur freely in the whole profile by default. However, in justified cases, it is reasonable to avoid low-velocity zones by forbidding interfaces
delimiting velocity inversion (IVIs). In particular, we define a threshold hthr expressed in ln-depth, representing the maximum permitted depth
of an IVI. If hthr = hmax , the low-velocity zones are permitted to occur freely in the whole profile. On the other hand, hthr = hmin settings is
the constraint requiring a positive velocity gradient in the whole profile. Such a constraint of inversion may be required in some specific cases
due to the non-uniqueness of this inverse problem (e.g. Wathelet 2008). We would like to emphasize that both of these additional conditions
can be always (de)activated in the computational code settings.

The analytical prescription of the effective prior on the model space would be rather complex; nevertheless, its knowledge may be
beneficial for interpretation purposes (e.g. identifying features having origin in prior). For this purpose, we imaged the effective prior by a
random exploration of the model space with the likelihood function set to a constant (i.e. p (dobs|m) = 1). This can be achieved by a dry-run
test of MTI computational program that, at the same time, validates the correctness of the algorithm implementation. Expectations on such a
test are: (a) imaging of the effective prior and (b) validation of the internal balance in the M-H algorithm implementation. We show results of
dry-run tests for the single-zone and multizonal transdimensional model space with different activated conditions in Figs 2 and 3. The MTI
computational program produced ensembles of models drawn from the effective prior based on 1000 Markov chains of Parallel Tempering
(990 exploration and 10 sampling chains). For each of these chains, the length of burn-in and production phases were set to 10 000 and
∼100 000 steps, respectively. Hence, the program was able to test ∼110 000 000 models, and it produced ∼1 000 000 random samples. The
resultant ensemble of random samples is used to construct 2-D marginal distributions. This is a common way to visualize the model space;
however, such a distribution do not show the full effect nor correlations of the high-dimensional space.

The apparent effective prior in the model space with permitted low-velocity zones is shown in Fig. 2 (hthr = hmax settings of the
computational code). The upper and bottom panels refer to tests with the single-zone and multizonal model space, respectively. The effective
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The apparent effective prior in the test with required positive velocity gradient (avoiding low-velocity zones by additional conditions). Figure layout
and colourscale are the same as in Fig. 2.

prior on S-wave velocity in Fig. 2(b) and mass density in Fig. 2(d) are uniform, while the effective prior on P-wave velocity (Fig. 2c) is weakly
affected by the plausible Poisson’s ratio (see model space thresholds in Table D1 of Appendix D). The reciprocal distribution p(k) ∝ k−1

prescribed for the number of layers is preserved in the effective prior (Fig. 2a). This test’s results are particularly satisfactory: the effective
prior of vS is uniform within the full parameter range because of the implemented random walk (see Supplement S2); the reversible-jump
algorithm behaves exactly as expected (see Supplement S3); vS and ρ are uniform and not affected by the condition on the Poisson’s ratio as
indicated by eq. (16). Further, the effective prior on the multizonal model space follow the pattern just described (see bottom panels in Fig. 2).
Besides, the priors of VNi parameters are prescribed as zone-specific, resulting in denser effective prior PDF. Note that the effective prior is
smooth in proximity of the z -interfaces (see Fig. 2f). It occurs because, in the parametrization, the layer boundaries are defined as equidistant
between two adjacent VNi, but the multizonal prior is prescribed for VNi themselves (see Fig. 1b, showing how the layer boundaries are not
bound to the z -interfaces). We consider the smooth prior as a convenient advantage feature because it allows treating the zones as generic
uncertain stratified geological units rather than as layers with fixed thickness.

Next, the apparent effective prior in the model space with required positive velocity gradient is shown in Fig. 3 (hthr = hmin settings of
the computational code). The effective prior is further complicated; nevertheless, the reciprocal distribution (Figs 3a and e) and the prior on
the mass density (Figs 3d and h) are unaltered. Note that the apparent effective prior is complex due to additional interlayer conditions on
the velocity gradient, which is not directly visible in the marginal distribution. Also note that the complex effective prior in Fig. 3(b) may
indirectly reveal the resolution limit of the observed data at depth (i.e. an inferred posterior marginal PDF similar to the effective prior would
indicate no resolution of the observed data). The last, the apparent effective prior on the multizonal model space is very complex when the
gradient condition applied (bottom panels in Fig. 3). Hence, this particular combination of additional conditions and prior have to be avoided.
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Table 1. Parameters of the 1-D model used as the target
model of synthetic tests.

Top depth [m]
vS

[m s–1]
vP

[m s–1] ρ [kg m–3]

0 200 360 1800
20 450 810 1950
70 1000 1800 2000
160 2000 3600 2700

3.2 Processing of the ensemble of solution

The MTI computational program produces an ensemble of models drawn from the posterior PDF. This ensemble is then used to construct 2-D
marginal histograms of the model parameters vS, vP and ρ with respect to the profile depth (e.g. Figs 2 and 3). Additionally, we can compute
for each model of the ensemble vS30, QWL representation, and theoretical SH-wave transfer function (e.g. Boore 2003) and construct their
marginal histograms. For example, we can inspect histograms of vS30 as captured by the whole ensemble of solutions (containing plausible
models of varying number of layers). Note that a marginal distribution do not show the full effect of the high-dimensional model space, it is
just 2-D statistics.

Marginal histograms are useful to obtain information on the uncertainty of the parameters of interest. Further, following Bodin et al.
(2012), we construct the marginal posterior maximum profile (MAX of PDF) by taking the most frequent value of a property (vS, vP or ρ)
at each discrete depth across the ensemble of solutions. We also define the marginal posterior average profile (AM of PDF) accompanied
by its uncertainty by taking the arithmetic mean and the standard deviation of a property (1/vS, 1/vP or ρ) at each discrete depth across the
ensemble of solutions. Note that these two profiles are merely statistical properties of the marginal posterior PDF, and therefore they do not
correspond to any particular 1-D model with an assigned data fit.

Although the result of the Bayesian inversion is the posterior PDF, a single representative 1-D model is usually required. For this purpose,
we can define the maximum likelihood model (ML model) as the model with the lowest misfit (expressed in the joint standardized units)
between observed and modelled data. The ML model is representative in terms of data fit, but it may be misleading for inversions with a
non-unique solution. Finally, we minimize the misfit, measured in the L1-norm in discrete ln-depths, between the MAX of PDF of a velocity
(both vS and vP with weights 1.0 and 0.5, respectively) and models from the ensemble to approximate the maximum a posteriori model
(MAP model). Although merely an estimate of the MAP model, it is representative in terms of the posterior PDF of vS (primarily) and vP

(secondarily).

4 VA L I DAT I O N O F T H E I N V E R S I O N P RO C E D U R E

In this section, we demonstrate our approach’s validity by inverting synthetic data referred to a ‘target model’. The primary inference was
set-up as a blind test, where the target velocity model in Table 1 was unknown to the co-author running the inversion (i.e. ‘interpreter’) to
minimize any possible bias. The interpreter was only provided with the model space limits and an estimated bedrock depth in the interval 154
±10 m.

4.1 Data and inversion settings

The synthetic data (used as the observed data in the inversion) were computed by Geopsy software, solving the forward problem in the 1-D
velocity model from Table 1. The vector of observed data consists of fundamental and first higher modes of Rayleigh waves (frequency range
0.8–20 Hz and 1.6–25 Hz, respectively), fundamental mode of Love waves (frequency range 0.8–20 Hz), and ellipticity of the fundamental
mode of Rayleigh waves (frequency range 0.3–20 Hz). Apart from the observed data, we assumed the vector of the standard deviation
of theoretical data errors as large as 10 per cent of the current slowness value and 0.04–0.38 of the common logarithm of ellipticity. The
synthetic observed data are noise-free; the assumed standard deviations of data errors are only to simulate real uncertainties. These data and
uncertainties are shown in Figs 4(a)–(d) by black curves and error-bars, respectively.

