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Abstract

Active sensing animals may inspire the development of new technologies that mimic
their sensing behavior. Electric fish, for instance, orient themselves at night in complete
darkness by using their active electro-sensing system. They generate a stable, relatively
high-frequency, weak electric field and perceive the transdermal potential modulations
caused by nearby targets with different electromagnetic properties than the surrounding
water. Since they have an electric sense that allows underwater navigation, target
classification and intraspecific communication, they are privileged animals for bio-inspiring
man-built autonomous systems. Bats, on the other hand, process the reflected echoes
due to the presence of acoustic inclusions for echolocation. In general, they use acoustic
waves for most of the perceptual tasks, that range from hunting to navigating.

This thesis introduces premier algorithms in electro-sensing and echo-sensing. The
weakly electric fish is able to retrieve much more information about the target by
approaching it. To mimic this behavior, an innovative (real-time) multi-scale method
for target classification in electro-sensing is presented. The method is based on a
family of transform-invariant shape descriptors computed from generalized polarization
tensors (GPTs) reconstructed at multiple scales. The evidence provided by the different
descriptors at each scale is fused using Dempster–Shafer Theory. Numerical simulations
show that the recognition algorithm we proposed performs undoubtedly well and yields
a robust classification. For real-world applications, inhomogeneous targets have to be
identified. The shape descriptor-based classification algorithm is extended in order to
consider inhomogenous material parameters. The approach is based on new invariants for
the contracted generalized polarization tensors associated with inhomogeneous objects.
The numerical simulations show that by comparing these invariants with those in a
dictionary of precomputed homogeneous and inhomogeneous targets, one can successfully
classify the inhomogeneous target.

Another problem concerns intraspecific electro-communication for weakly electric fish. In
particular, a description on how the fish circumvent the jamming issue for both electro-
communication and active electro-sensing is presented. The main result is a real-time
tracking algorithm, which provides a new approach to the communication problem. It
finds a natural application in robotics, where efficient communication strategies are
needed to be implemented by bio-inspired underwater robots.

The concept of time-dependent polarization tensors (TDPTs) for the wave equation
associated to a diametrically small acoustic inclusion, with constitutive parameters
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different from those of the background and size smaller than the operating wavelength, is
used to mimic the echo-sensing capabilities of a static bat. Firstly, the solution to the
Helmholtz equation is considered, and a rigorous systematic derivation of a complete
asymptotic expansion of the scattered field due to the presence of the inclusion is presented.
Then, by applying the Fourier transform, the corresponding time-domain expansion is
readily obtained after truncating the high frequencies. The new concept of TDPTs is
shown to be promising for performing imaging. Numerical simulations are presented,
showing that the TDPTs reconstructed from noisy measurements allow to image fine
shape details of the inclusion.
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Abstract (italian)

Animali che fanno sensing possono ispirare lo sviluppo di nuove tecnologie che mimichino
le loro straordinarie abilità. I pesci elettrici, per esempio, si orientano di notte nella totale
oscurità usando il loro sensing elettrico. Essi generano uno stabile e debole campo elettrico
a frequenza relativamente alta, e percepiscono la modulazione di potenziale transdermico
causata da oggetti dielettrici nelle vicinanze con proprietà materiali diverse da quelle
dell’acqua. Possedendo un elettro-senso che permette loro la navigazione subacquea,
classificazione di target e comunicazione intraspecifica, essi sono animali privilegiati per
la costruzione di sistemi autonomi bio-ispirati. I pipistrelli, d’altra parte, elaborano
l’eco riflesso originato dalla presenza di un’inclusione acustica per eco-localizzazione. In
generale, essi sfruttano le onde acustiche per la maggior parte delle funzioni legate alla
percezione, dal cacciare alla navigazione in volo.

In questa tesi si introducono algoritmi all’avanguardia nel campo del sensing elettrico ed
acustico. Il pesce debolmente elettrico è in grado di recuperare molte più informazioni su
un target avvicinandosi ad esso. Per mimare questo comportamento, viene presentato
un innovativo metodo multi-scala per la classificazione dei target in tempo reale usando
il sensing elettrico. Il metodo si basa su una famiglia di descrittori, invarianti per
trasformazioni, che sono associati ai target dielettrici, e calcolati a partire dai tensori
di polarizzazione generalizzati (GPTs) ricostruiti a diverse scale. L’evidenza data da
differenti descrittori per ciascuna scala è fusa usando la teoria di Dempster–Shafer. Le
simulazioni numeriche mostrano che l’algoritmo di riconoscimento proposto performa
indubbiamente bene e fornisce una tecnica di classificazione robusta. D’altra parte, per
applicazioni reali, è necessario essere in grado di identificare anche target che non sono
omogenei. L’algoritmo di classificazione basato sui descrittori viene quindi esteso, in questa
tesi, in modo da poter considerare anche parametri materiali eterogenei. L’approccio si
basa su nuovi invarianti per i tensori (contratti) di polarizzazione generalizzati associati
a oggetti eterogenei. Le simulazioni numeriche mostrano che è possibile identificare con
successo un target comparandone gli invarianti con quelli appartenenti ad un dizionario
di target omogenei e non.

Un altro problema riguarda l’elettro-comunicazione intraspecifica per il pesce debolmente
elettrico. In particolare, viene presentata una descrizione su come il pesce possa aggirare
il problema dell’interferenza per comunicare e per fare sensing attivo di un target.
Il principale risultato è un algoritmo di tracking in tempo reale, il quale fornisce un
nuovo approccio al problema della comunicazione. Ciò trova un naturale impiego in
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robotica, dove robot subacquei hanno necessità di implementare efficienti strategie di
comunicazione.

Il concetto di tensori di polarizzazione temporali (TDPTs) per l’equazione delle onde
associati ad una inclusione acustica di piccolo diametro, con parametri materiali differenti
da quelli del mezzo di background e taglia inferiore alla lunghezza d’onda operativa, può
essere adoperato per mimare le capacità di sensing acustico di un pipistrello statico.
Anzitutto, considerata la soluzione dell’equazione di Helmholtz, viene presentata una
rigorosa e sistematica derivazione di una espansione asintotica completa del campo di
scattering dovuto alla presenza dell’inclusione. Dopodiché, applicando la trasformata di
Fourier, dopo aver troncato le alte frequenze, si ottiene la corrispondente espansione tem-
porale. Il nuovo concetto di TDPTs appare di naturale impiego nei problemi di imaging.
Vengono presentate simulazioni numeriche che mostrano come i TDPTs ricostruiti da
misurazioni contaminate da rumore consentano di fare una ricostruzione di fini particolari
dell’inclusione.
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Introduction

In this thesis we present novel mathematical methods for bio-inspired imaging. In
nature there exist some animals, such as weakly electric fish and bats, which possess
extraordinary sensing abilities. While electric fish gather information on the surrounding
waters by means of electrosensory organs, bats use their auditory system to perceive
acoustic echoes and avoid obstacles. Taking inspiration from these biological observations,
building improved autonomous robots that mimic their behavior is an intriguing challenge.
This explains why active electro- and echo-sensing has motivated an increasing number
of experimental, behavioral, biological, and computational studies.

Electric fish and electro-sensing

The biological behavior of weakly electric fish has been studied by scholars for years.
These fish orient themselves at night in complete darkness by using electrosensory
information, which makes these animals an ideal subject for developing bio-inspired
imaging techniques. Such interest has motivated a huge number of studies addressing
the active electro-sensing problem from many different perspectives since Lissmann and
Machin’s work [27, 28, 35, 54, 56, 55, 63, 75]. The growing interest in electro-sensing could
be explained not only by the curiosity of discovering a sixth sense, electric perception,
that is not one of our own senses, but also by potential bio-inspired applications in
underwater robotics. Since they have an electric sense that allows underwater navigation,
target classification and intraspecific communication, they are privileged animals for
bio-inspiring man-built autonomous systems [37]. Building autonomous robots with
electro-sensing technology may supply unexplored navigation, imaging and classification
capabilities, especially when the sight is unreliable due to, for example, the turbidity of
the surrounding waters or the poor lighting conditions [74, 39].

From the mathematical point of view, the electro-sensing problem is to detect and locate
the dielectric target and to identify its shape and material parameters given the current
distribution over the skin of the fish. The electric field perturbation due to the target
is a complicated highly nonlinear function of its shape, electromagnetic parameters,
and distance from the fish. Thus, understanding analytically this electric sensing is
likely to give us insight in this regard [27, 28, 35, 56]. A simple physical model for the
electric responses of the polarised targets has been proposed in [63]. The model shows
that the target’s position and size are intricately related in the measurements of the
trans-cutaneous currents projected onto the skin. Numerical approaches have also been
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Introduction

driven for simplified geometries using a finite differences scheme in [46], a finite elements
method in [49], and a boundary element method approach in [27]. The geometry of
the fish is simplified by an ellipse and is divided into two areas: the thin skin with low
conductivity and the interior of the body. In this simple model, the electric images
projected onto the fish skin are fundamentally blurry and difficult to interpret [75, 76].
In [49], the skin’s and body’s conductivity values are optimized in order to approximate
as well as possible the experimentally measured field. The result is that the optimal
conductivity is not uniform, being higher in the tail region.

More recently, in [2], a rigorous model for the electro-location of a target around the
fish has been derived. Using the fact that the electric current produced by the electric
organ is time harmonic with a known fundamental frequency, a space-frequency location
search algorithm has been introduced. Its robustness with respect to measurement noise
and its sensitivity with respect to the number of frequencies, the number of sensors, and
the distance to the target have been illustrated. In the case of disk- and ellipse-shaped
targets, it has been shown that the conductivity, the permittivity, and the size of the
targets can be reconstructed separately from multifrequency measurements. In [29],
a capacitive sensing method has recently been implemented. It has been shown that
the size of a capacitive sphere can be estimated from multifrequency electrosensory
data. In [34], uniqueness and stability estimates to the considered electro-sensing inverse
problem have been established. The electric current, which contains information on
the target, is measured by a discrete number of receptors along the fish body. When
enough measurements are collected, it is possible to recover the contracted generalized
polarization tensors (CGPTs), which do encode information about the unknown target.
One way in which the fish can acquire enough independent measurements is by exploiting
the movement, i.e., by collecting several static measurements while swimming around
the target [8]. In this way, it creates a synthetic-aperture view of the dielectric object
that yields high-resolved reconstruction of its features. Although the inverse problem is
severely ill-posed, classification works well. In [14] new shape descriptors, relying upon
the CGPTs, which are invariant under rotations, translations, and scaling of the target,
are found. In the previous works, a single circular trajectory around the target has been
considered. In the two dimensional case, for small targets, the magnitude of the electric
signal due to the presence of the target is of order ε2, where ε is the length-scale, which
is of the same order throughout the whole trajectory. In this type of setting it appears
natural to reconstruct the target’s features only up to some small order K∗, which is
called the resolving order. These correspond to a finite number of Fourier modes of the
signal. K∗ is essentially determined by the signal-to-noise ratio (SNR), which sets a
limit to the fineness of the reconstruction we are capable of; see, for instance, [6]. It has
been shown that the reconstruction is accurate enough to perform a dictionary matching
approach for homogeneous objects.

In Chapters 1 and 2 we investigate two significant extensions of the dictionary-based
identification algorithm proposed in [6, 7].

In Chapter 1 we introduce a premier and innovative (real-time) multi-scale method
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for target classification in electro-sensing. This is significant for instance for potential
bio-inspired applications in underwater autonomous robotics, where it is important to
improve the quality of the reconstruction of the features of a target by taking advantage
of measurements which are at different length-scales. In particular, we aim at mimicking
the behavior of the so-called weakly electric fish, which is able to retrieve much more
information about the target when approaching it. We present a novel and complete
analysis of the truncated acquisition operator, providing a full understanding of the
reconstruction problem. In particular, our careful study of the reconstruction error
boils down to the strategy of considering a multi-scale approach in order to design
a classification algorithm that outperforms the single-scale ones. Based on this idea,
evidence theory is applied to the electro-sensing problem in order to combine transform-
invariant classifiers at multiple-scales. The expected enhancement of the recognition
capabilities is corroborated by the numerical simulations.

In Chapter 2 we address the classification problem to make the algorithm applicable on
more general targets rather than homogeneous. This extends the potential bio-inspired
applications in underwater autonomous robotics. In real-life applications such devices
could be surrounded by complex inhomogeneous objects and therefore they have to take
into account the inhomogenities of the latters in the identification process. In this general
context, a new multipole expansion is derived, showing that the generalized polarization
tensors (GPTs) still appear as the natural quantities encoding the information about
the small target. For such inhomogeneous GPTs new translation, rotation and scaling
formulas are obtained. These formulas allow to build GPT-based transform invariants that
can be used for performing a dictionary-matching algorithm for conductivity distributions
identification. The good performance of the recognition procedure on a dictionary
of coated/layered conductors when measurements are corrupted by noise is analyzed.
Simulations show results which indicate that good recognition can be achieve with small
noise-levels, even when the objects share a similar shape.

Besides electro-sensing, it is worth studying the behavior of two weakly electric fish
when they populate the same environment. As a matter of fact, close-by active sensing
animals may interfere with each other. For intraspecific electro-communication purposes,
in processing sensory information, the fish has to separate feedback associated with
their own signals from interfering sensations caused by signals from other animals.
Wave and pulse species employ different mechanisms to minimize interference with
electric organ discharges of conspecifics. It has been observed that certain wave species,
having wave-type electric organ discharge (EOD) waveforms, such as Eigenmannia and
Gymnarchus, reflexively shift their EOD frequency away from interfering frequencies
of nearby conspecifics, in order to avoid “jamming” each others electrical signals. This
phenomenon is known as jamming avoidance response (JAR) [36, 47, 48]. The electro-
communication for the weakly electric fish has already been studied in the case of a
simplified model consisting of a dipole-dipole interaction [78].
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In Chapter 3 we aim at advancing the field of intraspecific electro-communication. In
particular, we design and implement a real-time tracking algorithm for a fish to track
another conspecific that is swimming nearby. In particular, we show that the following
fish can sense the presence of the leading fish and can estimate its positions by using a
MUSIC-type algorithm for searching its electric organ. The underlying idea is that a
wave-type fish can passively communicate its own trajectory to fish populating the waters
nearby. The capability of sensing each other movements is significant, for instance, for
applications concerning robotics, where two or more underwater robots may implement
such communication procedure to avoid collisions or to shoal. We also show that the
fish can locate a small dielectric target which lies in its electro-sensing range even when
another fish is swimming nearby, by filtering out its interfering signal and by applying
the MUSIC-type algorithm developed in [2].

Bat and echo-sensing

Experimental data suggest that bats use temporal information for most, if not all,
perceptual tasks. The bat perceives the phase of the sounds, which cover the 25- to 100-
kilohertz frequency range, as these are represented in the auditory system after peripheral
transformation. The acoustic image of a sonar target is apparently derived from time-
domain or periodicity information processing by the nervous system [70, 71]. Echo-sensing
is a form of acoustics that uses active sonar to locate and identify targets. Bats use
this method to avoid collisions, to select, identify, and attack prey, and to navigate by
emitting sounds and then analyzing the reflected waves. We aim at modeling perceptual
and acoustic properties in echo-location. In [23], Ammari et al. introduced the concept of
frequency-dependent polarization tensors (FDPTs) for a small inclusion. These tensors
encode relevant information on the inclusion and appear naturally when we describe
the perturbation of echoes emitted by animals such as bats [70, 71]. The extraction of
the high-order FDPTs can be achieved from multi-static response (MSR) measurements
[23, 25]. It appears natural to extend the shape reconstruction and classification methods
for the frequency-domain proposed in [23, 25, 30] to the time-domain.

In Chapter 4 we model the problem of a static bat which is sending a wave and recording
the scattering echoes due to the presence of an acoustic inclusion. We deal with the
problem of reconstructing a small acoustic inclusion by using the new concept of time-
dependent polarization tensors (TDPTs) for the wave equation. The TDPTs can be
interpreted as an extension of the concept of the high-order FDPTs to the time-domain.

The results that are presented henceforth are published in [31, 67, 66, 32], each paper
corresponding to a chapter of the thesis.
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Bio-inspired electro-sensing
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1.1. Introduction

The results presented in this chapter are contained in [31]. The aim is to improve the
recognition capabilities of the fish by acquiring measurements at different length-scales
on multiple circular orbits around the target. The main advantage of the multi-scale
configuration is that the descriptors introduced in [6] can be compared at different orders
up to the resolving order, which is shown to be increasing with respect to the length-scale.
This fact is revealed by a novel rigorous resolution analysis, which is an analysis of the
condition number for the partial inversion of the acquisition operator. This also provides
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1. Multi-scale classification for electro-sensing

a refined qualitative understanding of the fact that, when it comes to recovering coarse
levels of information, the inverse problem becomes reasonably well-posed, and that one
can progressively improve the reconstruction until the resolution reaches the maximum
that data at different length-scales can provide [9, 10]. Ultimately, the aforementioned
analysis leads to the idea of selecting different comparison orders, which produces different
classifiers.

When many classifiers are available, the problem of combining them to enhance the
classification capabilities naturally arises; see e.g. [80]. The approach we present in this
chapter relies on the so-called Transferable Belief Model (TBM); see, for instance, [59].
The output of a scoring-classifier, i.e., a list of numerical scores (a score for each element
of the dictionary) that corresponds to the evidence at hand, can be converted into a
belief assignment. Following [50, 60], a natural way to translate the scores into beliefs
is to consider the Shannon’s entropy as a confidence factor associated to the evidence.
Belief assignments are then combined by means of some combination rule, such as the
Dempster–Shafer rule, in order to obtain a synthetized new belief that pulls together all
the information. This approach is particularly suitable for the electro-sensing problem
hereabove. Since the fish is able to retrieve much more information about its shape and
material parameters when approaching it, the classification is expected to be more robust
as soon as multiple circular orbits are considered.

The chapter is structured as follows. In Section 1.2, a preliminary description of the
experimental design for electro-sensing is discussed. We show that the design matrix
associated to the forward linear operator L defined in [7] can be expressed as a generalized
block Kronecker product by vectorization; see [65, 57]. A reflexive minimum norm g-
inverse of the acquisition operator, arising in a natural way from the block Kronecker
structure, is also used. This has been recently introduced in [57] in the context of
bivariate polynomial regression. Based on Greville’s well known formulas in [42], this
g-inverse provides a method to update recursively the estimates position after position
right away.

In Section 1.3, a detailed analysis of the structure of the design matrix is carried out.
In particular, the need of creating a synthetic-aperture view is readily understood by
inspecting the rank of the design matrix. Assuming a circular acquisition setting, i.e., the
fish collects the data swimming on a circular trajectory around the target, an estimate
on the reconstruction error of the CGPTs is derived. The estimate has an upper bound
depending on the length-scale, and it is formally equal to that given in [6]. Finally, issues
related to limited-view data, i.e., data collected by receptors covering a limited angle of
view, are discussed. In particular, a study of the spectrum of the matrix of receptors
shows the impact of the angle of view on the reconstruction: the closer the angle of view
is to 2π, the more informative the estimate becomes. Furthermore, if the reconstruction
order is small, the limited-view configuration has a minor impact on the reconstructed
CGPTs.

In Section 1.4, the classification problem based on a multi-scale acquisition setting is
addressed. In particular, measurements at different length-scales are used to improve
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1.2. Model specification for electro-sensing

the resolving power in the reconstruction of the CGPTs. As a matter of fact, the closer
the orbit is to the target, the higher the SNR, and the higher the order of CGPTs-based
descriptors that can be used in the comparison. A matching algorithm, which generalizes
the one proposed in [7] to the case study we consider, is presented. First, a certain
number of concentric orbits around the target are thoroughly chosen. On each orbit, a
comparison between the theoretical and measured shape descriptors up to a properly
chosen length-scale dependent order is required. Similarly to [7], the comparison is
done by means of a given metric, and it yields a list of scores. The normalized list of
scores produced on each orbit is converted into an evidence distribution, which is then
stored. The Shannon’s entropy is used as a confidence factor; see [50, 60]. The evidence
distributions computed along different orbits are subsequently combined by using the
TBM conjunctive rule introduced in [73].

In Section 1.5 we perform numerical simulations in order to test the performance of the
recognition algorithm, introduced in Section 1.4, on a particular dictionary of dielectric
targets. The reported results show an enhancement of the recognition rate, corroborating
the idea that combining descriptors at different length-scales makes the classification more
robust. Both the minimum norm reflexive generalized inverse and the Moore–Penrose
inverse are used in the reconstruction.

1.2. Model specification for electro-sensing

Let us now briefly summarize the model of electro-sensing derived in [2]: the body of
the fish is Ω, an open bounded set in R2, with smooth boundary ∂Ω, and with outward
normal unit vector denoted by ν. The electric organ is a dipole f(x) inside Ω or a sum of
point sources inside Ω satisfying the charge neutrality condition. The skin of the fish is
very thin and highly resistive. Its effective thickness, that is, the skin thickness times the
contrast between the water and the skin conductivities, is denoted by ξ, and it is much
smaller than the fish size. We assume that the conductivity of the background medium is
one. We consider a smooth bounded target D = δB, and B is a smooth bounded domain
containing the origin. We assume that the conductivity of D is 0 < k ≠ 1, and we define
the contrast λ ∶= (k + 1)/(2(k − 1)). In the presence of D, the electric potential emitted
by the fish is the solution to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u = f in Ω,

∇ ⋅ (1 + (k − 1)χD)∇u = 0 in R2 ∖Ω,

u∣+ − u∣− = ξ
∂u

∂ν
∣
+

on ∂Ω,

∂u

∂ν
∣
−
= 0 on ∂Ω,

∣u(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

(1.1)
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1. Multi-scale classification for electro-sensing

Here, χD is the characteristic function of D, ∂/∂ν is the normal derivative, and ∣± denotes
the limits from, respectively, outside and inside Ω. Following [7], we introduce the
function H defined as

H(x) ∶= p(x) + SΩ [∂u
∂ν

∣
+
] − ξDΩ [∂u

∂ν
∣
+
] , (1.2)

where ∆p = f on R2. SΩ and DΩ are the single- and double-layer potentials, respectively,
defined in Appendix A.1. It is readily seen that the following representation formula
holds:

u(x) −H(x) = SD(λI −K∗D)−1 (∂H
∂ν

) , (1.3)

where I is the identity and K∗D is the Neumann–Poincaré operator associated to the
target D; see Appendix A.1.

1.2.1. Data acquisition system

In this section we aim at describing the data acquisition system, i.e., the experimental
setting we shall adopt to solve the inverse problem.

As we briefly mentioned in the introduction, the fish use the movement in order to swim
around the target, creating a synthetic aperture view.

Suppose that the scanning movement consists of a single circular orbit O, with radius ρ,
the target being located at its center. On each orbit only a discrete number of positions
accounts for the data acquisition process. Precisely, M different positions are sampled
along O, and for each position s the corresponding electric signal u(s) −H(s) is measured

by Nr receptors on the skin, {x(s)r }Nrr=1. Here u(s) and H(s) denote the solution to (2.1)
and the function defined by (1.2), associated to the position s, respectively.

This type of architecture resembles a multi-static single-input multi-output (SIMO)
system.

Symbol Meaning

Ωs Fish body
ps dipole moment
ζs electric organ

x
(s)
r r-th receptor

u(s) electric potential solution to (2.1)

H(s) function defined in (1.2)

Nr number of receptors
M number of positions
O circular orbit
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1.2. Model specification for electro-sensing

Table 1.1.: Notation referring to position s ∈ {1, . . . ,M} on the orbit O.

For any orbit O we get an Nr ×M matrix of data Q, which is called multi-static response
(MSR) matrix, whose (r, s)-entry is defined as

(Q)r,s = u(s)(x(s)r ) −H(s)(x(s)r ). (1.4)

Henceforth, we shall use the MATLAB colon notation for specifying submatrices of a
given matrix. For instance, given matrix X, we shall denote by Xi,∶ (resp. X∶,j) the ith
row (resp. the jth column) of X.

1.2.2. Data acquisition operator

In order to simplify the notation, without loss of generality, we assume that the dielectric
object is centered at the origin and that the impedance of the fish is ξ = 0.

We recall the following theorem which provides an expansion of (1.4); see [7].

Theorem 1.2.1 Consider M different positions of the fish along the circular orbit O of

radius ρ, with ρ large enough, indexed by s = 1, . . . ,M . Let {x(s)r }Nrr=1 be a set of receptors
distributed on ∂Ωs, the dipole located at ζs ∈ O with dipole moment ps, and K ≥ 1. Then
the following expansion holds:

u(s)(x(s)r )−H(s)(x(s)r ) =
K+1

∑
m+n=1

[As,m Bs,m]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ss,m

[M
cc
mn M cs

mn

M sc
mn M ss

mn
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mmn

⎡⎢⎢⎢⎢⎣

cosnθ
x
(s)
r

sinnθ
x
(s)
r

⎤⎥⎥⎥⎥⎦

−1

2πnrn
x
(s)
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G
(s)⊺
rn

+O(δK+2),

(1.5)
where M cc

mn,M
cs
mn,M

sc
mn and M ss

mn are as in Definition A.1.5, r = 1, . . . ,Nr,

As,m = −(−1)m
2π

ps ⋅ [
φm+1(ζs)
ψm+1(ζs)

] − 1

2πm
∫
∂Ωs

∂u(s)

∂ν
∣
+
(y)φm(y) dσy,

Bs,m = (−1)m
2π

ps ⋅ [
−ψm+1(ζs)
φm+1(ζs)

] − 1

2πm
∫
∂Ωs

∂u(s)

∂ν
∣
+
(y)ψm(y) dσy,

(1.6)

φm(x) = cos(mθx)
rmx

, ψm(x) = sin(mθx)
rmx

,

and

M(K) =M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 . . . M1K

M21 . .
.

0

⋮ . .
.

. .
. ⋮

MK1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.7)

7



1. Multi-scale classification for electro-sensing

is the upper antidiagonal block matrix of the CGPTs of order ≤K. Here, ⊺ denotes the
transpose of a matrix.

We define ε = δ/ρ as the length-scale associated to the orbit O, i.e., the ratio between the
size of the target and the distance ρ.

A more careful analysis of the reminder in formula (1.5) shows that the remainder can be
expressed in terms of the length-scale ε, and written as O(εK+2). See Appendix A.3.

By Theorem 1.2.1, the rows of Q admit the following expansions:

(Q) ∶ ,s = L(s)(M(K)) +E ∶ ,s, ∥E ∶ ,s∥∞ = O(εK+2), s = 1, ...,M, (1.8)

where L(s) ∶ M2K,2K Ð→ RNr is the linear map defined by (1.5), i.e., L(s)(M) =
G(s)MS⊺s, ∶ , K is the truncation order, and ε = δ/ρ is the length-scale associated to
the orbit O. Thus, we can write the expansion of the complete MSR matrix as follows:

Q = L(M(K)) +E, ∥E∥∞ = O(εK+2). (1.9)

The linear map L ∶ Θ ⊆ M2K,2K Ð→ MNr,M is the truncated output (or forward)
operator.

The acquisition operator L(M) is defined by (1.5). More precisely, it can be written as

L(M) = [L(1)(M) L(2)(M) . . . L(M)(M)] = [G(1)MS⊺1, ∶ . . . G(M)MS⊺M, ∶] ,

where

L(s)(M) = × × .

We define block matrices G ∈ MM,1(MNr,2K), S ∈ MM,1(M1,2K) by vertically stacking
the matrices, as in Figure 1.1.

We are interested in estimating the matrix parameter M from the MSR matrix Q.
Therefore, we aim at solving the following minimization problem

min
M⊥ker(L)

∥L(M) −Q∥F, (1.10)

where ∥ ⋅ ∥F denotes the Frobenius norm of a matrix.
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G =

G(1)

G(2)

⋮
G(M)

=

⊺

⊺

⋮
⊺

S =

S1, ∶
S2, ∶
⋮

SM, ∶

= ⋮

Figure 1.1.

1.2.3. Generalized Kronecker form of the forward operator

In this section we vectorize the data acquisition operator L ∶ M2K,2K Ð→ MNr,M in
order to find a matrix representation.

Lemma 1.2.2 The operator L defined by (1.2.2) can be represented in a vectorized form
employing the product defined in Definition A.2.3:

vec(L(M)) = (S⊗ {G(s)}) vec(M).

Proof. By definition,

L(M) = [G(1)MS⊺1, ∶ . . . G(M)MS⊺M, ∶] .

Therefore

vec(L(M)) = vec [G(1)MS⊺1, ∶ . . . G(M)MS⊺M, ∶]

=
⎡⎢⎢⎢⎢⎢⎣

G(1)MS⊺1, ∶
⋮

G(M)MS⊺M, ∶

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

(S1, ∶ ⊗G(1))vec(M)
⋮

(SM, ∶ ⊗G(M))vec(M)

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

S1, ∶ ⊗G(1)

⋮
SM, ∶ ⊗G(M)

⎤⎥⎥⎥⎥⎥⎦
vec(M)

= (S⊗ {G(s)} )vec(M).
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1. Multi-scale classification for electro-sensing

Notice that the matrix L ∈ MMNr,4K2 defined by

L ∶= LL = S⊗ {G(s)} (1.11)

is the unique MNr×4K2 matrix such that vec(L(X)) = LLvec(X), for all X ∈ M2K,2K .

Hence, minimization problem (1.10) assumes the following form

min
M

∥LLvec(M) − vec(Q)∥2. (1.12)

We aim at seeking a vector vec(M̂) which is optimal in the least-squares sense.

