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Towards RL-Based Hydraulic Excavator Automation

Pascal Egli' and Marco Hutter

Abstract—1In this article we present a data-driven approach
for automated arm control of a hydraulic excavator. Except
for the link lengths of the excavator, our method does not
require machine-specific knowledge nor gain tuning. Using data
collected during operation of the excavator, we train a general
purpose model to effectively represent the highly non-linear
dynamics of the hydraulic actuation and joint linkage. Together
with the link lengths a simulation is set up to train a neural
network control policy for end-effector position tracking using
reinforcement learning (RL). The control policy directly outputs
the actuator commands that can be applied to the machine
without unfounded filtering or modification. The proposed
method is implemented and tested on a 12t hydraulic excavator,
controlling its 4 main arm joints to track desired positions of
the shovel in free-space. The results demonstrate the feasibility
of directly applying control policies trained in simulation to the
physical excavator for accurate and stable position tracking.

I. INTRODUCTION

Hydraulic excavators are versatile machines, that are ubig-
uitous in construction, mining, agriculture or forestry. The
automation of these machines can bring substantial economic
and social benefits. The productivity can be improved by
alleviating the problem of finding enough skilled and expe-
rienced human operators. Additionally, autonomous excava-
tors can be used in hazardous environments and therefore,
improve safety. Accurate control of hydraulic excavators can
also give architects new design opportunities due to increased
precision and the ability to create arbitrary shapes [1].

An important technology for the automation of hydraulic
excavators is the accurate position control of the arm. Heavy
hydraulic excavators exhibit strong non-linearities due to
hydraulic coupling between the actuators, cylinder friction,
control input dead-zones and delays [2]. Furthermore, ma-
chine properties vary a lot, not only in different operating
and loading conditions, but also across different types of
machines and even between machines of the same type due
to manufacturing tolerances and wear. Also, cylinder attach-
ment configurations are different depending on the machine.
The corresponding linkage designs can be complex and
proprietary to the manufacturer. Deriving the resulting joint
angles is therefore not always trivial and requires physical
access to precisely measure off the entire mechanism. This
is in particular a problem for the Menzi Muck M545, which
was used in this work to validate our approach (see fig. 1). It
has a non-standard dipper joint configuration (see fig. 2) and
the boom cylinder is inaccessible without dismantling parts
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Fig. 1.

Menzi Muck M545, a 12t hydraulic walking excavator.

of the machine because it is mounted underneath the cabin.
These challenges motivate a data-driven control approach
which inherently solves the aforementioned problems with-
out requiring a precise analytical model of the system nor
expert knowledge to tune control parameters. The proposed
method is directly transferable and applicable to a broad
range of machines.

A. Related Work

Simple model-free PD controllers were proposed a long
time ago for excavator control [3]. The problem of PD or PID
controllers is that they are tuned for the nominal operating
configuration and hence their performance deteriorates with
increasing distance to the nominal configuration. Also, PID
controllers are usually tuned for a particular engine speed and
require the machine to be preheated. PID controllers were
enhanced with feed-forward lookup tables [4]. Generating
the lookup tables and tuning PID parameters is tedious
and requires expert knowledge for the application on every
machine.

Non-linear model-based control approaches have provided
state-of-the-art performance for high-precision control of
hydraulic manipulators [5]. These methods heavily rely on
an analytical model of the system which is difficult and
costly to obtain, hindering an easy transfer to another type of
machine. Additionally, many of these methods were tested
on systems with high-precision servo valves. Commercial
hydraulic excavators however are usually equipped with a
two-staged hydraulic system where only the proportional
valves in the pilot stage can be controlled which introduces
additional delays and bandwidth limitations. It is in general
not feasible or desirable to retrofit a commercial excavator
with servo valves due to the high cost of these valves.