We run two main independent tests, first assuming the single-zone transdimensional model space (see model space thresholds in Table D1
of Appendix D) and then the multizonal one consisting of two zones with an interface depth of 154 m (see model space thresholds in Table D2
of Appendix D). We apply no constraints on the velocity gradient for both tests (i.e. hthr = hmax ). Hence, low-velocity zones are allowed
everywhere in the 200 m long profile, and the effective priors are just as shown in Fig. 2. Each ensemble of models drawn from the posterior
PDF resulted from 460 Markov chains of the Parallel Tempering (437 exploration and 23 sampling chains). For each chain, the length of
burn-in and production phases were set to 5000 and ∼25 000 steps, respectively, corresponding to ∼13 800 000 models tested and ∼575 000
random samples drawn from the posterior PDF.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Fit of the observed (synthetic) and modelled data from the inversion with the single-zone transdimensional model space. Data fit in panels (a), (b),
(c) and (d) is almost perfect, and hence, the observed data (black curves with error-bars) are overlayed by the posterior predictive distribution (grey), ML model
(blue) and MAP model (magenta). Panels (e) and (f) show histograms for data variance reduction and number of layers, respectively.

4.2 Single-zone transdimensional inference

The inference in the single-zone transdimensional model space (i.e. a special case of multizonal inference having Z = 1; see eq. (1)) is
suitable when no information on the subsurface is available a priori. The inference is expected to be similar to a standard transdimensional
inversion; however, it is enhanced in our approach using the ln-depth domain of the model space, the first-order mirroring of the proposal
distribution at model space edges, and the self-adapting complexity of inferred models (see Section 2 for details). We have inferred posterior
PDF in such a model space, and we show results in Figs 4, 5 and 6.

Since we do not add any artificial noise to the observed (synthetic) data, one would expect to find a model with zero data misfit (i.e.
data variance reduction 100.0 per cent). However, strictly speaking, the probability of hitting just the target during a random exploration of
a continuous model space is mathematically zero. Hence, modelled data are distributed close (yet not equal) to the target values (Figs 4a–d),
and the data variance reduction is slightly lower than 100.0 per cent (Fig. 4e). For instance, the data variance reductions for ML and MAP
models are 99.6 and 97.8 per cent, respectively. In our formulation, the number of layers is self-adapting and subject of the inversion itself. The
histogram of all layered models in the ensemble of solutions shows a maximum probability of having four layers (Fig. 4f), which correspond
to the correct value. It validates the self-adapting mechanism’s functionality, where models are as simple as possible, but not simpler than as
required by the observed data.

Results in terms of the posterior marginal PDF on the model space are shown in Fig. 5. For vS and vP the posterior PDF (Figs 5a and b,
respectively) is narrow in the uppermost two layers and broad below a depth of approximately 70 m. It indicates that the model parameters are
well resolved in the shallowest part of the profile, but there is a significant uncertainty in the deepest part. This is also evident when comparing
the ML and MAP models with the target model, as they coincide only in the upper part (see Figs 5a and b). Note that these models appear on
the left edge of the probable zone between 20 and 70 m, as the posterior marginal PDF is asymmetrical (see MAX of PDF in Fig. 5e). The
posterior marginal PDF of ρ (Fig. 5d) is completely flat, which means that this parameter cannot be resolved in this test. Inferred values of
ρ for the ML and MAP models are therefore random and have no predictive value. In Fig. 5(c), we show a histogram for the layer interfaces
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(a) (b) (c)

(d) (e) (f)

Figure 5. Inversion of synthetic data with the single-zone transdimensional model space. Panels (a), (b) and (d) show the posterior marginal PDF (colourscale)
overlayed by the ML, MAP and target models (see legend). Panel (c) shows a histogram for the interface depth. Panels (e) and (f) show the inferred S- and
P-wave velocity profiles, respectively.

in depth. This histogram is constructed in the ln-depth domain (as it is the actual domain of the model space) and then transferred into the
histogram with unequal bin sizes in the depth domain (as preferred for visualization purposes). The histogram in Fig. 5(c) indicates three
primary interfaces at a depth of approximately 20, 70 and 145 m, and that there is a considerable uncertainty for the deepest interface. To
better assess the inversion results’ quality, we show a direct comparison of the velocity profiles in Figs 5(e) and (f). To recapitulate on profiles
meaning: the target model was used for computing the observed (synthetic) data, the ML model provides the lowest data misfit, the MAP
model is the most probable, MAX of PDF is a profile of the most frequent values in the ensemble of solutions, and AM of PDF is a profile of
average values of the ensemble of solutions (preserving traveltime of a vertically propagating wave). Although all the profiles are consistent
with the target model, the depth of the deepest interface (characterized by considerable uncertainty) is systematically smaller than expected
(see Figs 5e and f). This feature may be explained by using parametrization in the ln-depth domain, which privileges the resolution in the
shallowest part of the profile. Also note that the AM of PDF is very smooth at a depth of the deepest interface due to uncertainty (significant
variance among models of the ensemble).
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(a) (b) (c)

(d) (e)

(f)

Figure 6. Statistics from the ensemble of solutions (single-zone transdimensional inversion of synthetic data). Panels (a), (b) and (c) shown PDFs of QWL
depth, QWL velocity and QWL impedance. Green lines indicate properties associated with QWL depths of 20, 70 and 160 m (interfaces #1, #2 and #3,
respectively). Panels (d) and (e) show PDFs of SH-wave transfer function and amplification referenced to the Swiss profile (Poggi et al. 2011). Panel (f) shows
the values of vS30 and f30 (frequency corresponding to 30 m depth).

Further, the ensemble of solutions was used for computing statistics of vS30, QWL representation, theoretical SH-wave transfer function
(e.g. Boore 2003), and theoretical amplification referenced to the Swiss profile (Poggi et al. 2011). The latter may predict the site amplification
for the empirical spectral modelling (Edwards et al. 2013). This is of great importance, as it is essential for constructing seismic hazard
maps (Wiemer et al. 2016). The posterior marginal PDFs of the QWL depth (dQWL), S-wave velocity (vQWL

S ) and QWL impedance (Poggi
et al. 2012) are very sharp (see upper panels in Fig. 6), implying that the associated QWL representation has relatively small uncertainty.
Indeed, the QWL representations of ML, MAP and target models overlap. The posterior marginal PDFs of the SH-wave transfer function and
amplification referenced to the Swiss profile (Figs 6d and e, respectively) involve some discrepancies in amplitudes with respect to the target
model. It might be assigned to the uncertainty of the inferred bedrock depth and velocity. In Fig. 6(f), we compare the values of vS30 of the
ML, MAP and target models (vML

S30, vMAP
S30 and v

Target
S30 , respectively) and statistics from the ensemble of solutions. In particular, we compute

the most frequent value (vMAX
S30 ) and arithmetic mean (vAM

S30 ) including standard deviation. All of these are accompanied by respective f30 (i.e.
frequency corresponding to 30 m depth). In this test, the ML, MAP and target models lead to similar vS30 values being also in accord with
statistics from the ensemble of solutions (see Fig. 6f).

4.3 Multizonal transdimensional inference

The multizonal formulation allows us to include additional prior assumptions and exclude unlikely models from the model space. In this
inversion test assuming the multizonal model space, we take advantage of the provided (yet uncertain) estimate of depth to the bedrock and
divide the model space into two zones (z-interface set to 154 m while the actual bedrock depth is 160 m). The zone above this z-interface is
assumed to have elastic properties of soil-to-(soft)rock and the zone below properties of rock-to-(hard)rock (see Table D2 in Appendix D).

Results of the multizonal inference (Fig. 7) are consistent with those of the single-zone one. The data fit is almost identical to the
single-zone inference case in Fig. 4, therefore not shown here to keep this paper compact. The data variance reduction of the ML and MAP
model is 99.6 and 98.6 per cent, respectively. The posterior marginal PDFs of model parameters are consistent with the single-zone inference
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(a) (b) (c)

(d) (e) (f)

Figure 7. Inversion of synthetic data with the multizonal transdimensional model space. The z -interface (black dashed line) is placed at the depth 154 [m].
The figure layout is the same as in Fig. 5.