As is well known, the standard least-squares estimator for (1.12) is given by the Moore-
Penrose inverse of L, denoted by L†. If L is full column rank, than

vec(M̂)MP = L†vec(Q) = (L⊺L)−1L⊺vec(Q). (1.13)

However, the special block Kronecker form of L suggests employing the following gener-
alized inverse [57].

Theorem 1.2.3 If S and G(s) for s = 1, . . . ,M , are full column rank, then

L ∶= S † ⊗C {G(s) †} (1.14)

is a reflexive minimum norm g-inverse of LL = S ⊗ {G(s)}. Here ⊗C denotes the
column-wise generalized Kronecker product defined in Definition A.2.4, and † denotes the
Moore–Penrose inverse.

Proof. The proof is readily obtained by noticing that

(S† ⊗C {G(s)†})(S⊗ {G(s)}) = I4K2 .

This particular generalized inverse is useful for solving (1.12) when vec(Q) lies in the
range of LL [57]. Notice that L is not the same as L† in general.

As we shall see later, the g-inverse given by (1.14) is particularly suitable for establishing
a bound on the reconstruction error as well as for designing a recursive online estimation
of the GPTs. Figure 1.2 schematically shows the computation of L.
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1.2. Model specification for electro-sensing

1.2.4. Online reconstruction

In this section we propose very simple formulas to efficiently perform an online recon-
struction of the features.

By inspecting the form of the g-inverse L given by (1.14) it is easy to see that, when a new
position becomes available, the pseudoinverse of the augmented source matrix S is the
only term which needs to be recomputed. As shown in Figure 1.3, the pseudoinverses of
the matrices G(s) corresponding to different positions intervene in L without interfering
with each other. Therefore we have the following result.

Lemma 1.2.4 Let us denote by LM the generalized inverse given by (1.14) for M ≫ 1
positions, and let SM+1, ∶ be full column rank. Then

LM+1 = [S †
1∶M, ∶ −KM+1dM+1 ∣ KM+1] ⊗C {G(s) †}, (1.15)

where
dM+1 ∶= SM+1, ∶ S

†
1∶M, ∶ ,

and
KM+1 ∶= (1 + dM+1d

⊺
M+1)−1S †

1∶M, ∶ d
⊺
M+1.

Proof. Appending new positions affects only the factor S, which can be updated by
means of Greville’s recursive formula for the pseudoinverse; see [81].
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⋮ ⋮
⋮

⊗

S1,∶

S

S2,∶

SM,∶

G(1)

⊗

G(2)

⊗

G(M)

. . . ⋮

⊗

S†

G(1)†

⊗
G(2)†

⊗

G(M)†

Figure 1.2.: On the left, the operator L; on the right, its generalized inverse, i.e., L.
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⋮ ⋮

⋮

⊗
S1,∶

S

S2,∶

SM,∶

G(1)

⊗
G(2)

⊗

G(M)

⊗

G(M+1)

SM+1,∶

. . .

⋮

⊗

S†

G(1)†

⊗

G(2)†

⊗

G(M)†

G(M+1)†

⊗

Figure 1.3.: On the left, the augmented operator LM+1; on the right: its generalized inverse,
i.e., LM+1. The parts which change are highlighted in blue.

1.3. Analysis of the design matrix

In this section we want to analyze in detail the form of the acquisition operator. As a
result, we provide an in-depth study of the reconstruction.
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Minimization problem (1.10) indicates that the null-space of the forward operator LL we
studied so far is related to the capability of uniquely reconstructing the CGPTs, and, in
the end, to the classification of a dielectric target.

1.3.1. Matrix of receptors

The matrix of receptors associated to the sth position is given by

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ1)
r1

sin(θ1)
r1

cos(2θ1)
2r2

1

sin(2θ1)
2r2

1

. . .
cos(Kθ1)
KrK1

sin(Kθ1)
KrK1

cos(θ2)
r2

sin(θ2)
r2

cos(2θ2)
2r2

2

sin(2θ2)
2r2

2

. . .
cos(Kθ2)
KrK2

sin(Kθ2)
KrK2

⋮ ⋮ ⋱ ⋮
cos(θNr)
rNr

sin(θNr)
rNr

cos(2θNr)
2r2
Nr

sin(2θNr)
2r2
Nr

. . .
cos(KθNr)
KrKNr

sin(KθNr)
KrKNr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In Appendix A.4.1, we show that G(s) is full column rank as soon as there are 2K ≤
Nr distinct receptors that are a general configuration in the sense of Remark A.4.4.
Furthermore, we have the following lemma [14].

Lemma 1.3.1 2K ≤ Nr distinct points distributed along a circular arc are a general
configuration.

It is clear that a single position yields a design matrix LL which is not full column rank,
no matter how many receptors are considered. However, collecting many electrostatic
measurements at different positions ultimately enriches the column space of the matrix
S. As a matter of fact, if S and G(s) for s = 1, . . . ,M , are full column rank, L proves to
be a left-inverse and thus LL is full column rank as well.

1.3.2. Source vector

The row vector Ss, ∶, which refers to the source corresponding to the sth position, is
defined by (1.5). For simplicity we consider the case ξ = 0; see (1.6).

Denote by

p⊥s = ps [
0 1
−1 0

]

the unit vector orthogonal to the dipole moment ps = [cosα, sinα], and let ζs = ρeiθs be
the location of the dipole.

We can naturally split Ss, ∶ into the pure dipole term and the distributed source term:
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Ss, ∶ = (Sdip)s, ∶ + (SSL)s, ∶ .
Here Sdip and SSL are given as follows. Employing the product given in Definition A.3,
define the block diagonal matrix

P
(s)
K ∶= IK ⊗ {(−1)` [ps

p⊥s
]} ,

the diagonal matrix

D2,K+1 ∶= IK ⊗ {ρ−(`+1)I2} ,

and the row vector

Zs,∶ ∶= [cos(2θs) sin(2θs) cos(3θs) sin(3θs) . . . cos((K + 1)θs) sin((K + 1)θs)] .

Then
(Sdip)s, ∶ = Zs, ∶P

(s)⊺
K D2,K+1.

On the other hand, given N points yi uniformly distributed on ∂Ωs, we can discretize
the integral defining (SSL)s,2k−1 and (SSL)s,2k as follows

As,k = ∫
∂Ωs

∂u(s)

∂ν
∣
+

cos(kθy)
krky

dσy ≈
N

∑
i=1

∂u(s)

∂ν
(yi)

cos(kθyi)
krki

∆yi,

Bs,k = ∫
∂Ωs

∂u(s)

∂ν
∣
+

sin(kθy)
krky

dσy ≈
N

∑
i=1

∂u(s)

∂ν
(yi)

sin(kθyi)
krki

∆yi.

Consequently, defining the column vector

Us, ∶ ∶= (∂u
(s)

∂ν
(yi)∆yi)

N

i=1

,

we get

(SSL)s, ∶ = −Us, ∶G
(s)
∗ .

Notice that G
(s)
∗ reduces to G(s) if we choose the receptors as discretization points, i.e.,

yi = x(s)i .

In the end, the source vector can be written in the following form:

Ss, ∶ = (Sdip)s, ∶ + (SSL)s, ∶ = Zs, ∶P
(s)⊺
K D2,K+1 −Us, ∶G

(s).

Let U be the background solution, i.e., the potential in the absence of any target. When
ρ≫ δ, the dipolar expansion derived in [2] yields

Us, ∶ = u +O(δ2), (1.16)

where u ∶= (∂U
∂ν (yi)∆yi)

Nr

i=1
. Such first order approximation of Us, ∶ depends only on the

geometry of the fish and on the position of the receptors.
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1.3.3. Reconstruction error analysis

In this section we analyze the relative error in the reconstruction of the CGPTs when
the g-inverse L given by (1.14) is used, and the MSR data are acquired along a single
circular orbit around the target.

Let W be a random matrix Nr × M with independent and identically distributed
N(0, σ2

noise) entries. Let E be the matrix Nr ×M of the truncation errors. Recall
that the entries of E are of order εK+2; see (A.6).

The following multivariate multiple linear regression model for the measurements can be
stated:

Q = L(M) +E +W. (1.17)

We restrict ourselves to the situation where the strength of the noise is enough to
overpower the truncation error, which we disregard a posteriori for the rest of the analysis.
More precisely, we assume that the strength of the noise satisfies

εK+2 ≪ σ2
noise ≪ ε2. (1.18)

We define the signal to noise ratio (SNR) associated to the orbit O as

SNR = ε2

σ2
noise

.

Next, we vectorize (1.9). Define the vectorized error matrix

vec(W) ∼ N(0MNr , σ
2
noiseIMNr),

and the response matrix, which is a multivariate normal vector given S and G(s) for
s = 1, . . . ,M , namely,

vec(Q ∣ {G(s)},S) ∼ N(vec(L(M)), σ2
noiseIMNr).

Straightforward computations show that the covariance matrix of Lvec(W) can be
written as

Cov(Lvec(W)) = σ2
noise

M

∑
s=1

S†
∶,sS

†⊺
∶,s ⊗G(s)†G(s)†⊺

= σ2
noise

M

∑
s=1

⎡⎢⎢⎢⎢⎢⎢⎣

(S†
1,s)2G(s)†G(s)†⊺ ∗

⋱
∗ (S†

2K,s)2G(s)†G(s)†⊺

⎤⎥⎥⎥⎥⎥⎥⎦

.

(1.19)

Hereinafter, we assume that the Nr receptors of G(s) are all distributed along one circular
arc of radius ρ. This assumption is justified by the fact that if we model the fish skin by
two close circular arcs of radius ρ and ρ + ε, with Nr/2 receptors on them, and we call

G
(s)
ε its matrix of receptors, we can show that ∥G(s)

ε −G(s)∥F → 0 as ε→ 0.
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1.3. Analysis of the design matrix

Theorem 1.3.2 For j, k so that (M)jk is nonzero, the relative error on the reconstructed
CGPT satisfies

¿
ÁÁÀE∣(Mest)jk − (M)jk∣2

∣(M)jk∣2
≲ σnoise ε−⌈j/2⌉−⌈k/2⌉ ⌈

j

2
⌉ ⌈k

2
⌉ . (1.20)

For vanishing (M)jk, the error
√
E∣(Mest)jk − (M)jk∣2 can be bounded by the right-hand

side above with ε replaced by ρ−1.

Proof. We begin by observing that the absolute errors
√
E∣(Mest)jk − (M)jk∣2 are the

diagonal entries of Cov(LW). In particular, the (j, j)th entry of the kth block matrix of
Cov(Lvec(W)) given by (1.19), i.e., ∑Ms=1(S

†
k,s)

2(G(s)†G(s)†⊺)jj , corresponds to CGPT

(M)jk. Define Ijk ∶= (Mest −M)jk. By Lemma A.4.6 we have the inequality

∣S†
k,s∣

2 ≤ ∥S†
k, ∶∥

2
F ≲ ρ

2⌈k/2⌉

M
⌈k

2
⌉

2

.

On the other hand it is easy to show that

∣(G(s)†G(s)†⊺)jj ∣ ≲ ρ2⌈j/2⌉ ⌈ j
2
⌉

2

.

Therefore, we obtain the following estimate

E(Ijk)2 =
M

∑
s=1

(S†
k,s)

2(G(s)†G(s)†⊺)jj ≲ ρ2(⌈j/2⌉+⌈k/2⌉) ⌈ j
2
⌉

2

⌈k
2
⌉

2

.

The scaling property
(M)jk(δB) = δ⌈j/2⌉+⌈k/2⌉(M)jk(B),

together with the above control on E(Ijk)2 show that the relative error satisfies (1.20).

Remark 1.3.3 In the proof we used the following inequality:

∣(G(s)†G(s)†⊺)jj ∣ ≲ ρ2⌈j/2⌉ ⌈ j
2
⌉

2

,

where the unspecified constant depends on the number of receptors Nr and the angle of
view γ. In the next section we analyze such dependency in the limit as Nr →∞, observing
that the upper bound in (1.20) decays like 1/Nr.

Following [6], given the SNR and a tolerance level τ0, the resolving order is defined as

K∗ = min

⎧⎪⎪⎨⎪⎪⎩
1 ≤ k ≤K ∶

¿
ÁÁÀE∣(Mest)kk − (M)kk∣2

∣(M)kk∣2
≤ τ0

⎫⎪⎪⎬⎪⎪⎭
.

It is readily seen that the resolving order K∗ satisfies

(K∗ε1−K∗)2 ≃ τ0SNR. (1.21)
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1. Multi-scale classification for electro-sensing

1.3.4. Angular resolution

In this section we want to discuss the issues related to the limited-view configuration,
which is an intrinsic feature of the fish geometry. In order to get an idea of how much
the angle of view has an impact on the error estimate provided by Theorem 1.3.2, we
restrict ourselves to a special configuration of receptors. In particular, we assume that
there are Nr receptors evenly distributed on an arc of the unit circle, with aperture angle
γ ∈ (0,2π), and we let Nr go to ∞.

Instead of studying the spectrum of (G(s)HG(s))† we shall equivalently consider that of

(VH
KVK)†, where VK is as defined in Appendix A.4.1, and VH

K denotes the matrix V
⊺
K .

For the sake of notation we refer to VK as the block matrix [WK WK] , obtained from
VK by permuting the columns as in Appendix A.4.1. We are interested in the asymptotic
expansion of VH

KVK as Nr →∞. Hereinafter, we denote limNr→∞
1
Nr

A by (A)∞.

With this particular geometry of receptors the limit matrix can be analytically com-
puted:

(VH
KVK)∞ =

⎡⎢⎢⎢⎢⎢⎣

(W⊺
KWK)∞ (W⊺

KWK)∞

(W⊺
KWK)∞ (W⊺

KWK)∞

⎤⎥⎥⎥⎥⎥⎦
,

where

(W⊺
KWK)∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1−ei2γ
2iγ −1−ei3γ

3iγ −1−ei4γ
4iγ . . . −1−ei(K+1)γ

(K+1)iγ

−1−ei3γ
3iγ −1−ei4γ

4iγ −1−ei5γ
5iγ . . . −1−ei(K+2)γ

(K+2)iγ

⋮ ⋮ ⋮ ⋮

−1−ei(K+1)γ

(K+1)iγ −1−ei(K+2)γ

(K+2)iγ −1−ei(K+3)γ

(K+3)iγ . . . −1−e2Kiγ
2Kiγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(W⊺
KWK)∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1−eiγ
iγ −1−ei2γ

2iγ . . . −1−ei(K−1)γ

(K−1)iγ

1−e−iγ
iγ 1 −1−eiγ

iγ . . . −1−ei(K−2)γ

(K−2)iγ

1−e−2iγ
2iγ

1−e−iγ
iγ 1 . . . −1−ei(K−3)γ

(K−3)iγ

⋮ ⋮ ⋮ ⋮

1−e−i(K−1)γ

i(K−1)γ
1−e−i(K−2)γ

i(K−2)γ . . . 1−e−iγ
iγ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and (W⊺
KWK)∞ = (W⊺

KWK)∞, (W⊺
KWK)∞ = (W⊺

KWK)∞.
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1.3. Analysis of the design matrix

Hence,

VH
KVK = Nr ((VH

KVK)∞ +O ( 1

Nr
)) , as Nr →∞.

Applying the results contained in [40] we obtain the following result.

Lemma 1.3.4 For Nr large,

(VH
KVK)−1 = 1

Nr
((VH

KVK)∞ +O ( 1

Nr
))

−1

, (1.22)

where the entries of (VH
KVK)∞ depend only on the angle of view γ and the truncation

order K. Moreover, we have

1

σ̃k
= 1

Nr
(σk +O ( 1

Nr
))

−1

, (1.23)

where σ̃k (resp. σk) are the eigenvalues of the matrix VH
KVK (resp. (VH

KVK)∞).

Remark 1.3.5 Lemma 1.3.4 highlights the following facts. On one hand, as long as all
the eigenvalues are away from zero, the reconstructed CGPTs have an upper bound on
the relative error in (1.20) which decays like 1/Nr. More precisely, (G(s)†G(s)†H)jj ≲
1/Nr∑ 1/∣σk∣. On the other hand, when some eigenvalues are very small (e.g. σl ≤ 10−8),
inequality (1.20) becomes uninformative, making us unable to predict the behavior of the
relative error.

Figure 1.4 provides the distribution of σ̃k, σk/Nr at different values of the reconstruction
order K and angles of view γ, as Nr → ∞. First, we clearly observe the asymptotic
behavior of the spectrum stated by (1.23). Second, we notice that the effect of the
limited-view configuration is reflected by the decaying of the eigenvalues of the matrix
of receptors. As expected, the closer the angle of view is to 2π, the more informative
estimate (1.20) becomes. Furthermore, if K is small, the angle of view has a minor
impact on the reconstructed CGPTs.
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1. Multi-scale classification for electro-sensing

(a) K = 4 (b) K = 30

Figure 1.4.: The distribution of eigenvalues at different angles of view γ. The solid line cor-
responds to σ(VH

KVK/Nr), the starred line to σ((VH
KVK)∞). We use Nr = 104

receptors.

1.4. Recognition

In the previous section, we established an upper bound on the reconstruction error which
essentially depends on the length-scale of the acquisition orbit. As a consequence, the
closer the fish gets to the target, the higher the order of the features it can retrieve from
the noisy measurements. This result suggests that, when it comes to classification, it is
of preeminent importance to design recognition algorithms that exploit the information
contained in measurements collected at multiple scales.

This section aims at presenting a novel multi-scale algorithm for target classification.

1.4.1. Complex CGPTs and shape descriptors

Let us briefly recall the definition of the shape descriptors.

We introduce convenient complex combinations of CGPTs. For any pair of indices
m,n = 1,2, . . . , we introduce the following quantities

N
(1)
mn(γ,D) = (M cc

mn −M ss
mn) + i(M cs

mn +M sc
mn),

N
(2)
mn(γ,D) = (M cc

mn +M ss
mn) + i(M cs

mn −M sc
mn).

We define the complex CGPT matrices by

N(1) ∶= (N(1)
mn)m,n, N(2) ∶= (N(2)

mn)m,n.
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1.4. Recognition

We call a dictionary D a collection of standard shapes B, centered at the origin, with
characteristic size of order 1. We assume that a reference dictionary D is initially given.
Furthermore, suppose we consider a shape D, which is unknown, that is obtained from
an element B ∈ D by applying some unknown rotation θ and scaling s and translation z,
i.e., D = TzsRθB.

Following [6], let η = N
(2)
12 (D)

2N
(2)
11 (D)

. We define the following quantities

J (1)(D) = N(1)(T−ηD) = C−ηN(1)(D)(C−η)T ,

J (2)(D) = N(2)(T−ηD) = C−ηN(2)(D)(C−η)T ,

where the matrix C−η is a lower triangular matrix with the (m,n)th entry given by

C−η
mn = (m

n
) (−η)m−n.

These quantities are translation invariant.

From J (1)(D) = (J (1)
mn (D))m,n, J (2)(D) = (J (2)

mn (D))m,n, for each pair of indices m,n,
we define the scaling invariant quantities:

S(1)
mn(D) = J (1)

mn (D)
(J (2)

mm(D)J (2)
nn (D))1/2

, S(2)
mn(D) = J (2)

mn (D)
(J (2)

mm(D)J (2)
nn (D))1/2

.

The CGPT-based shape descriptors I(1) = (I(1)mn)m,n and I(2) = (I(2)mn)m,n are defined
as:

I(1)mn = ∣S(1)
mn(γ,D)∣, I(2)mn = ∣S(2)

mn(γ,D)∣,

where ∣ ⋅ ∣ denotes the modulus of a complex number. Recall that I(1) and I(2) are
invariant under translation, rotation, and scaling.

The details of this construction can be found in [6].

1.4.2. Multi-scale acquisition setting

Suppose that the scanning movement consists ofM concentric circular orbitsO1,O2, . . . ,OM,
with radii ρ1 > ρ2 > ⋅ ⋅ ⋅ > ρM respectively (ordered from the farthest to the nearest),
the target being located at the common center. On each orbit only a discrete number
of positions accounts for the data acquisition process, as described in Section 1.2.1.
Precisely, Mj different positions are sampled along the orbit Oj , and for each position

s the corresponding electric signal u
(s)
j −H(s)

j is measured by Nr receptors on the skin,

{x(s)j,r }
Nr
r=1.

21



1. Multi-scale classification for electro-sensing

Therefore, for any orbit Oj we get the Nr ×Mj MSR matrix, whose (r, s)-entry is defined
as

(QOj)r,s = u
(s)
j (x(s)j,r ) −H

(s)
j (x(s)j,r ), j ∈ {1, . . . ,M}. (1.24)

Notice that so far the setting described above is very general, as no restriction has been
given on the radii of the orbits yet.

Since the orbits are at different length-scales, it is clear that the closer the orbit is to
the center, the stronger the MSR signal is. However, resorting to the error estimate on
the reconstruction order (1.20), we are able to choose the orbits in such a way that the
resolving order is enhanced.

In the multi-scale setting described above, formula (1.21) reads

(K∗
j ε

1−K∗

j

j )2 ≃ τ0SNRj , (1.25)

where SNRj =
ε2j

σ2
noise

is the SNR ratio associated to the jth orbit.

Thus, a length-scale dependent resolving order is introduced, and obviously K∗
j+1 ≥K∗

j ≥
2.

The noisy MSR matrix is given by the following formula

QOj = Lj(M(Kj)) +EOj +W. (1.26)

On each orbit Oj , the CGPTs can be retrieved from the data (1.26), for instance, by using
either the classical Moore–Penrose inverse or the generalized inverse L given by (1.14).
Moreover, we denote by (I(1)(D;Oj),I(2)(D;Oj)) the measured descriptors associated
to the small target D, which are computed from the reconstructed CGPTs M(Kj).

22



1.4. Recognition

Dδ

Multi-scale acquisition setting Dictionary D

⋮

Figure 1.5.: Left: Multi-scale acquisition setting. Right: Dictionary D. MSR data are collected
by swimming along multiple concentric orbits as shown on the left. The classification
problem is to use the features extracted from the data in order to classify, up to
rotation and scaling, the small dielectric target D among the elements of a dictionary
D.

Given a dictionary D of N standard shapes, which are denoted by B1,B2, . . . ,BN , we
want to design a matching algorithm, which generalizes the one proposed in [7] to a
multi-scale configuration; see Figure 1.5. First, a matching procedure as in [7] is required
on each orbit, which consists of a comparison between the theoretical shape descriptors
((I(1)(Bκ),I(2)(Bκ)))κ=1,...,N and the measured ones (I(1)(D;Oj),I(2)(D;Oj)), up to
a properly chosen length-scale dependent order Kj .

Let us define the following scores:

∆j(Bκ,D) = (∥I(1)(Bκ) − I(1)(D;Oj)∥2
F + ∥I(2)(Bκ) − I(2)(D;Oj)∥2

F )
1/2
, (1.27)

where ∥ ⋅ ∥F denotes the Frobenius norm of matrices, j = 1, . . . ,M and κ = 1, . . . ,N .

For every j, the scores (1.27) are used to perform the (local) comparison. Precisely,
let φj(D) ∈ DN be the vector formed by the elements of the dictionary, rearranged in
ascending order according to ∆j , i.e.,

φj(D) = (Bσj(1), . . . ,Bσj(N)),

where σj is a permutation such that ∆j(Bσj(l′),D) ≤ ∆j(Bσj(l),D) for each l < l′.

Notice that, for efficiency reasons, it is convenient to cut the vector φj(D) retaining
the first n ≤ N components only, which are the elements of D that produce the lowest
scores.
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1. Multi-scale classification for electro-sensing

Thus far we have just sorted the elements of the dictionary by matching the descriptors
on each orbit separately. Instead of simply returning Bσj(1) for each j, that is, in fact, the
algorithm in [6] applied on each orbit for a fixed reconstructing order Kj , we aim at fusing
the descriptors at the score level. Of course, the scores corresponding to descriptors which
have different orders are not directly comparable. The proposed approach is inspired by
[60] and is based on the so-called Transferable Belief Model (TBM).

We consider, for every orbit Oj , the evidence distribution

πj ∶= πj(D) = (ηj1, . . . , ηjn),

where

ηjκ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕj (
∆j(Bσj(1),D)

∆j(Bκ,D) )
β

, if σj(κ) ≤ n,

0 , otherwise.

Here, ϕj is a normalization constant such that the integral of the evidence distribution
πj is 1, and β is a smoothing parameter.

Besides πj , we may consider the Shannon’s entropy as a confidence factor. Tracing [50],
we define

cj ∶= cj(D) = 1 − H(πj)
log(n) ,

where H(πj) = ∑nκ=1 −ηjκ log(ηjκ) is the Shannon’s entropy of the distribution πj .

Then, for each j, we define the basic belief assignment (BBA)

mj ∶= (mj(B1), . . . ,mj(BN),mj(D)) ∝ (ηj1, . . . , ηjN , cj).

mj quantifies the evidence given to each element of D by the comparison of the descriptors
on the jth orbit.

There exist many ways to fuse the evidence which are expressed as BBAs. One of the
simplest formulas is the TBM conjunctive rule (A.22), which is associative. Therefore,
we start with blending m1 in with m2, obtaining m12 ∶= m1 ∩ m2. Then we combine m12

with m3, obtaining

m123 ∶= (m1 ∩ m2) ∩ m3 = m1 ∩ m2 ∩ m3,

and so on, until we compute m12...M.

Finally, from the fused BBAs we define the pignistic probability (A.23), which is used to
select the best candidate among the elements of D.

The procedure described hereabove is summarized in Algorithm 2. See also Figure 1.6.

24



1.5. Numerical results

Algorithm 1: Shape identification for a multi-scale setting based on transform
invariant descriptors

Input : On each orbit Oj ∈ {O1, . . . ,OM}, the first k-th order shape
descriptors I(1)(D,Oj), I(2)(D,Oj) of an unknown target D.

1 for Oj ∈ {O1, . . . ,OM} do
2 for Bκ ∈ {B1, . . . ,BN} do
3 ∆j(Bκ,D) ←

(∥I(1)(Bκ) − I(1)(D;Oj)∥2
F + ∥I(2)(Bκ) − I(2)(D;Oj)∥2

F )
1/2

;

end
4 σj(1) ← argminκ∆j(Bκ,D);
5 for Bκ ∈ {B1, . . . ,BN} do

6 ηjκ ← ϕj (
∆j(Bσj(1),D)

∆j(Bκ,D) )
β

;

7 mj(Bκ) ← ηjκ;

end

8 cj ← 1 − 1
log(N) ∑

N
κ=1 −ηjκ log(ηjκ) ;

9 mj(D) ← cj ;

end
10 m1...M ← m1 ∩ ⋅ ⋅ ⋅ ∩ mM;

Output : the best matching element of the dictionary κ∗ ← argmaxκBetP(Bκ).

⋱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(K1)

M(K2)

M(KM)

I1

I2

IM m12...M

A
l
g
o
r
it
m

2QO1

QO2

QOMle
n

gt
h

-s
ca

le

MSR Reconstruction Recognition

Figure 1.6.: Overview of the three relevant stages involved in our multi-scale approach. For
conciseness, we denote (I(1)(D;Oj),I(2)(D;Oj)) by Ij .

1.5. Numerical results

In this section, we show some numerical results which illustrate how Algorithm 2 can
significantly improve the robustness of the recognition procedure.
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1. Multi-scale classification for electro-sensing

1.5.1. Setting

Let D be a dictionary containing 8 standard shapes, as illustrated in Figure 2.1. Each
solid shape is equipped with homogeneous conductivity having parameter k = 3 (Circle,
Ellipse, Triangle, Bent Ellipse, Curved Triangle, Gingerbread Man, Drop), whereas the
dashed one (Ellipse) has conductivity k = 10. All the shapes have the same characteristic
size, which is of order one.

The targets D we are considering for the experiments are located at the origin as the
standard shapes, and are obtained by scaling and rotating the elements of D, with scaling
coefficient and rotation angle chosen as δ = 0.2 and θ = π/3, respectively.
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Figure 1.7.: Dictionary D.

1.5.2. Experiment

The data are acquired as described in Section 1.4.2. Precisely, given O1,O2, and O3,
three circular orbits around D of radii ρ1 = 1.6, ρ2 = 1.1, ρ3 = 0.9, respectively, we sample
M1 = M2 = M3 = 200 positions on each trajectory and build the corresponding MSR
matrices. We consider Nr = 210 receptors evenly distributed on the body of the fish. The
acquisition setting is shown in Figure 1.8.

In the numerical experiments the MSR data are simulated using the code developed in
[77].
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Figure 1.8.: A single position of the electric fish per orbit. The target is located at (0,0).

Remark 1.5.1 In principle, the acquisition operator L depends on the measurements,
which is not a desirable property. In order to overcome this difficulty, we perform the
numerical simulations using the surrogate acquisition operator obtained from the dipolar
approximation (1.16).

The CGPTs are reconstructed on each orbit from the MSR matrix by exploiting either
the g-inverse L or the Moore–Penrose inverse L†. The reconstruction orders are set as
K1 = 2 on O1, K2 = 3 on O2, and K3 = 4 on O3. The corresponding shape descriptors are
then used as a rationale for building the BBAs m1,m2, and m3, with parameter β = 2, as
described in Section 1.4.2. For efficiency reasons, positive mass is given only to the first
n = 3 best matching elements of D.

We study the robustness of the fused descriptors given by Algorithm 2 with moderate
noise in the measurements. Precisely, given a target D and σnoise ∈ [0.0025,0.050],
we test the recognition algorithm by considering 104 experiments and computing the
frequencies.