To overcome the limitations of the above mentioned
approaches, researchers have started looking into learning



methods that can deal with the complex dynamics of hy-
draulic excavators. In early research, Song and Koivo [6]
proposed to learn the inverse dynamics of the excavator from
operation data and to adapt the model online. The torque
output of the model was then used as a feed-forward term
for the PID controller. This approach, however, was only
validated in simulation and neglects the fact that conventional
excavators can usually not be torque controlled without
expensive modifications to the hydraulic system [4], [7]. Can-
non et al. [8] modeled the actuator dynamics with one neural
network per cylinder. The actuator models were then used
in conjunction with a soil-tool interaction model to select
appropriate digging trajectories. Park et al. [9] proposed to
learn an inverse model of the excavator online using echo-
state networks (ESN) for position tracking. Their controller
could adapt to varying operating conditions and improve
its performance over time. However, the tracking error in
the air remained large, even after a couple of repetitive
motions. Dadhich et al. [10] trained a neural network based
on data collected during expert operation of a wheel-loader
for controlling the tilt and lift actuators during the bucket-
filling phase. To refine the controller and adapt it to a
different type of material they use online RL. Hodel [11]
proposes to use RL for bucket leveling and compares the
performance of different learning algorithms on a simplified
excavator model in simulation, leaving the transfer to real-
world an open problem.

B. Contribution

The main contribution of this work is a fully data-driven
approach to synthesize a position tracking controller for a
hydraulic excavator arm. Our approach only requires min-
imal machine-specific knowledge, namely the link lengths
between the actuated joints, which facilitates the automation
of any excavator. Machine-specific properties are incorpo-
rated into the actuator model which is trained based on
measurements collected during operation of the physical
machine. Using RL, we train a control policy which can
deal with the non-linear dynamics of the system and directly
outputs pilot stage valve current setpoints. We implement
our method on a 12t hydraulic excavator controlling its 4
main arm joints to track a desired shovel contact position
relative to the chassis (see fig. 3). We show that our controller
successfully stabilizes the excavator even for large position
reference steps. Our controller also shows good performance
for tracking circular reference trajectories, even though it
was not trained specifically for trajectory tracking. To the
best of our knowledge, this is the first time that a control
policy trained in simulation with RL is deployed on a full-
size excavator.

II. SYSTEM DESCRIPTION

Prior to explaining the details of our proposed method,
we outline the system requirements of our approach. The
following list contains the required modifications to an off-
the-shelf excavator:
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Fig. 2. Non-standard dipper joint linkage on the Menzi Muck M545.
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Fig. 3. Side view of the Menzi Muck M545 and its 4 main arm joints
that are controlled to reach a desired shovel contact position relative to the
cabin in task-space.

1) Joint Angle/Displacement Measurement: Our method
relies on accurate measurements of the joint angles
and positions for revolute and linear joints respectively.
We obtain the cylinder displacements with a resolution
of 0.0lmm using Sick [12] draw wire sensor. The
cylinder velocities are obtained by differentiating the
position measurements. To obtain the joint states from
the cylinder states we use the known geometry of the
linkage mechanisms. It is important to note that joint
states can also be directly obtained using aftermarket
solutions like the Leica iCON iXE3 [13] that are
simply mounted on the arm links such that knowledge
about the geometric cylinder-joint relation is in general
not required to apply our method.

2) Link Lengths: For position control in task-space we
need in addition to the joint states also the distances
between the joints, i.e. the link lengths. These can
be directly measured on the machine. We control the
position of the arm with respect to the forward kine-
matics computed based on link lengths and joint states.
Therefore, absolute errors, e.g. due to link bending or
play in the joints, are not considered.

3) Electric Control Valves: Electrically controllable pilot
stage valves are needed for autonomous control of the
excavator. Many modern excavators are equipped with
steer-by-wire technology where no modification of the
hydraulic system is required for controlling the valves
remotely. The M545 used here does not feature steer-
by-wire technology and is therefore retrofitted with
Hawe [14] PMZ proportional pressure reducing valves
in the pilot stage for autonomous and remote control.