(compare Figs 7 and 5), although some improvements can be noted. In particular, the posterior marginal PDF of vS and vP are sharper than in
the single-zone inference case. The posterior PDF of vS is now better resolved in the bedrock and its inferred depth is closer to the correct value
of 160 m. This is also confirmed by inspecting the ML, MAP and target models. The better resolution of the vS and depth of the bedrock can
also be noted in comparison of resultant velocity profiles (compare Figs 7e and 5e). Further, even if unlikely ρ values are excluded from the
model space in the multizonal inference, its posterior PDF remains flat (see Fig. 7d). The posterior marginal PDFs of the QWL representation
remain sharp, and there are some improvements on low frequencies (compare upper panels in Figs 8 and 6). An improvement is notable for
the SH-wave transfer function and amplification referenced to the Swiss profile (see Figs 8d and e) with respect to the single-zone inference.
It is because spectral amplifications reflect properties along the whole profile (to 200 m depth) being better resolved in the multizonal case.
The values of vS30 (average velocity in the uppermost 30 m) are in a similar range as in the single-zone inference (compare Figs 8f and 6f). In
particular, ML and MAP models have vS30 equal to 244 m s–1 (Fig. 8f), which is in accord with the target model having vS30 equal to 245 m s–1.

Additional prior assumptions of the multizonal inference may help to constrain the inverse problem better and improve results. However,
incorrect assumptions may lead to the opposite effect and bias the solution. To further investigate this aspect, we show two additional
multizonal inferences with incorrect prior assumptions in Appendix C. For the first test, we set the depth of the z -interface to an incorrect
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(a) (b) (c)

(d) (e)

(f)

Figure 8. Statistics from the ensemble of solutions (multizonal transdimensional inversion of synthetic data). The figure layout is the same as in Fig. 6.

Table 2. Parameters of the 1-D model with the velocity gradient.

Top depth [m] vS [m s–1] vP [m s–1] ρ [kg m–3]

0 200 360 1800
20 450 810 1950
x + 39, where x ∈ {1, . . . , 119} 4.55x + 450 8.18x + 810 0.41x + 1950
159 1000 1800 2000
160 2000 3600 2700

value of 100 m (see Fig. C1); and in the second test, we specify wrong velocity thresholds in the upper zone (see Fig. C2). Both inversions
lead to a biased solution; nevertheless, a careful inspection of resultant PDFs may reveal such a bias (e.g. a sharp posterior marginal PDF at
the edge of the zone-specific interval).

4.4 Velocity gradients and low-velocity zones

This section validates our inversion procedure on two more complex target models characterized by a continuous positive velocity gradient
(Table 2) and a low-velocity zone (Table 3). The observed data vector consists of fundamental and first higher modes of Rayleigh waves,
fundamental mode of Love waves, and Rayleigh wave ellipticity. We infer solutions assuming the single-zone transdimensional model space
(see model space thresholds in Table D1 of Appendix D) and apply no constraints on the velocity gradient (i.e. hthr = hmax ). Hence,
low-velocity zones are allowed to occur everywhere along the profile. Note that assumed frequency ranges, data errors, and the model space
exploration settings are identical to those in the previous sections.

The inversion of observed (synthetic) data prepared in the model with a velocity gradient (Table 2) is shown in Fig. 9. The posterior
marginal PDFs of vS and vP (Figs 9a and b) are narrow in the uppermost (homogeneous) layers and rather broad at depth where the gradient
is located. The ML and MAP models possess an interface at approximately 80 m depth that does not correspond to the target model. This
artificial interface compensates for the gradual velocity increase in the depth range 40–160 m, and it is characterized by a high uncertainty
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Table 3. Parameters of the 1-D model with the low-
velocity zone.

Top depth [m] vS [m s–1] vP [m s–1] ρ [kg m–3]

0 200 360 1800
20 1000 1800 2000
40 450 810 1950
70 1000 1800 2000
160 2000 3600 2700

(a) (b) (c)

(d)

Figure 9. Inversion of synthetic data prepared in the model with a gradual velocity increase. Panels (a) and (b) show the posterior marginal PDF (colourscale)
overlayed by the ML, MAP, and target models (see legend). Panel (c) shows a histogram for the interface depth. The bottom panels in (d) show the fit of the
observed (synthetic) and modelled data.

(see Fig. 9c). Note that this results from the self-adapting number of layers; a large number of such fictitious interfaces may be expected if
it significantly improves the data fit. Further, the AM of PDF profile provides a reliable estimate of the velocity gradient to approximately
120 m depth (see green line in Fig. 9a), and it is smoothed around the interface at a depth of 160 m (due to a significant variance among
models). Thus, AM of PDF may represent sites with a smooth velocity gradient, still it may fail in imaging of subsurface consisting of layers
with significant velocity contrasts. Finally, note that the inferred profiles do not possess low-velocity zones, even though they were allowed
freely in this test.

In Fig. 10, we show the test results with a relatively thick low-velocity zone (see Table 3). Note that such a zone is not evident from
visual inspection of dispersion curves (see Fig. 10d), and hence this inversion test is challenging. The posterior marginal PDFs of vS and vP

(Figs 10a and b) as well as the ML and MAP models are ambiguous in this case. Nevertheless, the histogram in Fig. 10(c) clearly shows the
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(a) (b) (c)

(d)

Figure 10. Inversion of synthetic data prepared in the model with a low-velocity zone. The figure layout is the same as in Fig. 9.

depth of the first interface and the interface where the velocity inversion begins (20 and 40 m depth, respectively), which means that the upper
depth of the low-velocity zone can be resolved. The structure below is uncertain, as suggested by the broad PDF and smooth AM of PDF
profile. The resolution is somewhat recovered for the bedrock at a depth of 160 m. It suggests that interfaces delimiting velocity inversion
act as shadow zones making the structure immediately below hardly resolvable. Still, it is clear that we cannot explain the observed data in
Fig. 10(d) without the presence of a low-velocity zone below 40 m depth.

5 R E A L T E S T C A S E : A P P L I C AT I O N T O A S I T E I N C E N T R A L S W I T Z E R L A N D

In this section, we apply our inversion method to real surface wave data from the active seismic survey and single-station measurements
of ambient vibrations. Measurements were performed at the site of SENGL seismic station belonging to the Swiss Strong Motion Network
(SSMNet; Hobiger et al. 2016). We chose this specific site because of the large amount of available data: three modes of Rayleigh and two
modes of Love wave dispersion curves from active survey and Rayleigh wave ellipticity estimated from single-station ambient seismic noise
measurements.

The seismic station SENGL is located in central Switzerland (see Fig. 11) in an alpine valley at an altitude of 1033 m. This station’s site
is characterized by conoid deposits (gravel) with a shallow detritus cover (soil organic material). The conoid deposits are laterally surrounded
by a landslide, moraine and alluvial deposits (Swisstopo 2019). Soft sediments are estimated to have a thickness of approximately 10–15 m,
and the hard rock bedrock is expected at a depth of roughly 80 m (Swisstopo 2015). Our inversion focuses on the uppermost 50 m of this site.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/1/627/6189707 by guest on 07 M

ay 2021
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Figure 11. Measurement geometry at the site of the SENGL seismic station (Engelberg). The map shows the position of the SENGL seismic station (white
triangle), active seismic line (blue circles – geophones, yellow stars – sources), and ambient noise recording sensors (red triangles). Longitude and Latitude are
in Swiss CH1903/LV03 coordinate reference system EPSG:21781. The overview map shows the location of the Engelberg municipality within Switzerland.

5.1 Surface wave data

The active seismic survey (MASW; Park et al. 1999) and single-station measurements of ambient vibrations were carried out in the framework
of the SSMNet renewal project (Hobiger et al. 2016). The active seismic measurement was realized about 100 m far away from the SENGL
seismic station using one seismic line of three-component geophones (see Fig. 11). Rayleigh and Love wave dispersion curves were obtained
from measurements by a processing in the f–k domain. The single-station measurement of ambient vibrations was then performed using a
three-component broadband seismometer near the active seismic line (ENGL02 sensor in Fig. 11). The ellipticity of Rayleigh waves was
estimated from the measured data by the RayDec method (Hobiger et al. 2009). The complete description of the measurement and data
analysis at the SENGL site is summarized in Panzera et al. (2020).