The results arising from the beliefs produced on each orbit, i.e., m1,m2, and m3, are com-
pared with the ones obtained from the fused beliefs synthetized by the TBM conjunctive
rule, i.e., m12 = m1 ∩ m2 and m123 = m12 ∩ m3.

Reconstruction by the generalized inverse L

The results of this part are obtained by employing the reflexive minimum norm g-inverse
L of the acquisition operator given by (1.14) for the reconstruction of the CGPTs from
the MSR data.

The frequencies are reported in Figures 1.9, 1.10, and 1.11.
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Figure 1.9.: Circle (1)
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Figure 1.10.: Triangle (3)
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Figure 1.11.: Curved Triangle (5)

1 2 3 4 5 6 7 8

m1 0.0021 0 0.8029 0 0 0 0 0.1950
m2 0.2805 0 0 0 0 0 0.7195 0
m3 0.0728 0 0.3582 0.0381 0.1400 0 0.0088 0.3821

m12 0.8288 0 0 0 0 0 0.0834 0.0878
m123 0.3575 0 0.3585 0.0001 0.0013 0 0.0174 0.2652

Table 1.2.: Frequency table for the identification of the Circle (1) with the strongest noise,
i.e., σ = 0.05. Each row displays the relative frequencies for all the elements of the
dictionary corresponding to different BBAs.

Looking at Table 1.2, we can clearly see that the combination of classifiers outperforms
each classifier. In particular, we can see that combining the classifiers on O1 and O2

yields a great improvement in the recognition already.

Tables 1.3 and 1.4 refer to the Triangle (3) and the Curved Triangle (5). Because of their
similar silhouettes, they are troublesome from a dictionary approach point of view [66],
and thus it is interesting to have a close look at what happens in both cases.
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1 2 3 4 5 6 7 8

m1 0.0006 0 0.4229 0 0.0115 0 0 0.5650
m2 0 0 0.3371 0 0.6629 0 0 0
m3 0 0 0.8038 0 0.1962 0 0 0

m12 0 0 0.7519 0 0.2382 0 0 0.0099
m123 0 0 0.7702 0 0.2297 0 0 0.0001

Table 1.3.: Frequency table for the identification of the Triangle (3) with the strongest noise,
i.e., σ = 0.05.

1 2 3 4 5 6 7 8

m1 0 0 0 0.5015 0.4650 0 0.0002 0.0333
m2 0 0 0.0064 0 0.9936 0 0 0
m3 0 0 0.5395 0 0.4605 0 0 0

m12 0 0 0.0011 0.0016 0.9967 0 0 0.0006
m123 0 0 0.0017 0 0.9983 0 0 0

Table 1.4.: Frequency table for the identification of the Curved Triangle (5) with the strongest
noise, i.e., σ = 0.05.

It is worth noticing that in Table 1.3 the highest frequency is not attained by the fusion
of the descriptors. Instead, the third orbit alone produces the best matching. However,
merging all the three BBAs considerably enhances the classification success rate in the
worst-case scenario, which is strikingly lower than the rate in the best case scenario.

Clearly, this is not a drawback of our method. As a matter of fact, since we don’t know
in advance which classifier performs the best, the above results indicate that using their
combination is a valid –as well as natural– trade-off.

Reconstruction by the Moore-Penrose inverse

In this part we make use of the Moore-Penrose inverse to reconstruct the CGPTs from
the MSR simulated data, as shown in (1.13). The frequencies are reported in Figures
1.12, 1.13, and 1.14.
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Figure 1.12.: Circle (1)
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Figure 1.13.: Triangle (3)
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Figure 1.14.: Curved Triangle (5)

1 2 3 4 5 6 7 8

m1 0.0106 0 0.9885 0 0 0 0 0.0009
m2 0.4889 0 0 0 0 0 0.5111 0
m3 0.1784 0 0.2565 0.0138 0.0817 0 0.0021 0.4675

m12 0.8729 0 0 0 0 0 0.1270 0.0001
m123 0.5914 0 0.3185 0.0001 0.0016 0 0.0067 0.0817

Table 1.5.: Frequency table for the identification of the Circle (1) with the strongest noise,
i.e., σ = 0.05. Each row displays the relative frequencies for all the elements of the
dictionary corresponding to different BBAs.

1 2 3 4 5 6 7 8

m1 0.0033 0 0.9121 0 0 0 0 0.0846
m2 0 0 0.5027 0 0.4973 0 0 0
m3 0 0 0.7652 0 0.2346 0 0.0002 0

m12 0 0 0.9933 0 0.0046 0 0 0.0021
m123 0 0 0.9910 0 0.0090 0 0 0

Table 1.6.: Frequency table for the identification of the Triangle (3) with the strongest noise,
i.e., σ = 0.05.
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1 2 3 4 5 6 7 8

m1 0 0 0 0.1476 0.8512 0 0 0.0012
m2 0 0 0.0013 0 0.9987 0 0 0
m3 0 0 0.4855 0 0.5145 0 0 0

m12 0 0 0 0.0008 0.9992 0 0 0
m123 0 0 0.0001 0 0.9999 0 0 0

Table 1.7.: Frequency table for the identification of the Curved Triangle (5) with the strongest
noise, i.e., σ = 0.05.

While the g-inverse L lacks of the property of being a least-squares g-inverse, the Moore–
Penrose L† provides the solution to the minimization problem (1.12). Therefore, it is not
surprising that the classification rates obtained by using the latter are generally better
than the ones resulting from using L.

1.6. Concluding remarks

In this chapter, we have presented a dictionary-matching approach for classification in
electro-sensing that takes advantage of measurements at different length-scales. We have
performed a careful analysis of the acquisition operator that was not available before
now. In particular, by exploiting its peculiar block Kronecker form, we have studied its
rank and established a length-scale dependent estimate on the reconstruction error. We
have also discussed to what extent the limited-view configuration impacts prediction of
the committed error.
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2.1. Introduction

There are still many longstanding problems in electro-sensing. In particular, shape
identification and classification are considered to be the most challenging ones. They have
yet to be analyzed and understood. In [6, 7], two schemes that allow one to recognize
and classify targets from measurements of the electric field perturbations induced by
the targets have been presented and analyzed. The first algorithm is based on shape
descriptors for nonbiological targets and the second one is based on spectral induced
polarizations that can be used to image living biological targets, which have frequency-
dependent electromagnetic parameters due to the capacitive effects induced by their
cell membrane structures [13]. In [6], one first extracts the generalized (or high-order)
polarization tensors of the target from the data. These tensors, first introduced in [22],
are intrinsic geometric quantities and constitute the right class of features to represent
the target shapes [6]. The shape features are encoded in the polarization tensors. The
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2. Electro-sensing of inhomogeneous targets

extraction of the generalized polarization tensors can be achieved by a least-squares
method.

Then from the extracted features one computes the invariants under rigid motion and
scaling. Comparing these invariants with those in a dictionary of precomputed shapes,
one can successfully classify the nonbiological target.

Since more complex objects may have arbitrary shapes and multiple layers of different
dielectric materials warranting, a deeper analysis of the full response is required. It is the
objective of the present chapter to extend the approach proposed in [6] to inhomogeneous
targets.

The chapter is organized as follows. In Section 2.2, we derive a boundary integral
representation for the perturbation of the potential due to the presence of the target. We
introduce the GPTs associated with the inhomogeneous target D as the building blocks
of the multipolar asymptotic expansion of the boundary measurements of u∣+ on ∂Ω in
terms of the size of D. In Section 2.3, we consider a particular linear combination of
the GPTs, called contracted generalized polarization tensors (CGPTs), and generalize
the translation, rotation and scaling formulas for the contracted GPTs associated with
homogeneous targets first derived in [6] to those associated with the inhomogeneous
target D. Based on such formulas, we build transform invariants for the CGPTs and
propose a matching algorithm for retrieving inhomogeneous targets. In Section 2.4, we
present a variety of numerical simulations to illustrate the performance of the proposed
matching algorithm. We aim at recognizing a specific inhomogeneous target by means
of a dictionary-matching approach. The considered dictionary of targets contains both
homogeneous and inhomogeneous objects. The latters are obtained by inserting inside the
homogeneous targets inclusions with different conductivities. Similarily to what has been
done in [6], the numerical simulations we perform confirm that extracting generalized
polarization tensors of an inhomogeneous target from the data and comparing invariants
with those of learned elements in a dictionary yields a classification procedure with a
good performance in the full-view case and with small measurement noise level.

2.2. CGPTs for the weakly electric fish model

Let us now recall the model of electro-sensing derived in [2]: the body of the fish is Ω, an
open bounded set in R2, with smooth boundary ∂Ω, and with outward normal unit vector
denoted by ν. The electric organ is a dipole f(x) inside Ω or a sum of point sources inside
Ω satisfying the charge neutrality condition. The skin of the fish is very thin and highly
resistive. Its effective thickness, that is, the skin thickness times the contrast between the
water and the skin conductivities, is denoted by ξ, and it is much smaller than the fish
size. We assume that the conductivity of the background medium is one. We consider a
smooth bounded target D = z + δB, where z is its location, and B is a smooth bounded
domain containing the origin. We assume that the conductivity of D is a scalar function
γ(x) ≠ 1 for x ∈ D with γ(x) = γ̂((x − z)/δ). Also, let γ ∈ L∞(R2) satisfies the uniform

36



2.2. CGPTs for the weakly electric fish model

ellipticity condition that for some λ > 0, λ−1 ≤ γ ≤ λ. In the presence of D, the electric
potential emitted by the fish is the solution to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u = f in Ω,

∇ ⋅ (1 + (γ − 1)χD)∇u = 0 in R2 ∖Ω,

u∣+ − u∣− = ξ
∂u

∂ν
∣
+

on ∂Ω,

∂u

∂ν
∣
−
= 0 on ∂Ω,

∣u(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

(2.1)

Here, χD is the characteristic function of D, ∂/∂ν is the normal derivative, and ∣± denotes
the limits from, respectively, outside and inside Ω. The static background potential
U , i.e., the electric potential without any target, is the unique solution to (2.1) with a
constant conductivity equal to 1 outside the body of the fish Ω:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆U = f in Ω,

∆U = 0 in R2 ∖Ω,

U ∣+ −U ∣− = ξ
∂U

∂ν
∣
+

on ∂Ω,

∂U

∂ν
∣
−
= 0 on ∂Ω,

∣U(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

(2.2)

A dipole approximation for small homogeneous targets away from the fish has been derived
in [2]. It is given in terms of the generalized polarization tensors (GPTs). The concept of
GPTs for an inhomogeneous target has been first considered in [11]. However in [11], a
model much simpler then the weakly electric fish has been taken into account. The aim
of the present chapter is to extend the notion of generalized polarization tensors (GPTs)
to the fish model described above and to introduce an efficient shape descriptor-based
classification for inhomogeneous targets from measurements of the potentials on the skin
of the fish. The approach is based on new invariants for particular linear combinations of
the GPTs associated with inhomogeneous objects.

2.2.1. Boundary integral representation

The two-dimensional model we want to study is (2.1) where the target D is assumed to
be inhomogeneous.

First, we recall a boundary integral representation for the perturbation of the potential,
namely u−U , where U and u are solutions to (2.2) and (2.1) respectively. Let ΓR be the
Green’s function associated with Robin boundary conditions, that is defined for x ∈ R2∖Ω
by
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∆yΓR(x, y) = δx(y), y ∈ R2 ∖Ω,

ΓR(x, y)∣+ − ξ
∂ΓR
∂νx

(x, y)∣
+
= 0, y ∈ ∂Ω,

∣ΓR(x, y) + 1
2π log ∣y∣∣ = O(∣y∣−1), ∣y∣ → ∞.

(2.3)

We consider the divergence-type equation in (2.1) posed on R2 ∖Ω and test it with the
solution ΓR to (3.8):

ΓR(x, y)∇y ⋅ γ(y)∇yu(y) = 0. (2.4)

Let BR be the two-dimensional ball centered at 0 of radius R > 0, large enough to enclose
both Ω and D. Integrating (2.4) over BR ∖ (Ω ∪D), we get

∫
BR∖(Ω∪D)

ΓR(x, y)∇ ⋅ γ(y)∇yu(y)dy = ∫
BR∖(Ω∪D)

∆yu(y)ΓR(x, y)dy = 0.

Applying Green’s theorem we obtain

0 = ∫
BR∖(Ω∪D)

∆yu(y)ΓR(x, y)dy

= ∫
BR∖(Ω∪D)

u(y) ⋅ (−∆yΓR)(x, y)dy + ∫
∂(BR∖(Ω∪D))

( ∂u
∂νy

(y) ΓR(x, y) −
∂ΓR
∂νy

u(y))dsy

= u(x) + ∫
∂(BR∖(Ω∪D))

(∂u
∂ν

ΓR −
∂ΓR
∂νy

u)ds.

So, we have

u(x) = ∫
∂(BR∖(Ω∪D))

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds

= ∫
∂BR

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds − ∫
∂Ω

(∂ΓR
∂νx

u − ∂u
∂ν

ΓR)ds − ∫
∂D

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds.

Let U be the static background solution defined in (2.2). Then

∆U = 0 in R2 ∖Ω.

Multiplying by ΓR and integrating over BR ∖Ω we get

U(x) = ∫
∂BR

(∂ΓR
∂νy

U − ∂U
∂ν

ΓR) ds − ∫
∂Ω

(∂ΓR
∂νy

U − ∂U
∂ν

ΓR)ds.

Omitting the contributions of the integrals on ∂BR, that are negligible as R → +∞, we
have that
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u −U = ∫
∂Ω

(∂ΓR
∂νy

U − ∂U
∂ν

ΓR) − ∫
∂Ω

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR) ds − ∫
∂D

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds

= ∫
∂Ω

∂ΓR
∂νy

(U − u) − ΓR (∂U
∂ν

− ∂u
∂ν

)ds − ∫
∂D

(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds.

Then, using the Robin’s boundary conditions for ΓR, U and u, we obtain that

= ∫
∂Ω

∂ΓR
∂νy

(U∣+ − u∣+) − ξ
∂ΓR
∂νy

(
U∣+ −U∣−

ξ
−
u∣+ − u∣−

ξ
)ds − ∫

∂D
(∂ΓR
∂νy

u − ∂u
∂ν

ΓR)ds.

Since u∣− = U∣−, we get

= ∫
∂Ω

∂ΓR
∂νy

(U∣+ − u∣+) −
∂ΓR
∂νy

(U∣+ − u∣+)ds − ∫
∂D

(∂ΓR
∂νy

u∣+ −
∂u

∂ν
∣
+

ΓR)ds .

Therefore,

(u −U)(x) = ∫
∂D

(∂u
∂ν

∣
+
(y) ΓR(x, y) −

∂ΓR
∂νx

(x, y) u∣+(y))dsy . (2.5)

Let us now define the Neumann–to–Dirichlet (NtD) map

Λγ [γ
∂u

∂ν
∣
−
] = u∣∂D.

The transmission condition on ∂D

γ
∂u

∂ν
∣
−
= ∂u
∂ν

∣
+

yields

(u −U)(x) = ∫
∂D

g(y) ΓR(x, y)dsy − ∫
∂D

∂ΓR
∂νy

(x, y) Λγ[g](y)dsy ,

with g = ∂u/∂ν∣+.

For x ∈ R2 ∖ (Ω ∪D),

Λ1 (
∂ΓR(x, ⋅)
∂νy

) = ΓR(x, ⋅) −
1

∣∂D∣ ∫∂D ΓR(x, y) dsy on ∂D,

where Λ1 = Λγ≡1, and hence,

∂ΓR(x, ⋅)
∂νy

= Λ−1
1 [ΓR(x, ⋅)] on ∂D,
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since Λ1 ∶ H−1/2
0 (∂D) → H

1/2
0 (∂D) is invertible. Moreover, since Λ1 ∶ H−1/2

0 (∂D) →
H

1/2
0 (∂D) is self-adjoint, it follows that

(u −U)(x) = ∫
∂D

g(y) ΓR(x, y) dsy − ∫
∂D

Λ−1
1 [ΓR(x, ⋅)](y) Λγ[g](y) dsy

= ∫
∂D

g(y) ΓR(x, y) dsy − ∫
∂D

ΓR(x, y) Λ−1
1 Λγ[g](y) dsy

= ∫
∂D

ΓR(x, y)(g(y) −Λ−1
1 Λγ[g](y)) dsy

= ∫
∂D

ΓR(x, y)(I −Λ−1
1 Λγ)[g](y) dsy

= ∫
∂D

ΓR(x, y)Λ−1
1 (Λ1 −Λγ)[g](y) dsy .

Therefore, the following result holds.

Lemma 2.2.1 For x ∈ R2 ∖ (Ω ∪D), we have

(u −U)(x) = ∫
∂D

ΓR(x, y)Λ−1
1 (Λ1 −Λγ)[g](y) dsy, (2.6)

with g = ∂u/∂ν∣+.

Theorem 2.2.2 (Dipolar approximation) If D = z + δB, with dist(∂Ω, z) ≫ 1, δ ≪ 1 and
B is a bounded open set, then for any x ∈ ∂Ω,

(∂u
∂ν

− ∂U
∂ν

) (x) = −δ2∇U(z)TM(γ̂,B)∇y (
∂ΓR
∂ν

∣
+
)(x, z) +O(δ3), (2.7)

where T denotes the transpose, M(γ̂,B) = (mij)i,j∈{1,2} is the first-order polarization
tensor associated with B and γ̂, given by

mij = ∫
∂B
yiTB (I − (I

2
+K∗B)TB)

−1

(∂xj
∂ν

∣
∂B

)(y) dsy, (2.8)

where I is the identity operator, and TB ∶ H−1/2
0 (∂B) Ð→ H

−1/2
0 (∂B) is the operator

defined by TB ∶= Λ−1
1 (Λ1 −Λγ̂).

Proof. Let Γ be the fundamental solution of the Laplacian in R2. Following [18, 22],
define

H = −∫
∂Ω

( ∂Γ

∂νy
u − ∂u

∂ν
Γ)ds = −DΩ[u∣+] + SΩ [∂u

∂ν
∣
+
] . (2.9)

Integration by parts and using the same arguments as those in the proof of Lemma 2.2.1
yields

(u −H)(x) = ∫
∂D

Γ(x, y)Λ−1
1 (Λ1 −Λγ)[g](y) dsy = SD [TD[g]] (x), (2.10)

where TD ∶= Λ−1
1 (Λ1 −Λγ).
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Taking the normal derivative on ∂D in (2.10) from outside and using the jump relations
gives

g = ∂u
∂ν

∣
+
= ∂H
∂ν

+ (I
2
+K∗D)TD[g].

Hence,

g = (I − (I
2
+K∗D)TD)

−1

(∂H
∂ν

∣
∂D

) . (2.11)

Substituting (2.11) into (2.6), we get

(u −U)(x) = ∫
∂D

ΓR(x, y)TD (I − (I
2
+K∗D)TD)

−1

(∂H
∂ν

∣
∂D

)(y) dsy. (2.12)

Following the same arguments as those in [18, 22], we can establish by using the scaling
properties of K∗D and TD that ∥∇H −∇U∥ = O(δ2); see [22]. Therefore, Taylor expanding
ΓR(x, ⋅ ) and H at z and scaling the integral, we get the desired expression for the
leading-order term of the small-volume expansion.

Definition 2.2.3 Let α,β ∈ N2 be multi-indices. We define the generalized polarization
tensors associated to the conductivity distribution γ̂ by

Mαβ(γ̂,B) = ∫
∂B
yαTB (I − (I

2
+K∗B)TB)

−1

(∂x
β

∂ν
∣
∂B

)(y) dsy. (2.13)

We can also define the contracted generalized polarization tensors (CGPTs) as follows.

Definition 2.2.4 Let z = y1 + iy2 and ζ = x1 + ix2. For any pair of indices m,n ∈ N, we
define

M cc
mn(γ̂,B) ∶= ∫

∂B
Re(zm)TB (I − (I

2
+K∗B)TB)

−1

[Re(ζn)](y) dsy,

M cs
mn(γ̂,B) ∶= ∫

∂B
Re(zm)TB (I − (I

2
+K∗B)TB)

−1

[Im(ζn)](y) dsy,

M sc
mn(γ̂,B) ∶= ∫

∂B
Im(zm)TB (I − (I

2
+K∗B)TB)

−1

[Re(ζn)](y) dsy,

M ss
mn(γ̂,B) ∶= ∫

∂B
Im(zm)TB (I − (I

2
+K∗B)TB)

−1

[Im(ζn)](y) dsy.

Note that the CGPTs introduced here coincide with those studied in [11].

Proposition 2.2.5 Let u be the solution to

⎧⎪⎪⎨⎪⎪⎩

∇ ⋅ γ∇u = 0 in R2,

u − h = O(∣x∣−1) as ∣x∣ → +∞,
(2.14)
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where h is a harmonic function in R2. Then the following identity holds:

γ
∂u

∂ν
∣
−
= (I − (I

2
+K∗D)TD)

−1

[∂h
∂ν

] on ∂D. (2.15)

Proof. The solution u to (2.14) can be represented as

u = h + SD[ψ] in R2 ∖D, (2.16)

for some ψ ∈ L2(∂D). Therefore,

∂u

∂ν
∣
+
= ∂h
∂ν

+ (I
2
+K∗D) [ψ].

The transmission condition on ∂D

∂u

∂ν
∣
+
= γ ∂u

∂ν
∣
−

leads to

γ
∂u

∂ν
∣
−
= ∂h
∂ν

+ (I
2
+K∗D) [ψ]. (2.17)

Applying the map Λγ on both sides gives

(I
2
+K∗D) [ψ] = u −Λγ [

∂h

∂ν
] .

Next, using the representation (2.16), we get

Λγ (
I

2
+K∗D) [ψ] = h + SD[ψ] −Λγ [

∂h

∂ν
] .

Applying Λ−1
1 and using the jump relations, we obtain

Λ−1
1 Λγ (

I

2
+K∗D) [ψ] = ∂h

∂ν
+ (−I

2
+K∗D) [ψ] −Λ−1

1 Λγ [
∂h

∂ν
] .

Hence

[−(−I
2
+K∗D) +Λ−1

1 Λγ (
I

2
+K∗D)] [ψ] = ∂h

∂ν
−Λ−1

1 Λγ [
∂h

∂ν
] ,

[I − (I
2
+K∗D) +Λ−1

1 Λγ (
I

2
+K∗D)] [ψ] = TD [∂h

∂ν
] ,

[I − TD (I
2
+K∗D)] [ψ] = TD [∂h

∂ν
] .

Therefore, we get the following expression of ψ:

ψ = (I − TD (I
2
+K∗D))

−1

[TD [∂h
∂ν

]] .

42



2.2. CGPTs for the weakly electric fish model

Substituting ψ into (2.17), we arrive at

γ
∂u

∂ν
∣
−
= ∂h
∂ν

+ (I
2
+K∗D)(I − TD (I

2
+K∗D))

−1

TD [∂h
∂ν

] ,

or equivalently,

γ
∂u

∂ν
∣
−
=
⎡⎢⎢⎢⎢⎣
I − (I − ((I

2
+K∗D)TD)

−1

)
−1⎤⎥⎥⎥⎥⎦

[∂h
∂ν

] , (2.18)

which is equivalent to (2.15).

The following result shows that the GPTs are the building blocks of the multipolar
asymptotic expansion.

Theorem 2.2.6 (Multipolar approximation) For every integer K ≥ 1, the following expan-
sion holds

u(x) =H(x) + δd−2
K

∑
∣α∣=1

K−∣α∣+1

∑
∣β∣=1

(−1)∣β∣δ∣α∣+∣β∣
α!β!

∂αH(z)Mαβ(γ̂,B)∂βy Γ(x, z) +O(δ2+K),

(2.19)
uniformly for x ∈ ∂Ω, where H is the function defined by (2.9).

Proof. The argument is the same used to prove the multipolar expansion in [7, Theorem
1]. For the sake of completeness, the adapted proof is reported below.

From (2.10) and (2.11) we get

u(x) =H(x) + SD [φ] (x), x ∈ R2 ∖ (Ω ∪D), (2.20)

where φ ∶= TD (I − ( I
2 +K

∗
D)TD)−1 (∂H

∂ν ∣∂D). Denoting

HK(x) =
K

∑
∣α∣=0

1

α!
∂αH(z)(x − z)α, (2.21)

a Taylor expansion implies

∥∂HK

∂ν
− ∂H
∂ν

∥
L2(∂D)

≤ CδK ∣∂D∣1/2.

On the other hand, defining φK ∶= TD (I − ( I
2 +K

∗
D)TD)−1 (∂HK

∂ν ∣∂D), the same argument
as in [3, Section 4.2] leads to the following estimates: for any x ∈ ∂Ω,

∣SD(φ − φK)(x)∣ = ∣∫
∂D

(Γ(x, y) − Γ(x, z))(φ(y) − φK(y)) dsy∣

≤ ∫
∂D

∣Γ(x, y) − Γ(x, z)∣∣φ(y) − φK(y)∣ dsy

≤ C ′δ∣∂D∣1/2∥φ − φK∥L2(∂D),
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whereas

∥φ − φK∥L2(∂D) ≤ C ′′ ∥∂HK

∂ν
− ∂H
∂ν

∥
L2(∂D)

≤ CC′′δK ∣∂D∣1/2.

Therefore
∥SD(φ − φK)∥L∞(∂Ω) = O(δ2+K).

Thus, from (2.20) we immediately get

u(x) =H(x) + SD [φK] (x) +O(δ2+K). (2.22)

Proceeding as in [5, Section 3], after plugging the Taylor expansion (2.21) of H into the
expression of φK appearing in formula (2.22), by a change of variables y′ = (y − z)/δ in
the integral we obtain

u(x) =H(x) +
K

∑
∣α∣=0

1

α!
∂αH(z)δ∣α∣∫

∂B
Γ(x, z + δy′)ψα(y′) dsy′ +O(δ2+K), (2.23)

where ψα = TB (I − ( I
2 +K

∗
B)TB)−1 (ν ⋅ ∇ζα). Finally, expansion (2.19) follows by inject-

ing a Taylor expansion of fundamental solution

Γ(x, z + δy′) =
∞
∑
∣β∣=0

(−δ)∣β∣
β!

∂βΓ(x, z)yβ,

into (2.23).

Remark 2.2.7 Observe that the terms ∂αH(z) in the small-volume expansion stated
above depend on δ. Even though (2.19) could have been derived in terms of U and its
derivatives entirely, it is more convenient to keep the formula as it is. As a matter of
fact ∂αH(z) can be easily computed from the boundary measurements on ∂Ω once the
center z is known and its simplicity makes it suitable to solve the inverse problem we are
interested in.

Remark 2.2.8 In view of (2.19), the GPTs Mαβ(γ̂,B) can be reconstructed from mea-
surements of (u −H)∣∂Ω corresponding to different positions of the fish. As in [6], the
number of GPTs which can be reconstructed accurately for a given signal-to-noise ratio
can be determined in terms of the ratio between the characteristic size of the target
and its distance to the fish. The resolving formula derived in [6] holds. Moreover, it is
worth mentioning that if the target is homogeneous, then the GPTs reduce to those first
introduced and investigated in [18, 19]. In fact, if γ∣D ≡ k, 0 < k ≠ 1 < +∞, then

Mαβ(k,D) = ∫
∂D

yα (T −1
D − (I

2
+K∗D))

−1

(∂x
β

∂ν
∣
∂D

)(y) dsy

= ∫
∂D

yα (λI −K∗D)−1 (∂x
β

∂ν
∣
∂D

)(y) dsy,

where λ = k+1
2(k−1) .
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2.3. Properties of the CGPTs

The goal of this section is to provide transformation formulas for the contracted GPTs
introduced in Definition 2.2.4.

2.3.1. Translation formula

We want to investigate how the quantity

M cc
mn(γ,D) =Mmn = ∫

∂D
Re(zm)TD[gcn](y) dsy (2.24)

changes with respect to a translation of D.

We denote by x̂ = x + z, D̂ ∶= D + z, 1̂(x̂) ∶= 1, and γ̂(x̂) ∶= γ(x). We want to relate
M cc
mn(γ,D) with M cc

mn(γ̂, D̂) defined by

M cc
mn(γ̂, D̂) = M̂ cc

mn = ∫
∂D̂

Re(x̂m)(ĝcn(x̂) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x̂)) dsx̂.

By the change of variables x̂ = x + z, we obtain

M cc
mn(γ̂, D̂) = M̂ cc

mn = ∫
∂D

Re((x + z)m)(ĝcn(x + z) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x + z)) dsx . (2.25)

Lemma 2.3.1 We have

ĝcn(x + z) =
n

∑
k=1

(n
k
) [gck(x)rn−kz cos((n − k)θz) − gsk(x)rn−kz sin((n − k)θz)] , (2.26)

and

ĝsn(x + z) =
n

∑
k=1

(n
k
) [gsk(x)rn−kz cos((n − k)θz) + gck(x)rn−kz sin((n − k)θz)] , (2.27)

where z = rz(cos θz, sin θz) in polar coordinates.

Proof. Let ûcn be the solution to

⎧⎪⎪⎨⎪⎪⎩

∇x̂ ⋅ γ̂(x̂)∇x̂ûcn(x̂) = 0 in R2,

ûcn(x̂) −Re(x̂n) = O(∣x̂∣−1) as ∣x̂∣ → +∞.
(2.28)

Then, by definition, ĝcn ∶= γ̂
∂ûcn
∂νx̂

. Using the change of variables in (2.28) and setting

vcn(x) ∶= ûcn(x + z), we obtain

⎧⎪⎪⎨⎪⎪⎩

∇x ⋅ γ(x)∇xvcn(x) = 0 in R2,

vcn(x) −Re((x + z)n) = O(∣x∣−1) as ∣x∣ → +∞.
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2. Electro-sensing of inhomogeneous targets

From

Re((x + z)n) =
n

∑
k=0

(n
k
) rkxrn−kz [cos(kθx) cos((n − k)θz) − sin(kθx) sin((n − k)θz)],

it follows that

vcn(x) =
n

∑
k=0

(n
k
) [hck(x)rn−kz cos((n − k)θz) − hsk(x)rn−kz sin((n − k)θz)].