III. METHOD

A. Overview

Fig. 4 shows an overview of our approach. First, an
actuator model is trained based on input-output data collected



Controller Network

Forward Kinematics
Deployment
Valve ploy

Joint
Commands States
Actuator Network

%

Fig. 4. Architecture overview. The actuator model is trained on input-output
data collected on the machine. In simulation the actuator model replaces the
physical machine to train a control policy with RL. The controller as well
as the actuator model take a history of past states as inputs.
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Fig. 5. Valve current setpoint command u € [—1, 1] (fully closed/open) for
data collection (blue) consists of a base signal (red) that ensures coverage
of the joint’s motion range and a modulated sine (yellow, see eq. 1).

on the real machine in a supervised fashion. This actuator
model is then used with fixed weights in simulation to
synthesize a controller for task-space position tracking of
the excavator’s shovel contact position using RL. The final
policy is then directly deployed on the physical excavator.

B. Data Collection

We collected input-output data during semi-autonomous
operation of the machine through the electric pilot stage
valves to model the dynamics of the actuators. Therefore,
we designed a valve current setpoint signal that consists of
two parts that are overlaid (see fig. 5): 1) a base signal, that
ensures coverage of the whole motion range of the cylinders
and 2) a frequency and amplitude modulated sine

s(t) = 0.3sin(270.02t 4 ¢1)-
sin(2m(t + 0.99sin(270.1¢) + ¢2)) (1)

with frequencies of up to approximately 2Hz, where ¢
and ¢ correspond to different phase shifts for each joint.
The maximum frequency was chosen to be higher than the
velocity control cut-off frequency which lies at 0.5Hz for
the M545 [4]. To avoid collisions with the ground and self-
collisions during data collection, the base signals for the
boom and the dipper joints were commanded manually, using
a gamepad joystick controller, whereas for the telescopic and
shovel joints randomized ramp profiles were generated. We
set the engine speed to a constant value and had the cabin of
the excavator in a constant horizontal orientation. Data was
collected during 2h at a rate of 100Hz.

C. Modeling the Hydraulic Actuation

We model the dynamics of the 4 hydraulic actuators with
a simple multi-layer perceptron (MLP) with 3 hidden layers,
each with 128 hidden nodes and ReLLU non-linear activation

TABLE I
ACTUATOR MODEL INPUTS AND OUTPUTS.

Inputs
Joint positions q]
- — Y v
Joint velocities G; G —0.01s0 > 9i—0.18
Valve setpoints UL, U 0350 Us_0.99s

Diesel engine rpm Ry
Hydraulic oil temperature 73

Outputs
Joint velocities

7
dt40.01s

and a linear output layer. The actuator model predicts the
joint velocities at the next time step, given the state at the
current time step and a history of past states. Joint positions
are obtained through forward integration in time.

Table I lists the inputs and outputs of the actuator model.
We use one network to model all the 4 actuators to account
for hydraulic coupling effects caused by all the 4 joints being
supplied by the same accumulator and pump. In addition to
the current velocities, we provide the model with a history
of past joint velocities to allow the network to average over
the effect of stiction friction and the discretization resulting
from the differentiation of the joint position measurement.
To account for input response delays, which depending on
the actuator can be as high as 0.7s, we provide the actuator
model with a history of the input commands over the past
0.99s [10], [15]. Since the commands do not change rapidly,
we sample the history sparsely with a stride of 0.03s, to
reduce the input dimensionality of the actuator model. Even
though we set the engine speed to a constant value during
data collection, we observe momentary drops in engine rpm
under heavy load, i.e. when moving many actuators fast at
the same time. Therefore, we also include the engine rpm
as input to the actuator model. Since the behavior of the
hydraulic actuators also varies depending on the temperature
of the hydraulic oil, it is also included as an input. To speed
up the training of the network, we normalize all the inputs to
a mean of 0 and standard deviation of 1. We found, that the
quality of the model improved a lot, when training for the
difference in joint velocities between two time steps, rather
than for the absolute velocities at the next time step. We train
the actuator model in a supervised fashion using the Adam
optimizer [16] and the mean-squared error (MSE) loss for
20’000 epochs with a single batch, which takes around 10h'.