The surface wave data (input data of the inversion) consist of fundamental, first higher, and second higher modes of Rayleigh waves;
fundamental and first higher modes of Love waves; and ellipticity of the Rayleigh waves (frequency ranges 8.8–40 Hz, 12–45 Hz, 26–
43 Hz, 7.8–54 Hz, 24–55 Hz and 2.0–26 Hz, respectively). The data are accompanied by uncertainties (vector of standard deviations of data
errors) estimated from stacked f–k panels (dispersion curves) or as an output from the RayDec method (ellipticity). The real data, including
uncertainties, are shown in Fig. 12 by black curves and error-bars.

5.2 Inversion of the real data

For this application, we use the single-zone transdimensional model space, as no reliable information on the subsurface is available a priori
(see model space thresholds in Table D3 of Appendix D), and we constrain the velocity gradient to be positive (i.e. hthr = hmin ). This means
that the adapted effective prior would resemble the effective prior shown in Fig. 3 (upper panels). The ensemble of models was produced
using 300 Markov chains of the Parallel Tempering (285 exploration and 15 sampling chains). For each chain, the length of the burn-in
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(a) (b) (c)

(d) (e) (f)

Figure 12. Fit of the real data measured at the SENGL site (black curves with error-bars) and data modelled in velocity models from the ensemble of solutions.
Panels (a)–(e) show data retrieved by the MASW method (joint axes are used). Panel (f) shows data retrieved by the RayDec method (Hobiger et al. 2009)
from single-station measurements of ambient vibrations.

and production phases was set to 5000 and ∼40 000 steps, respectively, corresponding to ∼13 500 000 models tested and ∼600 000 random
samples drawn from the posterior PDF.

The data fit, shown in Fig. 12, is satisfactory for a joint inversion of six different data types (five times slowness and one log-ellipticity
domains). Note that an ill-posed inversion, inappropriate parametrization, or biased dispersion curves may prevent a good fit in the joint data
space. There are some discrepancies for the fundamental mode of Rayleigh wave in the 14–18 Hz frequency range (Fig. 12a). Nevertheless,
the modelled data still fits pretty well all individual data curves together. Further, discrepancies for the Love wave dispersion curve in the
33–41 Hz frequency range (Fig. 12d) correspond to structures at less than two meters depth, which could be ascribed to, for example shallow
subsurface heterogeneity along the active seismic line. Still, our inversion is robust and does not overfit the data, supporting the validity of the
self-adapting mechanism for models’ complexity. To further support the resultant data fitting, we examine standardized residuals a posteriori
in Supplement S5. The data variance reduction of ML and MAP models is 48 and 43 per cent, respectively, which corresponds to a fair fit.

The result of the inversion of real data is shown in Fig. 13. Posterior marginal PDFs of vS and vP (Figs 13a and b, respectively) are sharp
in the uppermost 30 m of the profile, suggesting that S- and P-wave velocities are well resolved within this depth range. The histogram for
layer interfaces in Fig. 13(c) and the profiles in Figs 13(e) and (f) indicate that there are three likely interfaces at a depth of approximately 2.2,
8.5, and 30 m. While the first two are well resolved, the third interface’s depth is uncertain (see Fig. 13e). Moreover, posterior marginal PDFs
of vS and vP are less sharp below the depth of 30 m (see Figs 13a and b), meaning the resolution is reduced below the third (bottommost)
interface. The velocity contrast is not sharp at the third interface (see Fig. 13a), indicating that the velocity might gradually increase with
depth. Such a hypothesis is supported by comparing ML and MAP models in Fig. 13(e), where they fit in the upper part, but interfaces do not
match in the profile’s bottommost part. Further, AM of PDF is very smooth and gradually increases below 15 m depth that may also indicate
a velocity gradient, although resolution is not sufficient to confirm this hypothesis. The inferred posterior marginal PDF of mass density
(Fig. 13d) is unrealistic, and the ML and MAP models’ ρ values oscillate from one extreme to the other. From the synthetic tests (Figs 5d
and 7d), we saw that this parameter could hardly be resolved, and therefore any ρ value should be considered purely as the algorithm’s effort
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(a) (b) (c)

(d) (e) (f)

Figure 13. Inversion of real data measured at the SENGL site. The figure layout is the same as in Fig. 5.

to reduce the misfit between real data and data modelled by a simple 1-D model. This is further supported by an additional inversion with a
density constraint in Supplement S4.

The ensemble of solutions exhibits a maximum probability of having four layers (Fig. 14b). It means that a velocity model having
four homogeneous layers is the simplest model that can explain the real data from the SENGL site, and at the same time, the data do not
(systematically) provide a more detailed resolution. In reality, however, the subsurface does not consist of homogeneous layers, and the
velocity may gradually increase with depth (as speculated for the third interface). In our method, a gradient may be compensated by an
increase in the number of layers (see Fig. 9), as can also be seen for the ML model (Figs 13a and e) consisting of eight layers. Nevertheless,
since the gradual velocity increase at a depth of ∼30 m is uncertain, the self-adapting algorithm prefers more simple velocity models (more
probable models) having four layers (see Fig. 14b).

The site-specific values of vS30, QWL representation, and theoretical spectral amplification are useful for site characterization. The
posterior marginal PDF of QWL depth (Fig. 15a) has a high resolution, highlighted by the matching QWL depth of ML and MAP models.
This representation is especially useful to link features inferred in a particular depth with the experimental data’s wavelength (e.g. Poggi et al.
2012). In particular, the resolution drop below the third interface at a depth of approximately 30 m (noted above) corresponds to a frequency of
4.4 Hz (Fig. 15a), which roughly corresponds to the lower frequency limit in the observed data (see Fig. 12). The QWL impedance (Fig. 15c)
confirms that a distinct S-wave velocity contrast characterizes the two uppermost interfaces (#1 and #2), while lower values and smooth PDF
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(a) (b) (c)

Figure 14. Histograms from the ensemble of solutions (inversion of real data measured at the SENGL site). Panels (a), (b) and (c) show histograms for data
variance reduction, number of layers, and average value of S-wave velocity to 30 m depth (for vS30 values see Fig. 15f).

(a) (b) (c)

(d) (e)

(f)

Figure 15. Statistics from the ensemble of solutions (inversion of real data measured at the SENGL site). The figure layout is the same as in Fig. 6. Green lines
indicate properties associated with QWL depths of 2.2, 8.5 and 30 m (interfaces #1, #2 and #3, respectively).

of impedance for the third interface (#3) suggest, once again, a gradual velocity increase with depth. Next, the inferred vS30 values of ML and
MAP models (Fig. 15f), as well as the MAX and AM values from the ensemble of solutions (Fig. 14c), correspond to soil class B in the EC8
classification (CEN 2004). In the bottom panels of Fig. 15, we show posterior marginal PDFs of the theoretical SH-wave transfer function
and theoretical amplification referenced to the Swiss profile (Poggi et al. 2011). The amplification referenced to the Swiss profile predicts the
site amplification that is useful for spectral modelling (Edwards et al. 2013). However, the SENGL seismic station’s actual location differs
slightly from the seismic survey site, the latter being 100 m distant and approximately 2–3 m lower in altitude (see Fig. 11). We do not
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(a) (b) (c)

Figure 16. Inversion of the Rayleigh wave ellipticity retrieved by RayDec method (Hobiger et al. 2009) at the SENGL site. The posterior marginal PDFs of
S-wave velocity were inferred by (a) single-zone inference, (b) multizonal inference, (c) multizonal inference with fixed velocity of the uppermost zone. The
PDFs are overlayed by ML, MAP and reference models (see legend). Black dashed lines denote z-interfaces.

compensate for this difference here since our primary goal is simply to illustrate an application of our inversion method. Therefore, strictly
speaking, the inferred amplification referenced to the Swiss profile in Fig. 15(e) is not the final theoretical prediction of the SENGL seismic
station’s spectral amplification.