Hence,

ĝcn(x + z) =
n

∑
k=1

(n
k
) [gck(x)rn−kz cos((n − k)θz) − gsk(x)rn−kz sin((n − k)θz)].

Analogously we derive formula (2.27) for ĝsn.

To relate (2.24) and (2.25) we consider the operator

Λ−1
1 ΛDγ ∶H−1/2

0 (∂D) Ð→H
−1/2
0 (∂D)

gcn z→
∂h

∂νx
∣
−
,

where h is the solution to the boundary value problem

⎧⎪⎪⎨⎪⎪⎩

∆h = 0 in D,

∇xh ⋅ νx = gcn on ∂D.
(2.29)

Let y ∈ D and consider the corresponding Neumann function N1(x, y), that is, the
solution to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆xN1(x, y) = −δy(x), x ∈D,
∇xN1(x, y) ⋅ νx = 1

∣∂D∣ , x ∈ ∂D,

∫
∂D

N1(x, y)dsx = 0.

(2.30)

Then the solution h of (2.29) can be represented by means of this Neumann function

h(y) = ∫
∂D

N1(x, y)g(x) dsx.

So, for y ∈ ∂D, we have

Λ−1
1 ΛDγ [gcn](y) = ∇yh(y) ⋅ νy ∣∂D = ∫

∂D
∇yN1(x, y) ⋅ νy gcn(x) dsx. (2.31)
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Now we proceed similarly. We let the operator Λ−1
1̂

ΛD̂
γ̂ ∶ H−1/2

0 (∂D̂) Ð→ H
−1/2
0 (∂D̂) be

defined by

ĝcn z→
∂ĥ

∂νx̂
∣
−
,

with ĥ being the solution of

⎧⎪⎪⎨⎪⎪⎩

∆ĥ = 0 in D̂,

∇x̂ĥ ⋅ νx̂ = ĝcn on ∂D̂.
(2.32)

Let ŷ = y + z ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is, the
solution to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,
∇x̂N̂1(x̂, ŷ) ⋅ νx̂ = − 1

∣∂D̂∣ , x̂ ∈ ∂D̂,

∫
∂D̂

N̂1(x̂, ŷ)dsx̂ = 0,

that can be written as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆xN̂1(x + z, y + z) = −δy(x), x ∈D,
∇xN̂1(x + z, y + z) ⋅ νx = − 1

∣∂D∣ , x ∈ ∂D,

∫
∂D

N̂1(x + z, y + z)dsx = 0.

(2.33)

Comparing (2.33) and (2.30), we observe that N̂1(x + z, y + z) and N1(x, y) satisfy the
same boundary value problem (2.30). The uniqueness of a solution to (2.30) yields

N̂1(x + z, y + z) = N1(x, y) . (2.34)

The solution ĥ to (2.32) can be represented by means of the Neumann function N̂1:

ĥ(ŷ) = ∫
∂D̂

N̂1(x̂, ŷ) ĝcn(x̂) dsx̂.

Moreover, for y ∈ ∂D, we have

Λ−1
1̂

ΛD̂γ̂ [ĝcn](ŷ) = ∇ŷ ĥ(ŷ) ⋅ νŷ
= ∫

∂D̂
(∇ŷ N̂1)(x̂, ŷ) ⋅ νŷ ĝcn(x̂) dsx̂

= ∫
∂D

(∇y N̂1)(x + z, ŷ) ⋅ νy ĝcn(x + z) dsx

= ∫
∂D

(∇yN1)(x, y) ⋅ νy
n

∑
k=1

(n
k
) [gck(x)rn−kz cos((n − k)θz) − gsk(x)rn−kz sin((n − k)θz)] dsx

=
n

∑
k=1

(n
k
) rn−kz [cos((n − k)θz)∫

∂D
(∇yN1)(x, y) ⋅ νy gck(x) dsx

− sin((n − k)θz) ∫
∂D

(∇yN1)(x, y) ⋅ νy gsk(x) dsx]

=
n

∑
k=1

(n
k
) rn−kz [cos((n − k)θz)Λ−1

1 ΛDγ [gck](y) − sin((n − k)θz)Λ−1
1 ΛDγ [gsk](y)] .

47
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Here we have made the change of variables x̂ = x + z and used identity (2.34). Therefore,
it follows that

Λ−1
1̂

ΛD̂γ̂ [ĝ](ŷ) =
n

∑
k=1

(n
k
) rn−kz [cos((n − k)θz)Λ−1

1 ΛDγ [gck](y) − sin((n − k)θz)Λ−1
1 ΛDγ [gsk](y)] .

(2.35)

Hence
M cc
mn(γ̂, D̂) = ∫

∂D
Re((x + z)m)(gcn(x) −Λ−1

1 ΛDγ [gcn](x)) dsx.

Using the identity

Re((x + z)m) =
m

∑
k=0

(m
k
) rkxrm−kz [cos(kθx) cos((m − k)θz) − sin(kθx) sin((m − k)θz)] ,

we get

M cc
mn(γ̂, D̂) = ∫

∂D
Re((x + z)m)(ĝcn(x + z) −Λ−1

1̂
ΛD̂γ̂ [ĝcn](x + z)) dsx

=
m

∑
k=1

rm−kz (m
k
)[cos((m − k)θz)∫

∂D
rkx cos(kθx)(ĝcn(x + z) −Λ−1

1̂
ΛD̂γ̂ [ĝcn](x + z)) dsx

− sin((m − k)θz)∫
∂D

rkx sin(kθx)(ĝcn(x + z) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x + z)) dsx] .
(2.36)

From Lemma 2.3.1 and formula (2.35), we obtain

ĝcn(x + z) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x + z) =
n

∑
r=1

(n
r
) rn−rz [gcr(x) cos((n − r)θz) − gsr(x) sin((n − r)θz)]

−
n

∑
r=1

(n
r
) rn−rz [cos((n − r)θz)Λ−1

1 ΛDγ [gcr](x) − sin((n − r)θz)Λ−1
1 ΛDγ [gsr](x)]

=
n

∑
r=1

(n
r
) rn−rz [gcr(x) cos((n − r)θz) − gsr(x) sin((n − r)θz)

−(cos((n − r)θz)Λ−1
1 ΛDγ [gcr](x) − sin((n − r)θz)Λ−1

1 ΛDγ [gsr](x))]

=
n

∑
r=1

(n
r
) rn−rz [(gcr(x) −Λ−1

1 ΛDγ [gcr](x)) cos((n − r)θz) − (gsr(x) −Λ−1
1 ΛDγ [gsr](x)) sin((n − r)θz)] .

So

∫
∂D

rkx cos(kθx)(ĝcn(x + z) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x + z)) dsx

=
n

∑
r=1

(n
r
) rn−rz [cos((n − r)θz)M cc

kr − sin((n − r)θz)M cs
kr] ,

(2.37)

and

∫
∂D

rkx sin(kθx)(ĝcn(x + z) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x + z)) dsx

=
n

∑
r=1

(n
r
) rn−rz [cos((n − r)θz)M sc

kr − sin((n − r)θz)M ss
kr] .

(2.38)
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Plugging (2.37) and (2.38) into formula (2.36), we arrive at

M cc
mn(γ̂, D̂) =

m

∑
k=1

n

∑
r=1

(n
r
)(m

k
) rn−rz rm−kz {cos((m − k)θz) [cos((n − r)θz)M cc

kr − sin((n − r)θz)M cs
kr]

− sin((m − k)θz) [cos((n − r)θz)M sc
kr − sin((n − r)θz)M ss

kr]} .

Analogously, we readily get

M sc
mn(γ̂, D̂) =

m

∑
k=1

n

∑
r=1

(n
r
)(m

k
) rn−rz rm−kz {cos((m − k)θz) [cos((n − r)θz)M sc

kr − sin((n − r)θz)M ss
kr]

+ sin((m − k)θz) [cos((n − r)θz)M cc
kr − sin((n − r)θz)M cs

kr]} ,

M cs
mn(γ̂, D̂) =

m

∑
k=1

n

∑
r=1

(n
r
)(m

k
) rn−rz rm−kz {cos((m − k)θz) [cos((n − r)θz)M cs

kr + sin((n − r)θz)M cc
kr]

− sin((m − k)θz) [cos((n − r)θz)M ss
kr + sin((n − r)θz)M sc

kr]} ,

M ss
mn(γ̂, D̂) =

m

∑
k=1

n

∑
r=1

(n
r
)(m

k
) rn−rz rm−kz {cos((m − k)θz) [cos((n − r)θz)M ss

kr + sin((n − r)θz)M sc
kr]

+ sin((m − k)θz) [cos((n − r)θz)M cs
kr + sin((n − r)θz)M cc

kr]} .

We write these formulas compactly in a matrix form as follows:

[M̂
cc
mn M̂ sc

mn

M̂ cs
mn M̂ ss

mn

] =
m

∑
k=1

n

∑
r=1

rm−kz rn−rz (m
k
)(n

r
)R((n − r)θz) [

M cc
kr M sc

kr

M cs
kr M ss

kr

] ⋅R((m − k)θz)T ,

where R(θ) is the matrix associated with the rotation by θ, i.e.,

R(θ) ∶= [cos θ − sin θ
sin θ cos θ

] . (2.39)

2.3.2. Rotation formula

We want to investigate how Mmn changes with respect to a rotation of D by an angle
θ.

Let θ ∈ [0,2π) and let R ∈ R2×2 be the matrix associated with the rotation

R ∶= R(θ) = [cos θ − sin θ
sin θ cos θ

] .

Let us define ΦR(x) ∶= Rx = eiθx.
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We denote x̂ = Rx, D̂ ∶= ΦR(D) and γ̂(x̂) ∶= γ(x). We want to relate M cc
mn(γ,D) with

M cc
mn(γ̂, D̂) defined by

M cc
mn(γ̂, D̂) = M̂ cc

mn = ∫
∂D̂

Re(x̂m)(ĝcn(x̂) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](x̂)) dsx̂. (2.40)

By the change of variables x̂ = Rx, we obtain

M cc
mn(γ̂, D̂) = M̂ cc

mn = ∫
∂D

rmx cos(m(θx + θ)) (ĝcn(Rx) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](Rx)) dsx . (2.41)

Lemma 2.3.2 We have

ĝcn(Rx) = cosnθ gcn(x) − sinnθ gsn(x) , (2.42)

and

ĝsn(Rx) = cosnθ gsn(x) + sinnθ gcn(x) . (2.43)

Proof. Let ûcn be the solution to

⎧⎪⎪⎨⎪⎪⎩

∇x̂ ⋅ γ̂(x̂)∇x̂ûcn(x̂) = 0 in R2,

ûcn(x̂) − rnx̂ cos(nθx̂) = O(r−1
x̂ ) as ∣x̂∣ → +∞.

(2.44)

Then, by definition, we have ĝcn ∶=
∂ûcn
∂νx̂

∣
+
. By a change of variables in (2.44) and by

setting vcn(x) ∶= ûcn(Rx), we obtain

⎧⎪⎪⎨⎪⎪⎩

∇x ⋅ γ(x)∇xvcn(x) = 0 in R2,

vcn(x) − rnx cos(n(θx + θ)) = O(r−1
x ) as ∣x∣ → +∞.

Hence,

⎧⎪⎪⎨⎪⎪⎩

∇x ⋅ γ(x)∇xvcn(x) = 0 in R2,

vcn(x) − (rnx cosnθx cosnθ − rnx sinnθx sinnθ) = O(r−1
x ) as ∣x∣ → +∞,

or equivalently,

⎧⎪⎪⎨⎪⎪⎩

∇x ⋅ γ(x)∇xvcn(x) = 0 in R2,

vcn(x) − (hcn(x)θx cosnθ − hsn(x) sinnθ) = O(r−1
x ) as ∣x∣ → +∞.

Therefore,

vcn(x) = cosnθ ucn(x) − sinnθ usn(x).

Analogously we derive formula (2.43) for ĝsn.
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In order to relate (2.24) and (2.41) we need to have a better understanding of the boundary
operator that we are integrating. We have already written an integral representation for

the operator Λ−1
1 ΛDγ ∶H−1/2

0 (∂D) Ð→H
−1/2
0 (∂D) in the previous subsection (see (2.31)).

Now, we proceed similarly for the operator that plays a role in the rotated problem:

Λ−1
1̂

ΛD̂γ̂ ∶H−1/2
0 (∂D̂) Ð→H

−1/2
0 (∂D̂)

ĝcn z→
∂ĥ

∂νx̂
∣
−
,

where ĥ is the solution to the boundary value problem

⎧⎪⎪⎨⎪⎪⎩

∆ĥ = 0 in D̂,

∇x̂ĥ ⋅ νx̂ = ĝcn on ∂D̂.
(2.45)

Let ŷ = Ry ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is, the
solution to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,
∇x̂N̂1(x̂, ŷ) ⋅ νx̂ = − 1

∣∂D̂∣ , x̂ ∈ ∂D̂,

∫
∂D̂

N̂1(x̂, ŷ)dsx̂ = 0.

Exploiting the rotational invariance of the Laplacian gives

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∆xN̂1 ○ΦR)(x,Ry) = −δRy(Rx) = −δy(x), x ∈D,
R(∇xN̂1 ○ΦR)(x,Ry) ⋅ (Rνx) = − 1

∣∂D∣ , x ∈ ∂D,

∫
∂D

N̂1(Rx, ŷ)dsx = 0.

Therefore,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∆xN̂1 ○ΦR)(x,Ry) = −δRy(Rx) = −δy(x), x ∈D,
(∇xN̂1 ○ΦR)(x,Ry) ⋅ νx = − 1

∣∂D∣ , x ∈ ∂D,

∫
∂D

N̂1(Rx,Ry)dsx = 0.

One can easily see that N̂1(Rx,Ry) and N1(x, y) satisfy exactly the same boundary
value problem (2.30). The uniqueness of a solution to (2.30) yields

N̂1(Rx,Ry) = N1(x, y) . (2.46)

Since the solution ĥ to (2.45) can be represented by means of the Neumann function
N̂1:

ĥ(ŷ) = ∫
∂D̂

N̂1(x̂, ŷ) ĝcn(x̂) dsx̂ ,
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2. Electro-sensing of inhomogeneous targets

we have, for y ∈ ∂D,

Λ−1
1̂

ΛD̂γ̂ [ĝcn](ŷ) = ∇ŷ ĥ(ŷ) ⋅ νŷ
= ∫

∂D̂
(∇ŷ N̂1)(x̂, ŷ) ⋅ νŷ ĝcn(x̂) dsx̂

= ∫
∂D

(∇ŷ N̂1)(Rx, ŷ) ⋅ νŷ ĝcn(Rx) dsx

= ∫
∂D

R(∇y N̂1(Rx,R ⋅ ))(Rx, y) ⋅Rνy (cosnθ gcn(x) − sinnθ gsn(x)) dsx

= ∫
∂D

(∇yN1)(x, y) ⋅ νy (cosnθ gcn(x) − sinnθ gsn(x)) dsx

= cosnθ ∫
∂D

(∇yN1)(x, y) ⋅ νy gcn(x) dsx − sinnθ ∫
∂D

(∇yN1)(x, y) ⋅ νy gsn(x) dsx .

Here, we have made the change of variables x̂ = Rx and used identity (2.46). Therefore,
it follows that

Λ−1
1̂

ΛD̂γ̂ [ĝcn](Rx) = cosnθΛ−1
1 ΛDγ [gcn](x) − sinnθΛ−1

1 ΛDγ [gsn](x) . (2.47)

Hence, from Lemma 2.3.2 and (2.47), we get

ĝcn(Rx) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](Rx) = cosnθ gcn(x) − sinnθ gsn(x) − cosnθΛ−1
1 ΛDγ [gcn](x) + sinnθΛ−1

1 ΛDγ [gsn](x)
= cosnθ (gcn(x) −Λ−1

1 ΛDγ [gcn](x)) − sinnθ (gsn(x) −Λ−1
1 ΛDγ [gsn](x)) .

M cc
mn(γ̂, D̂) = ∫

∂D
rmx cos(m(θx + θ)) (ĝcn(Rx) −Λ−1

1̂
ΛD̂γ̂ [ĝcn](Rx)) dsx

= ∫
∂D

[rmx cos(mθx) cos(mθ) − rmx sin(mθx) sin(mθ)](ĝcn(Rx) −Λ−1
1̂

ΛD̂γ̂ [ĝcn](Rx)) dsx

= cos(mθ) cos(nθ) ∫
∂D

rmx cos(mθx)(gcn(x) −Λ−1
1 ΛDγ [gcn](x)) dsx

− cos(mθ) sin(nθ) ∫
∂D

rmx cos(mθx)(gsn(x) −Λ−1
1 ΛDγ [gsn](x)) dsx

− sin(mθ) cos(nθ)∫
∂D

rmx sin(mθx)(gcn(x) −Λ−1
1 ΛDγ [gcn](x)) dsx

+ sin(mθ) sin(nθ)∫
∂D

rmx sin(mθx)(gsn(x) −Λ−1
1 ΛDγ [gsn](x)) dsx

= cos(mθ) cos(nθ)M cc
mn − cos(mθ) sin(nθ)M cs

mn

− sin(mθ) cos(nθ)M sc
mn + sin(mθ) sin(nθ)M ss

mn .

Similar computations lead to the rotation formulas for the others CGPTs M̂ cs
mn, M̂

sc
mn

and M̂ ss
mn. All these formulas can be written in a matrix form:

[M̂
cc
mn M̂ sc

mn

M̂ cs
mn M̂ ss

mn

] = R(nθ) ⋅ [M
cc
mn M sc

mn

M cs
mn M ss

mn
] ⋅R(mθ)T ,

where R(θ) is defined in (2.39).
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2.3. Properties of the CGPTs

2.3.3. Scaling formula

Similarly to what we have done for translations and rotations we want to investigate how
Mmn changes with respect to a scaling of D.

Let s > 0 and assume that z = 0. We denote x̂ = sx, D̂ ∶= sD and γ̂(x̂) ∶= γ(x). We want
to relate M cc

mn(γ,D) with M cc
mn(γ̂, D̂) given by

M cc
mn(γ̂, D̂) = M̂mn = ∫

∂D̂
Re(x̂m)(ĝcn(x̂) −Λ−1

1̂
ΛD̂γ̂ [ĝcn](x̂)) dsx̂ .

By the change of variables x̂ = sx, we obtain

M cc
mn(γ̂, D̂) = M̂mn = sm+1 ∫

∂D
Re(xm)(ĝcn(sx) −Λ−1

1̂
ΛD̂γ̂ [ĝcn](sx)) dsx. (2.48)

Lemma 2.3.3 We have

ĝcn(sx) = sn−1gcn(x) , (2.49)

and

ĝsn(sx) = sn−1gsn(x) . (2.50)

Proof. We show the first identity. The one for ĝsn can be proved in the same way. Let ûcn
be the solution to

⎧⎪⎪⎨⎪⎪⎩

∇x̂ ⋅ γ̂(x̂)∇x̂ûcn(x̂) = 0 in R2,

ûcn(x̂) − rnx̂ cos(nθx̂) = O(r−1
x̂ ) as ∣x̂∣ → +∞.

(2.51)

Then ĝcn ∶= γ̂
∂ûcn
∂νx̂

. By a change of variables in (2.51) and by setting vcn(x) ∶= ûcn(sx), we

obtain
⎧⎪⎪⎨⎪⎪⎩

∇x ⋅ γ(x)∇xvcn(x) = 0 in R2,

s(vcn(x) − snrnx cos(nθx)) = O(r−1
x ) as ∣x̂∣ → +∞.

Therefore, snvcn(x) solves the same problem as ucn(x). By the uniqueness of a solution,
we get

s−nvcn(x) = ucn(x).

So

∇xucn(x) = s−n∇xvcn(x) = s−n+1∇x̂ûcn(x̂) .

Hence,

gcn(x) = s−n+1ĝcn(x̂).
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2. Electro-sensing of inhomogeneous targets

We want to relate (2.24) and (2.48). We refer to (2.31) for an integral representation of
the operator Λ−1

1 ΛDγ .

Now we proceed similarly for the operator that plays a role in the scaled problem:

Λ−1
1̂

ΛD̂γ̂ ∶H−1/2
0 (∂D̂) Ð→H

−1/2
0 (∂D̂)

ĝcn z→
∂ĥ

∂νx̂
∣
−
,

where ĥ is the solution to the boundary value problem

⎧⎪⎪⎨⎪⎪⎩

∆ĥ = 0 in D̂,

∇x̂ĥ ⋅ νx̂ = ĝcn on ∂D̂ .
(2.52)

Let ŷ = sy ∈ D̂ and consider the corresponding Neumann function N̂1(x̂, ŷ), that is, the
solution to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x̂N̂1(x̂, ŷ) = −δŷ(x̂), x̂ ∈ D̂,
∇x̂N̂1(x̂, ŷ) ⋅ νx̂ = − 1

∣∂D̂∣ , x̂ ∈ ∂D̂,

∫
∂D̂

N̂1(x̂, ŷ)dsx̂ = 0.

Then,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
s2

∆xN̂1(sx, sy) = −δsy(sx) = −δ0(s(x − y)) = − 1
s2
δy(x), x ∈D,

1
s ∇xN̂1(sx, sy) ⋅ νx = − 1

s∣∂D∣ , x ∈ ∂D,

∫
∂D

N̂1(sx, ŷ)dsx = 0,

which shows that
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆xN̂1(sx, sy) = −δy(x), x ∈D,
∇xN̂1(sx, sy) ⋅ νx = − 1

∣∂D∣ , x ∈ ∂D,

∫
∂D

N̂1(sx, sy)dsx = 0.

One can easily see that N̂1(sx, sy) and N1(x, y) satisfy exactly the same boundary value
problem (2.30). Therefore,

N̂1(sx, sy) = N1(x, y) . (2.53)

The solution ĥ to (2.52) can be represented by means of the Neumann function N̂1:

ĥ(ŷ) = ∫
∂D̂

N̂1(x̂, ŷ) ĝcn(x̂) dsx̂ ,
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2.3. Properties of the CGPTs

and so, for y ∈ ∂D, we have

Λ−1
1̂

ΛD̂γ̂ [ĝ](ŷ) = ∇ŷ ĥ(ŷ) ⋅ νŷ
= ∫

∂D̂
(∇ŷ N̂1)(x̂, ŷ) ⋅ νŷ ĝcn(x̂) dsx̂

= ∫
∂D

(∇ŷ N̂1)(sx, ŷ) ⋅ νy sn−1 gcn(x) s dsx

= sn−1 ∫
∂D

(∇y N̂1(sx, s ⋅ ))(sx, y) ⋅ νy gcn(x) dsx

= sn−1 ∫
∂D

(∇yN1)(x, y) ⋅ νy gcn(x) dsx.

Here, we have made the change of variables x̂ = sx and used identity (2.53). Therefore,
it follows that

Λ−1
1̂

ΛD̂γ̂ [ĝ](ŷ) = sn−1 Λ−1
1 ΛDγ [g](y).

Then

M cc
mn(γ̂, D̂) = sm+1 ∫

∂D
Re(xm)(sn−1gcn(x) − sn−1Λ−1

1 ΛDγ [gcn](x)) dsx

= sm+n ∫
∂D

Re(xm)(gcn(x) −Λ−1
1 ΛDγ [gcn](x)) dsx

= sm+nM cc
mn(γ,D).

Hence, we obtain the following scaling formula

M cc
mn(γ̂, D̂) = sm+nM cc

mn(γ,D) .

Analogously, we get

M cs
mn(γ̂, D̂) = sm+nM cs

mn(γ,D),

M sc
mn(γ̂, D̂) = sm+nM sc

mn(γ,D),

M ss
mn(γ̂, D̂) = sm+nM ss

mn(γ,D).

In order to simplify the notation, for any pair of indices m,n, we denote by Mmn ∶=

[M
cc
mn M sc

mn

M cs
mn M ss

mn
] and M̂mn ∶= [M̂

cc
mn M̂ sc

mn

M̂ cs
mn M̂ ss

mn

]. We introduce also the following notation:

• TzD = {x + z, for x ∈D}, (Tz ⋆ γ)(x) = γ(x − z), for z ∈ R2;

• RθD = {eiθx, for x ∈D}, (Rθ ⋆ γ)(x) = γ(e−iθx), for θ ∈ [0,2π);

• sD = {sx, for x ∈D}, (s ⋆ γ)(x) = γ(s−1x), for s > 0,
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2. Electro-sensing of inhomogeneous targets

where D is an open set and γ is a conductivity distribution in the plane.

We summarize the formulas that we obtained so far in the following theorem.

Proposition 2.3.4 For any pair m,n of indices, m,n = 1, 2, . . ., the following transforma-
tion formulas hold true:

Mmn(Tz ⋆ γ, TzD) =
m

∑
k=1

n

∑
r=1

rm−kz rn−rz (m
k
)(n

r
)R((n − r)θz)Mkr(γ,D)R((m − k)θz)T ,

Mmn(Rθ ⋆ γ,RθD) = R(nθ)Mmn(γ,D)R(mθ)T ,

and

Mmn(s ⋆ γ, sD) = sm+nMmn(γ,D).

2.3.4. Complex CGPTs

As observed in [6], it is convenient to consider complex combinations of CGPTs. For a
pair of indices m,n = 1,2, . . . , we introduce the following quantities

N
(1)
mn(γ,D) = (M cc

mn −M ss
mn) + i(M cs

mn +M sc
mn),

N
(2)
mn(γ,D) = (M cc

mn +M ss
mn) + i(M cs

mn −M sc
mn).

(2.54)

Using relations of Proposition 2.3.4 it is straightforward to prove similar rules than those
derived in [6] for the complex CGPTs (2.54).

Proposition 2.3.5 For all integers m,n, and geometric parameters θ, s and z, the following
holds:

N(1)
mn(Rθ ⋆ γ,RθD) = ei(m+n)N(1)

mn(γ,D), N(2)
mn(Rθ ⋆ γ,RθD) = ei(n−m)N(2)

mn(γ,D),
(2.55)

N(1)
mn(s ⋆ γ, sD) = sm+nN(1)

mn(γ,D), N(2)
mn(s ⋆ γ, sD) = sm+nN(2)

mn(γ,D), (2.56)

and

N(1)
mn(Tz⋆γ, TzD) =

m

∑
l=1

n

∑
k=1

Cz
mlN

(1)
lk (γ,D)Cz

nk, N(2)
mn(Tz⋆γ, TzD) =

m

∑
l=1

n

∑
k=1

Cz
mlN

(2)
lk (γ,D)Cz

nk,

(2.57)
where Cz is a lower triangular matrix with the m,n-th entry given by

Cz
mn = (m

n
) zm−n.
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2.3. Properties of the CGPTs

We define the complex CGPT matrices by

N(1) ∶= (N(1)
mn)m,n, N(2) ∶= (N(2)

mn)m,n.

Setting w = seiθ we introduce the diagonal matrix Gw with m-th diagonal entry given by
smeimθ.

Applying one after the other the properties of Proposition 2.3.5 we immediately get the
following relations:

N(1)(Tz ⋆ (s ⋆ (Rθ ⋆ γ)), TzsRθD) = CzGwN(1)(γ,D)Gw(Cz)T , (2.58)

N(2)(Tz ⋆ (s ⋆ (Rθ ⋆ σ)), TzsRθD) = CzGwN(2)(γ,D)Gw(Cz)T . (2.59)

Relations (2.58) and (2.59) still hold for the truncated CGPTs of finite order, due to the
triangular shape of the matrix Cz.

We call a dictionary D a collection of pairs (σ,B), where B is a standard shape centered
at the origin, with characteristic size of order 1, and σ is a conductivity distribution such
that supp(σ − 1) = B.

We assume that a reference dictionary D is initially given. Furthermore, suppose to
consider a pair (γ,D), which is unknow, that is obtained from an element (σ,B) ∈ D by
applying some unknown rotation θ, scaling s and translation z, i.e., D = TzsRθB and
γ = Tz ⋆ (s ⋆ (Rθ ⋆ σ)).

2.3.5. Conductivity descriptors

If D = TzsRθB and γ = Tz ⋆ (s ⋆ (Rθ ⋆ σ)) then the following identities hold true:

N
(1)
11 (γ,D) = w2N

(1)
11 (σ,B), (2.60)

N
(1)
12 (γ,D) = 2N

(1)
11 (γ,D)z +w3N

(1)
12 (σ,B), (2.61)

N
(2)
11 (γ,D) = s2N

(2)
11 (σ,B), (2.62)

N
(2)
12 (γ,D) = 2N

(2)
11 (γ,D)z + s2wN

(2)
12 (σ,B), (2.63)

where w = seiθ.

From identities (2.62) and (2.63) we obtain the relation:

N
(2)
12 (γ,D)

2N
(2)
11 (γ,D)

= z + seiθ N
(2)
12 (σ,B)

2N
(2)
11 (σ,B)

. (2.64)
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2. Electro-sensing of inhomogeneous targets

Following [6], let η = N
(2)
12 (γ,D)

2N
(2)
11 (γ,D)

. We define the following quantities

J (1)(γ,D) = N(1)(T−η ⋆ γ, T−ηD) = C−ηN(1)(γ,D)(C−η)T , (2.65)

J (2)(γ,D) = N(2)(T−η ⋆ γ, T−ηD) = C−ηN(2)(γ,D)(C−η)T , (2.66)

where the matrix C−η has been previously defined in Proposition 2.3.5. These quantities
are translation invariant.