Since the actuators move relatively slowly and we use
the current velocities as input to the model to predict the
velocities at the next time step, there is a risk that the model
would only learn an identity mapping of the current veloci-
ties. Table II shows the root-mean-squared errors (RSME) in
joint velocities indicating that the model does indeed perform
better than just an identity mapping. However, interpreting
the quality of the model based on these numbers is difficult.
In a simulated environment, which we intend to use to train
a control policy, no ground truth is available and the model
needs to be rolled forward in time based on its previous

'We use a PC with an AMD Ryzen9 3950x CPU (@4.0GHz), 32GB of
RAM and a Nvidia RTX 2080s GPU.



TABLE I
ACTUATOR MODEL ERRORS.

RMSE 10~ 3[rad,m]s"! Boom Dipper Telescope Shovel
Identity mapping 3.58 4.00 4.64 11.36
Training 90% 221 2.06 2.36 7.06
Validation 10% 2.28 2.10 2.44 7.96
1

=08

g 0.6

2 04

2

202 fk J

{ i N J \“\// g

o
N

-0.4
0

Time [s]

Joint position [m]

Time [s]

Fig. 6. Actuator model performance with joint velocities and inputs (top)
and positions (bottom). Starting from the same state, the output of the model
is compared to the measurements on the machine. The same inputs are
applied to the model and the machine, the model however is rolled forward
based on its own predicted states.

outputs. Therefore, we can only qualitatively compare model
rollouts to the behavior measured on the machine by applying
the same sequence of input commands. Fig. 6 shows the
output of the model for the telescopic joint. The model
output matches the measured velocities accurately and the
accumulated error is small even over a large range of motion.
By providing a sequence of past inputs and velocities, the
model is able to capture input delays accurately.

D. Learning a Position Tracking Controller

To synthesize a task-space position tracking controller that
is able to deal with the non-linear behavior of the actuators,
we use RL. The problem basically consists of learning the
inverse kinematics of the excavator arm and an inversion of
the actuator model. Inverting the actuator model can not be

TABLE III
CONTROLLER INPUTS AND OUTPUTS.

Inputs

Joint positions a

Joint velocities 47,G] 0.1 91—_0.2s
Valve setpoints ug,o'lsv ce 7U§71,os

Diesel engine rpm Ry
Hydraulic oil temperature 7%

Current shovel position Xt € R?
Current shovel velocity Xt € R2
Desired shovel position x; € R?

Outputs
Valve setpoints uy

done analytically due to the causality of the inputs to the
actuator network, hence we use RL to learn the inversion.

We model the problem as a discrete-time Markov Decision
Process (MDP). At every time step ¢, the agent receives an
observation o, € O, takes an action a; € A and receives a
scalar reward r; € R : AxS — R. The agent acts according
to a stochastic policy m(at|os, 04—1,...,01—p), conditioned
on the current and past observations. The objective of the
agent is to find a policy that maximizes the cumulative
discounted reward E[ Y77, vF, ] through interactions with
the environment, where v € (0,1) is the discount factor,
trading off between current and future rewards.

To train the control policy, we chose Trust Region Policy
Optimization (TRPO) [17], an actor-critic RL algorithm,
with Generalized Advantage Estimation (GAE) [18] using
the default hyper-parameters. We use two separate neural
networks for approximating the policy and value functions.
Each network consists of an MLP with two layers with 128
hidden nodes with ReLU activation and a linear output layer.
The observations and actions are listed in table III. The
controller is conditioned on the command, which consists
of a desired shovel contact position in task-space relative
to the cabin. Since we only control the 4 main arm joints,
the motion is restricted to two dimensions. Additionally,
the controller inputs consist of the same inputs provided to
the actuator model and the current end-effector position and
velocity.