5.3 Inversion of the Rayleigh wave ellipticity

In general, the dispersion curves of surface waves are not available for all the sites of interest. An inversion of the Rayleigh wave ellipticity
only (data from single-station measurements) is ambiguous, but it may be beneficial if no additional data available (e.g. permanent seismic
station sites, single-station extraterrestrial measurements). In this section, we test our method in cases of inversions of ellipticity data using
both single-zone and multizonal model space. In particular, we use the real ellipticity data estimated by the RayDec method (Hobiger et al.
2009) at the SENGL site (Fig. 12f), while data retrieved by the MASW are excluded in this test (for the method demonstration purpose only).
Since the inference based on the Rayleigh wave ellipticity is expected to have pronounced uncertainty, we take the MAP model obtained
in the previous section as a reference solution (see Fig. 13a). This test is a challenge, as the ellipticity data in Fig. 12(f) are uncertain and
without distinctive trough or peak; moreover, we leave the velocity gradient unconstrained, meaning that low-velocity zones are allowed to
occur (i.e. hthr = hmax ). In particular, we performed three tests: single-zone inversion, multizonal inversion, and multizonal inversion with a
fixed velocity of the uppermost zone. For the multizonal inference, the model space consists of four zones corresponding to the MAP model
layers obtained in the previous section. These have a thickness of 2.2, 6.5 and 22.6 m, and the last being a half-space. For the complete list
of model space thresholds, see Tables D3, D4 and D5 in Appendix D. Note that in other real multizonal applications, thicknesses of zones
might be prescribed from stratigraphic logs or other external information on subsurface, and the fixed seismic velocity in the uppermost layer
might be from direct measurements.

Results in terms of posterior marginal PDFs of S-wave velocity are shown in Fig. 16. As expected, the posterior PDFs are less sharp than
in the reference solution in Fig. 13(a). Moreover, the resolution below the last interface is severely degraded (Figs 16a and b), and high S-wave
velocity values occur because the ellipticity is essentially determined by velocity contrasts, while being weakly sensitive to its absolute value
(e.g. Hobiger et al. 2013). This may also explain why the inferred S-wave velocities are systematically higher than in the reference solution
(as the reference model in Fig. 16 is used the MAP model from Fig. 13a). On the other hand, the multizonal inference better matches the
reference model when the S-wave velocity of the uppermost zone is fixed (see Fig. 16c), demonstrating that the inversion can effectively
benefit from a priori information. However, it should be noted that incorrect prior assumptions might lead to a biased solution (see Appendix
C). Further, we noted that sampling chains in the multizonal model space converging faster to a stationary state. In this particular case, the
average data variance reduction after the first 1000 Markov chain steps was 79 and 86 per cent in the single-zone and multizonal inference,
respectively (the final data variance reduction of the ML model is 89 per cent in all these tests). To sum up this test, the inversion of the
Rayleigh wave ellipticity alone is ambiguous and interpretations from a single resultant layered model without an investigation on uncertainty
should be avoided. However, the rate of velocity change with depth (i.e. pattern of the velocity profile) may be inferred and interpreted in
terms of local geology.
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6 D I S C U S S I O N

Observed and modelled data are subject to uncertainty originating from measurement errors (i.e. errors of dispersion and ellipticity curves)
and the simplified modelling of a natural phenomenon (i.e. how close are the observed real data to the data modelled in 1-D subsurface
structures). In the Bayesian inversion, we can account for these errors jointly through the data covariance matrix or vector of the data variance,
see eqs (6) and (7). Unfortunately, no rigorous research on these errors has been performed in the framework of local near-surface imaging to
date. Therefore, expected data errors are treated as a user-defined expert estimate in this research. These expected errors can be determined
empirically during processing of raw field data.

The model space is constrained through minimal and maximum plausible values of model parameters (see Appendix D). This is a trait
common to most inversion platforms in this field (e.g. layer threshold values in Geopsy). Our inversion can effectively benefit from a priori
information constraining these thresholds (see Figs 7, 8 and 16); nevertheless, it is essential to set the limits of S- and P-wave velocities as
wide enough if no reliable information on the subsurface is available a priori. Too tight or wrong thresholds may lead to biased solutions
neglecting the information carried by the measured data. In our approach, this issue is clearly indicated by a sharp posterior marginal PDF at
the edge of the interval of plausible values (see Fig. C2). Furthermore, constraining the positive velocity gradient, as implicitly done in most
inversion techniques in site characterization, significantly affects the model space itself. This can be deduced from the effective prior on the
model space (see Fig. 3). Hence, these constraints should be applied only in justified cases to prevent biased solutions (e.g. when too small
segments of dispersion curves or just fundamental mode is available).

The multizonal formulation allows us to include additional model assumptions based on zones thickness and zone-specific parameter
thresholds. These may be based on, for example stratigraphic logs, standard penetration tests and known water table. It can improve results
(see Figs 7 and 8), but one has to avoid incorrect prior assumptions that may lead to biased solutions (see Appendix C). Another advantage
of the multizonal formulation is the reduction of the model space that contains too many potential non-realistic models, thus increasing its
exploration efficiency. It may be especially advantageous in those inverse problems where the model space is very extensive, and the forward
problem is computationally expensive to solve.

The mass density cannot be resolved from surface wave data typically collected during site characterization studies. The inferred values
of ρ are most likely random without any predictive value (see Fig. 5d), and any apparent resolution (e.g. Fig. 13d) is likely caused by the
automatic misfit reduction due to the 1-D approximation of near-surface structures. In our method, one may simply neglect the inferred
values since S- and P-wave velocities are treated as independent from the mass density, or use a parametrization with a fixed ρi by setting
ρmin

i = ρmax
i .

One of the most innovative features of our approach is the self-adapting number of layers. Inferences with a fixed number of layers
are relatively limited when exploring the model space as they may get trapped inside the local minima of the misfit function. Moreover,
the ‘true’ number of layers is generally unknown. In our method, the random ‘birth’ and ‘death’ of layers at random depths enhance the
model space exploration, while the self-adapting mechanism controls the model complexity (parsimonious transdimensional inversion). The
self-adapting mechanism prefers simple models that still explain the observed data (the explicit Occam’s razor; see Appendix B); hence,
it avoids models with many artificial low-velocity zones. In nature, the subsurface does not consist of homogeneous layers, and seismic
velocities may gradually vary with depth. In our method, the self-adapting increase of the number of homogeneous layers compensates such
continuous velocity gradients (see Fig. 9), and even when the algorithm adds needed artificial layers, a potential velocity gradient might be
assumed from the posterior PDF or AM of PDF. Further, the exploration algorithm is well balanced in our framework, and hence it allows a
clear identification of true low-velocity zones (see Fig. 10).

Our inversion approach provides multiple indicators useful for the interpretation purpose. The sharpness of the posterior marginal
PDF may serve as an indicator of the solution uncertainty and uniqueness (e.g. an increase of uncertainty with depth, ambiguous solutions,
potential velocity gradients). The histogram of interface depths indicates ambiguous or certain interfaces (bins with a low or high probability,
respectively), and it indicates the interface uncertainty at depth (kurtosis of the histogram around the assumed interfaces). The inferred
average profile (i.e. AM of PDF) is useful for comparing with the stratigraphic profile, and it may be the representative for sites with a smooth
velocity gradient. Finally, the ML model is representative in terms of the data fit while the MAP model concerning the posterior PDF; thus, a
comparison between them may indicate the reliability of the inferred features (reliable where ML and MAP models coincide).

7 C O N C LU S I O N S

The joint inversion of dispersion and ellipticity curves of surface waves is a non-linear inverse problem characterized by significant inherent
non-uniqueness. It can be performed in the Bayesian probabilistic framework, where posterior PDFs of model parameters are explored by a
random sampling in the model space. The inferred ensemble of models can be used to construct posterior marginal 2-D histograms showing
the occurrence probability of a property of interest at a particular depth.