From J (1)(γ,D) = (J (1)
mn (γ,D))m,n, J (2)(γ,D) = (J (2)

mn (γ,D))m,n, for each pair of
indices m,n, we define the scaling invariant quantities:

S(1)
mn(γ,D) = J (1)

mn (γ,D)
(J (2)

mm(γ,D)J (2)
nn (γ,D))1/2

, S(2)
mn(γ,D) = J (2)

mn (γ,D)
(J (2)

mm(γ,D)J (2)
nn (γ,D))1/2

.

(2.67)

Finally, we introduce the CGPT-based shape descriptors I(1) = (I(1)mn)m,n and I(2) =
(I(2)mn)m,n:

I(1)mn = ∣S(1)
mn(γ,D)∣, I(2)mn = ∣S(2)

mn(γ,D)∣,
where ∣ ⋅ ∣ denotes the modulus of a complex number. It is clear, by construction, that
I(1) and I(2) are invariant under translation, rotation, and scaling.

The matching algorithm we refer to is rather simple; see Algorithm 2. This approach has
been presented previously by Ammari et al. in [7], where shape descriptors have been
exploited for dealing with homogeneous conductivities.

Algorithm 2: Shape identification based on transform invariant descriptors

Input : the first k-th order shape descriptors I(1)(D), I(2)(D) of an unknown
shape D.

1 for Bn ∈ D do

2 en ← (∥I(1)(Bn) − I(1)(D)∥2
F + ∥I(2)(Bn) − I(2)(D)∥2

F )
1/2

;

3 n← n + 1;

end
Output : the true dictionary element n∗ ← argminnen.

∥ ⋅ ∥F denotes the Frobenius norm of matrices.

Remark 2.3.6 It is easy to see that all the radially symmetric conductivities possess
the same conductivity descriptors I(1) and I(2). This is a consequence of the following
identities:

M cs
mn =M sc

mn = 0 for all m,n,

M cc
mn =M ss

mn = 0 if m ≠ n,
M cc
mm =M ss

mm if m = n.
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2.4. Numerical results

2.4. Numerical results

In this section, we show some proof-of-concept numerical simulations about the dictionary-
matching approach. Henceforth, we will restrict ourselves to piecewise constant distribu-
tions only.

2.4.1. Setting

Let D be the dictionary containing 10 standard conductivity distributions, as illustrated
in Figure 2.1. Each one of the 5 shapes in the row a is equipped with homogeneous
conductivity having parameter k = 2 (Triangle, Ellipse, Bean, Shield and Triangular
Shield) whereas each coated shape in the row b is equipped with an inhomogeneous
conductivity distribution having value k1 = 2 in the outer coating and having value k2 = 4
in the inner coating. All the shapes have the same characteristic size, which is of order
one.

1 2 3 4 5

a

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

b

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 2.1.: Dictionary D.

Our aim is to numerically simulate the mechanism of sensing a specific target (γ,D)
which is obtained starting from a standard element of the dictionary (σ,B) ∈ D, applying
a scaling by a parameter s > 0 and a rotation by an angle θ ∈ [0,2π). For doing so, we
generalize the code developed in [77] for homogeneous targets to piecewise inhomogeneous
ones.

The targets we are considering for the experiments are located at the origin as the
standard shapes. The scaling coefficient and the rotation angle are s = 0.5 and θ = π/3,
respectively. On the other hand, we consider the full-view setting. We assume that the
fish is a banana-shaped fish that swims around the target along a circular trajectory whose
curvature center is located at the origin (0,0) and the radius is R = 1.5 × diameter(D).
We set the impedance of the skin ξ = 0. See for instance Figure 2.2.
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2. Electro-sensing of inhomogeneous targets

2.4.2. Experiment

The experiment is as follows. As the fish swims around the target, a series of 512
equispaced receptors on its skin collects the measurements for 500 different positions, so
that the resulting multi-static response (MSR) matrix is a 500 × 512 matrix. From this
acquisition procedure, we reconstruct the CGPTs of the target up to a certain order K and
use a proper subset of them to compute approximately some distribution descriptors. The
descriptors obtained in this manner are then compared to the precomputed theoretical
descriptors of the standard distributions of D. We select the best matching conductivity
as the standard conductivity that corresponds to the minimal error, in the noiseless case,
or to the minimal mean error, when the measurements are corrupted by noise.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.2.: Banana-shaped fish drawn at a fixed position, while swimming along a circular
trajectory centered at the origin and collecting measurements for sensing the
inhomogeneous target 2b.

We observe from Figure 2.3 that the conductivities of the dictionary D can be both theo-
retically and experimentally well-distinguished by means of their second-order descriptors

(I(1)mn)
m,n=1,2

, (I(2)mn)
m,n=1,2

.

For each noise-level, we repeat the same experiment N = 104 times and compute the
probability of identification. The results are shown in Figure 2.4. We report in Table 2.1
some additional data concerning the identification that performs relatively badly, i.e.,
that of the target 1a.

The results reveal that the mismatching happens more frequently between conductivities
for which the corresponding geometric shapes share the same kind of high-frequency
components; see [16]. In particular, depending on the strength of the noise that is
considered, the pairs of conductivities 1a-b,4a-b and 5a-b are frequently confused with
each other, due to the presence of corners and are rarely confused with the pairs 2a-b,3a-b.
This mismatching pattern is confirmed by Figure 2.3c, where third-order descriptors
qualitatively highlight such similarities.
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Figure 2.3.: Figure 2.3a and Figure 2.3c show the discrepancy between the theoretical descriptors,
wheras Figure 2.3b and Figure 2.3d show the discrepancy between the theoretical
descriptors and the ones obtained from the reconstructed CGPTs at noise-level
σ0 = 0.

We also exhibit some plots showing the mean errors resulting from the identification
procedure for two different conductivities; see Figure 2.5 and Figure 2.6. In this case the
experiment has been repeated for 5000 times, using independent draws of white noise,
and the results are the mean values of all experiments.
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10-1

Figure 2.4.: Stability of classification based on second-order descriptors. For each level of noise
N = 104 experiments have been driven. The location of the target is supposed to
be known.

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b

0.1 0.9854 0 0 0 0 0 0 0 0.0004 0.0142
0.2 0.6448 0 0 0 0 0 0 0 0.0514 0.3038
0.3 0.3168 0 0 0 0 0 0 0 0.1252 0.558
0.4 0.1626 0.0006 0 0 0 0 0 0 0.1584 0.6784
0.5 0.0974 0.0012 0 0 0 0 0 0 0.1712 0.7302

Table 2.1.: Frequency table for the identification of the conductivity 1a, i.e., the homogeneous
Triangle, at different small noise-levels. Each row contains the relative frequencies
for all the elements of the dictionary at a fixed noise-level.

(a) σ0 = 0.15. (b) σ0 = 0.50.

Figure 2.5.: Errors concerning the identification of the homogeneous Triangle 1a at different
noise-levels. Each bar refers to a different element of D.
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2.4. Numerical results

(a) σ0 = 0.15. (b) σ0 = 0.50.

Figure 2.6.: Identification of the inhomogeneous Ellipse 2b at different noise-levels. Each bar
refers to a different element of D.
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2. Electro-sensing of inhomogeneous targets

2.4.3. Robustness of the reconstruction

We numerically reconstructed the CGPTs from the measurements, i.e., from the MSR
matrix. This reconstruction turns out to be robust when we add some noise to the
simulated data. Fixing the truncation order in the reconstruction at K = 5, the relative
error of the reconstructed CGPTs of orders k for k ≤ 5 is illustrated in Figure 2.7. For
the noisy case, the experiment has been repeated 100 times, using independent draws of
white noise and the reconstructed CGPT is taken as the average of the CGPTs.
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1 2 3 4 5
10-3

10-2

10-1

100

101
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Figure 2.7.: Relative error ∥M−Mrecon∥F /∥M∥F of the reconstruction of the CGPTs throughout
the acquisition procedure described previously in 2.4.1 for the conductivity 1b, the
inhomogeneous Triangle.

2.5. Concluding remarks

In this chapter, we have extended the dictionary-matching approach for classification
in electro-sensing to inhomogeneous targets. We have established translation, rotation,
and scaling formulas for particular linear combinations of the generalized polarization
tensors associated with inhomogeneous targets. We have derived new invariants and
tested their performance for recognizing inhomogeneous targets inside a dictionary of
homogeneous and inhomogeneous conductivity distributions. In a forthcoming work,
we plan to combine our present approach together with the multi-frequency approach
introduced in [7] to enhance the classification capabilities of the proposed method and
its stability.
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3.1. Introduction

The results of this chapter are presented in [67]. We propose a real-time tracking algorithm
for a fish to track another conspecific that is swimming nearby. In particular, we show that
the following fish can sense the presence of the leading fish and can estimate its positions
by using a MUSIC-type algorithm for searching its electric organ. The underlying idea is
that a wave-type fish can passively communicate its own trajectory to fish populating
the waters nearby. The capability of sensing each other movements is significant, for
instance, for applications concerning robotics, where two or more underwater robots may
implement such communication procedure to avoid collisions or to shoal. We also showed
that the fish can locate a small dielectric target which lies in its electro-sensing range
even when another fish is swimming nearby, by filtering out its interfering signal and by
applying the MUSIC-type algorithm developed in [2].

The chapter is organized as follows. In Section 3.2, starting from Maxwell’s equations in
time domain we adapt the mathematical model of the electric fish proposed in [2] in order
to be able to consider many fish with EOD working at possibly different frequencies. We
give a decomposition formula for the potential and, as a consequence, we decouple the
dipolar signals of the two fish when they have different EOD fundamental frequencies.
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3. Electro-communication

The amplitude of each signal can be retrieved from the measurements using Fourier
analysis techniques.

In Section 3.3, which is the core of this chapter, we consider a new approach to the
communication problem, which is based on a non-iterative MUSIC-type dipole search
algorithm. The MUSIC-type algorithm tackles the problem in the frequency domain, and
it allows us to elaborate the main result, which is a real-time algorithm for a fish to track
another fish of the same species by means of subsequent multi-static measurements.

In Section 3.4, we provide a method for a fish to electro-sense a small dielectric target
in the presence of many conspecifics. The aim of this section is to locate the target
by making use of the dipolar approximation of the transdermal potential modulations.
We show that the multi-frequency MUSIC-type algorithm in [8] is still applicable after
decomposing the total signal.

In Section 3.5, many numerical simulations are driven. The performances of the real-time
tracking algorithm are reported. We show that the algorithms work well even when the
measurements are corrupted by noise.

3.2. The two-fish model and the jamming avoidance response

For the sake of simplicity, we consider the case of two weakly electric fish F1 and F2. The
extension to the case of many fish is immediate.

Starting from Maxwell’s equations in time domain we derive

∇ ⋅ (σ + ε∂t)E = −∇ ⋅ js in R2,

where σ is the conductivity of the medium, ε is the electric permittivity, E is the electric
field, js is a source of current. Let ω1 and ω2 be the fundamental frequencies associated
to the oscillations of the electric organ discharge (EOD) of the two fish F1 and F2,
respectively. We consider a source term which is of the form

−∇ ⋅ js = eiω1tf1(x) + eiω2tf2(x),

where f1 = ∑α(1)
j δ

x
(1)
j

and f2 = ∑α(2)
j δ

x
(2)
j

are the spatial dipoles located inside Ω1 and

Ω2, respectively. Throughout this chapter we assume that the dipoles f1 and f2 satisfy
the local charge neutrality conditions:

α
(i)
1 + α(i)

2 = 0 for i = 1 ;
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3.2. The two-fish model and the jamming avoidance response

see [2]. Considering the boundary conditions as in [2], we get the following system of
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u(x, t) = f1(x)h1(t) in Ω1 ×R+,

∆u(x, t) = f2(x)h2(t) in Ω2 ×R+,

∇ ⋅ (σ(x) + ε(x)∂t)∇u(x, t) = 0 in (R2 ∖Ω1 ∪Ω2) ×R+,

u∣+ − u∣− = ξ1
∂u

∂ν
∣
+

on ∂Ω1 ×R+,

u∣+ − u∣− = ξ2
∂u

∂ν
∣
+

on ∂Ω2 ×R+,

∂u

∂ν
∣
−
= 0 on ∂Ω1 ×R+, ∂Ω2 ×R+,

∣u(x, t)∣ = O(∣x∣−1) as ∣x∣ → ∞, t ∈ R+,

(3.1)

where σ0, ε0 are the material parameters of the target D, and ξ1 and ξ2 are the effective
skin thickness parameters of F1 and F2, respectively. Here, h1 and h2 encode the type of
signal generated by the fish.

3.2.1. Wave-type fish

For the wave-type fish we have h1(t) = eiω1t and h2(t) = eiω2t.

When ω1 ≠ ω2 the overall signal is the superposition of two periodic signals oscillating at
different frequencies.

Proposition 3.2.1 If ω1 ≠ ω2 such that ω1, ω2 ≠ 0, then the solution u to the equations
(3.1) can be represented as

u(x, t) = u1(x)eiω1t + u2(x)eiω2t, (3.2)

where u1, u2 satisfy the following transmission problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u1(x) = f1(x) in Ω1,

∆u1(x) = 0 in Ω2,

∇ ⋅ (σ(x) + iω1ε(x))∇u1(x) = 0 in R2 ∖Ω1 ∪Ω2,

u1∣+ − u1∣− = ξ1
∂u1

∂ν
∣
+

on ∂Ω1,

u1∣+ − u1∣− = ξ2
∂u1

∂ν
∣
+

on ∂Ω2,

∂u1

∂ν
∣
−
= 0 on ∂Ω1, ∂Ω2,

∣u1(x)∣ = O(∣x∣−1) as ∣x∣ → ∞,

(3.3)
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3. Electro-communication

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u2(x) = 0 in Ω1,

∆u2(x) = f2(x) in Ω2,

∇ ⋅ (σ(x) + iω2ε(x))∇u2(x) = 0 in R2 ∖Ω1 ∪Ω2,

u2∣+ − u2∣− = ξ1
∂u2

∂ν
∣
+

on ∂Ω1,

u2∣+ − u2∣− = ξ2
∂u2

∂ν
∣
+

on ∂Ω2,

∂u2

∂ν
∣
−
= 0 on ∂Ω1, ∂Ω2,

∣u2(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

(3.4)

Proof. We substitute (3.2) into (3.1). Considering the equation in Ω1 ×R+ we get

eiω1t∆u1 + eiω2t∆u2 = eiω1tf1.

Thus

(∆u1 − f1) + ei(ω2−ω1)t∆u2 = 0,

which yields ∆u1 − f1 = 0 in Ω1 and ∆u2 = 0 in Ω1.

In the same manner, we get the equations satisfied by u1 and u2 in Ω2.

Outside the fish bodies, we have

∇ ⋅ (σ + ε∂t)∇eiω1tu1 +∇ ⋅ (σ + ε∂t)∇eiω2tu2 = 0,

eiω1t∇ ⋅ (σ + iω1ε)∇u1 + eiω2t∇ ⋅ (σ + iω2ε)∇u2 = 0,

which yields ∇ ⋅ (σ + iω1ε)∇u1 = 0 in R2 ∖ (Ω1 ∪Ω2) and ∇ ⋅ (σ + iω2ε)∇u2 = 0 in
R2 ∖ (Ω1 ∪Ω2).

Finally it is easy to check that the boundary conditions remain unchanged because the
time dependency does not appear explicitly.

Remark 3.2.2 The potentials u1 and u2, that respectively solve (3.3) and (3.4), have a
meaningful interpretation that is based on two different sub-modalities of the electrorecep-
tion. As a matter of fact, u1 can be viewed as the potential when the fish F1 is active
and F2 is passive, whereas u2 can be viewed as the potential when the fish F1 is passive
and F2 is active; see [62].

Formula (3.2) tells us that it is possible to study the total field looking separately at these
two different oscillating regimes.
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3.2. The two-fish model and the jamming avoidance response

The idea is to separate the two signals from the measurements of their superposition.
This can be done easily by using signal analysis techniques; see [38].

Figure 3.3 illustrates the potential before the jamming avoidance response, when the
fish emit signals at a certain common frequency, whereas Figure 3.4 depicts the two
submodalities contained in the total signal u(x, t) after they have switched their EOD
frequencies.

3.2.2. Pulse-type fish

For the pulse-type fish we have that h1(t) and h2(t) are pulse wave. We can assume that
they both can be obtained from a standard pulse shape h(t) (see Figure Figure 3.1) by
means of translation and scaling, i.e.,

h1(t) = h(η1t − T1),

h2(t) = h(η2t − T2).

Figure 3.1.: Standard shape of the pulse wave h(t).

For some pulse-type species, as Gymnotoid, the jamming avoidance response is obtained
by shortening the duration of the emitted pulse; see [48]. In this way, they minimize the
chance of pulse coincidence by transient accelerations (decelerations) of their EOD rate.
For η1, η2 > 0 large enough such that supp(h1) ∩ supp(h2) = ∅.

Thus, for t1, t2 > 0 such that h1(t1) ≠ 0 and h2(t2) ≠ 0 we can consider u1(x) ∶= u(x, t1)
and u2(x) ∶= u(x, t2). These time-slices have the following property:

⎧⎪⎪⎨⎪⎪⎩

∆u1(x) = f1(x)h1(t1), x ∈ Ω1

∆u1(x) = 0, x ∈ Ω2,
,

⎧⎪⎪⎨⎪⎪⎩

∆u2(x) = 0, x ∈ Ω1

∆u2(x) = f2(x)h2(t2), x ∈ Ω2

.
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3. Electro-communication

(a) Before the JAR the two pulse signals may inter-
fere with each other.

(b) By shortening the duration of the pulse it is
possible to identify two non-overlapping time-
windows I1 and I2 corresponding to the signal
emitted by the fish F1 and F2, respectively.

Figure 3.2.

Hence we can achieve a separation of signals.

In the next sections, we will see an important consequence of Proposition 3.2.1. As a
matter of fact F1 can track F2 by using the measurements of u2∣∂Ω1 , solution to (3.4),
and can detect a small target D by using the measurements of u1∣∂Ω1 .
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Figure 3.3.: Before the JAR (the EOD frequencies of the two fish are the same). Plot of
u(x) = u1(x) + u2(x), where u(x, t) = u(x)eiω0t.
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(a) Plot of u2. Ω1 (red) is passive and Ω2 (green) is
active.
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(b) Plot of u1. Ω1 (green) is active and Ω2 (red) is
passive.

Figure 3.4.: After the JAR (the EOD frequencies ω1 and ω2 of the two fish are apart from each
other).

3.3. Electro–communication

The aim of this section is to give a mathematical procedure to model the communication
abilities of the weakly electric fish, i.e., the capability of a fish to perceive a conspecific
nearby. Assume, for instance, the point of view of the fish F1. We want F1 to estimate
some basic features of F2, such as the position of its electric organ. More importantly, by
using subsequent estimates, we want to design an algorithm for F1 to track F2.

For the sake of clarity, we consider the case without the small dielectric target. It is
worth emphasizing that the presence of the target is not troublesome since its effect on
the tracking procedure is negligible even when the fish are swimming nearby.

When F1 gets close to F2, both F1 and F2 experiment the so-called jamming avoidance
response and thus their electric organ discharge (EOD) frequencies switch. When the
EOD frequencies ω1 and ω2 are apart from each other, Proposition 3.2.1 can be applied.

Let u2 be the solution to the transmission problem (3.4). As previously mentioned,
the function u2 can be extracted from the total signal u(x, t) using signal analysis
techniques.

We define

Hu2(x) = (SΩ1 − ξ1DΩ1) [
∂u2

∂ν
∣
+
] (x).
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Let us recall the following boundary integral representation: for each x ∈ R2∖(Ω1 ∪Ω2),

(u2 −Hu2)(x) = ∫
∂Ω2

(∂u2

∂ν
∣
+
(y) Γ(x, y) − ∂Γ

∂νy
(x, y) u2∣+(y))dsy .

Making use of the Robin boundary condition on ∂Ω2 and integration by parts yields

(u2 −Hu2)(x) = ∫
∂Ω2

(∂u2

∂ν
∣
+
(y) Γ(x, y) − ∂Γ

∂νy
(x, y) u2∣+(y))dsy

= ∫
∂Ω2

(∂u2

∂ν
∣
+
(y) Γ(x, y) − ∂Γ

∂νy
(x, y) (ξ2

∂u2

∂ν
∣
+
(y) + u2∣−(y)))dsy

= ∫
∂Ω2

∂u2

∂ν
∣
+
(y) (Γ(x, y) − ξ2

∂Γ

∂νy
(x, y)) dsy − ∫

∂Ω2

∂Γ

∂νy
(x, y)u2∣−(y)dsy

= ∫
∂Ω2

∂u2

∂ν
∣
+

(Γ − ξ2
∂Γ

∂ν
) ds ± α [Γ(x − x(2)1 ) − Γ(x − x(2)2 )] .

Therefore, we obtain

(u2 −Hu2)(x) = ∫
∂Ω2

∂u2

∂ν
∣
+

(Γ − ξ2
∂Γ

∂ν
) ds ± α [Γ(x − x(2)1 ) − Γ(x − x(2)2 )] . (3.5)

Observe that, for x away from the x
(i)
1 , we can approximate Γ(x − x(2)2 ) − Γ(x − x(2)1 ) as

follows:

[Γ(x − x(2)2 ) − Γ(x − x(2)1 )] ≈ ±∇Γ(x − x(2)1 ) ⋅ (x(2)2 − x(2)1 ) = (x − x(2)1 ) ⋅ (x(2)2 − x(2)1 )
∥x − x(2)1 ∥2

.

Consider an array of receptors (xl)Ml=1 on ∂Ω1. We aim at solving the inverse source
problem of determining the dipole, of F2 from the knowledge of the measurements on the
skin of F1:

{(u2 −Hu2)(xl) ∶ for l = 1, . . . ,N} . (3.6)

In order to estimate the dipole, we assume that the following single-dipole approximation
holds:

(u2 −Hu2)(xl) ≈
(xl − ẑ) ⋅ p̂
∥xl − ẑ∥2

, (3.7)

where p̂ and ẑ denote respectively the moment and the center of the equivalent dipolar
source.

Remark 3.3.1 The single-dipole approximation (3.7) is an equivalent representation
of a spread source. However, in the presence of several well-separated sources, such
approximation is not trustworthy anymore [45]. In the case of P ≥ 3 conspecifics we would
extract u1, . . . , uP components from the total signal, and the single-dipole approximation
remains applicable to each one of the components u2, . . . , uP .
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3.4. Electro–sensing

3.4. Electro–sensing

Now, suppose to have F1,F2 as before and a target close to F1.

Let u1 be the solution to the transmission problem (3.3), that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆u1(x) = f1(x) in Ω1,

∆u1(x) = 0 in Ω2,

∇ ⋅ (σ(x) + iω1ε(x))∇u1(x) = 0 in R2 ∖Ω1 ∪Ω2,

u1∣+ − u1∣− = ξ1
∂u1

∂ν
∣
+

on ∂Ω1,

u1∣+ − u1∣− = ξ2
∂u1

∂ν
∣
+

on ∂Ω2,

∂u1

∂ν
∣
−
= 0 on ∂Ω1, ∂Ω2,

∣u1(x)∣ = O(∣x∣−1) as ∣x∣ → ∞,

and let U1 be the background solution, that solves the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆U1(x) = f1(x) in Ω1,

∆U1(x) = 0 in Ω2,

∆U1(x) = 0 in R2 ∖Ω1 ∪Ω2,

U1∣+ −U1∣− = ξ1
∂U1

∂ν
∣
+

on ∂Ω1,

U1∣+ −U1∣− = ξ2
∂U1

∂ν
∣
+

on ∂Ω2,

∂U1

∂ν
∣
−
= 0 on ∂Ω1, ∂Ω2,

∣U1(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

Consider Γ
(1,2)
R the Green’s function associated with Robin boundary conditions, that is

defined for x ∈ R2 ∖ (Ω1 ∪Ω2) by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆yΓ
(1,2)
R (x, y) = δx(y), y ∈ R2 ∖Ω1 ∪Ω2,

Γ
(1,2)
R (x, y)∣+ − ξ1

∂Γ
(1,2)
R

∂νx
(x, y)∣

+
= 0, y ∈ ∂Ω1,

Γ
(1,2)
R (x, y)∣+ − ξ2

∂Γ
(1,2)
R

∂νx
(x, y)∣

+
= 0, y ∈ ∂Ω2,

∣Γ(1,2)
R (x, y) + 1

2π log ∣y∣∣ = O(∣y∣−1), ∣y∣ → ∞.

(3.8)

Recall the following boundary integral equation: for each x ∈ R2 ∖ (Ω1 ∪Ω2 ∪D),

(u1 −U1)(x) = ∫
∂D

⎛
⎝
∂u

∂ν
∣
+
(y) Γ

(1,2)
R (x, y) −

∂Γ
(1,2)
R

∂νy
(x, y) u∣+(y)

⎞
⎠

dsy,
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3. Electro-communication

where U1 is the background solution, i.e., the solution without the inhomogeneity D,
when the only dipolar source lies inside the body of F1; see Figure 3.4b.

(u1 −U1)(x) =
(k − 1)
k

∫
∂D

(∂u
∂ν

∣
+
(y) Γ

(1,2)
R (x, y))dsy.

Let B be a bounded open set with characteristic size 1. Assume that D = z + δB, i.e., D
is a target located at z which has characteristic size δ. With the same argument as in [2],
we obtain the following small volume approximation.

Theorem 3.4.1 (Dipolar approximation) Suppose dist(∂Ω1, z) ≫ 1 and δ ≪ 1. Then for
any x ∈ ∂Ω1,

(∂u1

∂ν
− ∂U1

∂ν
) (x) = −δ2∇U1(z)TM(λ,B)∇y

⎛
⎝
∂Γ

(1,2)
R

∂ν
∣
+

⎞
⎠
(x, z) +O(δ3), (3.9)

where T denotes the transpose, M(λ,B) = (mij)i,j∈{1,2} is the first-order polarization
tensor associated with B and contrast parameter λ, given by

mij = ∫
∂B
yi (λI −K∗B)−1 (∂xj

∂ν
∣
∂B

)(y) dsy. (3.10)

Note that, since the background potential is real, for x ∈ ∂Ω1 we have

Im(∂u1

∂ν
) (x) ≈ −δ2∇U1(z)T ImM(λ,B)∇y

⎛
⎝
∂Γ

(1,2)
R

∂ν
∣
+

⎞
⎠
(x, z). (3.11)

This last step is crucial to locate the target because U1 is only approximately known from
the measurements and even a very small displacement in the location of F2 can cause an
error on the background potential U1, which is of the same order as the contribution of
the target.

On the other hand, when z is not too close to ∂Ω2, the contribution of F2 contained into
∇U1(z) is negligible. Therefore, we approximate ∇U1(z) ≈ ∇Û1(z), where Û1 is solution
to the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Û1(x) = f1(x) in Ω1,

∆Û1(x) = 0 in R2 ∖Ω1,

Û1∣+ − Û1∣− = ξ1
∂Û1

∂ν
∣
+

on ∂Ω1,

∂Û1

∂ν
∣
−
= 0 on ∂Ω1,

∣Û1(x)∣ = O(∣x∣−1) as ∣x∣ → ∞.

(3.12)
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3.5. Numerical experiments

After post-processing (3.11) using the following operator

PΩ1 =
1

2
I −K∗Ω1

− ξ ∂DΩ1

∂ν
,

see [2], we get

PΩ1 [Im(∂u1

∂ν
)] (x) ≈ δ2∇Û1(z)T ImM(λ,B)∇y (

∂Γ

∂νx
∣
+
)(x, z), x ∈ ∂Ω1. (3.13)

Therefore, as long as dist(z, ∂Ω2) ≫ 0, the leading order term of the post-processed
measured data is not significantly affected by the presence of F2.

A MUSIC-type algorithm for searching the position z and a least square method for
recovering the imaginary part of the polarization tensor M(λ,B) can be applied; see
[7].

3.5. Numerical experiments

With applications in robotics in mind, and for the sake of simplicity, we can assume
that the two fish populating our testing environment share the same effective thickness ξ
and the same shape, which is an ellipse with semiaxes a = 2 and b = 0.3. Therefore no
tail-bending has been taken into account.

For the numerical computations of the direct solutions to the transmission problems
involved in the following simulations, we solved the boundary integral system of equations
by relying on boundary element techniques. We adapted the codes in [77] to our
framework, with many fish populating the same environment.

3.5.1. Electro-communication

We perform numerical simulations to show how F1 can locate the position and the
orientation of F2 by using a modified version of MUSIC-type algorithm for searching
the dipolar source. Firstly, let us observe that accuracy is not improved by using a
multi-frequency approach when noisy measurements are considered. Instead, F1 can use
a MUSIC-type algorithm based on movement in order to improve the accuracy in the
detection algorithm. We use the approximation (3.7).