We train the control policy on samples from simulated
episodes of 10s, initializing the excavator in a random
configuration and sampling a valid random goal position. For
every episode we sample a hydraulic oil temperature and an
engine rpm uniformly from the range observed during data
collection. An episode terminates, if joint limits are violated
or the arm collides with itself or the ground and the agent
receives —1.0 reward. The agent updates its actions at 10Hz
and the actuator model is evaluated at 100Hz. We use a
discount factor of 0.99 which corresponds of a half-life of
6.9s.

The reward function is defined as follows:

re=r1{ +r+r], ()

where
r{ =0.005(0.5 4+ exp (—kc1
rit = (—0.0005)ke 2|12

7": = (—0025)]@:2”1& — Ut,1||2.

Xt — xell2))

The first term (r]) drives the agent to the goal position and
the subsequent terms (r}*, r;) penalize large controller inputs
and large changes in control inputs between two time steps.
Especially the last term (r7) is essential for smooth control
outputs. We found that adding a constant positive reward
at all the time steps improved the learning performance,
because it discourages the agent to terminate an episode
early. k.1 and k.o are curriculum factors which make
the learning task easier at the beginning of the training to
accelerate conversion [19]. They are increased linearly from
1 to 10 during 200 and 400 algorithm iterations respectively.
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Fig. 7. Shovel position reference step in x direction (top) and corresponding
valve setpoints (bottom) relative to the cabin.

TABLE IV
TRAJECTORY TRACKING PERFORMANCE IN CARTESIAN SPACE.

lelavg[cm] lelmazfem]  [v[mazfems™']  pls]
Learning 7.8 13.5 22.3 0.61
IK 1.4 3.6 25.8 0.14

To account for noisy measurements on the machine and
inaccuracies in the actuation, we add uniformly sampled
white noise with mean O to actions and observations during
training. The maximum amplitudes of the additive noise are
[0.04,0.05,0.034, 0.08] rad and m for position observations,
[0.04]4 rads™ and ms~! for velocities, [50] for engine
rpm, [0.02]; m for shovel contact positions, [0.1]y ms~!
for shovel contact velocities and [0.075]4 for inputs.

Training of the control policy takes only about 1h! using
the TensorFlow > C/C++ APL

IV. EXPERIMENTAL RESULTS

We deploy the controller trained in simulation directly
on the machine without modification of its outputs. The
controller runs at 100Hz commanding directly electric pilot
stage valve current setpoints. We found, that deploying the
controller on the machine faster (100Hz) than during training
(10Hz) increased the controller performance substantially.
We assume that this is due to an increased difficulty of the
task with lower control rate during training.

As a first validation of our controller we test it in the
same scenario that was use during training in simulation,
i.e. by providing position reference steps in free-space. Fig.
7 (top) shows the end-effector position during a position
reference step of 1m in x direction relative to the cabin and
the corresponding valve current setpoints (bottom).

Since we do not have a controller that can follow such
large step references without going unstable, we compare it
in a second set of experiments to a hierarchical optimization
Inverse Kinematic (IK) trajectory controller [4]. The IK
controller relies on manually tuned velocity PID controllers
on cylinder level, including a lookup table containing feed-
forward valve current setpoints given desired joint velocities
and requires the geometric cylinder-joint conversion. We test
the controllers on circular trajectories in different parts of

Zhttps://github.com/leggedrobotics/tensorflow-cpp
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Fig. 8.  Circular trajectory tracking in free-space (top). Distances are

measured relative to the cabin position. Valve current setpoints generated
by the learned controller (middle) and for the IK controller (bottom) for the
circular trajectory starting at x=4.75m, z=0.69m.

the excavator’s workspace (see fig. 8, top), which requires
coordinated motions of all the 4 joints as well as cylinder
velocity direction changes. We provide the learned controller
with a position command that is updated at 100Hz. To ensure
smooth motions, we use a fifth-order polynomial spline with
0 velocity and acceleration at start and end to scale the
trajectories in time, an average shovel contact velocity of
0.lms~! and a maximum velocity of 0.1875 ms~!. The IK
controller was additionally provided with velocities extracted
from the spline. Fig. 8 (middle, bottom) shows the valve
current setpoints for the learned and the IK controller on
one of the circular trajectories. The sharp step in the IK
command for the telescopic joint at 31s is caused by arriving
at the joint limit. The learned controller avoids joints limits
because it was encouraged to do so by terminating training
episodes when violating joint limits.