We introduced a joint inversion technique of surface wave dispersion and ellipticity data, exploring various non-unique solutions and
adapting the number of layers of the velocity models as required by the observed data. The model space is explored via the reversible jump
Markov chain Monte Carlo algorithm (Green 1995), providing model samples drawn from the posterior PDF. The sampling mechanism
is enhanced by using the Parallel Tempering technique (Sambridge 2014) to improve the exploration of the complex multidimensional
model space. The parametrization for the variable number of layers is similar to that of Bodin et al. (2012), and the explicit Occam’s razor
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controlling the number of layers follows the approach of Hallo & Gallovič (2020). The method is rigorously formulated in a general multizonal
transdimensional Bayesian framework that allows the definition of many special cases like, for example:

Our inversion technique was first validated based on synthetic tests. The former helped us to understand the general behaviour of the
proposed algorithm. The inferred S- and P-wave velocity values and interface depths satisfactorily matched the corresponding target values,
and the estimated solution uncertainties followed the natural data resolution decrease with depth. We also demonstrated the self-adapting
mechanism’s reliability in inferring complex subsurface structures with continuous velocity gradients and low-velocity zones. Finally, we
applied our approach to data obtained from active seismic survey and single-station ambient vibrations measurements at the SENGL site,
central Switzerland. This test confirmed the robustness of our joint inversion algorithm when applied to multiple surface wave modes and
ellipticity, and it therefore represents a valuable tool for site characterization studies with respect to the solution uncertainty and non-uniqueness
(e.g. vS30 can be given by histogram).
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https://map.geo.admin.ch

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model
Parameter Estimation, 342pp., Society for Industrial and Applied
Mathematics.

Thomson, W.T., 1950. Transmission of elastic waves through a stratified
solid, J. appl. Physics, 21, 89–93.

Tokimatsu, K., Kuwayama, S., Tamura, S. & Miyadera, Y., 1991. Vs de-
termination from steady state Rayleigh wave method, Soils Found., 31,
153–163.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1.1. Convergence of the MCMC sampling procedure: Inversion of the synthetic data with the single-zone transdimensional model
space (Fig. 5 in the main text). There were deployed 24 MPI nodes processing 20 parallel Markov chains per each. X-axis shows number of
performed chain steps. Y-axis shows maximal data variance reduction of proposed models per each MPI node.
Figure S1.2. Convergence of the MCMC sampling procedure: Inversion of synthetic data with the multizonal transdimensional model space
(Fig. 7 in the main text). There were deployed 24 MPI nodes processing 20 parallel Markov chains per each. X-axis shows number of
performed chain steps. Y-axis shows maximal data variance reduction of proposed models per each MPI node.
Figure S1.3. Convergence of the MCMC sampling procedure: Inversion of the real data measured at the SENGL site (Fig. 13 in the main
text). There were deployed 16 MPI nodes processing 20 parallel Markov chains per each. X-axis shows number of performed chain steps.
Y-axis shows maximal data variance reduction of proposed models per each MPI node.
Figure S2.1. An example of the Gaussian random walk in the parameter space with the efficiently homogeneous prior. The initial random
value is shown by the red dot. This figure is produced by the Matlab code below.
Figure S3.1. A random exploration of the union state space by the reversible-jump MCMC algorithm with the reciprocal prior. Panel (a)
shows random jumps between neighbouring discrete model space states during the sampling procedure. Panel (b) shows the occurrence of
the individual discrete states in the sampling chain. Indeed, the latter shows the prescribed reciprocal distribution. This figure is produced by
the Matlab code below.
Figure S4.1. Fit of the real data measured at the SENGL site (black curves with errorbars) and data modelled in velocity models from the
ensemble of solutions. Panels (a)–(e) show data retrieved by the MASW method (joint axes are used). Panel (f) shows data retrieved by the
RayDec method (Hobiger et al. 2009) from single-station measurements of ambient vibrations.
Figure S4.2. Inversion of the real data measured at the SENGL site using constrained mass density. Panels (a), (b) and (d) show the posterior
marginal PDF (colourscale) overlayed by the ML, MAP and target models (see legend). Panel (c) shows a histogram for the interface depth.
Panels (e) and (f) show the inferred S- and P-wave velocity profiles, respectively.
Figure S5.1. The covariance matrix of standardized residuals from the inversion of real data measured at the SENGL site (Fig. 12 in the
main text). The standardized residuals are data misfits between the posterior predictive distribution and observed data in standardized units.
Variances of standardized residuals are arranged along the descending diagonal. Data samples are discretized dispersion curves of R0, R1, R2
modes of Rayleigh waves, and L0, L1 modes of Love waves; and discretized ellipticity curve of Rayleigh waves. The frequency of discrete
samples is increasing with their index within each data curve separately.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the paper.

A P P E N D I X A : M – H A C C E P TA N C E I N T H E M U LT I Z O NA L T R A N S D I M E N S I O NA L
C A S E

The Metropolis–Hastings (M–H) acceptance probability (Metropolis et al. 1953; Hastings 1970) is the key to ensuring that the Markov
chain samples statistically follow the target posterior PDF of model parameters. Green (1995, 2003) extended the M–H algorithm by the
multiple-state case and showed that the chain of steps in the rjMCMC converges to the transdimensional posterior PDF. This has been
investigated and applied in geoscience by, for example Malinverno (2002), Sambridge et al. (2006), Bodin & Sambridge (2009), Gallagher
et al. (2009), Dettmer et al. (2010), Bodin et al. (2012) and Hallo & Gallovič (2020). Green (1995) showed that the convergence to the
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posterior PDF p(m|dobs) given observed data dobs occurs if the M–H acceptance α of a new proposed model m′ given model m is

α
(
m′|m) = min

(
1,

p (k ′)
p (k)

p (w′
k′ |k ′)

p (wk |k)

p (dobs|m′)
p (dobs|m)

q (m|m′)
q (m′|m)

|J|
)

, (A1)

where q(m′|m) and q(m|m′) are proposal distributions of the forward and reverse steps, respectively, p(k ′) is a prior probability of the
proposed state k ′, p(w′

k′ |k ′) is the prior PDF of model parameters given the proposed state k ′, and p(dobs|m′) is the likelihood function given
the proposed model m′. The determinant of the Jacobian |J| is meant to account for the volume change of the model space, and it equals unity
in our case (e.g. Sambridge et al. 2006; Bodin & Sambridge 2009; Dettmer et al. 2010).

In the case of the birth-death rjMCMC (e.g. Green 1995), the model state transitions are considered only between neghbouring states,
that is so-called perturb move: k ′ = k; birth move: k ′ = k + 1; and death move: k ′ = k − 1, where k ≡ N (k is equivalent to the number of
layers). The M–H acceptance probabilities for perturb, birth, and death moves, that is αP, αB and αD respectively, are derived from eq. (A1)
by substituting k ′ with k, k + 1 and k − 1 for the respective move types. The resulting M–H acceptance probabilities are:

αP

(
m′|m) = min

(
1,

p
(
w′

k |k
)

p (wk |k)

p (dobs|m′)
p (dobs|m)

q (m|m′)
q (m′|m)

)
, (A2)

αB

(
m′|m) = min

(
1,

p (k + 1)

p (k)

p (w′
k+1|k + 1)

p (wk |k)

p (dobs|m′)
p (dobs|m)

qD
k+1

qB
k

)
, (A3)

αD

(
m′|m) = min

(
1,

p (k − 1)

p (k)

p
(
w′

k−1|k − 1
)

p (wk |k)

p (dobs|m′)
p (dobs|m)

qB
k−1

qD
k

)
, (A4)

where qB
k and qD

k are the probability densities of birth and death of one arbitrary VN given state k (see Sambridge et al. 2006).
In the multizonal transdimensional case, the prior PDF given state k in eqs (9) and (10) can be expressed as

p (wk |k) =
Z∏

i=1

(p (vSi |i) p (vPi |i) p (ρi |i))
Z∏

i=1

p (hi ) , (A5)

p (wk |k) =
Z∏

i=1

(p (vSi |i) p (vPi |i) p (ρi |i)) p (hk) , (A6)

where p(hk) is the prior PDF of ln-depths of all VNi in the model vector wk given state k. Moreover, the prior PDF of the ln-depth of a
single VN is efficiently homogeneous and independent from others. For mathematical convenience, following Bodin & Sambridge (2009),
we assume that VNi can occur on an underlying grid of ω finite positions in the ln-depth domain (where ω  k). There are ω!