We consider Ns positions. For each s ∈ {1, . . . ,Ns} let us denote by Fs2 the fish at the
position s. On its skin there are Nr receptors {xsn}Nrn=1. For each s = 1, . . . ,Ns, we define
the M × 2 lead field matrix As as

As(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xs1,1 − z1

∥xs1 − z∥2

xs1,2 − z1

∥xs1 − z∥2

⋮ ⋮
xsM,1 − z1

∥xsM − z∥2

xsM,2 − z2

∥xsM − z∥2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.14)
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3. Electro-communication

Let F be the Multi-Static Response (MSR) matrix defined as follows

F =
⎡⎢⎢⎢⎢⎢⎣

(u2 −Hu2)(x1
1) . . . (u2 −Hu2)(xNs1 )

⋮ ⋱ ⋮
(u2 −Hu2)(x1

Nr
) . . . (u2 −Hu2)(xNsNr)

⎤⎥⎥⎥⎥⎥⎦
.

Moreover, we assume that the acquired measurements are corrupted by noise, i.e.,

Fnoisy = F +X,

where X ∼ N(0, σ2
noise) is a Gaussian random variable with mean 0 and variance σ2

noise.
In our simulations we set the variance to:

σnoise = (Fmax −Fmin)σ0,

where σ0 is a positive constant called noise level, and Fmax and Fmin are the maximal
and the minimal coefficient in the MSR matrix F.

Let FR
noisy be the real part of Fnoisy. Let λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λNr be the eigenvalues

of FR
noisy ⋅ (FR

noisy)T and let Φ1, . . . ,ΦNr be the correspondent eigenvectors. The first
eigenvalue is the one associated to the signal source and the span of the eigenvector Φ1

is called the signal subspace. The other eigenvectors span the noise subspace.

As is well known, the MUSIC algorithm estimates the location of the dipole by checking
the orthogonality between As(z) (3.14) and the noise subspace projector PN [61]. This
can be done for each position s.

For this purpose, we shall use a modified version of the MUSIC localizer in [68], by simply
taking the maximum over the positions:

I2(z) = max
s=1,...,Ns

( 1

λmin(As(z)TPNAs(z),As(z)As(z)T )
) , (3.15)

where λmin(⋅, ⋅) indicates the generalized minimum eigenvalue of a matrix pair.

We expect that the MUSIC localizer has a large peak at the location of the equivalent
dipole we are searching for. Once an estimate ẑ of the true location has been obtained,
the dipole moment can be estimated by means of the following formula:

p̂est = (A(ẑ)TA(ẑ))−1A(ẑ)TΦ1. (3.16)

i.e., the least-square solution to the linear system

Φ1 = A(ẑ)p̂. (3.17)
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3.5. Numerical experiments

Figure 3.5.: The setting. F1 is acquiring measurements at Ns = 150 different closely spaced
positions.

Algorithm 3: MS MUSIC: Detect the presence of a conspecific from skin
measurements

Input : The feedback, that is the total electric potential signal u(x, t) recorded
by the receptors on ∂Ω1.

1 Decompose the feedback u into u1 and u2 using signal separation techniques;
2 MUSIC dipoleSearch(u2∣∂Ω1 ,Ω1) :
3 Build the (real part of the) MSR matrix Fnoisy ∈M(Nr ×Ns,R) from

measurements collected during a short period;

4 Compute the eigen-decomposition of FnoisyF
T
noisy = ΦΛΦT and the noise

subspace projector PN ;
5 Evaluate the MUSIC localizer I2 on the nodes of a fine uniform grid G in the

vicinity of Ω1 ;
6 ẑ ← arg maxG I2(z) ;
7 Determine p̂est as the least-square solution to the linear system (3.17);

Output : an approximated position of the position of the electric organ of
the conspecific F2.

3.5.2. Tracking

Now we want to show that the dipole approximation that we assumed in the previous
subsection is good enough to be used successfully for tracking purposes.

We assume the following setting for the numerical simulations. The fish F1 is swimming
along a fixed trajectory. Let us assume that the motion of its electric organ is described
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Figure 3.6.: Estimate of the position and the orientation of F2, with noise level σ0 = 0.1. The
dashed red curve represents the estimated body of F2, whereas the green one
represents the true body of F2. The white circle represents a small dielectric object
placed between F1 and F2.

by a continuous path F ∶ [t1, tN ] Ð→ R2. Let t1 < t2 < ⋅ ⋅ ⋅ < tN be a temporal grid on
[t1, tN ] and let tj = sj1 < ⋅ ⋅ ⋅ < s

j
M = tj+1 be a grid on [tj , tj+1] for j = 1, . . . ,N − 1.

At the beginning, when t = t1, F2 starts following F1. The tracking is performed by
estimating the positions of F1 at the nodes of the grid t1, . . . , tN . Let us denote by Xn, Yn
and pn, qn the positions and the orientations of F2 and F1 at t = tn, respectively. In order
to obtain an estimate Ŷn of the position Yn we can apply Algorithm 4, that employs
measurements at sn−1

1 , . . . , sn−1
M to reduce the effect of the noise. More precisely, the

discrete dynamic system that describes the evolution of the positions and orientations of
the two fish is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xn =Xn−1 + hnpn−1,

pn = R(θn)pn−1,

Yn = F (tn),
qn = F ′(tn) ≈ F (tn)−F (tn−1)

h ,

(3.18)

where X0 and p0 are the initial data. Let us define Tn−1 ∶= Ŷn−1 −Xn−1, the pointing
direction. The update of the orientation of F2 is given by an orthogonal matrix associated
with a rotation by an angle θn, R(θn) ∈ O(2,R), and the turning angle is defined as

θn ∶= θn−1 ±min (θmax, ̂Tn−1pn−1) . (3.19)

The numbers h1, . . . , hM incorporate the velocity of the tracking fish and should be chosen
adaptively, in order to allow a variety of maneuvering capabilities such as acceleration
and deceleration, as well as swimming backwards when hn < 0. In order to prevent both
collision and separation, we shall assume the velocity to be a function of the distance
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3.5. Numerical experiments

between Xn and Ŷn. θmax is the maximum turning angle. It is worth mentioning that
the choice of θmax has a strong impact on the efficiency of the tracking procedure.

Algorithm 4: Real-Time Tracking: Fish-follows-Fish algorithm.

Input : Temporal grid over [t1, tN ]. The maximum turning angle θmax.

1 RT Tracking(θmax, [t1, tN ],N,M) :
2 for n← 1, . . . ,N do
3 Xn ←Xn−1 + hnpn−1;
4 pn ←R(θn)pn−1;

5 Ŷn ← MUSIC dipoleSearch(n)
end

Output : Trajectory of the following fish.
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Figure 3.7.: Plot of the imaging functional I2 that the fish F1 uses to track F2.
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The algorithm MUSIC dipoleSearch employs a multi-position dipole search that uses M
positions in between. In our numerical simulations, in order to have a real-time tracking
procedure, we have set M = 5. We have set θmax = 10−1.

3.5.3. Electro-sensing

While the fish can sense the presence of other conspecifics at some distance, the range
for active electro-sensing is much more short [52].

The effectivity of the estimated position of a small dielectric target inevitably depends
on the relative distances among the fish, its conspecifics and the target. However, this
seems perfectly reasonable. We have to require

1. The two fish do not get too close to each other;

2. The small dielectric target D is in the electro-sensing range of F1.

If the above qualitative conditions are not met, there is no guarantee that we can get
accurate results.

We perform many experiments to show that the MUSIC-type algorithm proposed in [2]
works under the conditions outlined above. Based on approximation (3.13) we consider
the illumination vector

g(z) = (∇Û1(z) ⋅ ∇z (
∂Γ

∂νx
) (x1, z), . . . ,∇Û1(z) ⋅ ∇z (

∂Γ

∂νx
) (xNr , z))

T

,

and define the MUSIC localizer as follows:

I1(z) =
1

∣(I − P )g̃(z)∣ , (3.20)

where g̃ = g
∣g∣ and Û1 is the solution to (3.12).

Algorithm 5: SF MUSIC: Detection of a small dielectric target in the presence
of another conspecific

Input : The feedback, that is the total electric potential signal u(x, t) recorded
by the receptors on ∂Ω1.

1 Decompose the feedback u into u1 and u2 using signal separation techniques ;
2 MUSIC target(u1∣∂Ω1 ,Ω1) :
3 Post-process the data Imu1∣∂Ω1 ;
4 Build the SFR Snoise for the post-processed data ;
5 Build and evaluate the MUSIC localizer I1 on the nodes of a fine uniform

grid G in the vicinity of Ω1 ;
6 ẑ ← arg maxG I1(z) ;

Output : An approximated position of the target.
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3.6. Concluding remarks

In this chapter, we have formulated the time-domain model for a shoal of weakly electric
fish. We have shown how the jamming avoidance response can be interpreted within this
mathematical framework and how it can be exploited to design communication systems,
following strategies and active electro-sensing algorithms. In a forthcoming work, we plan
to extend our present approach to develop navigation patterns inspired by the collective
behavior of the weakly electric fish.
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Figure 3.8.: Plot of the linear trajectory tracking. Nexp = 10 trials have been considered.
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Figure 3.9.: Plot of the trajectory tracking when the leading fish is swimming in circle, clock-
wisely. Nexp = 10 trials/realizations have been considered.

83



3. Electro-communication

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Plot of Reu1.

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Plot of Imu1.

Figure 3.10.: Plot of the isopotential lines when F2 (red) is passive (electrically silent) and F1

(green) is active.
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Figure 3.11.: Plot of the MUSIC imaging functional used in Algorithm 5 by using Nr = 32
receptors and Nf = 100 frequencies, with noise level σ0 = 0.1. The square and
the diamond indicate the approximation of the center and the true center of the
target D, respectively. F1 (green) can image the target despite the presence of F2

(red), which is estimated by applying Algorithm 4.
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inclusion via Time-dependent
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The results presented in this chapter are contained in [32]. We aim at modeling a static
bat, which is sending waves and recording the scattering echoes due to the presence of an
acoustic inclusion. The scattering acoustic wave contains information that can be used
to reconstruct high-frequency features of the inclusion.

The problem has to be evaluated in the frequency-domain first. Based on the layer
potential techniques in [1], we derive an asymptotic expansion for the scattered field in
terms of the FDPTs. Such asymptotic expansion is based on careful and precise estimates
of the remainders with respect to the frequency. In particular, in the two-dimensional case,
thorough estimates are needed due to the logarithmic singular behavior of the Hankel
function at the origin [1, 53, 58, 79]. We require the inclusion to be small compared to
the wavelength. In such a situation it is possible to expand the solution of the wave
equation around the background solution [21]. Recall that high frequencies correspond
exactly to small wavelengths. The idea is then to truncate the high frequencies, as in
[12, 41]. This corresponds to the case of a constant frequency (CF) bat, which cannot
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hear all the frequencies outside a certain range of finite values [71]. By applying the
truncated Fourier transform to the frequency-dependent asymptotic expansion, we switch
to the time-domain. The TDPTs are defined as the building blocks of the corresponding
time-dependent asymptotic expansion.

While the leading-order term in this asymptotic formula has been derived by Ammari et
al. [12, 41] for the three-dimensional case, the high-order ones are new. It is by exploiting
the high-order terms of the time-dependent expansion that we are able to retrieve the
fine shape details of an acoustic inclusion and extend the shape reconstruction methods
for the frequency-domain proposed in [23]. Moreover, a valuable trait of our expansion is
the fact that the TDPTs provide a proper interpretation of the multi-frequency problem,
which can then be naturally tackled in the temporal domain.

This chapter is organized as follows. In Section 4.1, we recall the definitions of the
boundary layer potentials in dimension d = 2,3, and state some basic results that
are used throughout the chapter. In Section 4.2, we describe the mathematical model
concerning the Helmholtz equation, which we rewrite as a transmission problem, providing
a representation formula for the solution. In Sections 4.3, 4.4 and 4.5 we perform the
derivation of asymptotic expansions in dimension d = 2. In particular, Section 4.3 is
devoted to the proof of a stability estimate for the two-dimensional transmission problem,
which is used in Section 4.4 to estimate the remainder of the expansion obtained in the
frequency-domain, in terms of the operating frequency ω. In Section 4.5, an expansion
for the two-dimensional transient wave equation is presented. This asymptotic formula
in time-domain is written in terms of the new concept of time-dependent polarization
tensors (TDPTs). Translation, rotation and scaling properties for the TDPTs are also
derived. In Section 4.6, we show that high-order TDPTs allow to reconstruct both the
volume and the material property of a small inclusion. It is worth mentioning that, in our
framework, these information can be separated and retrieved without using a near-field
expansion [12, 41]. Furthermore, we adapt a well-known procedure for reconstructing
fine shape details of the inclusion by using the TDPTs. This algorithm consists of a
recursive optimization of a functional based on its shape derivative [24, 16, 23].

In Section 4.7, we perform numerical experiments in the two-dimensional case to validate
the usage of the TDPTs. The reconstruction procedures of Section 4.6 are tested for
different inclusions and acquisition settings, and the results are reported. In particular,
we observe that the optimization algorithm performs well in recovering the boundary of
the inclusion even with moderate level of noise.

Similar results to those of Sections 4.3, 4.4 and 4.5 are presented for the three-dimensional
case in Appendix B.1.
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4.1. Preliminary results

Before introducing our problem we recall some basic facts about the boundary layer
potentials that we use repeatedly in the sequel.

Let us denote by Γω the outgoing fundamental solution to the Helmholtz operator ∆+ω2

in Rd, that is [5]

Γω(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i

4
H

(1)
0 (ω∣x∣), d = 2,

eiω∣x∣

4π∣x∣ , d = 3.
(4.1)

Here, H
(1)
0 is the Hankel function of the first kind of order zero, i denotes the imaginary

unit and x ∈ Rd. We also consider Γ0 defined by

Γ0(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2π
log ∣x∣, d = 2,

1

4π∣x∣ , d = 3.

Note that Γω solves (in the sense of distributions) the equation

(∆ + ω2)Γω = δ0 in Rd, d = 2,3,

where δ0 is the Dirac mass at 0. Let D be a bounded Lipschitz domain in Rd. The single-
and double-layer potentials on D, SωD and DωD, are defined as follows: φ ∈ L2(∂D),

SωD[φ](x) = ∫
∂D

Γω(x − s)φ(s) dσ(s),

DωD[φ](x) = ∫
∂D

∂Γω
∂νs

(x − s)φ(s) dσ(s).

The behavior of SωD[φ] across the boundary ∂D is described by the following well-known
formulas [15].

Lemma 4.1.1 For φ ∈ L2(∂D),

SωD[φ]∣+(x) = SωD[φ]∣−(x), for a.e. x ∈ ∂D,
∂SωD[φ]
∂ν

∣
±
(x) = (±1

2
I + (KωD)∗) [φ](x), for a.e. x ∈ ∂D,

where the subscript ± means SωD[φ]∣±(x) ∶= lim
t→0
SωD[φ](x±tν(x)), I is the identity operator

and (KωD)∗ is defined by

(KωD)∗[φ](x) = ∫
∂D

∂Γω(x − y)
∂νx

φ(y) dσ(y).

Note that (KωD)∗ is the L2-adjoint of KωD, with

KωD[φ](x) = ∫
∂D

∂Γω(x − y)
∂νy

φ(y) dσ(y).
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We also recall the following lemma [21, 44, 43].

Lemma 4.1.2 There exists ω0 > 0 such that for ω < ω0,

a) if d = 2

∥SωD[φ] − S0
D[φ] − βω ∫

∂D
φ∥

H1(∂D)
≤ Cω2 lnω∥φ∥L2(∂D),

∥ ∂S
ω
D[φ]
∂ν

∣
±
− ∂S0

D[φ]
∂ν

∣
±
∥
L2(∂D)

≤ Cω2 lnω∥φ∥L2(∂D),

where βω = 1
2π (lnω − ln 2 + γ − π

2 i), and γ is the Euler constant,

b) if d = 3

∥SωD[φ] − S0
D[φ]∥H1(∂D) ≤ Cω∥φ∥L2(∂D),

∥ ∂S
ω
D[φ]
∂ν

∣
±
− ∂S0

D[φ]
∂ν

∣
±
∥
L2(∂D)

≤ Cω∥φ∥L2(∂D).

Note that when d = 2 the single-layer potential is not, in general, invertible nor injective.

4.2. Mathematical model in the frequency domain

Let B be a bounded Lipschitz domain in Rd (d = 2,3) such that B contains the origin
and ∣B∣ = 1, and let D = z + εB be a small acoustic inclusion of contrast k > 0, k ≠ 1, with
0 < ε < 1. Let Γω be as in (4.1). Denote by Vy the field corresponding to a time-harmonic
wave generated at y ∈ Rd ∖D,

Vy(x,ω) ∶= Γω(x − y),

where ω > 0 is the operating frequency, and x ≠ y. Moreover, we assume that dist(y,D) ≫
1, that is, the inclusion D is far from the source.

Let vy be the field perturbed by the presence of the inclusion D, which is the solution
to

∇ ⋅ (χ(Rd ∖D) + kχ(D))∇vy + ω2vy = δy, (4.2)

with χ denoting the characteristic function, and vy−Vy satisfying the so-called Sommerfeld
radiation condition, i.e.,

lim
r→+∞

r(d−1)/2 ( ∂
∂r

(vy − Vy) − iω(vy − Vy)) = 0, ∣x∣ = r. (4.3)
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4.3. Stability estimates for the transmission problem

Equation (4.2) can be written equivalently as the following transmission problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆vy + ω2vy = δy, Rd ∖D,

∆vy +
ω2

k
vy = 0, D,

vy ∣+ = vy ∣−, ∂D,

∂vy

∂ν
∣
+
= k∂vy

∂ν
∣
−
, ∂D,

vy − Vy satisfies condition (4.3).

Notice that the solution vy can be represented as follows [21]:

vy(x,ω) =
⎧⎪⎪⎨⎪⎪⎩

Vy(x,ω) + SωD[ψ](x), x ∈ Rd ∖D,
S

ω
√

k

D [φ](x), x ∈D,
(4.4)

where the pair (φ,ψ) ∈ L2(∂D) ×L2(∂D) is the unique solution of the following system
of boundary integral equations on ∂D:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S
ω
√

k

D [φ] − SωD[ψ] = Vy,

k
∂S

ω
√

k

D [φ]
∂ν

∣
−
− ∂S

ω
D[ψ]
∂ν

∣
+
= ∂Vy
∂ν

,
on ∂D. (4.5)

Remark 4.2.1 The system (4.5) has a unique solution provided that ω2 is not a Dirichlet

eigenvalue for −∆ on D. This is certainly true when λ1(D) ≥ (1/∣D∣)2/dC
2/d
d jd/2−1,1,

where jm,1 is the first positive zero of the Bessel function Jm, Cd is the volume of the
d-dimensional unit ball, and λ1(D) > 0 is the smallest eigenvalue of −∆ on D; see
[26, 51].

Hereinafter, we limit our considerations to the two-dimensional problem only. For the
three-dimensional case see Appendix B.1.

4.3. Stability estimates for the transmission problem

The technical estimates contained in this section will be used in the derivation of the
asymptotic expansion to make the dependence of the remainder on the operating frequency
explicit.

Let D = εB + z, ∣B∣ = 1 and D ⊂ R2. We suppose that ω ∈ (0, ε−γ), with 0 < γ < 1. Note
that there exists ε0 > 0 such that, for ε sufficiently small, εω ≤ ε0 < 1, i.e., εω can be
made arbitrarily small. The main estimate is given by the following proposition.
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4. Reconstruction of a small acoustic inclusion via Time-dependent Polarization Tensors

Proposition 4.3.1 For each (F,G) ∈ H1(∂D) × L2(∂D), let (φ,ψ) ∈ L2(∂D) × L2(∂D)
be the unique solution of the system of integral equations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S
ω
√

k

D [φ] − SωD[ψ] = F,

k
∂S

ω
√

k

D [φ]
∂ν

RRRRRRRRRRRRRR−
− ∂SωD[ψ]

∂ν
∣
+
= G,

on ∂D. (4.6)

Let ε0 > 0 be such that εω ≤ ε0 < 1. We have

∥φ∥L2(∂D) + ∥ψ∥L2(∂D) ≤ C(ε−1∥F ∥L2(∂D) + ∥∇F ∥L2(∂D) + ∥G∥L2(∂D)), (4.7)

where C does not depend on ε and ω.

Proposition 4.3.1 states that the solution to system (4.6) depends continuously on the
right-hand side of the system, i.e., (F,G).

Since the two-dimensional fundamental solutions Γεω(x − y) and Γεω/
√
k(x − y) do not

converge to Γ0(x − y) = 1
2π log ∣x − y∣ as ε goes to zero, the proof of Proposition 4.3.1 is

not immediate. The proof we present here relies on the following lemma [21, 44, 43].

Lemma 4.3.2 For each (f, g) ∈H1(∂B) ×L2(∂B), let (φ,ψ) ∈ L2(∂B) ×L2(∂B) be the
unique solution of the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S0
B[φ] + βεω/√k ∫∂B φdσ − S

0
B[ψ] − βεω ∫

∂B
ψ dσ = f,

k
∂S0

B[φ]
∂ν

∣
−
− ∂S0

B[ψ]
∂ν

∣
+
= g,

on ∂B. (4.8)

Suppose there exists ε0 > 0 such that εω ≤ ε0 < 1. We have

∥φ∥L2(∂B) + ∥ψ∥L2(∂B) ≤ C(∥f∥H1(∂B) + ∥g∥L2(∂B)), (4.9)

where C does not depend on ε nor ω.

Proof. We define

ŜεωB [φ] ∶= S0
B[φ] + βεω ∫

∂B
φdσ.

Hariharan and MacCamy proved that ŜεωB is invertible for εω small enough [44]. In
particular, a φ solution to

ŜεωD [φ] = h, for h ∈H1(∂B),

can be represented as

φ = φ0 +
c1 − βεω
βεω − c0

φ1,
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4.3. Stability estimates for the transmission problem

where (φ0, c0) ∈H1(∂B) ×R solves

⎧⎪⎪⎨⎪⎪⎩

S0
B[φ0] + c0 = 0,

∫∂B φ0 = 1,

and (φ1, c1) ∈ L2(∂B) ×C solves

⎧⎪⎪⎨⎪⎪⎩

S0
B[φ1] + c1 = h,
∫∂B φ1 = 1.

Moreover, there exists a constant K, independent of ε, ω and h, such that

∥φ0∥L2(∂B) + ∣c0∣ ≤K,

∥φ1∥L2(∂B) + ∣c1∣ ≤K∥h∥H1(∂B),

that is
∥φ∥L2(∂B) = ∥(ŜεωB )−1[h]∥L2(∂B) ≤K∥h∥H1(∂B).

By solving system (4.8) for (φ,ψ), we get

φ = ψ + 1

2π
ln(

√
k) (∫

∂B
ψ dσ) (ŜεωB )−1[χ∂B] + (ŜεωB )−1[f]

and

ψ = k

2π(1 − k) ln(
√
k) (∫

∂B
ψ)( (k + 1)

2(k − 1)I − K
∗
B)

−1

(−1

2
I +K∗B) (ŜεωB )−1[χ∂B]

− k

1 − k ( (k + 1)
2(k − 1)I − K

∗
B)

−1

(−1

2
I +K∗B) (ŜεωB )−1[f] + ( (k + 1)

2(k − 1)I − K
∗
B)

−1

[g].

From the above expressions, it is immediate to deduce that

∥φ∥L2(∂B) + ∥ψ∥L2(∂B) ≤ C(∥f∥H1(∂B) + ∥g∥L2(∂B)),

where C does not depend on ε and ω.

Now we are in position to prove Proposition 4.3.1.

Proof of Proposition 4.3.1. Let

φ̃(x̃) = φ(εx̃ + z), x̃ ∈ ∂B,

and define ψ̃, F̃ and G̃ likewise. By a change of variables, (4.6) reads as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S
εω
√

k

B [φ̃] − SεωB [ψ̃] = ε−1F̃ ,

k
∂S

εω
√

k

B [φ̃]
∂ν

∣
−
− ∂S

εω
B [ψ̃]
∂ν

∣
+
= G̃,

on ∂B.
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4. Reconstruction of a small acoustic inclusion via Time-dependent Polarization Tensors

Consider the operator T ∶ L2(∂B) ×L2(∂B) Ð→H1(∂B) ×L2(∂B) defined by

T (φ̃, ψ̃) ∶=
⎛
⎜
⎝
S
εω
√

k

B [φ̃] − SεωB [ψ̃], k
∂S

εω
√

k

B [φ̃]
∂ν

RRRRRRRRRRRRRR−
− ∂SεωB [ψ̃]

∂ν
∣
+

⎞
⎟
⎠
. (4.10)

T can be decomposed as

T = T0 + Tε,

where

T0(φ̃, ψ̃) ∶= (S0
B[φ̃] + βεω ∫

∂B
φ̃ − S0

B[ψ̃] − βεω ∫
∂B
ψ̃, k

∂S0
B[φ̃]
∂ν

∣
−
− ∂S0

B[ψ̃]
∂ν

∣
+
) ,

and

Tε ∶= T − T0.

For εω < ε0, and ε0 small enough, Lemma 4.1.2 implies that

∥Tε(φ̃, ψ̃)∥H1×L2 ≤ C(εω)2 ln(εω) (∥φ̃∥L2 + ∥ψ̃∥L2),

where C does not depend on ε nor ω. Since T0 is invertible [21, 44, 43], T is invertible
for εω small enough and

T −1 = T−1
0 +E,

where the operator E satisfies

∥E(ε−1F̃ , G̃)∥L2×L2 ≤ C(εω)2 ln(εω) ∥(ε−1F̃ , G̃)∥H1×L2 ,

with C being independent of F̃ , G̃, ε and ω. Finally, we have

(φ̃, ψ̃) = T −1(ε−1F̃ , G̃) = T−1
0 (ε−1F̃ , G̃) +E(ε−1F̃ , G̃) = (φ̃0, ψ̃0) +E(ε−1F̃ , G̃).

By applying Lemma 4.3.2, and assuming εω small enough, it follows that

∥(φ̃, ψ̃)∥L2×L2 ≤ C∥(ε−1F̃ , G̃)∥H1×L2 +C(εω)2 ln(εω) ∥(ε−1F̃ , G̃)∥H1×L2

≤ C∥(ε−1F̃ , G̃)∥H1×L2 ,

where C does not depend on ε and ω. By scaling back, we get inequality (4.7).
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4.4. Frequency-domain asymptotic expansion

4.4. Frequency-domain asymptotic expansion

Let D be as in the previous section, i.e., D = εB+z. For x ∈ ∂D, z away from the location
y of the source, we consider the truncated Taylor series of the background field

Vy,n(x,ω) ∶=
n

∑
∣α∣=0

∂αz Vy(z,ω)
α!

(x − z)α.

Let (φn, ψn) ∈ L2(∂D) ×L2(∂D) be the unique solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S
ω
√

k

D [φn] − SωD[ψn] = Vy,n+1,

k
∂S

ω
√

k

D [φn]
∂ν

∣
−
− ∂S

ω
D[ψn]
∂ν

∣
+
= ∂Vy,n+1

∂ν
,

on ∂D. (4.11)

Then (φ − φn, ψ − ψn) is the unique solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S
ω
√

k

D [φ − φn] − SωD[ψ − ψn] = Vy − Vy,n+1,

k
∂S

ω
√

k

D [φ − φn]
∂ν

∣
−
− ∂S

ω
D[ψ − ψn]
∂ν

∣
+
= ∂(Vy − Vy,n+1)

∂ν
,

on ∂D.

By Proposition 4.3.1, we have

∥φ − φn∥L2(∂D) + ∥ψ − ψn∥L2(∂D) ≤ C(ε−1∥Vy − Vy,n+1∥H1(∂D) + ∥∇(Vy − Vy,n+1)∥L2(∂D)),

where C does not depend on ε and ω. By definition of Vy − Vy,n+1, we have

∥Vy − Vy,n+1∥L2(∂D) = (∫
∂D

∣Vy − Vy,n+1∣2dσ)
1/2

≤ ∣∂D∣1/2∥Vy − Vy,n+1∥L∞(∂D).

Hereinafter, we assume that ω ∈ (0, ε−γ), with 0 < γ < 1. By expanding Vy − Vy,n+1 using
the chain rule together with recurrence relations of the derivative of the Hankel function
and the following approximation formula [1, 53, 79]

∣H(1)
ν (ω∣z − y∣)∣ = O(ω−1/2) as ω ≫ 1,

we obtain

∥φ − φn∥L2(∂D) + ∥ψ − ψn∥L2(∂D) ≤ C ∣∂D∣1/2εn+1(1 + ωn+3/2).

For x ∈ R2 ∖D, x ≠ y, dist(x,D) ≥ c1 > 0, the representation formula (4.4) yields

v(x,ω) − Vy(x,ω) = SωD[ψn](x) + SωD[ψ − ψn](x).

By applying the Cauchy-Schwarz inequality, we obtain

∣SωD[ψ − ψn](x)∣ ≤ [∫
∂D

∣Γω(x, s)∣2dσ(s)]
1/2

∥ψ − ψn∥L2(∂D)

≤ ∥Γω(x, ⋅)∥L∞(∂D)∣∂D∣1/2∥ψ − ψn∥L2(∂D).
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4. Reconstruction of a small acoustic inclusion via Time-dependent Polarization Tensors

Then, we have

v(x,ω) − Vy(x,ω) = SωD[ψn](x) +O(εn+2(∣ lnω∣ + ωn+1)). (4.12)

For each multi-index α, define (φα, ψα) to be the unique solution to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SεωB [φα](x̃) − S
εω
√

k

B [ψα](x̃) = x̃α,

k
∂SεωB [φα]

∂ν
∣
−
(x̃) −

∂S
εω
√

k

B [ψα]
∂ν

∣
+
(x̃) = ∂x̃

α

∂ν
,

x̃ ∈ ∂B, (4.13)

where x̃ = ε−1(x − z), x ∈ ∂D. The following proposition has been proved in [20].