The trajectory tracking performance is summarized in
table IV. The average position tracking error in Cartesian
space is indicated by |e|qyg. To being able to compare
the performance of our proposed method to other control
approaches and set a benchmark for further developments in
RL-based control of hydraulic manipulators we compute the
normalizing performance indicator p [5], which consists of
the ratio between the maximum tracking error |e|,,q, and



the maximum velocity |v|m,q, in Cartesian space, averaged
over the 6 circular trajectories.

An excerpt of the data collection procedure as well as the
position step reference and circle tracking experiments can
be found in the supplementary video.

V. DISCUSSION AND OUTLOOK

The results demonstrate the feasibility of directly applying
a control policy trained purely in simulation to the physical
excavator for accurate position tracking. The advantages of
our approach are that no gain tuning on the machine is
required and knowledge about the cylinder-joint geometry
is in general not needed which facilitates the automation
of any type of excavator. Our controller takes into account
the non-linear actuator dynamics including delays, dead-
zones, temperature and engine rpm dependencies through
data collected on the machine and uses standard proportional
valves in the pilot stage. Even for large position reference
steps our controller successfully stabilizes the excavator.
Even though our data-driven controller was not particularly
trained for trajectory tracking it can successfully track arbi-
trary trajectories by continuously updating the position target.
Compared to an IK trajectory tracking controller which is
specifically optimized for this machine and task the learned
controller performs expectedly worse, because it needs a
certain offset to the commanded position in order to move
as it does not take a reference velocity as command input.

Given that the presented results are achieved with only 2h
of data collected on the physical machine, the performance of
our controller can be enhanced, when more data is available.
This can be done in a Dyna setup [20], by improving the
actuator model with new data and continue training of the
controller based on the updated actuator model. Or, another
possibility is to update the control policy directly using RL
as proposed by Dadhich [10].

In future work we will extend our controller to consider
also reference velocities and we plan on including an ori-
entation reference. Currently, we do not control the cabin
turn actuator, limiting the arm motions to two dimensions.
The actuator model can be extended and trained with data
including the turn actuator. It is also possible to learn
an individual model for the turn actuator. The required
cabin turn position to reach an arbitrary position in three
dimensions with the shovel is uniquely defined and therefore,
the arm and the cabin turn can be commanded individually.
Another limitation of our implementation is that we do
assume the cabin to be in a horizontal orientation. This is a
valid assumption for many excavators, however, in particular
for the M545 which is intended to be used in rough and steep
terrain, the assumption does not hold anymore. Since the load
on the actuators due to gravity varies with the orientation
of the cabin, the state spaces of the actuator model and
the controller need to be augmented with the direction of
the gravity, which can be easily measured with an Inertial
Measurement Unit (IMU). In this work we only consider

3 https://youtu.be/MDP96pghYHc

free-space motions without soil interaction. Our approach
can be extended to also take into account soil interactions
by collecting data during digging operation and measure the
load on the actuators. Measuring the load can be achieved
by installing two pressure sensors per cylinder. A digging
controller could be trained in simulation with RL, using a
simplified soil-tool interaction model that is computationally
cheap. Soil-tool interaction models exist, but they are usually
inaccurate (20-30% error) or are computationally expensive
which hinders its usage for RL [21]. However, Hwangbo
et al. [15] have shown that dynamics randomization in
simulation during training can compensate for up to 20%
modelling error.
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