k!(ω−k)! possible
configurations of the placement of k nuclei on the underlying grid. Nevertheless, this ‘grid trick’ is just for convenience and there are actually
infinite possible configurations. Alternatively, the same result can be achieved by rigorous derivation based on the Dirichlet distribution
(Dosso et al. 2014). Then eq. (A6) becomes

p (wk |k) =
Z∏

i=1

(p (vSi |i) p (vPi |i) p (ρi |i))
1

ω!
k! (ω − k)!. (A7)

In the multizonal birth and death moves, one arbitrary VN appears or vanishes in a zone j ( j ∈ {1, . . . , Z}). The remaining zones
collected in the set X = {i ∈ Z | 1 ≤ i ≤ Z and i �= j} preserve their number of VNi (i.e. λi ). Hence, it is convenient to modify eq. (A7) as
follows

p (wk |k) = p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) ∏
i∈X

(p (vSi |i) p (vPi |i) p (ρi |i))
1

ω!
k! (ω − k)!. (A8)

Next, we assume that the prior PDFs p(vS j | j), p(vP j | j) and p(ρ j | j) of a single VN given zone j are constant (efficiently homogeneous
PDF, see eq. 11) and independent of each other. Then eq. (A8) modifies to

p (wk |k) = (
p

(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

))λ j
∏
i∈X

(p (vSi |i) p (vPi |i) p (ρi |i))
1

ω!
k! (ω − k)!. (A9)

Consequently, as we use the ‘birth from prior’, probability densities of birth and death of one arbitrary VN in a zone j are

qB
k = p

(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) 1

ω − k
, (A10)

qD
k = 1

k
. (A11)
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Now, we can evaluate the prior-to-proposal (PQ) ratio within M–H acceptance terms of all move types in eqs (A2)–(A4). The PQ ratio
of a simple perturb move within eq. (A2) is

p
(
w′

k |k
)

p (wk |k)

q (m|m′)
q (m′|m)

= 1, (A12)

because the prior PDF given state k is an invariant constant in this case (i.e. p (w′
k |k) = p(wk |k)), and the proposal distribution q is inherently

reversible as we use the Gaussian random walk, that is q(m′|m) = q(m|m′). The PQ ratio in the M–H acceptance of birth move within eq. (A3)
is evaluated by substituting eqs (A9)–(A11) as follows:

p (w′
k+1|k + 1)

p (wk |k)

qD
k+1

qB
k

=
(

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

))λ j +1(
p

(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

))λ j

∏
i∈X (p (vSi |i) p (vPi |i) p (ρi |i))∏
i∈X (p (vSi |i) p (vPi |i) p (ρi |i))

1
ω!

(k + 1)! (ω − k − 1)!
1
ω! k! (ω − k)!

1
k+1

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

)
1

ω−k

= k + 1

ω − k

ω − k

k + 1
= 1. (A13)

Considering that prior PDFs of separated parameters are constant (i.e. p (vS
′
j | j) = p(vS j | j), p (vP

′
j | j) = p(vP j | j), and p (ρ ′

j | j) =
p(ρ j | j)). The PQ ratio of the death move within eq. (A4) can be expressed similarly to the birth move, as shown in eq. (A13), which also
equals unity. For the interzonal move, one arbitrary VN vanishes in zone j and appears in zone j ′ without changing its properties. The
remaining zones collected in the set Y = {i ∈ Z | 1 ≤ i ≤ Z and i �= j and i �= j ′} preserve their number of VNi. The PQ ratio in this move
type (a special case of perturb move in eq. A2) can be evaluated by substituting adjusted eq. (A9) as follows:

p
(
w′

k |k
)

p (wk |k)

q (m|m′)
q (m′|m)

=
(

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

))λ j −1(
p

(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

))λ j

(
p

(
vS j ′ | j ′) p

(
vP j ′ | j ′) p

(
ρ j ′ | j ′))λ j ′ +1(

p
(
vS j ′ | j ′) p

(
vP j ′ | j ′) p

(
ρ j ′ | j ′))λ j ′

∏
i∈Y (p (vSi |i) p (vPi |i) p (ρi |i))∏
i∈Y (p (vSi |i) p (vPi |i) p (ρi |i))

1
ω! k! (ω − k)!
1
ω! k! (ω − k)!

q (m|m′)
q (m′|m)

= p
(
vS j ′ | j ′) p

(
vP j ′ | j ′) p

(
ρ j ′ | j ′)

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) q (m|m′)
q (m′|m)

. (A14)

Once again, considering that prior PDFs of separated parameters are constant (i.e. p (vS
′
j | j) = p(vS j | j), and p (vS

′
j ′ | j ′) = p(vS j ′ | j ′),

and similarly for vP j and ρ j ). The interzonal move is possible through perturbation of the ln-depth of a VN by the deployed Gaussian random
walker. Hence, the proposal distribution q in eq. (A14) is inherently reversible (symmetric at the ln-depth domain), that is q(m′|m) = q(m|m′).
Moreover, the properties of the transferred VN (i.e. vS j , vP j , and ρ j ) are preserved in the target zone j ′, and the PQ ratio in eq. (A14) then
simplifies to

p
(
w′

k |k
)

p (wk |k)

q (m|m′)
q (m′|m)

= p
(
vS j | j ′) p

(
vP j | j ′) p

(
ρ j | j ′)

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) , (A15)

which can be determined numerically for a given pair of zones via eq. (11). Note that the PQ ratio of the interzonal move in eq. (A15) is zero
if any of the model properties transferred from zone j fall outside the prescribed range of the model properties in zone j ′.

The PQ ratios in eqs (A12)–(A15) do not include the prior probability of the model space state p(k) that has been left apart in eq. (A1).
The common approach is to assume uniform prior probability of the number of layers, that is p (k) = const . It may be a reasonable assumption,
because a prior in favour of simpler models is not necessarily required, as a model with fewer layers will automatically have a sharper posterior
PDF (i.e. an objective Occam’s razor; Jefferys & Berger 1992; Malinverno 2002). However, our aim is not just the posterior PDF but also
reliable and simple sampling models (see Appendix B). Moreover, the joint inversion exhibits significant inherent non-uniqueness that may
complicate the posterior PDF by the presence of multiple posterior maxima. To this end, we prescribe an explicit Occam’s razor for the
number of layers through the prior of the model space states p(k). In particular, following Hallo & Gallovič (2020), we use the discrete
reciprocal distribution expressed as follows

p (k) = cK k−1, (A16)

where cK is a normalization constant. It is a proper prior because k has a positive integer value (k ∈ Z+), and it is indexing the countable
collection of model states K as required by the definition of the union state-space by Green (2003). Then, a substitution of the first term of
the M–H acceptance of eq. (A1) has one of the following forms

p (k ′)
p (k)

= p (k)

p (k)
= 1 (A17)

p (k ′)
p (k)

= p (k + 1)

p (k)
= cK(k + 1)−1

cKk−1
= k

k + 1
(A18)

p (k ′)
p (k)

= p (k − 1)

p (k)
= cK(k − 1)−1

cKk−1
= k

k − 1
(A19)
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Substitutions in eqs (A17), (A18) and (A19) are relevant to the M–H acceptance probability of perturb, birth, and death moves of the
birth-death rjMCMC, respectively. Note that a comparison with the classical transdimensional inversion is shown in Appendix B. Finally, the
M–H acceptance probabilities for perturb αP, birth αB, death αD and interzonal αZ moves are expressed by substituting eqs (A12), (A13),
(A15), (A18) and (A19) in eqs (A2)–(A4) as follows:

αP

(
m′|m) = min

(
1,

p (dobs|m′)
p (dobs|m)

)
, (A20)

αB

(
m′|m) = min

(
1,

k

k + 1

p (dobs|m′)
p (dobs|m)

)
, (A21)

αD

(
m′|m) = min

(
1,

k

k − 1

p (dobs|m′)
p (dobs|m)

)
, (A22)

αZ

(
m′|m, j, j ′) = min

(
1,

p
(
vS j | j ′) p

(
vP j | j ′) p

(
ρ j | j ′)

p
(
vS j | j

)
p

(
vP j | j

)
p

(
ρ j | j

) p (dobs|m′)
p (dobs|m)

)
. (A23)

A P P E N D I X B : I M P L E M E N T E D PA R S I M O N I O U S P R I N C I P L E S

A quantification of the Occam’s razor principle has a deep connection with the Bayesian inference (Jefferys & Berger 1992). In general, the
Occam’s razor suggests that an explanation of facts should be no more complicated than necessary. The Bayesian inference allows multiple
ways how to quantify and implement such a principle. In particular, a common implementation is the parsimonious transdimensional Bayesian
inversion (Malinverno 2002) in which models with less adjustable parameters will automatically have an enhanced (sharper) posterior PDF.
We designate this implementation here as the classical transdimensional inversion (Fig. B1b). Nevertheless, it is possible to implement also the
second quantification that is the parsimonious selection of models. The latter chooses a simpler model for practical reasons, and it is especially
beneficial when chasing a representative yet simple model. The approach introduced in this paper contains both of these quantifications
together, and it is designated here as the transdimensional inversion with the reciprocal prior of k (Fig. B1a).