Proposition 4.4.1 We claim that

φn(x) =
n+1

∑
∣α∣=0

ε∣α∣−1∂
α
z Vy(z,ω)

α!
φα(ε−1(x − z)),

ψn(x) =
n+1

∑
∣α∣=0

ε∣α∣−1∂
α
z Vy(z,ω)

α!
ψα(ε−1(x − z)), (4.14)

for x ∈ ∂D and (φn, ψn) defined as in (4.11).

Expansion (4.12) together with formula (4.14) yields:

vy(x,ω) −Vy(x,ω) =
n+1

∑
∣α∣=0

ε∣α∣−1∂
α
z Vy(z,ω)

α!
SωD[ψα(ε−1(⋅ − z))](x)+O(εn+2(∣ lnω∣ +ωn+1)),

for x ∈ R2 ∖D and x ≠ y. Note that

SωD[ψα(ε−1(⋅−z))](x) = ∫
∂D

Γω(x, s)ψα(ε−1(s−z)) dσ(s) = ε∫
∂B

Γω(x, εs̃+z)ψα(s̃) dσ(s̃).

By a straightforward calculation, we get ∥Γω(x, ⋅)∥Cn+2(D) ≤ C(1+ωn+3/2), where C does
not depend on ω. Therefore, for sufficiently small ε, we have

Γω(x, εs̃ + z) =
n+1

∑
∣β∣=0

ε∣β∣

β!
∂βz Γω(x, z)s̃β +O(εn+1(1 + ωn+3/2)).

Finally, we get

SωD[ψα(ε−1(⋅ − z))](x) =
n+1

∑
∣β∣=0

ε∣β∣+1

β!
∂βz Γω(x, z)∫

∂B
s̃βψα(s̃) dσ(s̃) +O(εn+2(1 + ωn+3/2)).

For multi-indices α and β in N2, the frequency dependent polarization tensors (FDPTs)
Ŵαβ ∶= Ŵαβ(B, εω, εω√k) are defined as [23, 21]

Ŵαβ ∶= ∫
∂B
s̃βψα(s̃) dσ(s̃). (4.15)

We obtain the following theorem.
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Theorem 4.4.2 Suppose that ω2 is not a Dirichlet eigenvalue for −∆ on D and ω ∈ (0, ε−γ),
with 0 < γ < 1. The following asymptotic expansion holds:

vy(x,ω)−Vy(x,ω) =
n+1

∑
∣β∣=0

n−∣β∣+1

∑
∣α∣=0

ε∣α∣+∣β∣

α! β!
∂αz Vy(z,ω)∂βz Γω(x, z)Ŵαβ +O(εn+2(∣ lnω∣+ωn+1)),

(4.16)
for x ∈ R2 ∖D.

Remark 4.4.3 The following proposition from [21] shows the limiting behavior of Ŵαβ

as ε→ 0 and makes the connection between the FDPTs and the generalized polarization
tensors (GPTs) Mαβ [24, 23] explicit.

Proposition 4.4.4 If ∣α∣ ≥ 1 and ∣β∣ ≥ 1, the harmonic sum of Ŵαβ has the following
asymptotic behavior:

∑
α

aαŴαβ →∑
α

aαMαβ as ε→ 0.

4.5. Time-domain asymptotic expansion

In this section, we abandon the frequency-domain to inspect our problem in the time-
domain. We define the emitted wave generated at y ∈ R2 ∖D as

Uy(x, t) ∶=
H(t − ∣x − y∣)

2π
√
t2 − ∣x − y∣2

,

where H is the Heaviside function at 0 [69]. In particular, Uy satisfies the wave equation

⎧⎪⎪⎨⎪⎪⎩

(∂2
t −∆)Uy(x, t) = δx=yδt=0, (x, t) ∈ R2 ×R,

Uy(x, t) = 0 for x ∈ R2 and t≪ 0.

In the presence of a small acoustic inclusion D of contrast k (as described in Section 4.2),
the perturbed wave uy = uy(x, t), is the solution to

⎧⎪⎪⎨⎪⎪⎩

∂2
t uy −∇ ⋅ (χ(R2 ∖D) + kχ(D))∇uy = δx=yδt=0 in R2 × (0,∞),
uy(x, t) = 0 for x ∈ R2 and t≪ 0.

For ρ > 0, we define the operator Pρ acting on tempered distributions by

Pρ[ψ](t) = ∫
∣ω∣≤ρ

e−iωtψ̂(ω) dω, (4.17)
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4. Reconstruction of a small acoustic inclusion via Time-dependent Polarization Tensors

where ψ̂ is the Fourier transform of ψ. The operator Pρ truncates the high-frequency
components of ψ [12, 41]. Note that

Pρ[Uy](x, t) = ∫
∣ω∣≤ρ

e−iωt (∫
R
eiωtUy(x, t) dt) dω = ∫

∣ω∣≤ρ

e−iωt
i

4
H

(1)
0 (ω∣x − y∣)dω,

and satisfies

(∂2
t −∆)Pρ[Uy](x, t) = δx=yψρ(t) in R2 ×R,

where

ψρ(t) ∶=
2 sinρt

t
= ∫
∣ω∣≤ρ

e−iωt dω.

From Theorem 4.4.2, we have

∫
∣ω∣≤ρ

e−iωt(vy(x,ω) − Vy(x,ω)) dω =
n+1

∑
∣β∣=0

n−∣β∣+1

∑
∣α∣=0

ε∣α∣+∣β∣

α! β!
∫

∣ω∣≤ρ

e−iωt∂αz Vy(z,ω)∂βz Γω(x, z)Ŵαβ dω

+ ∫
∣ω∣≤ρ

e−iωtR(x,ω) dω,

where R(x,ω) denotes the remainder in (4.16). Suppose that ρ = O(ε−γ) for some γ < 1.
Then

∫
∣ω∣≤ρ

e−iωtR(x,ω) dω = O (ε(n+2)(1−γ)) .

Notice that the following identity holds

∫
∣ω∣≤ρ

e−iωt∂αz Vy(z,ω)∂βz Γω(x, z)Ŵαβ dω

= ∫
R2
∂αz Pρ[Uy](z, t − τ − τ ′)∂βz Pρ[Uz](x, τ)

⎛
⎜
⎝
∫

∣ω∣≤ρ

e−iωτ
′

Ŵαβ(ω)dω
⎞
⎟
⎠
dτ dτ ′.

This suggests the following definition.

Definition 4.5.1 For ρ < 1/ε and multi-indices α and β, the two-dimensional truncated
time-dependent polarization tensors (hereinafter, TDPTs), Pρ[Wαβ], are defined as:

Pρ[Wαβ](D,k, t) ∶= ∫
∣ω∣≤ρ

e−iωtŴαβ(ω) dω, (4.18)

where Ŵαβ are the two-dimensional FDPTs.
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Remark 4.5.2 The condition on the truncating threshold ρ in Definition 4.5.1, i.e.,
ρ < 1/ε, boils down to considering only the frequencies ω for which the FDPTs Ŵαβ(ω)
are well-defined in the integral transform Pρ.

Remark 4.5.3 We warn the reader that the symbol used in Definition 4.5.1 for denoting
the TDPTs, i.e., Pρ[Wαβ](D,k, t), is an abuse of notation, since no Wαβ has been defined;
see Remark 4.5.2. However, we preferred to keep this notation to remain consistent with
the definition of Pρ given in [12, 41].

Thus, we have proved the following theorem.

Theorem 4.5.4 For 0 < γ < 1, the following asymptotic expansion holds:

Pρ[uy](x, t) = Pρ[Uy](x, t)

+
n+1

∑
∣β∣=0

n−∣β∣+1

∑
∣α∣=0

ε∣α∣+∣β∣

α! β!
∫
R
∂βz Pρ[Uz](x, τ) (∫R ∂

α
z Pρ[Uy](z, t − τ − τ ′)Pρ[Wαβ](τ ′) dτ ′) dτ

+O (ε(n+2)(1−γ)) ,
(4.19)

where x ∈ R2 ∖D, D = εB + z, ∣B∣ = 1, Pρ[Wαβ] are the TDPTs defined in Definition
4.5.1 and ρ = O(ε−γ).

In the end, Theorem 4.5.4 shows that the scattered wave can be written as a truncated
expansion having the TDPTs as building blocks. Since these tensors are the Fourier
transformed FDPTs, the transient expansion (4.19) provides a proper interpretation
of the multi-frequency problem, which can then be naturally tackled in the temporal
domain.

Moreover from Proposition 4.4.4, one can immediately show the limiting behavior of
Pρ[Wαβ] as ε→ 0 and make the connection between the TDPTs and the GPTs explicit.

Proposition 4.5.5 If ∣α∣ ≥ 1 and ∣β∣ ≥ 1, the harmonic sum of Pρ[Wαβ] has the following
asymptotic behavior:

∑
α

aαPρ[Wαβ] →
2 sin(ρt)

t
∑
α

aαMαβ as ε→ 0.

By following the proofs in [15], it is easy to derive translation, rotation, and scaling
properties for the TDPTs similar to those enjoyed by the GPTs.

Proposition 4.5.6 For translation T = (T1, T2), angle θ with respect to the origin, and
positive constant s, let

DT ∶= {y + T ∶ y ∈D}, Dθ ∶= {yθ ∶= R(θ)y ∶ y ∈D}, sD ∶= {sy ∶ y ∈D}.
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For multi-indices α, β, γ and η in N2, let the coefficients cTβη, cTαγ, rθβη, and rθαγ be such
that

(x − T )α = ∑
∣γ∣≤∣α∣

cTαγx
γ , (x−θ)α = ∑

∣γ∣=∣α∣
rθαγx

γ .

We have the following relations:

• Pρ[Wαβ](D,k, t) = ∑ ∣η∣≤∣β∣
∣γ∣≤∣α∣

cTβηc
T
αγPρ[Wηγ](DT , k, t);

• Pρ[Wαβ](D,k, t) = ∑ ∣η∣=∣β∣
∣γ∣=∣α∣

rθβηr
θ
αγPρ[Wηγ](Dθ, k, t);

• Pρ[Wαβ](D,k, t) = 1
s∣α∣+∣β∣−1

Ps−1ρ[Wαβ](sD, k, st).

4.6. Reconstruction methods

It is already known that the high-order generalized polarization tensors (GPTs) [24, 16]
and the FDPTs [23] of an inclusion contain a mixture of geometric information and
material parameters. In this section we aim at showing that the same holds for the
TDPTs of an acoustic inclusion (4.18) by extending some of the existing methods that
has been established for GPTs and FDPTs.

Firstly, formulas for determining the size, the contrast and the equivalent ellipse of an
inclusion are provided in terms of Pρ[Wαβ](t). Secondly, the optimal control approach
of [24, 16, 23] for recovering shape details of an inclusion is also adapted in order to
perform with the TDPTs. Finally, a procedure for the reconstruction of the TDPTs is
presented.

In what follows, without loss of generality, the location of the inclusion is supposed to be
known. As a matter of fact, the location can be priorly estimated by using, for instance,
a MUSIC-type algorithm; see [17].

4.6.1. Size, contrast and equivalent ellipse

We now extend the well-known procedure to obtain the equivalent ellipse representing
the shape of the inclusion for Pρ[W(1)](t), where Ŵ(1) is the matrix given by

Ŵ(1) ∶= (Ŵαβ)∣α∣=∣β∣=1 = ε2(Ŵαβ)∣α∣=∣β∣=1.

Since we have

Pρ[W(1)](D,k, t) →
2 sin(ρt)

t
M(D,k) as ε→ 0,

where M(D,k) = (Mαβ)∣α∣=∣β∣=1 is the polarization tensor (PT), the same procedure of

[23] applies by using Pρ[W(1)](t) instead of Ŵ(1).
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Let E be the equivalent ellipse associated to the shape D, and let θ be its rotation angle.
Then the size ∣D∣ and the contrast k of the inclusion can be estimated as follows. We
have

∣D∣ ≈ 1

∫∣ω∣≤ρ e−iωtω2dω
Pρ[W(0,0),(0,0)](t),

k ≈ ∣D∣(Pρ[W ′
11] + Pρ[W ′

22]) + (t/(2 sin(ρt)))Pρ[W ′
22]Pρ[W ′

11]
(t/(2 sin(ρt)))Pρ[W ′

22]Pρ[W ′
11] − ∣D∣(Pρ[W ′

22] + Pρ[W ′
11])

,

where
Ŵ ′

(1) = R(−θ)Ŵ(1)R(−θ)T ,
with R(−θ) being the rotation by −θ.

Therefore, from the TDPTs Pρ[Wαβ](t) we are able to recover an approximation of the
volume of the inclusion, separating the information on the material property from the
geometric features.

4.6.2. Fine shape details

So far, we reconstructed the contrast k, the size ∣D∣ and the equivalent ellipse E . We now
reconstruct fine details of the shape of the inclusion using the new concept of high-order
TDPTs.

Assuming the inclusion to be a small deformation of the reconstructed equivalent ellipse,
we can recover the fine details of its shape by (recursively) minimizing over D the
time-dependent discrepancy functional defined by:

J(K)(D)(t) ∶= ∑
1≤∣α∣+∣β∣≤K

RRRRRRRRRRR
∑
α,β

aαbβPρ[Wαβ](D, t) − ∑
α,β

aαbβPρ[Wαβ]meas
RRRRRRRRRRR

2

, (4.20)

where the coefficients aα, bβ are chosen such that ∑α aαxα and ∑β bβxβ are harmonic
polynomials and hence coincide with cos and sin functions on the unit circle.

We introduce the operator KD given by

KD[φ](x) = 1

2π
∫
∂D

⟨y − x, νy⟩
∣x − y∣2 φ(y) dσ(y), for φ ∈ L2(∂D).

It is well known that the L2-adjoint of KD is

K∗D[φ](x) = 1

2π
∫
∂D

⟨x − y, νx⟩
∣x − y∣2 φ(y) dσ(y), for φ ∈ L2(∂D).

Notice that the ones above consist in a particular case of Lemma 4.1.1 for ω = 0. Recall
that, for η much smaller than ε,

∑
α,β

aαbβMαβ(Dη, k) − ∑
α,β

aαbβMαβ(D,k) ≈ η∫
∂D

h(x)φ̂HF (x)dσ(x),
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where

φ̂HF = (k − 1) [ ∂v
∂ν

∣
−

∂u

∂ν
∣
−
+ 1

k

∂u

∂T
∣
−

∂v

∂T
∣
−
] ,

and

u =H(x) + SD
⎡⎢⎢⎢⎢⎣
( k + 1

2(k − 1)I − K
∗
D)

−1

[∂H
∂ν

]
⎤⎥⎥⎥⎥⎦
(x),

v = F (x) + DD
⎡⎢⎢⎢⎢⎣
( k + 1

2(k − 1)I − KD)
−1

[F ]
⎤⎥⎥⎥⎥⎦
(x),

where H = ∑α aαxα and F = ∑β bβxβ are defined as above; see [24, 23]. From Proposition
4.5.5 we get

∑
α,β

aαbβPρ[Wαβ](D,k) →
2 sin(ρt)

t
∑
α,β

aαbβMαβ(D,k) as ε→ 0,

which yields the following approximation formula:

∑
α,β

aαbβPρ[Wαβ](Dη, t) − ∑
α,β

aαbβPρ[Wαβ](D, t) ≈ η∫
∂Dgiven

h(x)Pρ[φHF ](x, t)dσ(x).

(4.21)
Note that

Pρ[φHF ](x, t) =
2 sin(ρt)

t
φ̂HF (x).

Therefore, we modify the initial shape Dinit to obtain Dmod by the gradient descent
method

∂Dmod = ∂Dinit −
⎛
⎝

J(n)[Dinit]
∑j(⟨dSJ(n)[Dinit], ψj⟩)2

∑
j

⟨dSJ(n)[Dinit], ψj⟩ψj
⎞
⎠
ν,

where ν is the outward unit normal to Dinit and {ψj} is a basis of L2(∂Dinit). The shape
derivative of J(n)[D] follows immediately from the approximation formula (4.21) and is
given by

⟨dSJ(n)[D], h⟩L2(∂D)

= ∑
1≤∣α∣+∣β∣≤K

⎛
⎝∑α,β

aαbβPρ[Wαβ](D, t) − ∑
α,β

aαbβPρ[Wαβ](B, t)
⎞
⎠
⟨Pρ[φHF ], h⟩L2(∂D) .

As in [24, 23], we can make the optimization procedure recursively by increasing K to
refine the reconstruction of the shape details of the inclusion. At each step, the initial
guess for the shape is the result of the previous one. The equivalent ellipse in Section 7.2
provides a good initial guess to begin with.
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4.6.3. Reconstruction of the TDPTs from multi-frequency MSR
measurements

We begin by recalling how to reconstruct the FDPTs from multi-static measurements.

Let D = εB + z be a small acoustic two-dimensional inclusion of characteristic size ε,
and contrast k. Let us consider two arrays: an array of M transmitters {y1, . . . , yM}
and another of N receivers {x1, . . . , xN}, both distributed around the inclusion D. For a
given frequency ω ∈ [−ρ, ρ], let Aω be the corresponding N ×M Multi-Static Response
(MSR) matrix. Precisely, the (i, j)-th entry of Aω is given by

(Aω)i,j = vyj(xi, ω) − Vyj(xi, ω), i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}, (4.22)

that is, the scattered field recorded at the receiver xi, due to the transmitter yj .

As usual, in order to model the error in the measurements, additive Gaussian white noise
Xnoise is used to contaminate A. We suppose that Xnoise = σnoiseX0, where σnoise and
X0 is an N ×M complex random matrix with independent and identically distributed
N(0,1) entries. Hence, the entries of Xnoise are independent complex Gaussian random
variables with mean zero and variance σ2

noise.

In view of formula (4.16), each entry of the MSR matrix admits the following expansion

(Aω)i,j = Gω(xi, z)Ŵ(ω)Gω(yj , z)T +O(εn+2(∣ lnω∣ + ωn+1)),

where

Gω(y, z) = ( 1

α!
∂αz Γω(y, z))

∣α∣≤n

is a row vector, and

Ŵ = (Ŵαβ)∣α∣+∣β∣≤n = (ε∣α∣+∣β∣Ŵαβ)∣α∣+∣β∣≤n

is the matrix containing the FDPTs, as in [23]. Then, the tensor Ŵ can be reconstructed
from the measurements Aω as the least-squares solution to the following problem

Ŵ(ω)meas ← arg min
W

∥Gω( ∶ , z)Ŵ(ω)Gω( ∶ , z)T −Aω∥F , (4.23)

where ∥ ⋅ ∥F denotes the Frobenius norm of a matrix; see [23], and Gω( ∶ , z) is a matrix
obtained by vertically concatenating the row vectors Gω(xi, z) (resp. Gω(yj , z)) for all
the receivers xi (resp. transmitters yj).

Now, by using the reconstructed FDPTs at multiple frequencies in a discrete subset of
the interval [−ρ, ρ] we can get an approximation for the TDPTs (4.18). More precisely,
let the set of sampled frequencies SL be a uniform discretization of the interval [−ρ, ρ],
i.e.,

−ρ = ω−L < ω−L+1 < ⋅ ⋅ ⋅ < ω−1 < 0 < ω1 < ⋅ ⋅ ⋅ < ωL−1 < ωL = ρ,
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with ωl+1 − ωl = ρ/L for every ∣l∣ ≤ L. Then the estimator built on this sampling set of
frequencies is obtained by applying the discrete Fourier transform (DFT)

Pρ[Wαβ](t)meas ∶= ρ

L

L

∑
l=−L

e−iωltŴαβ(ωl)meas . (4.24)

Such estimator is unbiased, with variance

V ar(Pρ[Wαβ]meas) = ρ2

L2

L

∑
l=−L

V ar(Ŵαβ(ωl)meas) . (4.25)

Since the remainder stated in (4.16) is singular at ω = 0, caution is needed when dealing
with small frequencies. In order to get the asymptotic behavior of this dispersion term
(4.25) as L → +∞ we should slightly modify the choice of the range of frequencies
by casting a neighborhood of ω = 0 away. In particular for some small ρ0 > 0 we
require that SL ∩ [−ρ0, ρ0] = ∅, SL being uniformly distributed in [−ρ,−ρ0] and [ρ0, ρ],
separately. Hence V ar(Ŵαβ(ωl)meas) ≤ C(ρ0) for all ω ∈ SL. Then it is readily seen that
V ar(Pρ[Wαβ]meas) → 0 as L→ +∞.

Note that this reconstruction presented here is indirect in the sense that we don’t
extract the TDPTs directly from the temporal data. Instead, the estimation is done by
aggregating the results of multiple reconstructions in the frequency-domain.

4.7. Numerical illustrations

In this section, we present some numerical simulations to corroborate the theoretical
results of this chapter. The simulations aim at showing that the new concept of TDPT
can be successfully employed for imaging a small acoustic inclusion.

In what follows, all the experiments are carried out in the two-dimensional case. First, we
perform an analysis of the computational accuracy of Pρ[W]meas, which is reconstructed
from MSR measurements using the method proposed in Section 4.6.3. Then we test the
optimization procedure in Section 4.6.2 to restore the fine shape details of the inclusion.

4.7.1. Reconstruction of the TDPTs

We present computational results regarding the reconstruction of TPDTs from MSR
measurements by solving (4.23). The comparison between Pρ[W]meas, obtained from
measured Ŵ , with Pρ[W], numerically computed by solving (4.13) and computing (4.18).
For the latter, boundary elements techniques are used in the approximate evaluation of
Ŵ, as in [23].

104



4.7. Numerical illustrations

Let D1 and D2 be two small acoustic inclusions of different shapes and same characteristic
size ε = 0.05 and contrast k = 3, centered at z1 = [0.3,−0.1] and z2 = [0,0.25], as shown
in Figure 4.1.

We consider coincident arrays of transmitters and receivers to acquire the multi-static data
(4.22). In particular, circular and square configurations are tested in the reconstruction
of Ŵ for D1 (Figure 4.1a) and D2 (Figure 4.1b), respectively.

-1 0 1

-1

0

1

(a) N1 = 70 transmitters/receivers on the unit
circle, surrounding the inclusion D1 = εB1 +

z1.

-1 0 1

-1

0

1

(b) N2 = 80 transmitters/receivers on the unit
square, surrounding the inclusion D2 = εB2 +

z2.

Figure 4.1.: Geometries of the acquisition setting. The black curves correspond to two small
inclusions with common size ε = 0.05 and contrast k = 3.
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Figure 4.2.: The diagonal elements of the reconstructed first order FDPT, namely Ŵαβ with
∣α∣ = ∣β∣ = 1 (on the left), and the corresponding first order TDPT, namely Pρ[Wαβ],
over the interval [0, 5] (on the right). 20% of noise is considered in the reconstruction
of the FDPT.

The reconstruction of the first order TDPT of D1 with 20% of noise is reported in
Figure 4.2. A uniform sampling of 28 frequencies within [−ρ, ρ] = [−π,π] is used, and
the resulting Pρ[Wαβ]meas is plotted over the interval [0,5]. With this choice of ρ, the
condition on the truncating threshold in Definition 4.5.1 is satisfied; see Remark 4.5.2.

An analysis of the error in the noiseless reconstruction is performed. Since the TDPTs
are functions, the L2-norm is adequate. We define the absolute and relative-error as
follows:

absErr(T ) = ∥Pρ[Wαβ]meas − Pρ[Wαβ]∥L2(0,T ),

relErr(T ) =
∥Pρ[Wαβ]meas − Pρ[Wαβ]∥L2(0,T )

∥Pρ[Wαβ]∥L2(0,T )
.

The results are shown in Figure 4.3.
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Figure 4.3.: L2 -absolute (left) and -relative (right) errors in the noiseless reconstruction of
Pρ[W(1,0),(1,0)] (pale blue) and Pρ[W(0,1),(0,1)] (black), assuming the setting shown
in Figure 4.1b.

4.7.2. Reconstruction of the fine shape details

In this section, we set k to be the value found by the method proposed in Section 4.6.3,
and use the equivalent ellipse as an initial guess for the optimization procedure in Section
4.6.2.

Firstly, to simulate the reconstruction of the fine details of the inclusions D1 and D2,
we reconstruct the TDPTs up to order n = 4 by using measurements coming from the
two different acquisition settings as in Figure 4.1. A uniform sampling of 26 frequencies
within the range [−ρ, ρ] = [−π/8, π/8] is used to this aim. This is done as described in
Section 7.3. After obtaining Pρ[Wαβ]meas, we feed them to the optimization algorithm of
Section 4.6.2. At each step, the algorithm recursively minimizes the discrepancy function
(4.20), yielding a progressive update of the shape. The equivalent ellipse is taken as
initial guess.

The results after few iterations with 20% of noise are shown in Figure 4.4. The number of
iterations is less than 30, and the stopping criteria we used are those stated in [23]. We
can observe that details finer than the equivalent ellipse are well recovered for both the
inclusions despite the fact that noisy measurements are used to reconstruct the TDPTs.
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Figure 4.4.: Gray curve is the actual inclusion (left column) whereas the black curve represents
the equivalent ellipse (mid column) and the reconstructed shape with 20% of noise
after few iterations (right column).

4.8. Concluding remarks

In this chapter, we have presented for the first time the new concept of the TDPTs for
the transient problem. These objects are the truncated Fourier transforms of the FDPTs
introduced by Ammari et al. in [23]. We have shown that by operating with a range
of frequencies, we can recover the high-order TDPTs from the measurements, and this
yields a robust reconstruction of the fine shape details of the small acoustic inclusion.
From our analysis, we deduce that already-known results involving the reconstruction of
the inclusion via MSR measurements at a single frequency, when performed at multiple
frequencies, can be naturally interpreted in the time-domain. For future purposes, it is
expected that the TDPTs will be relevant to develop promising time-domain techniques
for target classification in echolocation by extending the correspondent frequency-domain
methods [25, 30] and the electro-sensing case [7, 4, 66]. Moreover, our analysis paves
the way for investigating the more general situation of a bat which uses the movement
to better map the surrounding environment. This worthwhile extension is of primary
importance, being suitable for bio-inspired applications in robotics.
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A. Appendix

A.1. Generalized polarization tensors and boundary layer
potentials

In this appendix, we briefly summarize some fundamental concepts that are essential for
understanding the subject in question. For further references see [2, 14, 7, 66].

Let Ω be a simply connected bounded domain. We assume Ω ∈ C1,α, for some α > 0.

Definition A.1.1 Denote by Γ the fundamental solution of the Laplacian in R2, i.e.,

Γ(x − y) ∶= 1

2π
log ∣x − y∣, x, y ∈ R2.

Definition A.1.2 For any φ ∈ L2(∂Ω), the single- and double-layer potentials on Ω are
given by the following formulas:

SΩ[φ](x) ∶= ∫
∂Ω

Γ(x, y)φ(y) dσy, x ∈ R2,

DΩ[φ](x) ∶= ∫
∂Ω

∂Γ

∂νy
(x, y)φ(y) dσy, x ∈ R2 ∖ ∂Ω.

Recall that for φ ∈ L2(Ω), the functions SΩ and DΩ are harmonic functions in R2 ∖ ∂Ω.

Definition A.1.3 The operator KΩ and its L2-adjoint K∗Ω are given by the following
formulas:

KΩ[φ](x) ∶= 1

2π
∫
∂Ω

(y − x) ⋅ ν(y)
∣x − y∣2 φ(y) dσy, x ∈ ∂Ω,

K∗Ω[φ](x) ∶= 1

2π
∫
∂Ω

(x − y) ⋅ ν(x)
∣x − y∣2 φ(y) dσy, x ∈ ∂Ω

where p.v. stands for the Cauchy principal value.

K∗Ω is also known as the Neumann–Poincaré operator.

The behavior of the single- and double-layer potentials across the boundary ∂Ω is
described by the following relations [22]:

SΩ[φ]∣+ = SΩ[φ]∣−,
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∂SΩ[φ]
∂ν

∣
±
= (±1

2
I +K∗Ω)φ,

DΩ[φ]∣± = (∓1

2
I +KΩ)φ,

∂DΩ[φ]
∂ν

∣
+
= ∂DΩ[φ]

∂ν
∣
−
,

We introduce the generalized polarization tensor (GPT).

Definition A.1.4 Let α,β ∈ N2 be multi-indices. We define the GPT associated with the
domain Ω and the contrast λ ∈ (−1

2 ,
1
2
) by

Mαβ(λ,Ω) ∶= ∫
∂Ω

(λI −K∗Ω)−1 [∂y
α

∂ν
] yβ dσy,

where I is the identity operator.

We can also define the contracted generalized polarization tensors (CGPTs) as follows.

Definition A.1.5 Let m,n ∈ N. We define the CGPTs by

M cc
mn = ∑

∣α∣=m
∑
∣β∣=n

amα a
n
βMαβ,

M cs
mn = ∑

∣α∣=m
∑
∣β∣=n

amα b
n
βMαβ,

M sc
mn = ∑

∣α∣=m
∑
∣β∣=n

bmα a
n
βMαβ,

M ss
mn = ∑

∣α∣=m
∑
∣β∣=n

bmα b
n
βMαβ,

where the real numbers amα and bmβ are defined by the following relation

(x1 + ix2)m = ∑
∣α∣=m

amα x
α + i ∑

∣β∣=m
bmβ x

β.

A.2. Kronecker products and generalized inverses

Let us denote by Mm,n the space of m × n matrices.

Definition A.2.1 (vec operator) Given a matrix X = [x1 x2 . . . xm] ∈ Mk,m, define
the vectorization operator vec(⋅) ∶ Mk,m →Mkm,1 as follows:

vec(X) =
⎡⎢⎢⎢⎢⎢⎣

x1

⋮
xm

⎤⎥⎥⎥⎥⎥⎦
∈Mkm,1. (A.1)
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Definition A.2.2 (Kronecker product) Given X = (xij) ∈ Mm,n and Y = (yij) ∈ Mp,q,
define

X⊗Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x11Y x12Y . . . x1nY
x21Y x22Y . . . x2nY
⋮ ⋮ ⋱ ⋮

xm1Y xm2Y . . . xmnY

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈Mmp,nq. (A.2)

For all matrices A, B and C such that the product ABC is well defined we have

vec(ABC) = (C⊺ ⊗A)vec(B). (A.3)

We introduce a generalized Kronecker product.

Definition A.2.3 (Generalized Kronecker product [64, 57]) Given a matrix X (M × l) and
a set of M matrices Y (N × r) we define the matrix X⊗ {Y`} (MN × lr ) as

X⊗ {Y`} ∶=
⎡⎢⎢⎢⎢⎢⎣

X1,∶ ⊗Y1

⋮
XM,∶ ⊗YM

⎤⎥⎥⎥⎥⎥⎦
. (A.4)

Notice that in [64] the factors are swapped compared to this definition. The reason is
that, unlike us, they considered a left Kronecker product.

Definition A.2.4 (Generalized column-wise Kronecker product) Given a matrix X (M × l)
and a set of M matrices Y` (N × r) we define the matrix X⊗C {Y`} (MN × lr ) as

X⊗C {Y`} ∶= [X∶,1 ⊗Y1 . . . X∶,l ⊗YM ] . (A.5)

Definition A.2.5 (Moore–Penrose inverse) The Moore–Penrose inverse of the matrix M
(m × p) is the unique matrix G (p ×m) satisfying the following four Penrose conditions:

1. MGM = M,

2. GMG = G,

3. (MG)⊺ = MG,

4. (GM)⊺ = GM.

A matrix G satisfying (1) is called a generalized inverse or a g-inverse.

A matrix G satisfying (1) and (2) is called a reflexive g-inverse.

A matrix G satisfying (1) and (3) is called a least-square g-inverse.

A matrix G satisfying (1) and (4) is called a minimum norm g-inverse.
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A.3. Reminder in the asymptotic expansion (1.5)

Let ε = δ/ρ be the length-scale. By definition, the truncation error at the receptor x
(s)
r is

given by

Ers ∶= u(s)(x(s)r ) −H(s)(x(s)r ) − L(s)(M(K)).

The asymptotic behavior of Esr in the far-field regime is assessed by the following
proposition.

Proposition A.3.1 For δ, ε≪ 1 we have the following asymptotic behavior

∣Ers∣ = O(εK+2). (A.6)

Proof. Hereinafter, we simplify our notation by fixing the index position s, i.e., x
(s)
r = xr,

H(s) =H, Ers = Er.

Let us define HK(x) =
K

∑
∣α∣=0

1

α!
∂αH(z)(x − z)α. The truncation error can be expressed as

Er = ∫
∂D

ΓK(xr−y)(λI−K∗D)−1[∂νH−∂νHK] dsy+∫
∂D

(Γ−ΓK)(xr−y)(λI−K∗D)−1[∂νH] dsy.

(A.7)
We want to estimate each term separately.

Denote the first term by

E(1)
r ∶= ∫

∂D
ΓK(y;xr, z)(λI −K∗D)−1 [∂H

∂ν
− ∂HK

∂ν
] (y) dsy. (A.8)

We have

∣E(1)
r ∣ ≤ ∣∫

∂D
ΓK(y;xr, z)(λI −K∗D)−1 [∂H

∂ν
− ∂HK

∂ν
] (y) dsy∣

≤ sup
y∈∂D

∣ΓK(y;xr, z)∣ ∫
∂D

∣(λI −K∗D)−1 [∂H
∂ν

− ∂HK

∂ν
] (y)∣ dsy

≤ ∥ΓK( ⋅ ;xr, z)∥L∞(∂D) ∥(λI −K∗D)−1 [∂H
∂ν

− ∂HK

∂ν
]∥
L2(∂D)

∣∂D∣1/2

≤ C∥ΓK( ⋅ ;xr, z)∥L∞(∂D) ∥
∂H

∂ν
− ∂HK

∂ν
∥
L2(∂D)

∣∂D∣1/2

≤ C ′ δ

ρ
∥∂H
∂ν

− ∂HK

∂ν
∥
L2(∂D)

∣∂D∣1/2

≤ C ′ δ
2

ρ
∥∂H
∂ν

− ∂HK

∂ν
∥
L∞(∂D)

∣∂B∣.
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Now we estimate the term

∥∂H
∂ν

− ∂HK

∂ν
∥
L∞(∂D)

. (A.9)

Recall the integral form of the reminder of Taylor’s formula:

(H −HK)(y) = ∑
∣α∣=K+1

1

α!
∫

1

0
(1 − t)K∂αH(ty)dt yα,

then

(∂H
∂ν

− ∂HK

∂ν
) (y) = ∑

∣α∣=K+1

1

α!
[∫

1

0
(1 − t)K∂ν∂αH(ty)dt yα + ∫

1

0
(1 − t)K∂αH(ty)dt ∂νy

α] .

It is immediate to show that

∣(∂H
∂ν

− ∂HK

∂ν
)∣
∂D

∣ ≤ C
⎛
⎝
δK+1 ∑

∣α∣=K+1

1

α!
∥∇∂αH∥C0(D) + δK ∑

∣α∣=K+1

1

α!
∥∂αH∥C0(D)

⎞
⎠
.

Assume ρ ≥ dist(∂Ω,0) > 1, δ ≪ 1. By using formulas for the derivatives of H we get

∥∂H
∂ν

− ∂HK

∂ν
∥
L∞(∂D)

≤ ( C ′
1

ρK+3
+ C ′

2

ρK+2
) δK+1 + ( C1

ρK+2
+ C2

ρK+1
) δK , (A.10)

hence

∥∂H
∂ν

− ∂HK

∂ν
∥
L∞(∂D)

= O ( δK

ρK+1
) .

Therefore

∣E(1)
r ∣ ≤ C ′ δ

ρ
∥∂H
∂ν

− ∂HK

∂ν
∥
L2(∂D)

∣∂D∣1/2 ≤ C ′′ δ
K+2

ρK+2
= O(εK+2).

Denote the second term in (A.7) by

E(2)
r ∶= ∫

∂D
(Γ − ΓK)(xr − y)(λI −K∗D)−1 [∂H

∂ν
] (y) dsy. (A.11)

We have

∣E(2)
r ∣ = ∣∫

∂D
(Γ − ΓK)(xr − y)(λI −K∗D)−1 [∂HK

∂ν
] (y) dsy∣

≤ ∥Γ(xr − ⋅ ) − ΓK(xr − ⋅)∥L∞(∂D)∫
∂D

∣(λI −K∗D)−1 [∂H
∂ν

] (y)∣ dsy

≤ ∥Γ(xr − ⋅ ) − ΓK(xr − ⋅)∥L∞(∂D) ∥(λI −K∗D)−1 [∂H
∂ν

]∥
L2(∂D)

∣∂D∣1/2

≤ C∥Γ(xr − ⋅ ) − ΓK(xr − ⋅)∥L∞(∂D) ∥
∂H

∂ν
∥
L2(∂D)

∣∂D∣1/2

≤ C∥Γ(xr − ⋅ ) − ΓK(xr − ⋅)∥L∞(∂D) ∥
∂H

∂ν
∥
L∞(∂D)

∣∂D∣.
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Since ∥Γ(xr − ⋅ ) − ΓK( ⋅ ;xr, z)∥L∞(∂D) ≤ C ( δρ)
K+1

, see [6], and

∥∂H
∂ν

∥
L∞(∂D)

≤ Cρ−1, (A.12)

we have
∣E(2)
r ∣ = O(εK+2).

A.4. Technical estimates

A.4.1. Uniqueness results

In this section, we show that the matrix of receptors G(s) is full column rank. We begin
by observing that G(s) is closely related to a special Nr × 2K Vandermonde matrix of
the form

VK ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1 ζ1 ζ2
1 ζ

2
1 . . . ζK1 ζ

K
1

ζ2 ζ2 ζ2
2 ζ

2
2 . . . ζK2 ζ

K
2

⋮ ⋮ ⋱ ⋮
ζNr ζNr ζ2

Nr
ζ

2
Nr . . . ζKNr ζ

K
Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.13)

Matrices of this type are of interest when dealing with univariate polynomial interpolation
on complex conjugate points. We introduce the map

K ∶ C ∖ {0} Ð→ C ∖ {0}

K(z) = z −1 = z

∣z∣2 .

K is known in the literature as the Kelvin transform. Then the entries of VK (A.13) are
defined as follows: for any receptor zl ∈ ∂Ω we set ζl = K(zl) = eiθl/rl.

To relate VK to G(s) we introduce two other matrices. By employing the product defined
in Definition A.2.3, consider the 2K × 2K diagonal scaling matrix

C ∶= IK ⊗ {`−1I2} ,

and, by setting J = 1
2 [1 −i

1 i
], define the complex 2K × 2K block diagonal matrix:

J ∶= IK ⊗ J.

It can be easily verified that G(s) = − 1
2πVKJC.

Observe that there exists a permutation matrix P such that VKP = [WK WK].
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Lemma A.4.1 Let V(1,...,2K) be the square submatrix of VKP obtained by considering
the first 2K rows. Then

det(V′) = Re(P (ζ1, . . . , ζ2K , ζ1, . . . , ζ2K)),

where P ∈ C[z1, . . . , z2K , z1, . . . , z2K]. Since ζl = xl + iyl and ζ l = xl − iyl, it is clear that

det(V′) = Q(x1, y1, . . . , x2K , y2K),

where Q ∈ R[x1, y1, . . . , x2K , y2K].

The set H = {Q = 0} is an hyper-surface in the affine space R4K ≃ R2 × ⋅ ⋅ ⋅ ×R2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2K

.

Definition A.4.2 A finite set of points S = {(x1, y1), . . . , (x2K , y2K)} ⊂ R2, #S = 2K, is
called a general configuration if the point (x1, y1, . . . , x2K , y2K) does not lie on H.

Proposition A.4.3 Suppose there are 2K receptors zl such that ζl = K(zl) are a general
configuration. Then VK is of maximal rank.

Proof. Without loss of generality, let ζ1, . . . , ζ2K be a general configuration. From Lemma
A.4.1 it follows that det(V′) is a real multivariate polynomial, and it does not vanish
when evaluated at the points ζ1, . . . , ζ2K .

Remark A.4.4 By an abuse of definition, a set of points {zl}l such that {K(zl)}l is a
general configuration, shall be called a general configuration likewise.

A.4.2. Moore-Penrose inverse of S

For ` ∈ N, let r`(γ) be the following rotation matrix:

r`(γ) ∶= [ cos(`γ) sin(`γ)
− sin(`γ) cos(`γ)] .

If we assume that the body of the fish lies in a thin annulus around the orbit of radius ρ
while swimming around the target, then the form of the design matrix can be simplified.
In this case, if (1.16) is used, the information on the fish concerning its geometry and its
electric field can be separated from the “kinematics”. Easy calculations show that

G(s) = G(1)(IK ⊗ {r1(`(s − 1)γ)}),

Zs, ∶ = Z1, ∶ (IK ⊗ {r1((1 + `)(s − 1)γ)}),

where

Z1,∶ = [cos(2θ1) sin(2θ1) cos(3θ1) sin(3θ1) . . . cos((K + 1)θ1) sin((K + 1)θ1)] .
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Moreover, given αs = α0 + (s − 1)γ angle of ps, we have

P
(s)
K = IK ⊗ {(−1)`+1r1(α0 + (s − 1)γ)} .

Hereinafter, we assume that the fish moves with its electric organ along on a circular
orbit of radius ρ.

Recall that

S = Sdip + SSL.

By using the rotational symmetry of the configuration and the notation hereabove, we
rewrite Sdip and SSL as follows:

(Sdip)s, ∶ = Zs, ∶P
(s)⊺
K D2,K+1

= Z1, ∶ (IK ⊗ {r1((1 + `)(s − 1)γ)}`)(IK ⊗ {(−1)`+1r1(−α0 − (s − 1)γ)}`)D2,K+1

= Z1, ∶ (IK ⊗ {(−1)`+1r1(−α0 + `(s − 1)γ)}`)D2,K+1,

and

(SSL)s, ∶ = −uG(1)(IK ⊗ {r1(`(s − 1)γ)}`).

Here, D2,K+1 is given as in Section 3.2 by

D2,K+1 = IK ⊗ {ρ−(`+1)I2}`.

Finally,

Sdip = (IM ⊗Z1, ∶)
⎡⎢⎢⎢⎢⎢⎣

IK ⊗ {(−1)`+1r1(−α0)}`
⋮

IK ⊗ {(−1)`+1r1(−α0 + `(M − 1)γ)}`

⎤⎥⎥⎥⎥⎥⎦
D2,K+1,

and

SSL = (IM ⊗ −uG(1))
⎡⎢⎢⎢⎢⎢⎣

IK ⊗ r1(0)
⋮

IK ⊗ {r1(`(M − 1)γ)}`

⎤⎥⎥⎥⎥⎥⎦
.

Hereinafter, we assume that ∂αSΩs(z) is non-zero for each ∣α∣ ≤K. In the far field regime
this assumption guarantees that the GPTs can be retrieved up to order K. It will become
clear soon that this condition also makes SSL full column rank, allowing to compute its
Moore–Penrose inverse as

S†
SL = (S⊺SLSSL)−1S⊺SL.

We have the following lemma.

Lemma A.4.5 For 1 ≤ k ≤ 2K and M ≫ 1, we have

∥(S †
SL)k, ∶∥F ≲ ⌈k/2⌉ρ⌈k/2⌉√

M
. (A.14)
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Proof. Let us denote the 1× 2K row vector −uG(1) by w. We need to compute S⊺SLSSL,
that is

[IK ⊗ r1(0) . . . IK ⊗ {r1(−`(M − 1)γ)}`] (IM⊗w⊺)(IM⊗w)
⎡⎢⎢⎢⎢⎢⎣

IK ⊗ r1(0)
⋮

IK ⊗ {r1(`(M − 1)γ)}`

⎤⎥⎥⎥⎥⎥⎦
.

Since (IM ⊗w⊺)(IM ⊗w) = IM ⊗w⊺w, the product S⊺SLSSL boils down to

S⊺SLSSL =
M

∑
s=1

(IK ⊗ {r1(−`(s − 1)γ)}`)w⊺w(IK ⊗ {r1(`(s − 1)γ)}`).

Notice that the receptor x
(1)
l is x

(1)
l = rleiθ

(1)
l . Since ρ − η ≤ ri ≤ ρ + η, for some η small,

we assume that x
(1)
l = ρeiθ

(1)
l . As a consequence, we can factorize G(1) as

G(1) = G̃(1)(IK ⊗ {`−1ρ−`I2}`),

where G̃(1) is a Vandermonde-type matrix with nodes on the unit disk ∣z∣ = 1.

We obtain

w⊺w = (IK ⊗ {`−1ρ−`I2}`)(G̃(1))⊺u⊺uG̃(1)(IK ⊗ {`−1ρ−`I2}`).

It is immediate to see that

S⊺SLSSL = D1,KC(
M

∑
s=1

(IK ⊗ {r1(−`(s − 1)γ)}`)w̃⊺w̃(IK ⊗ {r1(`(s − 1)γ)}`))CD1,K ,

where

D1,K ∶= IK ⊗ {ρ−`I2}`, w̃ = −uG̃(1).

Let us denote SSLD−1
1,KC−1 by S̃SL.

To prove estimate (A.14), we rely on the following inequality:

∥(S†
SL)k, ∶∥F ≤ ∥(C−1D−1

1,K)k, ∶∥F ∥(S̃⊺SLS̃SL)−1∥F ∥S̃⊺SL∥F . (A.15)

By a straightforward calculation, it is immediate to see that

∥(C−1D−1
1,K)k, ∶∥F ≤ ⌈k/2⌉ρ⌈k/2⌉, (A.16)

and

∥S̃⊺SL∥F ≤
√
M max

1≤m≤M
∥(S̃SL)m, ∶∥F ≲

√
M. (A.17)

119



A. Appendix

Finally, we investigate the Frobenius norm of (S̃⊺SLS̃SL)−1. For 1 ≤ j ≤ K, we observe
that

(S̃⊺SLS̃SL)2j−1∶2j,2j−1∶2j =
M

∑
s=1

r1(−j(s − 1)γ) [w̃2j−1

w̃2j
] [w̃2j−1 w̃2j] r1(j(s − 1)γ)

= UH ⎛
⎝
M

∑
s=1

[e
−ij(s−1)γ 0

0 eij(s−1)γ] [
y2j−1

y2j
] [y2j−1

y2j
]
H

[e
ij(s−1)γ 0

0 e−ij(s−1)γ]
⎞
⎠
U

= UH
⎡⎢⎢⎢⎣

M ∣y2j−1∣2 1−e−2ijMγ

1−e−2ijγ (y2jy2j−1)
1−e2ijMγ

1−e2ijγ (y2j−1y2j) M ∣y2j ∣2
⎤⎥⎥⎥⎦
U,

where

[y2j−1

y2j
] = U [w̃2j−1

w̃2j
] , U = 1√

2
[1 i
1 −i] .

For 1 ≤ j < k ≤K, we have

(S̃⊺SLS̃SL)2j−1∶2j,2k−1∶2k =
M

∑
s=1

r1(−j(s − 1)γ) [w̃2j−1

w̃2j
] [w̃2k−1 w̃2k] r1(k(s − 1)γ)

= UH
⎡⎢⎢⎢⎢⎣

1−e−i(j−k)Mγ

1−e−i(j−k)γ (y2j−1y2k−1) 1−e−i(j+k)Mγ

1−e−i(j+k)γ (y2jy2k−1)
1−ei(j+k)Mγ

1−ei(j+k)γ (y2j−1y2k) 1−ei(j−k)Mγ

1−ei(j−k)γ (y2jy2k)

⎤⎥⎥⎥⎥⎦
U.

Therefore, S̃⊺SLS̃SL can be written as follows:

S̃⊺SLS̃SL = UH(MD +R)U,

where

D ∶=
⎡⎢⎢⎢⎢⎢⎣

∣y1∣2 0
⋱

0 ∣y2K ∣2

⎤⎥⎥⎥⎥⎥⎦
, R ∶= S̃⊺SLS̃SL −D, U ∶= IK ⊗U.

Notice that requiring D to be invertible is equivalent to saying that each ∣yj ∣, and thus
each w̃j , is non-zero. For this reason, the initial assumption on ∂αSΩs(z) implies that
D is invertible (see [7]) and thus, for M large enough, SSL is full column rank. Since
∥R∥F = O(1), we have [33]

U(S̃⊺SLS̃SL)−1UH = 1

M
(D + 1

M
R)

−1

= 1

M
D−1 +O ( 1

M2
) .

Since U is unitary, ∥U(S̃⊺SLS̃SL)−1UH∥F = ∥(S̃⊺SLS̃SL)−1∥F . Hence

∥(S̃⊺SLS̃SL)−1∥F ≲ 1

M
. (A.18)

Finally, inequality (A.15) together with estimates (A.16), (A.17) and (A.18) shows that
∥(S†

SL)k, ∶∥F satisfies (A.14).

120



A.5. Transferable Belief Model

We are now ready to estimate the dependency of (S†)k, ∶ on M and ρ. For ρ large enough,

we observe that the leading order term of (S†)k, ∶ is (S†
SL)k, ∶.

Since

S = Sdip + SSL,

we have [33]

S† = (Sdip + SSL)† = S†
SL − S†

SLSdipS
†
SL +

∞
∑
`=2

(−1)`(S†
SLSdip)`S†

SL.

It is immediate to prove the following lemma.

Lemma A.4.6 For 1 ≤ k ≤ 2K, we have

(S †)k, ∶ = (S †
SL)k, ∶ +O(ρ⌈k/2⌉−1).

Proof. Let us denote the matrix SdipD
−1
2,K+1 by S̃dip. Observe that both S̃SL and S̃dip

are independent of ρ. We have

∥(S†
SL)k, ∶SdipS

†
SL∥F = ∥(C−1D−1

1,K)k, ∶S̃†
SLS̃dipD2,K+1C

−1D−1
1,K S̃†

SL∥F
= ρ−1∥(C−1D−1

1,K)k, ∶S̃†
SLS̃dipC

−1S̃†
SL∥F

≲ ρ⌈k/2⌉−1.

A.5. Transferable Belief Model

In this appendix we present some basic definitions from evidence theory. In particular,
we shall consider the Transferable Belief Model (TBM); see [72]. This theory does not
require any underlying probability space.

In the context of dictionary classification, the frame of discernment is usually modeled as
a finite set C = {c1, c2, . . . , cN}, which is called a dictionary.

A belief function is a function bel ∶ 2C Ð→ [0,1] such that the following hold

1. bel(∅) = 0;

2. for all A1,A2, . . . ,An ∈ 2C ,

bel(A1∪A2∪⋅ ⋅ ⋅∪An) ≥ ∑
i

bel(Ai)−∑
i>j

bel(Ai∩Aj)− . . . −(−1)nbel(A1∩A2∩⋅ ⋅ ⋅∩An) ;

(A.19)

3. bel(C ) ≤ 1.
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A basic belief assignment (BBA) m is a function m ∶ 2C Ð→ [0,1] such that

∑
A∈2C

m(A) = 1.

The value m(A) for A ∈ 2C is called the basic belief mass (BBM) given to A. This is a
part of the agent’s belief that supports A, and that, due to lack of information, does not
support any strict subset of A. If m(A) > 0 then A is called focal set. Observe that it is
allowed to allocate positive BBM to ∅, i.e., m(∅) > 0.

The BBA related to a belief function bel is the function m ∶ 2C Ð→ [0,1] such that:

m(A) = ∑
B∈2C , ∅≠B⊆A

(−1)∣A∣−∣B∣bel(B), for all A ∈ 2C , A ≠ ∅,

m(∅) = 1 − bel(C ).
(A.20)

Moreover, there is a one-to-one correspondence between m and bel via the following
formula

bel(A) = ∑
B∈C , ∅≠B⊆A

m(B), for all A ∈ 2C , A ≠ ∅, (A.21)

that is, bel(A) is obtained by summing all BBMs given to subsets B ∈ 2C with B ⊆ A,
and it quantifies the total amount of justified specific support given to A.

Let m1 and m2 be two BBAs, we define the TBM conjunctive combination of the two
as

(m1 ∩ m2)(A) = ∑
B∩C=A

m1(B)m2(C). (A.22)

In the TBM model, from a decision-making point of view, we need to resort to a probability
distribution in order to select the most reliable hypothesis in C . Such a function is called
a pignistic probability, and is defined as

BetP(c) = ∑
A⊆C ,c∈A

m(A)
∣A∣ . (A.23)

The term pignistic stresses the fact that the only purpose of these probabilities is that of
forcing a decision.
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B.1. The results in the three-dimensional case

For the sake of completeness, in this appendix we focus on the three-dimensional case
(d = 3). In doing so, we note that the derivation of the asymptotic expansion in time-
domain can be carried out similarly to the two-dimensional case (see Sections 4.3, 4.4
and 4.5). Only minor changes in the proofs are required.

In the sections below, we aim at stressing the differences from the proofs which are given
for the two-dimensional case.

B.1.1. Stability estimates for the Helmholtz equation

Let D = εB + z, ∣B∣ = 1 and D ⊂ R3. Let ω, 0 < γ < 1, and ε0 > 0 be as in Section 4.3. As
in the two dimensional case, the main estimate is given by Proposition 4.3.1. However,
while the proof that we presented for the two-dimensional case resort to Lemma 4.3.2, in
the three-dimensional case it can be proved more directly. We sketch the proof below,
highlighting the changes with respect to the previous argument.

Proof. The skeleton of the proof is the same as for the two-dimensional case. The operator
T is introduced as in (4.10), and it is decomposed as follows

T = T̃0 + T̃ε,

where, this time, T̃0 is defined as

T̃0(φ̃, ψ̃) ∶= (S0
B[φ̃] − S0

B[ψ̃], k ∂S
0
B[φ̃]
∂ν

∣
−
− ∂S

0
B[ψ̃]
∂ν

∣
+
) ,

and

T̃ε ∶= T − T̃0.

Then, the argument proceeds as in the two-dimensional case.

123



B. Appendix

B.1.2. Frequency-dependent asymptotic expansion

By using the same techniques of Section 4.4, the frequency-dependent asymptotic expan-
sion in R3 is readily obtained.

Theorem B.1.1 Suppose that ω2 is not a Dirichlet eigenvalue for −∆ on D and ω ∈
(0, ε−γ), with 0 < γ < 1. The following asymptotic expansion holds:

vy(x,ω) − Vy(x,ω) =
n+1

∑
∣β∣=0

n−∣β∣+1

∑
∣α∣=0

ε∣α∣+∣β∣+1

α! β!
∂αz Vy(z,ω)∂βz Γω(x, z)Ŵαβ +O(εn+3(1 + ωn+2)),

for x ∈ R3 ∖D, where Ŵαβ are the FDPTs defined as in (4.15).

It is worth noticing that the leading-order term of the scattered field derived in [12, 41]
can be recovered from Theorem B.1.1. In particular, we have

vy(x,ω) − Vy(x,ω) = ε3∇zVy(z,ω)M(k,B)∇zΓω(x, z) +O(ε4ω3),

where M(k,B) = (mij)i,j is the polarization tensor (PT) given by

mij = ∫
∂B
ξj (

(k + 1)
2(k − 1)I − K

∗
B)

−1

[νi](ξ) dσ(ξ),

ν = (ν1, ν2, ν3) is the outward unit normal to ∂B, ξ = (ξ1, ξ2, ξ3), and k is the contrast.

B.1.3. Time-domain asymptotic expansion

In the three-dimensional case, the emitted wave generated at y ∈ R3 ∖D is defined as

Uy(x, t) ∶=
δ0(t − ∣x − y∣)

4π∣x − y∣ ,

where δ0 is the Dirac mass at 0. It is readily seen that Uy satisfies

⎧⎪⎪⎨⎪⎪⎩

(∂2
t −∆)Uy(x, t) = δx=yδt=0, (x, t) ∈ R3 ×R,

Uy(x, t) = 0 for x ∈ R3 and t≪ 0.

For uy = uy(x, t), we consider the wave equation

⎧⎪⎪⎨⎪⎪⎩

∂2
t uy −∇ ⋅ (χ(R3 ∖D) + kχ(D))∇uy = δx=yδt=0 in R3 × (0,∞),
uy(x, t) = 0 for x ∈ R3 and t≪ 0.
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B.1. The results in the three-dimensional case

For ρ > 0, let Pρ be the operator defined in (4.17). Since

Ûy(x,ω) ∶= ∫
R
eiωtUy(x, t) dt =

eiω∣x−y∣

4π∣x − y∣ = Vy(x,ω),

it follows that

Pρ[Uy](x, t) =
ψρ(t − ∣x − y∣)

4π∣x − y∣ ,

and Pρ[Uy] satisfies

(∂2
t −∆)Pρ[Uy](x, t) = δx=yψρ(t) in R3 ×R.

Moreover, we have that

Pρ[uy](x, t) = ∫
∣ω∣≤ρ

e−iωtvy(x,ω) dω,

where vy is the solution to the three-dimensional problem in the frequency domain.

Similarly to the two-dimensional case, we define the TDPTs as a truncated Fourier
transform of FDPTs.

Definition B.1.2 For ρ < 1/ε and multi-indices α and β, the three-dimensional TDPTs,
Pρ[Wαβ], are defined as follows:

Pρ[Wαβ](x, t) = ∫
∣ω∣≤ρ

e−iωtŴαβ dω, (B.1)

where Ŵαβ are the FDPTs given by (4.15).

We refer to Remarks 4.5.2 and 4.5.3, where the given definition and notation are clarified.

Proceeding as in Section 4.5, the following expansion of Pρ[uy −Uy](x, t) in terms of the
TDPTs is readily obtained.

Theorem B.1.3 For 0 < γ < 1, the following asymptotic expansion holds:

Pρ[uy](x, t) = Pρ[Uy](x, t)

+ ε
n+1

∑
∣β∣=0

n−∣β∣+1

∑
∣α∣=0

ε∣α∣+∣β∣

α! β!
∫
R
∂βz Pρ[Uz](x, τ) (∫R ∂

α
z Pρ[Uy](z, t − τ − τ ′)Pρ[Wαβ](τ ′) dτ ′) dτ

+O (ε(n+3)(1−γ)) ,

where x ∈ R3 ∖D, D = εB + z, ∣B∣ = 1, Pρ[Wαβ] are the TDPTs defined in Definition
(B.1.2) and ρ = O(ε−γ).
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[51] E. Krahn. Über minimaleigenschaften der kugel in drei und mehr dimensionen. Acta
Comm. Univ. Tartu (Dorpat), pages 1–44, 1926.

[52] Bernd Kramer. Electroreception and communication in fishes, volume 42 of Progress
in Zoology. Gustav Fischer, Stuttgart, 1996.

[53] N.N. Lebedev. Special Functions and their Applications.

130



References

[54] Chen Ling, L. House Jonathan, Krahe Rüdiger, and E. Nelson Mark. Modeling
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