In our application, the first quantification of the Occam’s razor is a direct consequence of using the transdimensional Bayesian inversion
(Malinverno 2002), where a subsurface model with fewer layers will automatically have sharper posterior PDF. This is the reason why the
MAP model have usually lower number of layers than the ML model. The second quantification, designated here as an explicit Occam’s
razor, is implemented through the prior of the model space states p(k). In particular, following Hallo & Gallovič (2020), we use a discrete
reciprocal distribution as the prior probability of k, which provides the parsimonious selection of sampling models. This implementation can
be expressed analytically as shown in Appendix A, and it can be easily included in a computational code as shown in Supplement S3. In
Fig. B1, we provide a comparison with the classical transdimensional inversion.

To compare our inversion approach with the classical transdimensional inversion, we performed an additional inversion test using
classical M–H acceptance probabilities for the birth-from-prior technique (e.g. Dosso et al. 2014). We adopted the same model and data as for
the synthetic test (see Table 1), the identical model space thresholds (Table D1), and exactly the same settings as of the single-zone inference.
The only difference are removed terms k/(k + 1) and k/(k − 1) of eqs (13) and (14) from the computational code. The reference solution
shown in Fig. B1(a) is a composite from Figs 2(a), (b), 4(f) and 5(a), while Fig. B1(b) shows results from just described inversion test. Both of
these inversion tests lead to almost identical posterior marginal PDF of vS as both include the objective (automatic) Occam’s razor. However,
the transdimensional inversion with the reciprocal prior of k (the explicit Occam’s razor) provides additionally a parsimonious selection of
sampling models. It is evident when we compare the target model used for computation of the synthetic data and resultant representative ML
and MAP models (see legend and annotation). This is an advantageous feature, when the selection of a representative model is required.

A P P E N D I X C : B I A S E D I N F E R E N C E D U E T O I N C O R R E C T P R I O R A S S U M P T I O N S

The multizonal formulation allows us to take into account additional site-specific assumptions. These are included by indicating plausible
zone-specific threshold values for S- and P-wave velocities, mass density and Poisson’s ratio. Additional prior assumptions may help constrain
the inverse problem better and improve results, as seen in Section 5.3. However, incorrect assumptions may lead to the opposite effect and
bias the solution. To further investigate this aspect, we perform two additional multizonal inferences with incorrect prior assumptions. We
adopt the same model and data as for the synthetic test (see Table 1 and Fig. 4). We infer the solution in the multizonal transdimensional
model space consisting of two zones and having the same burn-in and production phases as described in the main text.

For the first test (see Fig. C1), we set the depth of the z -interface to an incorrect value of 100 m (see model space thresholds in Table D6
of Appendix D). Although the resultant ML and MAP models still follow the target model (Figs C1a and b), the histogram in Fig. C1c
indicates a loss of interface depth resolution. This may wrongly suggest the presence of an artificial interface or provide biased depth estimates
when working with real data. In the second test (see Fig. C2), we place the z-interface close to the right position but specify wrong S- and
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(a) (b)

Figure B1. Comparison of the (a) implemented and (b) classical transdimensional inversion of an identical synthetic data. Both inversions assume the single-
zone model space and have exactly the same settings. Upper panels show prior/posterior marginal PDFs (colourscale). Bottom panels show prior/posterior
histograms of the number of layers. The target model consists of four layers and it is shown by the black line (see legend).

P-wave velocity thresholds in the upper zone (see model space thresholds in Table D7 of Appendix D). In particular, the true S-wave velocity
values fall outside the model space between 70 and 154 m depth. These incorrect limits have a severe impact on the resultant PDF, which
appears severely biased (see Fig. C2a): the systematically too low S-wave velocity at 70–154 m depth is compensated by shallower layer
interfaces above and below (see Fig. C2c). Note that incorrect assumptions on the plausible range of values are identified by a sharp posterior
marginal PDF at the edge of the zone-specific interval, as shown in Fig. C2(a).

A P P E N D I X D : T H R E S H O L D S O F T H E M O D E L S PA C E

A P P E N D I X E : L I S T O F A B B R E V I AT I O N S

AM – arithmetic mean
f–k – frequency-wavenumber

H/V – horizontal to vertical
IVI – interface delimiting velocity inversion
M–H – Metropolis–Hastings
MAP – maximum a posteriori
MASW – multichannel analysis of surface waves
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(a) (b) (c)

Figure C1. Multizonal inversion of synthetic data with incorrect prior assumptions on the depth of the z-interface (set to 100 m). Panels (a) and (b) show the
posterior marginal PDFs (colourscale) overlayed by the ML, MAP and target models (see legend). Panel (c) shows a histogram for the interface depth. Dotted
lines show thresholds of the model space (black cross denote an area excluded from the model space).

(a) (b) (c)

Figure C2. Multizonal inversion of synthetic data with incorrect prior assumptions on model space (vertical dotted lines). Panels (a) and (b) show the posterior
marginal PDFs (colourscale) overlayed by the ML, MAP, and target models (see legend). Panel (c) shows a histogram for the interface depth. Note that true
values of S-wave velocity are out of range of this model space at depths 70–154 [m].
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Table D1. Inversion of synthetic data with the single-zone model space.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 100 2500 200 4500 1500 3000 0.2 0.4

Table D2. Inversion of synthetic data with the multizonal model space.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 100 1500 200 2600 1500 2500 0.2 0.4
2 154 800 2500 1400 4500 2000 3000 0.2 0.4

Table D3. Inversion of real data.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 50 1500 100 4000 1500 2500 0.2 0.45

Table D4. Inversion of ellipticity with the multizonal model space.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 50 450 100 1000 1500 2500 0.2 0.45
2 2.2 250 1000 500 1800 1500 2500 0.2 0.45
3 8.7 550 1200 1200 3000 1500 2500 0.2 0.45
4 31.3 800 1500 1700 4000 1500 2500 0.2 0.45

Table D5. Inversion of ellipticity with the fixed velocity in the upper zone.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 171.5 171.5 388.3 388.3 1500 2500 0.2 0.45
2 2.2 200 600 400 1300 1500 2500 0.2 0.45
3 8.7 450 1200 1200 3000 1500 2500 0.2 0.45
4 31.3 800 1500 1700 4000 1500 2500 0.2 0.45

MAX – mode (the most frequent value)
ML – maximum likelihood
MTI – multizonal transdimensional inversion
PDF – probability density function
PQ – prior-to-proposal
QWL – quarter-wavelength
RayDec – random decrement technique
rjMCMC – reversible jump Markov chain Monte Carlo
SSMNet – Swiss Strong Motion Network
VN – Voronoi nucleus
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Table D6. Inversion of synthetic data with incorrect depth of z-interfaces.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 100 1500 200 2600 1500 2500 0.2 0.4
2 100 800 2500 1400 4500 2000 3000 0.2 0.4

Table D7. Inversion of synthetic data with incorrect thresholds of model space.

Zone index i Depth [m] vmin
Si [m s–1] vmax

Si [m s–1] vmin
Pi [m s–1] vmax

Pi [m s–1] ρmin
i [kg m–3] ρmax

i [kg m–3] ηmin
i ηmax

i

1 0 100 900 200 1800 1500 2100 0.2 0.4
2 154 800 2500 1400 4500 2000 3000 0.2 0.4
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